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Multiple regression model
with categorical predictor variable
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Overview: Linear regression model

❏ Theoretical (population model)—for a continuous dependent (random)
variable Y ∈ R and independent covariates X ∈ Rp where the intercept is
included in the model (i.e., X1 = 1 with probability one)—is of the form

Y = X⊤β + ε

❏ More generally, for Y ∈ R and X ∈ Rp the linear regression model with
unknown parameters β ∈ Rq can be also specified as

Y = β1t1(X) + β2t2(X) + · · · + βqtq(X) + ε

for the set of unknown parameters β = (β1, . . . , βq)⊤ ∈ Rq and some known
transformation functions tj : Rp → R, for j = 1, . . . , q, such that the
transformations t1, . . . , tq do not depend on the unknown parameters

❏ Linearity of the regression model refers to the linearity wrt. the unknown
parameters β1, . . . , βq ∈ R; it does not specify anything about X (or t1, . . . , tq)
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Transformations of continuous covariates
❏ For Y ∈ R and X ∈ Rp the general model formulation is of the form

Y = β1t1(X) + β2t2(X) + · · · + βqtq(X) + ε

where t1, . . . , tq are some reasonable transformations of the covariates
❏ However, it is very common that (linear) regression models are given as

Y = β1 + β2X1 + · · · + βp+1Xp + ε

or, alternatively, in a form Y = β0 + β1X1 + · · · + βpXp + ε

So, what are reasonable (general) transformations?
❏ For the model with the intercept parameter we could define t1(·) ≡ 1
❏ For many practical situations it is good to use tj+1(x) = xj , for x = (x1, . . . , xp)⊤

❏ Very common transformations are of a linear type: tj (x) = Aj x + cj

❏ A simplified version of such linear transformation is tj+1(x) = aj xj + cj

What is the (practical) role of such transformations?
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Binary explanatory variable

❏ Assume a simple (ordinary) regression model Y = a + bX + ε however, the
explanatory variable X ∈ R is a binary variable (taking two values only)

❏ The population model Y = a + bX + ε (where Eε = 0) can be expressed
equivalently as E [Y |X ] = a + bX (i.e., the population mean characteristic)

❏ The regression function f (x) = a + bx is linear in (two) unknown
parameters a, b ∈ R, and the model can be also expressed as Y = Xβ + ε

❏ Let X takes only values one (e.g., TRUE) and zero (e.g., FALSE)
❏ For X = 0, the model reduces to E [Y |X = 0] = f (0) = a

(i.e., a ∈ R stands for the mean of the sub-population for which we have FALSE)

❏ For X = 1, the model reduces to E [Y |X = 1] = f (1) = a + b
(i.e., a + b ∈ R stands for the the mean of the sub-population for which we have TRUE)
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Parametrizations of the binary variable
❏ There are infinitely many different parametrizations that can be used to

encode the binary variable X — for instance, it can take two values ±1
(thus, a − b stands for the mean of the first and a + b for the second sub-population)

❏ In other words, the binary explanatory variable X reduces the ordinary
linear regression model into a standard two sample problem of the form

Y = a + bI{X=TRUE} + ε = a + bI{X=FALSE} + ε = . . .

❏ What does it mean from the population perspective?
— Parametrization #1: let TRUE = 0 and FALSE = 1

=⇒ E [Y |X = TRUE] = a and E [Y |X = FALSE] = a + b

— Parametrization #2: let TRUE = 1 and FALSE = 0
=⇒ E [Y |X = TRUE] = a + b and E [Y |X = FALSE] = a

— Parametrization #3: let TRUE = −1 and FALSE = 1
=⇒ E [Y |X = TRUE] = a − b and E [Y |X = FALSE] = a + b

— Parametrization #4: let TRUE = v1 and FALSE = v2
=⇒ E [Y |X = TRUE] = a + bv1 and E [Y |X = FALSE] = a + bv2

— Parametrization #5: let TRUE = . . . and FALSE = . . .
(infinitely many different parametrizations can be used... So, which one to chose?)
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Over-parametrization problem

❏ In general, the linear regression model is assumed to have the intercept
(thus, X1 = 1 with probability one using the model Y = X⊤β + ε)

❏ So, why the model is not formulated as

Y = a + β1I{X=TRUE} + β2I{X=FALSE} + ε

for the set of unknown parameters (a, β1, β2)⊤ ∈ R3?

❏ Considering only one exploratory variable X ∈ {TRUE, FALSE} the
population of Y ∈ R can be only split into two sub-populations (using X)

— subpopulation E [Y |X = TRUE] and subpopulation E [Y |X = FALSE]
— there are only 2 population subgroups (aka equations) but 3 parameters
— three unknown parameters can not be uniquely estimated from 2 groups

❏ this is known as the over-parametrization problem and it is typically
solved by introducing some additional equation
(having 3 unknown parameters to estimate and 2 + 1 equations to use)
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Over-parametrization solution
❏ Assume the underlying (theoretical) regression model of the form

Y = a + β1I{X=TRUE} + β2I{X=FALSE} + ε

for the set of three unknown parameters (a, β1, β2)⊤ ∈ R3 to estimate

❏ Two sub-populations provide two equations for estimating (a, β1, β2)
(i.e., one sample from one group and another one from the other group)

❏ What should be the additional equation to be used?
— Parametrization #1: third equation: β1 = 0

=⇒ E [Y |X = TRUE] = a and E [Y |X = FALSE] = a + β2

— Parametrization #2: third equation: β2 = 0
=⇒ E [Y |X = TRUE] = a + β1 and E [Y |X = FALSE] = a

— Parametrization #3: third equation: β1 + β2 = 0
=⇒ E [Y |X = TRUE] = a + β1 and E [Y |X = FALSE] = a + β2

— Parametrization #4: third equation: e.g., β1 + β2 = 0
=⇒ E [Y |X = TRUE] = a + β1v1 and E [Y |X = FALSE] = a + β2v2

— Recall, that (in general), the average of averages is not the overall average
(however, it holds in situations where each groups has the same number of individuals)
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Some general recommendations

❏ In a linear regression model the parametrization of X can be taken
arbitrarily but there should be always some reasonable argument behind...

❏ Typically, the parametrization for a continuous covariate Xj in
X = (X1, . . . , Xp)⊤ is taken in a way that the interpretation makes sense,
or the magnitudes of the estimated parameters are reasonable...

❏ Typical parametrizations for a discrete covariate Xk in X = (X1, . . . , Xp)⊤

are taken in a way that conveniently suits the question of interest (e.g.,
comparing placebo vs. treatment, ... )

❏ The final model should be always selected with respect to some
goodness-of-fit criterion and the ability to interpret the model in
reasonable way (model simplicity vs. model complexity)
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More general model: Categorical covariates

❏ if all covariates in X = (X1, . . . , Xp)⊤ ∈ Rp are continuous, then the
regression function f : Rp → R is relatively straightforward – some
reasonably selected map from the domain of X into the domain of Y

❏ if one covariate is binary, the regression problem relatively simply and
straightforwardly reduces to a previous regression model (as seen before)

❏ however, some covariates in X = (X1, . . . , Xp)⊤ ∈ Rp can be of a discrete
type (categorical) – meaning that the corresponding covariate(s) take(s)
only finitely many different values in R (and generally more than two)

❏ without loss of generality, lets assume that X1 is discrete taking K ∈ N
different values {v1, . . . , vK } and X2, . . . , Xp ∈ R are all continuous
How to define a proper regression function f : {v1, . . . , vk} × Rp−1 → R?

❏ how to reasonably generalize the idea of the regression model used for the
binary variable X ∈ {TRUE, FALSE}?
What will be the role/interpretation of the intercept parameter?
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Dummy variables in a regression model

❏ The most common approach for implementing categorical covariates in a linear
regression model is to use so-called dummy variables

❏ At some point, the dummy variables can be seen as some partial adjustments of
the model intercept parameter depending on the particular value of the covariate

Example
❏ the dependent (random) variable Y ∈ R is assumed to be continuous
❏ let the covariate X1 be discrete, taking only values {v1, . . . , vk}, for some k ∈ N

❏ let another covariate X2 ∈ R be continuous
❏ the goal is to find some reasonable linear function f (linear wrt. some unknown

parameters) that will reasonably describe the relationship Y ≈ f (X1, X2) or,
alternatively, the identity E [Y |X1, X2] = f (X1, X2)

f : {v1, . . . , vK } × R → R
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Dummy variables in a regression model
❏ Dummy variables for the categorical covariate X1 can be defined as

— X D1
1 = I{X1=v1}, X D2

1 = I{X1=v2}, X D3
1 = I{X1=v3}, . . . , X DK

1 = I{X1=vK }

— its clear, that each X D1
1 , X D2

1 , . . . , X DK
1 can only take value zero or one

— the principle is analogous to a situation with the binary variable
(which takes only two different values and just one dummy is needed)

— but, also, analogous problems occur — over-parametrization

❏ The linear regression model with X1 ∈ {v1, . . . , vK } and X2 ∈ R can be
expressed, using the dummy variables X D1

1 , . . . , X DK
1 as

Y = a + β1X D1
1 + · · · + βK X DK

1 + bX2 + ε = a +
K∑

k=1

βkX Dk
1 + bX2 + ε

but the meaning of the intercept a ∈ R parameter may not be clear now...
(note, that E [Y |X D1

1 = 0, . . . , X DK
1 = 0] = a, but this implies that X1 /∈ {v1, . . . vK }, which can not happen)

❏ Moreover, there are 1 + K “intercept” parameters in the model but only
K different sub-populations that can be used for estimation
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Parametrization of a categorical covariate

Using the model in (11), it is clear that the whole (unknown) population is split into
K ∈ N subpopulations according to the value of X1 ∈ {v1, . . . , vK } – there are K ∈ N
different groups for which we can estimate the mean – over-parametrization
(but there are K + 1 parameters all together included in the model in (11))

Different parametrizations for dummy variables

❏ the intercept parameter a ∈ R is used instead of β1 in (11), thus β1 = 0
(the reference category X1 = v1 is modeled by the intercept parameter)

❏ the reference category can be also selected differently, for instance, βK = 0
(this reflects the situation where the intercept parameter models the mean of the sub-population vK )

❏ however, the over-parametrization can be solved by adding an equation...
(with an extra equation

∑K
k=1 βk = 0, the intercept parameter stands for the overall mean)

❏ and many other parametrizations can be used...
(but the main idea is to make sure that the intercept parameter a ∈ R has a reasonable interpretation)
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Final model selection

The crucial question in regression modeling is the following one: From the set of all
plausible models, which can be very rich... how should we select one model that we
consider to be the final one (the most appropriate one?)

❏ Naive methods
❏ expert judgement
❏ some previous experince/knowledge

❏ Systematic modelling approaches
❏ stepwise forward modelling approach
❏ stepwise background modelling approach

❏ Various quantitative criteria
❏ Akaike’s information criterion (AIC)
❏ Bayesian information criterion (BIC)
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