
Lecture 5 | 26.03.2024

Linear regression model
(with interactions)
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Motivation

Overview: Multiple regression model

o Mathematical relationship between a continuous dependent variable Y
and a set of explanatory (independent) variables X1, . . . ,Xp
(may be continuous, binary, or categorical – or any combination)

o Typically expressed for some general function f : Rp −→ R but for the
linear regression model we use a more specific notation of the form

Y = β0 + β1X1 + βp−1Xp−1 + ε = X>β + ε

o The corresponding data (empirical) model assumed for a random sample
{(Yi ,Xi ); i = 1, . . . , n} drawn from some joint distribution function
F(Y ,X) takes the form

Yi = X>i β + εi

for random vectors Xi = (1,Xi1, . . . ,Xi(p−1))> where we assume (by
default) the presence of the intercept parameter β0 ∈ R in the model (in
other words, Xi0 = 1 almost surely)
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On the roles of the regression

Quantifying the effect of X on Y

o One of the main goals of the regression model (regression analysis in
general) is to quantify the effect of some given explanatory variable on the
dependent variable Y .

o Formally, the explanatory variable may have an effect on the whole
(conditional) distribution of Y ... however, we are rather focussing on
some simple characteristics instead

o Typical characteristic related to the linear regression model is the
conditional mean of Y given X . Therefore, the effect of X on Y is also
typically interpreted in terms of the correponding change of the
conditional expected value when the value of X changes

o The quantification of the effect may be numerical (in terms of the
estimation of the corresponding parameter) or it can be statistical
(stochasticin terms of evaluating how important/significant the estimated
effect is (or both simultaneously))
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Problems that may occur

Association vs. causality

↪→ the regression model is typically a model that explains only an associattion
(elationship) between two (or more) subpopulations that differ with respect to the
value of the explanatory covariate(s)

o Associative interpretation
o Comparing two sub-populations that differ wrt to X
o Interpreting the effect of X in terms of the comparison of two subjects

o Causal interpretation
o Comparing the same sub-population before and after the change
o Interpreting the effect of X in terms of a change within the subject

↪→ it is a very common mistake that the associative regression model is
(unintentionally) interpreted as a causal model... however, for a causal interpretation
we usually need much stricter assumptions (a randomized trial)
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Problems that may occur

Correlation among explanatory variables

o Ideal scenario
o balanced data
o uncorrelated predictors
o each coeffcient βj can be estimated separately
o interpretation of the estimated coefficients is relatively fixed

o Typical real situations
o unbalanced data
o correlated predictor variables (multicolinearity)
o variance of the estimated parameters typically increases
o the interpretation of the estimated coefficients become vague

↪→ briefly saying, the estimated parameter βj stands for a change in the expected
(conditional) value of Y which comes with a unit change of Xj covariate, however,
with all other predictors being fixed. In practice, the predictor variables typically
change simultaneously. variables
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Examples

Example: Body fat vs. weight and height

o Body fat vs. person’s height

lm(formula = fat ~ height, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *

o Body fat vs. person’s weight

lm(formula = fat ~ weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.75217 3.42327 -6.062 2.02e-07 ***
weight 0.42674 0.04266 10.003 2.51e-13 ***
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Examples

What about a multiple model?

o Body fat vs. person’s height and weight

lm(formula = fat ~ height + weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831
height -0.24362 0.09728 -2.504 0.0158 *
weight 0.50418 0.05095 9.896 4.49e-13 ***

o What is the estimated effect of the height on the overall body fat?
o What is the estimated effect of the weight on the overall body fat?
o How well the conclusions correspond among different models?
o The estimated correlation between the weight and height is 0.6068
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Examples

How to overcome the problems? Interactions!

o Body fat vs. person’s height and weight with the interaction

lm(formula = fat ~ height + weight + height:weight)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.604790 87.698149 -0.554 0.582
height 0.123659 0.496447 0.249 0.804
weight 1.324727 1.088637 1.217 0.230
height:weight -0.004608 0.006106 -0.755 0.454

o What is the interaction term? How to explain it?
o Is the model good one?
o What are the main advantages and disadvantages of the model with

interactions?
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Examples

Illustration of the models
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Examples

Regression model with interactions: Formally
o Implementation in the R software

o using the expression height:weight
o using the expression height * weight
o defining new covariate as a product of height and weight

o Formulation within a linear regression model
o using a regression model expression: Y ≈ β0 + β1Xh + β2Xw + β3XhXw
o using a new covariate Y ≈ β0 + β1Xh + β2Xw + β3Z where Z = Xh × Xw

o More general formulations and models
o effect of height: Y ≈ β0 + (β1 + β3Xw )Xh + β2Xw
o effect of weight: Y ≈ β0 + (β2 + β3Xh)Xw + β3Xh

o parameter β3 can be seen as a linear function of Xw (or Xh respectively)
o more generaly, β3 is a function of Xw (or Xh respectively)
o thus, we can write β3(Xw ) (or β3(Xh) respectively), where β3x = cx
o so, is it necessary to stay with the linearity restrictions? What if
β(x) = g(x) for some general function g?

↪→ Thus, when being interested in the effect of height on the overall fat, the other covariate
(weight) acts as a effect modifier in the model (and vise versa)
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Interactions

When to use a model with interactions?

o Effect modifier
When there is an expectation that the effect of one specific covariate Xj
will be different in different sub-populations that we control for in the
model by using the remaining covariates

o Colinearity issues If the model design is not optimal and there is a belief
that some covariates may be correlated (linearly dependent –
multicolinearity) then the interaction(s) may help to improve the model

o Model interpretability Interactions can be also used just for the purpose
of some better model interpretability (despite the fact that mostly
interactions make the model interpretability more complex)

Interactions are not necessarily just between to explanatory covariates
(so-called double interactions, or first-order interactions). In practice, we
can technically use even higher-order intractions between three and more
covariates – but they subtantially complicates the interpretability
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Interactions

Simple interpretation of the interaction term

o Consider a simple regression model with one interaction

Y = β0 + β1X1 + β2X2 + β3(X1 × X2) + ε

o We are primariliy interested in the effect of X1 on E [Y |X1,X2] thus, we
can rewrite the model in the equivalent form

Y = β0 + (β1 + β3X2)X1 + β2X2 + ε

o To describe the effect of X1 on E [Y |X1,X2] we need to quantify/estimate
(β1 + β3X2) which, however, depends on the value of X2 – taking
(hypotetically) infinitelly many values Which ones to use?

o For X2 = 2 the effect of X1 on E [Y |X1,X2] only reduces to the
quantification/estimation of β1 Can we somehow achieve this?
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Transformations of the covariates

Transformations of the covariates

o Nonlinear transformations
many different transformation functions g ∈ G can be considered within
the regression model

Y = β0 + β1g1(X1) + β2g2(X2) + ε

but different transformations (different choice of g1, g2 ∈ G) change the
overall model (its properties, interpretation, etc.) and the models are not
directly comparable among each other

o Linear transformations
a very specific class of transformations that preserve most of the model
qualitites are of the form g(x) = a + bx , i.e.,

Y = β0 + β1(a1 + b1X1) + β2(a2 + b2X2) + ε

for a1, a2, b1, b2 ∈ R – models under such transformations are equivalent
(if b1 6= 0 6= b2) and can be directly compared among each other...
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Transformations of the covariates

Linear transformations of the covariates

Typically they are used to
o to improve the stability of the estimated parameters

(e.g., measuring the distance between Prague and Brno in millimeters/kilometers)

o for better representation of the model outputs
(mostly using different units, scales, proportions for better visualization)

o to improve the interpretation of the final model
(typically, we want to have a reasonable interpretation of the intercept and interactions)

However, it only works with a hierarchically well structured model.

o What is a hierarchically well structured model?
o What are the consequences of a non-hierarchical model?
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Transformations of the covariates

Model hierarchy

o Advantages
o linear transformations of the covariates does not effect the model
o different models are better comparable within their hierarchical structure
o systematic model building procedures are well defined and work well

o Disadvantages
o some models can not be fitted under the restriction of hierarchy
o models with various irregularities (discontinuous, non-smooth
o sometimes it is necessary to use a model without the intercept

↪→ when fitting a linear regression model, we always need to be aware of its structure
– whether we are building a model that is hierarchically well formulated or not... and
depending on the model we have different tools available for the fitting process and
the consecutive inference as well
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To conclude

Summary

o Models with interactions
o the yhelp to overcome some issues with the covariates
o the improve the overall flexibility of the model
o interpretation of the model becomes more challenging

o Linear transformations of the covariates
o they help with the model stability
o when used wisely, they improve the interpretability of the model
o they require a hierarchically well formulated model to work properly

o Hierarchically well formulated model
o it has its specific advantages and disadvantages
o inference in a hierarchical model is more straightfoward
o some practical applications require a non-hierarchical model
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