Lecture 5 | 26.03.2024

Linear regression model (with interactions)

Overview: Multiple regression model

- Mathematical relationship between a continuous dependent variable Y and a set of explanatory (independent) variables X_{1}, \ldots, X_{p} (may be continuous, binary, or categorical - or any combination)
\square Typically expressed for some general function $f: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ but for the linear regression model we use a more specific notation of the form

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{p-1} X_{p-1}+\varepsilon=\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon
$$

\square The corresponding data (empirical) model assumed for a random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ drawn from some joint distribution function $F_{(Y, X)}$ takes the form

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}
$$

for random vectors $\boldsymbol{X}_{i}=\left(1, X_{i 1}, \ldots, X_{i(p-1)}\right)^{\top}$ where we assume (by default) the presence of the intercept parameter $\beta_{0} \in \mathbb{R}$ in the model (in other words, $X_{i 0}=1$ almost surely)

Quantifying the effect of X on Y

\square One of the main goals of the regression model (regression analysis in general) is to quantify the effect of some given explanatory variable on the dependent variable Y.
\square Formally, the explanatory variable may have an effect on the whole (conditional) distribution of $Y \ldots$ however, we are rather focussing on some simple characteristics instead

- Typical characteristic related to the linear regression model is the conditional mean of Y given X. Therefore, the effect of X on Y is also typically interpreted in terms of the correponding change of the conditional expected value when the value of X changes
\square The quantification of the effect may be numerical (in terms of the estimation of the corresponding parameter) or it can be statistical (stochasticin terms of evaluating how important/significant the estimated effect is (or both simultaneously))

Association vs. causality

\hookrightarrow the regression model is typically a model that explains only an associattion (elationship) between two (or more) subpopulations that differ with respect to the value of the explanatory covariate(s)

Association vs. causality

\hookrightarrow the regression model is typically a model that explains only an associattion (elationship) between two (or more) subpopulations that differ with respect to the value of the explanatory covariate(s)
\square Associative interpretation

- Comparing two sub-populations that differ wrt to X

Interpreting the effect of X in terms of the comparison of two subjects
\square Causal interpretation

- Comparing the same sub-population before and after the change
\square Interpreting the effect of X in terms of a change within the subject
\hookrightarrow it is a very common mistake that the associative regression model is (unintentionally) interpreted as a causal model... however, for a causal interpretation we usually need much stricter assumptions (a randomized trial)

Correlation among explanatory variables

\square Ideal scenario
b balanced data
uncorrelated predictors
each coeffcient β_{j} can be estimated separately
interpretation of the estimated coefficients is relatively fixed
\square Typical real situations
\square unbalanced data

- correlated predictor variables (multicolinearity)
variance of the estimated parameters typically increases
- the interpretation of the estimated coefficients become vague
\hookrightarrow briefly saying, the estimated parameter β_{j} stands for a change in the expected (conditional) value of Y which comes with a unit change of X_{j} covariate, however, with all other predictors being fixed. In practice, the predictor variables typically change simultaneously. variables

Example: Body fat vs. weight and height

\square Body fat vs. person's height

```
lm(formula = fat ~ height, data = Policie)
Coefficients:
Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & -47.6791 & 23.9707 & -1.989 & 0.0524 &. \\
height & 0.3405 & 0.1343 & 2.535 & \(0.0146 *\)
\end{tabular}
```

\square Body fat vs. person's weight

```
lm(formula = fat ~ weight, data = Policie)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-20.75217	3.42327	-6.062	$2.02 \mathrm{e}-07$	$* * *$
weight	0.42674	0.04266	10.003	$2.51 \mathrm{e}-13$	***

What about a multiple model?

\square Body fat vs. person's height and weight
lm(formula $=$ fat \sim height + weight, data $=$ Policie)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $16.55309 \quad 15.24621 \quad 1.086 \quad 0.2831$
$\begin{array}{lrrrr}\text { height } & -0.24362 & 0.09728 & -2.504 & 0.0158 * \\ \text { weight } & 0.50418 & 0.05095 & 9.896 & 4.49 \mathrm{e}-13\end{array} \quad$ ***

What about a multiple model?

\square Body fat vs. person's height and weight

```
\(\operatorname{lm}(f o r m u l a=\) fat \(\sim\) height + weight, data \(=\) Policie)
```

Coefficients:

$$
\begin{array}{lrrrr}
& \text { Estimate } & \text { Std. Error } & \mathrm{t} \text { value } & \operatorname{Pr}(>|t|) \\
\text { (Intercept) } & 16.55309 & 15.24621 & 1.086 & 0.2831 \\
\text { height } & -0.24362 & 0.09728 & -2.504 & 0.0158 * \\
\text { weight } & 0.50418 & 0.05095 & 9.896 & 4.49 \mathrm{e}-13 * *
\end{array}
$$

\square What is the estimated effect of the height on the overall body fat?
\square What is the estimated effect of the weight on the overall body fat?
\square How well the conclusions correspond among different models?

What about a multiple model?

\square Body fat vs. person's height and weight

```
\(\operatorname{lm}(f o r m u l a=\) fat \(\sim\) height + weight, data \(=\) Policie)
```

Coefficients:

$$
\begin{array}{lrrrr}
& \text { Estimate } \text { Std. Error } t \text { value } \operatorname{Pr}(>|t|) \\
\text { (Intercept) } & 16.55309 & 15.24621 & 1.086 & 0.2831 \\
\text { height } & -0.24362 & 0.09728 & -2.504 & 0.0158 * \\
\text { weight } & 0.50418 & 0.05095 & 9.896 & 4.49 \mathrm{e}-13 * * *
\end{array}
$$

\square What is the estimated effect of the height on the overall body fat?
\square What is the estimated effect of the weight on the overall body fat?
\square How well the conclusions correspond among different models?
\square The estimated correlation between the weight and height is 0.6068

How to overcome the problems? Interactions!

\square Body fat vs. person's height and weight with the interaction

```
lm(formula = fat ~ height + weight + height:weight)
```

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

(Intercept) $-48.60479087 .698149 \quad-0.5540 .582$

height	0.123659	0.496447	0.249	0.804
weight	1.324727	1.088637	1.217	0.230
height:weight	-0.004608	0.006106	-0.755	0.454

How to overcome the problems? Interactions!

\square Body fat vs. person's height and weight with the interaction

```
lm(formula = fat ~ height + weight + height:weight)
```

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	-48.604790	87.698149	-0.554	0.582
height	0.123659	0.496447	0.249	0.804
weight	1.324727	1.088637	1.217	0.230
height:weight	-0.004608	0.006106	-0.755	0.454

\square What is the interaction term? How to explain it?
\square Is the model good one?
\square What are the main advantages and disadvantages of the model with interactions?

Examples

Illustration of the models

Effect of height on fat

Regression model with interactions: Formally

\square Implementation in the R software
\square using the expression height:weight
\square using the expression height * weight
\square defining new covariate as a product of height and weight
\square Formulation within a linear regression model
\square using a regression model expression: $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} X_{h} X_{w}$
\square using a new covariate $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} Z$ where $Z=X_{h} \times X_{w}$
\square More general formulations and models
effect of height: $Y \approx \beta_{0}+\left(\beta_{1}+\beta_{3} X_{w}\right) X_{h}+\beta_{2} X_{w}$
effect of weight: $Y \approx \beta_{0}+\left(\beta_{2}+\beta_{3} X_{h}\right) X_{w}+\beta_{3} X_{h}$

Examples

Regression model with interactions: Formally

\square Implementation in the R software
\square using the expression height:weight
\square using the expression height * weight
\square defining new covariate as a product of height and weight
\square Formulation within a linear regression model
\square using a regression model expression: $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} X_{h} X_{w}$
using a new covariate $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} Z$ where $Z=X_{h} \times X_{w}$
\square More general formulations and models
effect of height: $Y \approx \beta_{0}+\left(\beta_{1}+\beta_{3} X_{w}\right) X_{h}+\beta_{2} X_{w}$
effect of weight: $Y \approx \beta_{0}+\left(\beta_{2}+\beta_{3} X_{h}\right) X_{w}+\beta_{3} X_{h}$
\square parameter β_{3} can be seen as a linear function of X_{w} (or X_{h} respectively)
\square more generaly, β_{3} is a function of X_{w} (or X_{h} respectively)
\square thus, we can write $\beta_{3}\left(X_{w}\right)$ (or $\beta_{3}\left(X_{h}\right)$ respectively), where $\beta_{3} x=c x$

Examples

Regression model with interactions: Formally

\square Implementation in the R software
\square using the expression height:weight
\square using the expression height * weight
\square defining new covariate as a product of height and weight
\square Formulation within a linear regression model
\square using a regression model expression: $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} X_{h} X_{w}$
using a new covariate $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} Z$ where $Z=X_{h} \times X_{w}$
\square More general formulations and models
effect of height: $Y \approx \beta_{0}+\left(\beta_{1}+\beta_{3} X_{w}\right) X_{h}+\beta_{2} X_{w}$
effect of weight: $Y \approx \beta_{0}+\left(\beta_{2}+\beta_{3} X_{h}\right) X_{w}+\beta_{3} X_{h}$
parameter β_{3} can be seen as a linear function of X_{w} (or X_{h} respectively)
more generaly, β_{3} is a function of X_{w} (or X_{h} respectively)
thus, we can write $\beta_{3}\left(X_{w}\right)$ (or $\beta_{3}\left(X_{h}\right)$ respectively), where $\beta_{3} x=c x$
\square so, is it necessary to stay with the linearity restrictions? What if $\beta(x)=g(x)$ for some general function g ?

Examples

Regression model with interactions: Formally

\square Implementation in the R software
\square using the expression height:weight
\square using the expression height * weight
\square defining new covariate as a product of height and weight
\square Formulation within a linear regression model
\square using a regression model expression: $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} X_{h} X_{w}$
\square using a new covariate $Y \approx \beta_{0}+\beta_{1} X_{h}+\beta_{2} X_{w}+\beta_{3} Z$ where $Z=X_{h} \times X_{w}$
\square More general formulations and models
\square effect of height: $Y \approx \beta_{0}+\left(\beta_{1}+\beta_{3} X_{w}\right) X_{h}+\beta_{2} X_{w}$
\square effect of weight: $Y \approx \beta_{0}+\left(\beta_{2}+\beta_{3} X_{h}\right) X_{w}+\beta_{3} X_{h}$
\square parameter β_{3} can be seen as a linear function of X_{w} (or X_{h} respectively)
\square more generaly, β_{3} is a function of X_{w} (or X_{h} respectively)
\square thus, we can write $\beta_{3}\left(X_{w}\right)$ (or $\beta_{3}\left(X_{h}\right)$ respectively), where $\beta_{3} x=c x$
\square so, is it necessary to stay with the linearity restrictions? What if $\beta(x)=g(x)$ for some general function g ?
\hookrightarrow Thus, when being interested in the effect of height on the overall fat, the other covariate
(weight) acts as a effect modifier in the model (and vise versa)

When to use a model with interactions?

\square Effect modifier
When there is an expectation that the effect of one specific covariate X_{j} will be different in different sub-populations that we control for in the model by using the remaining covariates
\square Colinearity issues If the model design is not optimal and there is a belief that some covariates may be correlated (linearly dependent multicolinearity) then the interaction(s) may help to improve the model
\square Model interpretability Interactions can be also used just for the purpose of some better model interpretability (despite the fact that mostly interactions make the model interpretability more complex)

When to use a model with interactions?

\square Effect modifier
When there is an expectation that the effect of one specific covariate X_{j} will be different in different sub-populations that we control for in the model by using the remaining covariates
\square Colinearity issues If the model design is not optimal and there is a belief that some covariates may be correlated (linearly dependent multicolinearity) then the interaction(s) may help to improve the model
\square Model interpretability Interactions can be also used just for the purpose of some better model interpretability (despite the fact that mostly interactions make the model interpretability more complex)

Interactions are not necessarily just between to explanatory covariates (so-called double interactions, or first-order interactions). In practice, we can technically use even higher-order intractions between three and more covariates - but they subtantially complicates the interpretability

Simple interpretation of the interaction term

\square Consider a simple regression model with one interaction

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3}\left(X_{1} \times X_{2}\right)+\varepsilon
$$

We are primariliy interested in the effect of X_{1} on $E\left[Y \mid X_{1}, X_{2}\right]$ thus, we can rewrite the model in the equivalent form

$$
Y=\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\varepsilon
$$

\square To describe the effect of X_{1} on $E\left[Y \mid X_{1}, X_{2}\right]$ we need to quantify/estimate $\left(\beta_{1}+\beta_{3} X_{2}\right)$ which, however, depends on the value of X_{2} - taking (hypotetically) infinitelly many values Which ones to use?
\square For $X_{2}=2$ the effect of X_{1} on $E\left[Y \mid X_{1}, X_{2}\right]$ only reduces to the quantification/estimation of β_{1}

Can we somehow achieve this?

Transformations of the covariates

\square Nonlinear transformations many different transformation functions $g \in \mathcal{G}$ can be considered within the regression model

$$
Y=\beta_{0}+\beta_{1} g_{1}\left(X_{1}\right)+\beta_{2} g_{2}\left(X_{2}\right)+\varepsilon
$$

but different transformations (different choice of $g_{1}, g_{2} \in \mathcal{G}$) change the overall model (its properties, interpretation, etc.) and the models are not directly comparable among each other
\square Linear transformations
a very specific class of transformations that preserve most of the model qualitites are of the form $g(x)=a+b x$, i.e.,

$$
Y=\beta_{0}+\beta_{1}\left(a_{1}+b_{1} X_{1}\right)+\beta_{2}\left(a_{2}+b_{2} X_{2}\right)+\varepsilon
$$

for $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$ - models under such transformations are equivalent (if $b_{1} \neq 0 \neq b_{2}$) and can be directly compared among each other...

Linear transformations of the covariates

Typically they are used to

\square to improve the stability of the estimated parameters
(e.g., measuring the distance between Prague and Brno in millimeters/kilometers)
\square for better representation of the model outputs
(mostly using different units, scales, proportions for better visualization)
\square to improve the interpretation of the final model
(typically, we want to have a reasonable interpretation of the intercept and interactions)

Linear transformations of the covariates

Typically they are used to

\square to improve the stability of the estimated parameters
(e.g., measuring the distance between Prague and Brno in millimeters/kilometers)
\square for better representation of the model outputs
(mostly using different units, scales, proportions for better visualization)
\square to improve the interpretation of the final model
(typically, we want to have a reasonable interpretation of the intercept and interactions)

However, it only works with a hierarchically well structured model.
\square What is a hierarchically well structured model?
\square What are the consequences of a non-hierarchical model?

Model hierarchy

\square Advantages

- linear transformations of the covariates does not effect the model
different models are better comparable within their hierarchical structure
systematic model building procedures are well defined and work well
\square Disadvantages
\square some models can not be fitted under the restriction of hierarchy
- models with various irregularities (discontinuous, non-smooth
sometimes it is necessary to use a model without the intercept

Model hierarchy

\square Advantages

- linear transformations of the covariates does not effect the model
different models are better comparable within their hierarchical structure
systematic model building procedures are well defined and work well
- Disadvantages
some models can not be fitted under the restriction of hierarchy
models with various irregularities (discontinuous, non-smooth
sometimes it is necessary to use a model without the intercept
\hookrightarrow when fitting a linear regression model, we always need to be aware of its structure
- whether we are building a model that is hierarchically well formulated or not... and depending on the model we have different tools available for the fitting process and the consecutive inference as well

Summary

- Models with interactions
the yhelp to overcome some issues with the covariates
- the improve the overall flexibility of the model
\square interpretation of the model becomes more challenging
- Linear transformations of the covariates
- they help with the model stability
when used wisely, they improve the interpretability of the model
they require a hierarchically well formulated model to work properly
\square Hierarchically well formulated model
- it has its specific advantages and disadvantages
- inference in a hierarchical model is more straightfoward
\square some practical applications require a non-hierarchical model

