Lecture 5 | 17.03.2025

Multiple regression model with categorical predictor variable

Overview: Linear regression model

□ Theoretical (population model)—for a continuous dependent (random) variable Y ∈ ℝ and independent covariates X ∈ ℝ^p where the intercept is included in the model (i.e., X₁ = 1 with probability one)—is of the form

$$Y = \boldsymbol{X}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

□ More generally, for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^{p}$ the linear regression model with unknown parameters $\beta \in \mathbb{R}^{q}$ can be also specified as

 $Y = \beta_1 t_1(\boldsymbol{X}) + \beta_2 t_2(\boldsymbol{X}) + \dots + \beta_q t_q(\boldsymbol{X}) + \varepsilon$

for the set of unknown parameters $\beta = (\beta_1, \ldots, \beta_q)^\top \in \mathbb{R}^q$ and some known transformation functions $t_j : \mathbb{R}^p \to \mathbb{R}$, for $j = 1, \ldots, q$, such that the transformations t_1, \ldots, t_q do not depend on the unknown parameters

□ Linearity of the regression model refers to the linearity wrt. the unknown parameters $\beta_1, \ldots, \beta_q \in \mathbb{R}$; it does not specify anything about **X** (or t_1, \ldots, t_q)

Transformations of continuous covariates

D For $Y \in \mathbb{R}$ and $X \in \mathbb{R}^{p}$ the general model formulation is of the form

 $Y = \beta_1 t_1(\boldsymbol{X}) + \beta_2 t_2(\boldsymbol{X}) + \dots + \beta_q t_q(\boldsymbol{X}) + \varepsilon$

where t_1, \ldots, t_q are some reasonable transformations of the covariates \Box However, it is very common that (linear) regression models are given as

 $Y = \beta_1 + \beta_2 X_1 + \dots + \beta_{p+1} X_p + \varepsilon$

or, alternatively, in a form $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$

So, what are reasonable (general) transformations?

- \Box For the model with the intercept parameter we could define $t_1(\cdot) \equiv 1$
- **D** For many practical situations it is good to use $t_{j+1}(\mathbf{x}) = x_j$, for $\mathbf{x} = (x_1, \dots, x_p)^\top$
- □ Very common transformations are of a linear type: $t_j(\mathbf{x}) = \mathbb{A}_j \mathbf{x} + \mathbf{c}_j$
- □ A simplified version of such linear transformation is $t_{j+1}(x) = a_j x_j + c_j$

What is the (practical) role of such transformations?

Binary explanatory variable

- □ Assume a simple (ordinary) regression model $Y = a + bX + \varepsilon$ however, the explanatory variable $X \in \mathbb{R}$ is a binary variable (taking two values only)
- □ The population model $Y = a + bX + \varepsilon$ (where $E\varepsilon = 0$) can be expressed equivalently as E[Y|X] = a + bX (i.e., the population mean characteristic)
- □ The regression function f(x) = a + bx is linear in (two) unknown parameters $a, b \in \mathbb{R}$, and the model can be also expressed as $Y = X\beta + \varepsilon$
- Let X takes only values one (e.g., TRUE) and zero (e.g., FALSE)
 - □ For X = 0, the model reduces to E[Y|X = 0] = f(0) = a(*i.e.*, $a \in \mathbb{R}$ stands for the mean of the sub-population for which we have FALSE)
 - □ For X = 1, the model reduces to E[Y|X = 1] = f(1) = a + b(*i.e.*, $a + b \in \mathbb{R}$ stands for the the mean of the sub-population for which we have TRUE)

Parametrizations of the binary variable

- □ There are infinitely many different parametrizations that can be used to encode the binary variable X for instance, it can take two values ±1 (*thus*, *a* − *b* stands for the mean of the first and *a* + *b* for the second sub-population)
- □ In other words, the binary explanatory variable *X* reduces the ordinary linear regression model into a standard two sample problem of the form

$$Y = a + b\mathbb{I}_{\{X = \text{TRUE}\}} + \varepsilon = a + b\mathbb{I}_{\{X = \text{FALSE}\}} + \varepsilon = \dots$$

U What does it mean from the population perspective?

- Parametrization #1: let TRUE = 0 and FALSE = 1 $\implies E[Y|X = \text{TRUE}] = a \text{ and } E[Y|X = \text{FALSE}] = a + b$
- Parametrization #2: let TRUE = 1 and FALSE = 0 $\implies E[Y|X = \text{TRUE}] = a + b \text{ and } E[Y|X = \text{FALSE}] = a$
- Parametrization #3: let TRUE = -1 and FALSE = 1 $\implies E[Y|X = \text{TRUE}] = a - b$ and E[Y|X = FALSE] = a + b
- -- Parametrization #4: let TRUE = v_1 and FALSE = v_2 $\implies E[Y|X = \text{TRUE}] = a + bv_1$ and $E[Y|X = \text{FALSE}] = a + bv_2$
- Parametrization #5: let TRUE = ... and FALSE = ... (infinitely many different parametrizations can be used... So, which one to chose?)

Over-parametrization problem

- □ In general, the linear regression model is assumed to have the intercept (thus, $X_1 = 1$ with probability one using the model $Y = \mathbf{X}^\top \beta + \varepsilon$)
- So, why the model is not formulated as

 $Y = \mathbf{a} + \beta_1 \mathbb{I}_{\{X = \text{true}\}} + \beta_2 \mathbb{I}_{\{X = \text{false}\}} + \varepsilon$

for the set of unknown parameters $(a, \beta_1, \beta_2)^{\top} \in \mathbb{R}^3$?

- □ Considering only one exploratory variable $X \in \{\text{TRUE}, \text{FALSE}\}$ the population of $Y \in \mathbb{R}$ can be only split into two sub-populations (using X)
 - subpopulation E[Y|X = TRUE] and subpopulation E[Y|X = FALSE]
 - there are only 2 population subgroups (aka equations) but 3 parameters
 - three unknown parameters can not be uniquely estimated from 2 groups
- this is known as the over-parametrization problem and it is typically solved by introducing some additional equation (having 3 unknown parameters to estimate and 2 + 1 equations to use)

Over-parametrization solution

□ Assume the underlying (theoretical) regression model of the form

 $Y = a + \beta_1 \mathbb{I}_{\{X = \text{TRUE}\}} + \beta_2 \mathbb{I}_{\{X = \text{False}\}} + \varepsilon$

for the set of three unknown parameters $(a, \beta_1, \beta_2)^{\top} \in \mathbb{R}^3$ to estimate

□ Two sub-populations provide two equations for estimating (a, β_1, β_2) (*i.e.*, one sample from one group and another one from the other group)

□ What should be the additional equation to be used?

- Parametrization #1: third equation: $\beta_1 = 0$ $\implies E[Y|X = \text{TRUE}] = a \text{ and } E[Y|X = \text{FALSE}] = a + \beta_2$
- Parametrization #2: third equation: $\beta_2 = 0$ $\implies E[Y|X = \text{TRUE}] = a + \beta_1 \text{ and } E[Y|X = \text{FALSE}] = a$
- $\begin{array}{l} -- \quad \mbox{Parametrization $\#3$: third equation: $\beta_1 + \beta_2 = 0$} \\ \implies E[Y|X = \mbox{TRUE}] = a + \beta_1 \mbox{ and } E[Y|X = \mbox{FALSE}] = a + \beta_2 \end{array}$
- $\begin{array}{l} & & \mathsf{Parametrization} \ \#4: \ \mathsf{third} \ \mathsf{equation}: \ \mathsf{e.g.}, \ \beta_1 + \beta_2 = \mathsf{0} \\ & \implies \mathcal{E}[Y|X = \mathtt{TRUE}] = \mathsf{a} + \beta_1 \mathsf{v}_1 \ \mathsf{and} \ \mathcal{E}[Y|X = \mathtt{FALSE}] = \mathsf{a} + \beta_2 \mathsf{v}_2 \end{array}$
- Recall, that (in general), the average of averages is not the overall average (however, it holds in situations where each groups has the same number of individuals)

Some general recommendations

- □ In a linear regression model the parametrization of *X* can be taken arbitrarily but there should be always some reasonable argument behind...
- □ Typically, the parametrization for a continuous covariate X_j in X = (X₁,...,X_p)[⊤] is taken in a way that the interpretation makes sense, or the magnitudes of the estimated parameters are reasonable...
- □ Typical parametrizations for a discrete covariate X_k in X = (X₁,..., X_p)[⊤] are taken in a way that conveniently suits the question of interest (e.g., comparing placebo vs. treatment, ...)
- □ The final model should be always selected with respect to some goodness-of-fit criterion and the ability to interpret the model in reasonable way (model simplicity vs. model complexity)

More general model: Categorical covariates

- □ if all covariates in $\mathbf{X} = (X_1, ..., X_p)^\top \in \mathbb{R}^p$ are **continuous**, then the regression function $f : \mathbb{R}^p \to \mathbb{R}$ is relatively straightforward some reasonably selected map from the domain of \mathbf{X} into the domain of Y
- if one covariate is binary, the regression problem relatively simply and straightforwardly reduces to a previous regression model (as seen before)
- □ however, some covariates in $\mathbf{X} = (X_1, ..., X_p)^\top \in \mathbb{R}^p$ can be of a **discrete type** (categorical) – meaning that the corresponding covariate(s) take(s) only finitely many different values in \mathbb{R} (and generally more than two)
- □ without loss of generality, lets assume that X_1 is discrete taking $K \in \mathbb{N}$ different values $\{v_1, \ldots, v_K\}$ and $X_2, \ldots, X_p \in \mathbb{R}$ are all continuous How to define a proper regression function $f : \{v_1, \ldots, v_k\} \times \mathbb{R}^{p-1} \to \mathbb{R}$?
- □ how to reasonably generalize the idea of the regression model used for the binary variable X ∈ {TRUE, FALSE}?
 What will be the role/interpretation of the intercept parameter?

Dummy variables in a regression model

- □ The most common approach for implementing categorical covariates in a linear regression model is to use so-called **dummy variables**
- □ At some point, the dummy variables can be seen as some partial adjustments of the model intercept parameter depending on the particular value of the covariate

Example

- \Box the dependent (random) variable $Y \in \mathbb{R}$ is assumed to be continuous
- □ let the covariate X_1 be discrete, taking only values $\{v_1, \ldots, v_k\}$, for some $k \in \mathbb{N}$
- □ let another covariate $X_2 \in \mathbb{R}$ be continuous
- □ the goal is to find some reasonable linear function f (linear wrt. some unknown parameters) that will reasonably describe the relationship $Y \approx f(X_1, X_2)$ or, alternatively, the identity $E[Y|X_1, X_2] = f(X_1, X_2)$

 $f: \{v_1,\ldots,v_K\} \times \mathbb{R} \to \mathbb{R}$

Dummy variables in a regression model

Dummy variables for the categorical covariate X_1 can be defined as

$$- X_1^{\text{di}} = \mathbb{I}_{\{X_1 = v_1\}}, X_1^{\text{di}} = \mathbb{I}_{\{X_1 = v_2\}}, X_1^{\text{di}} = \mathbb{I}_{\{X_1 = v_3\}}, \dots, X_1^{\text{di}} = \mathbb{I}_{\{X_1 = v_K\}}$$

- its clear, that each $X_1^{{}_{\mathrm{D1}}}, X_1^{{}_{\mathrm{D2}}}, \ldots, X_1^{{}_{\mathrm{DK}}}$ can only take value zero or one
- the principle is analogous to a situation with the binary variable (which takes only two different values and just one dummy is needed)
- but, also, analogous problems occur over-parametrization
- □ The linear regression model with $X_1 \in \{v_1, ..., v_K\}$ and $X_2 \in \mathbb{R}$ can be expressed, using the dummy variables $X_1^{D_1}, ..., X_1^{D_K}$ as

$$Y = \mathbf{a} + \beta_1 X_1^{\text{\tiny D1}} + \dots + \beta_K X_1^{\text{\tiny DK}} + \mathbf{b} X_2 + \varepsilon = \mathbf{a} + \sum_{k=1}^K \beta_k X_1^{\text{\tiny Dk}} + \mathbf{b} X_2 + \varepsilon$$

but the meaning of the intercept $a \in \mathbb{R}$ parameter may not be clear now... (note, that $E[Y|X_1^{o_1} = 0, ..., X_1^{o_k} = 0] = a$, but this implies that $X_1 \notin \{v_1, ..., v_K\}$, which can not happen)

□ Moreover, there are 1 + K "intercept" parameters in the model but only K different sub-populations that can be used for estimation

Parametrization of a categorical covariate

Using the model in (11), it is clear that the whole (unknown) population is split into $K \in \mathbb{N}$ subpopulations according to the value of $X_1 \in \{v_1, \ldots, v_K\}$ – there are $K \in \mathbb{N}$ different groups for which we can estimate the mean – **over-parametrization** (but there are K + 1 parameters all together included in the model in (11))

Different parametrizations for dummy variables

- □ the intercept parameter $a \in \mathbb{R}$ is used instead of β_1 in (11), thus $\beta_1 = 0$ (the reference category $X_1 = v_1$ is modeled by the intercept parameter)
- □ the reference category can be also selected differently, for instance, $\beta_{\kappa} = 0$ (this reflects the situation where the intercept parameter models the mean of the sub-population v_{κ})
- □ however, the over-parametrization can be solved by adding an equation... (with an extra equation $\sum_{k=1}^{K} \beta_k = 0$, the intercept parameter stands for the overall mean)
- and many other parametrizations can be used...

(but the main idea is to make sure that the intercept parameter $a \in \mathbb{R}$ has a reasonable interpretation)

Final model selection

The crucial question in regression modeling is the following one: From the set of all plausible models, which can be very rich... how should we select one model that we consider to be the final one (the most appropriate one?)

Naive methods

- expert judgement
- □ some previous experince/knowledge

Systematic modelling approaches

- □ stepwise forward modelling approach
- □ stepwise background modelling approach

Various quantitative criteria

- □ Akaike's information criterion (AIC)
- Bayesian information criterion (BIC)