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Statistical inference
in a normal linear model
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Motivation

Overview
o In general, the random sample {(Yi ,X>i )>; i = 1, . . . , n} from some joint

distribution F(Y ,X) (a generic random vector (Y ,X>)> ∈ Rp+1)
o the underlying structure (i.e., linear model) is assumed to hold

Yi = X>i β + εi , for i = 1, . . . , n, where εi ∼ N(0, σ2)

o the model can be equivalently also expressed in a matrix notation as

Y = Xβ + ε, where ε ∼ Nn(0, σ2I)

o the model formulations above specifies the (conditional) mean structure
(Xβ) and the (conditional) variance-covariance structure (σ2I) of the
random vector Y given the random matrix X

o the joint distribution function FY ,X(y , x) can be factorized as

FY ,X(y , x) = FY |X(y |x) · FX(x)

and FY |X(y |x) is assumed to be a conditional normal distribution
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Motivation

Typical linear model assumptions

o Ordinary linear regression model
o random sample (Yi ,Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)
o mean specification E [Y |X] = Xβ, respectively E [Y |X] = X>β
o variance specification Var(Y |X) = σ2I, resp. Var(ε) = σ2I

o Normal linear regression model
o random sample (Yi ,Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)
o distributional specification Y |X ∼ Nn(Xβ, σ2I)

The formulation of the normal model above also implies the following:
o ε|X ∼ Nn(0, σ2I)
o ε ∼ Nn(0, σ2I)
o error terms ε1, . . . , εn form a random sample from a univariate normal

distribution with the zero mean and the variance σ2 > 0
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Motivation

Parameter estimation in the normal model

o the normal model Y = Xβ + ε, where ε ∼ Nn(0, σ2I) is assumed to hold
o the unknown parameters to be estimated are β ∈ Rp, and σ2 > 0
o statistical inference (confidence intervals, statistical tests) could be,

however, also performed with respect to the parameters β and σ2 but, it
can be also of some interest to do inference about some linear
combination(s) of β

o from the practical point of view, we are interested in the parameter vector
β itself but also some (reasonable) linear combinations l>β, for some
(fixed) vector l ∈ Rp
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Motivation

Parameter estimation in a normal model

There are basically two standard techniques for the parameter estimation
under the linear model formulation:

o Least Squares
o Maximum Likelihood

In both situations the estimates are given by the formulae
o β̂ = (X>X)−1XY , where X>X is of a full rank p ∈ N

o σ̂2 = 1
n−p
∑n

i=1(Yi − Ŷi )2, where Ŷi = Yi − X>i β̂

Both estimates—quantities β̂ and σ̂2—are random quantities (random
vector and random variable) and, therefore, it is reasonable to investigate
their statistical properties (e.g., mean, variance, distribution, etc.)

5 / 11
NMFM 334 | Lecture 6

N



Motivation

Parameter estimation in a normal model

There are basically two standard techniques for the parameter estimation
under the linear model formulation:

o Least Squares
o Maximum Likelihood

In both situations the estimates are given by the formulae
o β̂ = (X>X)−1XY , where X>X is of a full rank p ∈ N

o σ̂2 = 1
n−p
∑n
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Motivation

Linear combinations of the model parameters

o the unknown vector of parameters β ∈ Rp is used to model the conditional
mean structure E [Y |X] but specific interpretation (meaning) of the
elements of β depends on the parametrization that is used in the model

o therefore, it is also of some interest to perform statistical inference about
some linear combination of the unknow vector of paramters—inference
about some different parametrization of the mean structure

o let L ∈ Rm×p be a matrix with nonzero rows l>1 , . . . , l>m and let
θ = Lβ = (l>1 β, . . . , l>m β)> = (θ1, . . . , θm) ∈ Rm be some linear
combinations of the original β vector

o instead of performing the inference about β ∈ Rp we can be interested in
performing the statistical inference about β ∈ Rm
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Motivation

Statistical properties of β̂ and θ̂
Recall, that we are working with the normal linear model of the form
Y |X ∼ Nn(Xβ, σ2I) and β̂ = (X>X)−1X>Y is the estimate for β ∈ Rp

Then the following holds:

o θ̂ = Lβ̂ is the (BLUE) estimate for θ ∈ Rm

o Ŷ |X ∼ Nn(Xβ, σ2H)
o U|X ∼ Nn(0, σ2M)
o θ̂ ∼ Nm(θ, σ2L(X>X)−1L>)
o random vectors Ŷ and U are conditionally (given X) independent
o random vector θ̂ and SSe are conditionally (given X) independent
o SSe/σ2 ∼ χ2

n−p and ‖Ŷ − Xβ‖2/σ2 ∼ χ2
p

o Tj = θ̂j−θj√
MSe·vjj

∼ tn−p, where V = L(X>X)−1L> = (vij)m
i,j=1

o 1
m (θ̂ − θ)>

(
MSe · V

)−1
(θ̂ − θ) ∼ Fm,n−p , provided that

rank(L) = m ≤ p
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o random vectors Ŷ and U are conditionally (given X) independent
o random vector θ̂ and SSe are conditionally (given X) independent

o SSe/σ2 ∼ χ2
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o Ŷ |X ∼ Nn(Xβ, σ2H)
o U|X ∼ Nn(0, σ2M)
o θ̂ ∼ Nm(θ, σ2L(X>X)−1L>)
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Motivation

Inference in a normal linear model

o Inference about some βj

o confidence interval β̂j ± tn−p(1− α/2)
√

MSe · vjj , where Var β̂j = σ2vjj

o statistical tests of the null hypothesis H0 : βj = β
(0)
j

o Simultaneous confidence region for β
o S(α) = {β ∈ Rp ; 1

p (β − β̂)>(MSe−1X>X)(β − β̂) < Fp,n−p(1− α)},
which is an elipsoid with the center β̂, the shape matrix MSe · (X>X−1)
and the diameter

√
kFp,n−p(1− α)

o statistical test of the null hypothesis H0 : β = β(0)
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Motivation

Model based predictions

o Model utilization for
o characterization of the conditional distribution of Y given X
o explaining the effect of some covariate Xj on the variable Y
o prediction of a new observation Ynew given the observed value of Xnew

o straightforward prediction in terms of the estimated conditional
expectation µ̂new = X>new β̂

o however, can we do better (e.g., accounting for the variability in Ynew )?
o distributional assumption

Ynew |Xnew ∼ N(X>newβ, σ
2)

where (Ynew ,Xnew ) is independent of {(Yi ,Xi ); i = 1, . . . , n}

9 / 11
NMFM 334 | Lecture 6

N



Motivation

Model based predictions

o Model utilization for
o characterization of the conditional distribution of Y given X
o explaining the effect of some covariate Xj on the variable Y
o prediction of a new observation Ynew given the observed value of Xnew

o straightforward prediction in terms of the estimated conditional
expectation µ̂new = X>new β̂

o however, can we do better (e.g., accounting for the variability in Ynew )?

o distributional assumption

Ynew |Xnew ∼ N(X>newβ, σ
2)

where (Ynew ,Xnew ) is independent of {(Yi ,Xi ); i = 1, . . . , n}

9 / 11
NMFM 334 | Lecture 6

N



Motivation

Model based predictions

o Model utilization for
o characterization of the conditional distribution of Y given X
o explaining the effect of some covariate Xj on the variable Y
o prediction of a new observation Ynew given the observed value of Xnew

o straightforward prediction in terms of the estimated conditional
expectation µ̂new = X>new β̂

o however, can we do better (e.g., accounting for the variability in Ynew )?
o distributional assumption

Ynew |Xnew ∼ N(X>newβ, σ
2)

where (Ynew ,Xnew ) is independent of {(Yi ,Xi ); i = 1, . . . , n}

9 / 11
NMFM 334 | Lecture 6

N



Motivation

Theoretical background of the prediction

o Formally
Ynew = X>newβ + εnew , for εnew ∼ N(0, σ2)

o Theoretical property

P[Ynew ∈ (X>newβ ± u1−α/2σ)] = 1− α

o Theoretical property

P
[
Ynew ∈ (X>new β̂ ± t1−α/2(n − p)

√
1 + X>new (X>X)−1Xnew )

]
= 1− α
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Motivation

Summary

o Simple inference in a normal linear model
o confidence intervals and statistical tests for elements of β ∈ Rp

o confidence intervals for some linear combination of l>β, for l ∈ Rp

o Simultaneous inference for vector parameters in the linear model
o confidence regions and statistical tests for the whole vector β ∈ Rp

o confidence regions for some linear combinations Lβ, where L ∈ Rm×p

o Prediction in the normal linear model
o point prediction for a new value of Y given the observed X = x
o interval prediction for a new value of Y given the observed X = x
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