
Lecture 9 | 23.04.2024

Linear regression models
with heteroscedasetic errors
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Motivation

Normal linear model

❏ Assumptions: random sample (Yi , Xi ) for i = 1, . . . , n from the joint
distribution F(Y ,X) such that Yi |Xi ∼ N(X⊤

i β, σ2)
❏ Inference: confidence intervals for βj , confidence regions for β and linear

combinations of the form Lβ (corresponding statistical tests)

Parameter estimates β̂ (constructed in terms of LSE or MLE) are BLUE
and the follow the normal distribution with the corresponding mean
vector and the variance-covariance matrix

Statistical inference is exact, based on the normal distribution (if the
variance parameter is known) or the Student’s t-distribution or Fisher’s
F -distribution respectively
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Motivation

Assumptions for a model without normality
Assumptions (A1)

❏ random sample (Yi , Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)

❏ mean specification E [Yi |Xi ] = X⊤
i β, respectively E [Y |X] = Xβ

❏ thus, for errors εi = Yi − X⊤
i β we have E [εi |Xi ] = E [Yi − X⊤

i β|Xi ] = 0
and Var(εi |Xi ) = Var [Yi − X⊤

i β|Xi ] = Var [Yi |Xi ] = σ2(Xi )
❏ and for unconditional expectations, E [εi ] = E [E [εi |Xi ]] = 0 and

Var(εi ) = Var(E [εi |Xi ])+E [Var(εi |Xi )] = Var(0)+E [σ2(Xi )] = E [σ2(Xi )]

Assumptions (A2)
❏ E |XjXk | < ∞ for j, k ∈ {1, . . . , p}
❏ E

(
XX⊤)

= W ∈ Rp×p is a positive definite matrix
❏ V = W−1

Assumptions (A3a/A3b)
❏ Homoscedastic model)

σ2(X) = Var(Y |X) = σ2 > 0
❏ Heteroscedastic model

σ2(X) = Var(Y |X) such that E [σ2(X)] < ∞ and moreover, it also holds
that E [σ2(X)XjXk ] < ∞ for j, k ∈ {1, . . . , p}
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Motivation

Inference under (A1), (A2), and (A3a)

Linear model without normality assumption (homoscedastic errors)
❏ Parameter estimates β̂n (constructed in terms of LSE) are BLUE, they are

consistent (convergence in probability for n → ∞) and they follow
asymptotically the normal distribution with the corresponding mean vector
and the variance-covariance matrix σ2V

❏ Statistical inference is approximate (asymptotical) based on the
asymptotic normal distribution (central limit theorem)
(inference in terms of statistical tests and confidence intervals)
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Motivation

Heteroscedasticity in a linear model

Basically, there are two different model frameworks where we need to
deal with heteroscedasticity issues...

❏ General linear model
the model with heteroscedastic errors but the variance structure of the
observations (errors respectively) is apriori known (e.g., it is determined by
the design of the experiment)

❏ Linear model with hetereoscedastic errors
in this case the variance structure of the error terms (observations
respectively) is fully unknown and it needs to be estimated if some
statistical inference is of any interest

5 / 15
NMFM 334 | Lecture 8

▲



Motivation

General linear model

❏ random sample (Yi , Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)

❏ mean specification E [Y |X] = Xβ, for β ∈ Rp

❏ variance specification Var [Y |X] = σ2W−1, for some known matrix
W ∈ Rn×n (positive definite)

❏ generally, the normal distribution is not assumed, thus

Y |X ∼ (Xβ, σ2W−1),

but the normal distribution can be postulated and the results hold
analogously as in the normal linear model

Example
Consider a linear regression model, where the dependent variables Yi for i = 1, . . . , n
represent some averages across wi ∈ N independent subjects, where for each subject
we assume the same variance (a homoscedastic model for the subjects)
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Motivation

General least squares
Consider a general linear model Y |X ∼ (Xβ, σ2W−1) where
rank(X) = p < n (where X ∈ Rn×p) Than the following holds:

❏ β̂G = (X⊤WX)−1X⊤WY is BLUE for β ∈ Rp

❏ µ̂ = Ŷ = Xβ̂G is BLUE for µ = E [Y |X]
❏ for l ∈ Rp, where l ̸= 0, θ̂ = l⊤β̂G is BLUE for θ = l⊤β

❏ SSeG = ∥W1/2(Y − Ŷ )∥2
2 = (Y − Ŷ )⊤W(Y − Ŷ ) is the generalized

residual sum of squares
❏ MSeG = 1

n−p ∥W1/2(Y − Ŷ )∥2
2 is an unbiased estimate of σ2 > 0

If, additionaly, Y |X ∼ N(Xβ, σ2W−1) then the estimates follow the
corresponding normal distribution and

MSeG(n − p)
σ2 = SSeG

σ2 ∼ χ2
n−p

and SSe and Ŷ are conditionally, given X, mutually independent
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Motivation

General linear model – utilization

❏ the general linear model is typically used with partially aggregated
data—mostly in a way, that instead of raw observations we observe
independent averages over specific classes (that we can control for with
the set of the regressor variables)

❏ if the estimation of the mean structure if of the interest only, the
aggregated data can be also replicated and the correponding mean
estiamates will be analogous

❏ however, if there is also some interest in the variance estimation (e.g.,
there is a need to perform some statistical inference) than the model
based on replicated data will fail (the variance estimates are artificially
underestimated)
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Motivation

More general situations...

❏ General least squares represent a class of linear models for heteroscedastic
data, however, with the known heteroscedastic structure—the matrix W is
known in advance, e.g., from the experiment

❏ More general scenario involves situations where heteroscedastic data have
some unknown variance structure (which needs to be estimated)

❏ Recall Assumption (A3) that specified the following conditions:
❏ Heteroscedastic model

σ2(X) = Var(Y |X) such that E [σ2(X)] < ∞ and moreover, it also holds
that E [σ2(X)Xj Xk ] < ∞ for j, k ∈ {1, . . . , p}

❏ The assumption above implies, that the matrix W⋆ = E [σ2(X)XX⊤] is a
real matrix with all elements being finite

❏ Thus, under the heteroscedastic model, we have E [Yi |Xi ] = X⊤
i β and

Var [Yi |Xi ] = Var [εi |Xi ] = σ2(Xi )
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Motivation

Consistency of the LSE estimates

The underlying model can be either assumed within the normal model
framework or, alternatively, no normality is needed

❏ Again, we are interested in the following parameters:
❏ β ∈ Rp

❏ σ2 > 0
❏ θ = l⊤β ∈ R, for some nonzero vector l ∈ Rp

❏ Θ = Lβ ∈ Rm, for some matrix L ∈ Rm×p with linearly independent rows

❏ The corresponding estmates are defined straightforwardly and it holds
(under (A1), (A2), and (A3a/A3b)) that

❏ β̂n −→ β a.s. (in P), for n → ∞
❏ θ̂n = l⊤β̂n −→ θ a.s. (in P), for n → ∞
❏ Θ̂n = Lβ̂n −→ Θ, a.s. (in P), for n → ∞
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Motivation

Assymptotic normality under heteroscedasticity

Under the assumptions stated in (A1), (A2), and (A3b) and, additionally,
for E [ε2XjXk ] < ∞ for j , k = 1, . . . , p the following holds:

❏
√

n(β̂n − β) D−→ Np(β,VW⋆V) for n → ∞

❏
√

n(θ̂n − θ) D−→ N(0, l⊤VW⋆Vl), as n → ∞

❏
√

n(Θ̂n − Θ) D−→ Nm(0,LVW⋆VL⊤), as n → ∞

where V =
[
E (XX⊤)

]−1
and W⋆ = E [σ2(X)XX⊤]

Note, that Var(Xε) = E [σ2(X)XX⊤] which equals to
σ2E [XX⊤] = σ2W under homoscedasticity (A3a)
and it equals to W⋆ under heteroscedasticity (A3b)
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Motivation

Sandwich estimate of the variance

Consider the assumptions in (A1), (A2), and (A3b). Let, moreover, the
following holds

❏ E |ε2XjXk | < ∞
❏ E |εXjXkXs | < ∞
❏ E |XjXlXsXl | < ∞

all for j , k, s, l ∈ {1, . . . , p}. Then the following holds:

nVnW⋆
nVn

a.s.(P)−→ VW⋆V, for n → ∞

where W⋆
n =

∑n
i=1 U2

i XiX⊤
i = X⊤

n ΩnXn, where Ui = Yi − Ŷi and
Ωn = diag(U2

1 , . . . , U2
n )
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Motivation

Sandwich estimate of the covariance matrix

❏ the estimate for the variance covariance matrix VW⋆V is the so-called
sandwich estimate of the form

VnW⋆
nVn = (X⊤

n Xn)−1X⊤
n︸ ︷︷ ︸

bread

Ωn︸︷︷︸
mean

Xn(X⊤
n Xn)−1︸ ︷︷ ︸

bread

which is a (heteroscedastic) consistent estimate of the variance-covarance
of the least squares estimate β̂n

❏ if we replace the matrix Ωn with n
νn

Ωn for some sequence {νn}n such that
n/νn → 1 as n → ∞ the convergence still holds and νn is called the
degrees of freedom of the sandwich estimate

❏ different options are used in the literature to define the sequence {νn}n
(White (1980); MacKinnon and White (1985); etc.)
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Motivation

Asymptotic inference under heteroscedasticity

❏ for a (consistent) sandwich estimate VHC
n = (X⊤

n Xn)−1X⊤
n ΩnXn(X⊤

n Xn)−1

of the covariance matrix of the LSE β̂n we can define

❏ Tn = l⊤β̂−l⊤β√
l⊤VHC

n l

❏ Qn =
(Lβ̂n−Lβ)⊤

(
LVHC

n L⊤
)−1

(Lβ̂n−Lβ)
m

❏ Statistic Tn follows (asymptotically) the normal distribution N(0, 1) and
the statistic mQn follows (again asymptotically) the χ2 distribution with
m = rank(L) degrees of freedom (for n → ∞)

❏ Note, that the results are analogous to those obtained for the
homoscedastic case where MSe(X⊤X)−1 is replaced by the sandwich
estimate VHC

n
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Motivation

Summary

❏ Linear regression models...
❏ Normal linear model with homoscedastic errors
❏ Linear model without normality assumptions (A3a/A3b)
❏ General linear model (with and without the normality assumption)

❏ Consistent LSE/MLE estimates
❏ consistent estimates of the mean and variance parameters
❏ the mean parameter estimates are normally distributed (normal model)
❏ the mean estimates are asymptotically normal (model without normality)
❏ consistent estimates of the variance parameter/parameters

❏ Statistical inference
❏ primarily about the mean parameters and their linear combinations
❏ exact and approximate (asymptotic) confidence intervals (regions)
❏ statistical tests
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