Maximum likelihood theory (overview)

Suppose we have a random sample X_1, \ldots, X_n from the distribution with a density $f(\mathbf{x}; \boldsymbol{\theta})$ with respect to a σ -finite measure μ and that the density is known up to unknown *p*-dimensional parameter $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_p)^{\mathsf{T}} \in \Theta$. Let $\boldsymbol{\theta}_X = (\theta_{X1}, \ldots, \theta_{Xp})^{\mathsf{T}}$ be the true value of the parameter.

Define the likelihood function as

$$L_n(\boldsymbol{\theta}) = \prod_{i=1}^n f(\boldsymbol{X}_i; \boldsymbol{\theta})$$

and the log-likelihood function as

$$\ell_n(\boldsymbol{\theta}) = \log L_n(\boldsymbol{\theta}) = \sum_{i=1}^n \log f(\boldsymbol{X}_i; \boldsymbol{\theta}).$$

The maximum likelihood estimator of parameter θ_X is defined as

$$\widehat{\boldsymbol{\theta}}_n = rg\max_{\boldsymbol{\theta}\in\Theta} L_n(\boldsymbol{\theta}).$$

Usually we search for the maximum likelihood estimator $\hat{\theta}_n$ as a solution of the system of likelihood equations $\mathbf{U}_n(\hat{\theta}_n) \stackrel{!}{=} \mathbf{0}$, where the random vector

$$\mathbf{U}_n(\boldsymbol{\theta}) = \sum_{i=1}^n \mathbf{U}(\boldsymbol{X}_i; \boldsymbol{\theta}) = \sum_{i=1}^n \frac{\partial \log f(\boldsymbol{X}_i; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

is called the score statistic.

Under appropriate regularity assumptions

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_X\right) \xrightarrow[n \to \infty]{d} \mathsf{N}_p(\mathbf{0}, I^{-1}(\boldsymbol{\theta}_X)),$$

where

$$I(\boldsymbol{\theta}_X) = -\mathsf{E} \left. \frac{\partial^2 \log f(\boldsymbol{X}_1; \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\mathsf{T}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_X}$$

is the Fisher information matrix.

To make inference about θ_X usually one needs to estimate the information matrix $I(\theta_X)$. In regression context we usually use *the observed information matrix* defined at $\hat{\theta}_n$ which is defined as

$$\widehat{I}_n = -\frac{1}{n} \frac{\partial \mathbf{U}_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\mathsf{T}}} = -\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f(\boldsymbol{X}_i; \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathsf{T}}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n}.$$

Inference about the vector parameter θ

Suppose we want to test the null hypothesis $H_0: \theta_X = \theta_0$ against the alternative $H_1: \theta_X \neq \theta_0$. One of the possible test is *Wald test* and it is based on the following test statistic

$$W_n = n \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0 \right)^{\mathsf{T}} \widehat{I}_n \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0 \right).$$

It can be shown that under the null hypothesis W_n converges in distribution to a χ^2 -distribution with p degrees of freedom.

The (asymptotic) confidence set for $\boldsymbol{\theta}_X$ is then constructed as

$$\{\boldsymbol{\theta}; n\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right)^{\mathsf{T}} \widehat{I}_n\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right) \leq \chi_p^2(1 - \alpha)\},\$$

where $\chi_p^2(1-\alpha)$ is the $1-\alpha$ quantile of $\chi^2\text{-distribution}$ with p degrees of freedom.

Inference about θ_{Xk} (the k-th coordinate of θ_X)

Suppose we want to test the null hypothesis $H_0: \theta_{Xk} = \theta_0$ against the alternative $H_1: \theta_{Xk} \neq \theta_0$. One of the possible test is *Wald test* and it is based on the following test statistic

$$T_n = \frac{\sqrt{n} \left(\widehat{\theta}_{nk} - \theta_0\right)}{\sqrt{i_n^{kk}}},$$

where $\hat{\theta}_{nk}$ is the k-th element of $\hat{\theta}_n$ and i_n^{kk} is the k-th diagonal element of \hat{I}_n^{-1} (i.e. the **inverse** of the matrix \hat{I}_n). The test statistic T_n under the null hypothesis converges to a standard normal distribution N(0, 1).

The (asymptotic) confidence interval for θ_{Xk} is given by

$$\left(\widehat{\theta}_{nk} - \frac{u_{1-\alpha/2}\sqrt{i_n^{kk}}}{\sqrt{n}}, \widehat{\theta}_{nk} + \frac{u_{1-\alpha/2}\sqrt{i_n^{kk}}}{\sqrt{n}}\right).$$

Task 1

Let $(X_1, Y_1)^{\top}, \ldots, (X_n, Y_n)^{\top}$ be independent identically distributed random vectors. Suppose that the conditional density of Y_1 given X_1 is

$$f_{Y|X}(y|x;\beta) = \beta x e^{-\beta x y} \mathbb{I}\{y > 0\},$$

where $\beta > 0$ is an unknown parameter. Further suppose that the distribution of X_1 does not depend on β .

- (i) Find the maximum likelihood estimator of β .
- (ii) Construct a test of the null hypothesis $H_0: \beta = \beta_0$ against the alternative $H_0: \beta \neq \beta_0$.
- (iii) Construct a confidence interval for β .

Task 2

Suppose that you observe independent identically distributed random vectors $(X_1, Y_1)^{\mathsf{T}}, \ldots, (X_n, Y_n)^{\mathsf{T}}$ such that

$$\mathsf{P}(Y_1 = 1 \mid X_1) = \frac{\exp\{\alpha + \beta X_1\}}{1 + \exp\{\alpha + \beta X_1\}}, \qquad \mathsf{P}(Y_1 = 0 \mid X_1) = \frac{1}{1 + \exp\{\alpha + \beta X_1\}},$$

where the distribution of X_1 does not depend on the unknown parameters α a β .

- (i) Derive a test for the null hypothesis $H_0: \beta = 0$ against the alternative that $H_1: \beta \neq 0$.
- (ii) Find the confidence interval for the parameter β .