Criteria for the exam
 Partial differential equations 1
 Winter semester 2023/2024

The exam will be only written. In some exceptional cases there can be also an oral exam.
The exam consists of three parts. The first part \mathbf{A} is obligatory in the sense that any mistake or imprecision automatically means that you do not pass the exam. The second part \mathbf{B} will be theoretical - typically the proof of a lemma or a theorem presented during the semester. The last part \mathbf{C} will be "practical", i.e., you should be able to use your knowledge to solve some problem. In part \mathbf{C} you must provide at least the knowledge of the notion of weak solution otherwise you do not pass.
The evaluation will be the following: you can obtain $0-100 \%$ from each part $\mathbf{A}, \mathbf{B}, \mathbf{C}$. The final evaluation is the following:

$$
E:= \begin{cases}0 & \text { if } A \neq 100 \text { or } C<10 \\ \frac{B+C}{2} & \text { if } A=100 \text { and } C \geq 10,\end{cases}
$$

The corresponding mark M is then obtained from the following:

$$
M:= \begin{cases}1 & \text { if } E \in(85,100] \\ 2 & \text { if } E \in(67,85] \\ 3 & \text { if } E \in(50,67], \\ 4 & \text { if } E \leq 50\end{cases}
$$

What can be in the exam:
Part A: Precise knowledge of the statements of the following important definitions, lemmas and theorems (precise meaning of all assumptions, logical order of quantifiers, etc.):
weak derivative; Sobolev space $W^{k, p}(\Omega)$ with integer k (definition, norm, reflexivity, separability, completeness, scalar product (for $p=2$)) ; local approximation theorem of Sobolev functions by smooth functions; global approximation theorem by $\mathcal{C}^{\infty}(\bar{\Omega})$ - for domains with continuous boundary; domain of the class $\mathcal{C}^{k, \alpha}$; extension theorem for $W^{1, p}(\Omega)$ on Lipschitz domains; continuous and compact embedding of Sobolev spaces into Lebesgue spaces or into Hölder spaces - for Lipschitz domains; characterization of Sobolev spaces with the help of difference quotients; Trace theorem for Lipschitz domains with range in Lebesgue spaces; linear and nonlinear Lax-Milgram lemma; Bochner integral and Bochner measurability and simple functions; the spaces $L^{p}(0, T ; X)$ (definition, norm, reflexivity, separability, completeness, scalar product (for $p=2$ and X being a Hilber space)); weak time derivative for Bochner spaces; Gelfand triple; integration by parts theorem for Sobolev-Bochner functions
Part B: Proof of the above mentioned theorems/lemmas (in case they were proven at the lecture) or their application to some theoretical aspects of PDE theory.
Part C: An example:

$$
-\Delta u+v \cdot \nabla u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Define the notion of a weak solution. Under which assumptions on f and v can you say something about the existence and the uniqueness of a weak solution? (if you use some theorem, formulate it precisely and check all assumptions) Consider also the case when you control div v from below/above/in a suitable norm. Can you provide a "sharp" bound on $\|v\|_{\infty}$ for which you can get the existence of a solution?
Another example: Let $\Omega:=(-1,1)^{2}$. Define $\Omega_{1}:=(-1,1) \times(0,1)$ and $\Omega_{2}:=(-1,1) \times(-1,0)$. Define $a(x)=i$ in Ω_{i}. Take $u_{0} \in \mathcal{C}^{\infty}(\bar{\Omega})$ and consider the following problem

$$
-\operatorname{div}(a(x) \nabla u(x))=0 \text { in } \Omega, \quad u=u_{0} \text { on } \partial \Omega .
$$

Define the notion of weak solution, prove its existence and uniqueness. Is u a minimizer to some variational problem? Can you find a dual formulation? Is $u \in W_{l o c}^{2,2}\left(\Omega_{i}\right)$? Is $u \in W_{l o c}^{2,2}(\Omega)$? Can you say something about $\nabla u\left(x_{1}, 0\right)$?

Another example: Let $\Omega \subset \mathbb{R}^{d}$ be a $\mathcal{C}^{0,1}$ domain and $T>0$. Consider the following problem

$$
\left.\begin{array}{l}
\partial_{t} u^{1}-\Delta u^{1}+\frac{\partial^{2} u^{2}}{\partial x_{1} \partial x_{2}}+u^{2}=f^{1} \\
\partial_{t} u^{2}-\Delta u^{2}-\frac{\partial^{2} u^{1}}{\partial x_{1} \partial x_{2}}+u^{1}=f^{2}
\end{array}\right\} \text { in }(0, T) \times \Omega, \quad u^{i}(t, x)=x+t \text { on }(0, T) \times \partial \Omega, \quad u^{i}(0)=u_{0}^{i}
$$

Define the notion of weak solution (also proper function spaces for u_{0}^{i} and f^{i}), prove its existence and uniqueness. Find the optimal (=minimal) assumptions such that the weak solution satisfies $\partial_{t} u^{i} \in$ $L_{l o c}^{2}\left(0, T ; L^{2}(\Omega)\right)$ and/or $\partial_{t} u^{i} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$.

