Criteria for the exam and the tutorial Partial differential equations 2

Summer semester 2023/2024

Homework: You will get five homework. To pass the tutorial, you are supposed to solve all of them not necessarily perfectly but at least in a reasonable way. The deadline for homework will be specified during the semester. In addition, the score from the last homework will play a role during the exam, see below.

Exam: The exam will be only written. In some exceptional cases there can be also an oral exam.
The exam consists of two parts. The first part A will be theoretical - typically the proof of a lemma or a theorem presented during the semester. The second part \mathbf{B} will be "practical", i.e., you should be able to use your knowledge to solve some problem. In part B you must provide at least the knowledge of the notion of weak solution otherwise you do not pass.
The evaluation will be the following: you can obtain $0-100 \%$ from each part \mathbf{A}, \mathbf{B} and additionally you will obtain a score \mathbf{C} from your last homework and it can have values from -10% up to $+10 \%$. The final evaluation is the following:

$$
E:= \begin{cases}0 & \text { if } B<10 \text { or } C=-10 \\ \frac{A+B}{2}+C & \text { if } B \geq 10 \text { and } C \geq-10\end{cases}
$$

The corresponding mark M is then obtained from the following:

$$
M:= \begin{cases}1 & \text { if } E \in(85,100] \\ 2 & \text { if } E \in(67,85], \\ 3 & \text { if } E \in(50,67], \\ 4 & \text { if } E \leq 50\end{cases}
$$

What can be in the exam:
Part A: Proofs of Trace theorem, embedding theorem, Poincaré inequality, density of smooth functions, extension theorem, Aubin-Lions lemma, Minty method, Weak-lower semicontinuity of convex functionals, Nemytskii operator, Euler-Lagrange equations, primary formulation, dual formulation and application of the above mentioned tools to theoretical aspects of PDEs.
Part B: An example:

$$
-\Delta_{p} u+v \cdot \nabla u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Define the notion of a weak solution. Under which assumptions on f and v can you say something about the existence and the uniqueness of a weak solution? (if you use some theorem, formulate it precisely and check all assumptions) Consider also the case when you control div v from below/above/in a suitable norm. Can you provide a "sharp" bound on $\|v\|_{\infty}$ for which you can get the existence of a solution?
Another example: Let $\Omega:=(-1,1)^{2}$. Define $\Omega_{1}:=(-1,1) \times(0,1)$ and $\Omega_{2}:=(-1,1) \times(-1,0)$. Define $a(x)=i$ in Ω_{i}. Take $u_{0} \in \mathcal{C}^{\infty}(\bar{\Omega})$ and consider the following problem

$$
-\operatorname{div}\left(a(x)\left(1+|\nabla u(x)|^{2}\right)^{\frac{p-2}{2}} \nabla u(x)\right)=0 \text { in } \Omega, \quad u=u_{0} \text { on } \partial \Omega .
$$

Define the notion of weak solution, prove its existence and uniqueness. Is u a minimizer to some variational problem? Can you find a dual formulation? Is $u \in W_{l o c}^{2,2}\left(\Omega_{i}\right)$? Is $u \in W_{l o c}^{2,2}(\Omega)$? Can you say something about $\nabla u\left(x_{1}, 0\right)$?
Another example: Let $\Omega \subset \mathbb{R}^{d}$ be a $\mathcal{C}^{0,1}$ domain and $T>0$. Consider the following problem

$$
\left.\partial_{t} u-\Delta_{p} u+e^{u}=f\right\} \text { in }(0, T) \times \Omega, \quad u(t, x)=x+t \text { on }(0, T) \times \partial \Omega, \quad u(0)=u_{0} .
$$

Define the notion of weak solution (also proper function spaces for u_{0} and f), prove its existence and uniqueness. Find the optimal (=minimal) assumptions such that the weak solution satisfies $\partial_{t} u \in$ $L_{l o c}^{2}\left(0, T ; L^{2}(\Omega)\right)$ and/or $\partial_{t} u \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$.

