
HOMEWORK: PART I

Rules: This is the first set of problems you must solve in order to pass the tutorial. Below
you find five Problems that should be solved. Solution to each Problem is supposed to be
uploaded into SIS. Deadline for upload is emphasized after each Problem formulation and
the deadline is sharp.

Problem 1: a) Show that for any Lipschitz domain Ω ⊂ Rd with d ≥ 2 the
embedding W 1,d(Ω) ↪→ L∞(Ω) does not hold.
b) Show that if u ∈ W 1,d(Ω) then it has bounded mean oscillations, i.e., for any
q ∈ [1,∞), there exists a constant C such that for all balls BR(x0) ⊂ Ω, we have

1

|BR(x0)|

∫
BR(x0)

∣∣∣∣∣u(x)− 1

|BR(x0)|

(∫
BR(x0)

u(y) dy

)∣∣∣∣∣
q

dx ≤ C(q, d)∥∇u∥q
Ld(Ω)

.

It is important to emphasize that C is independent of x0 and R! The space of
functions having bounded mean oscillation is denoted by BMO, or sometimes John–
Nirenberg spaces.

Hint: a) Let x0 ∈ Ω. Consider a function u(x) := f(|x−x0|). Find proper function
f (it should satisfy f(s) → ∞ as s → 0+), for which one can prove the counterex-
ample, i.e., for which u ∈W 1,d.
b) Fix q ∈ [1,∞). Mimic the proof of the Poincaré inequality and show the state-
ment for a fixed ball B1(0) - trace the constant C! Re-scale the result to a general
ball BR(x0).

DEADLINE: November 6

Solution: a) Let us assume that x0 ∈ Ω. We consider the function u(x) :=
ln ln(1 + |x− x0|−1). This function is smooth except the point x0 and in addition,
we see that u /∈ L∞(Ω). On the other hand we show that u ∈ W 1,d(Ω). For
simplicity, we consider x0 = 0. For x ̸= 0, we also have

∇u(x) = − x

|x|2(|x|+ 1) ln(1 + |x|−1)
.

Next, we need to show that∇u is really a weak derivative (gradient), that |∇u| ∈ Ld

and that also u ∈ Ld. For the integrability claim, we may compute - note that since
Ω is Lipschitz, we surely know that Ω ⊂ BR(0), where BR is a ball in Rd∫

Ω

|u|d + |∇u|d dx ≤
∫
BR

| ln ln(1 + |x|−1)|d + 1

|x|d| ln(1 + |x|−1)|d
dx

≤ C(d)

∫ R

0

rd−1| ln ln(1 + |r|−1)|d + 1

|r| ln(1 + r−1)|d
dr <∞.

Thus, it remains to show that ∇u is the weak derivative. To show that let us
consider ε0 > 0 such that Bε0(0) ⊂ Ω. Then for all ε ∈ (0, ε0), we have Bε(0) ⊂ Ω
as well. Then for any φ ∈ C∞

0 (Ω), we may compute (considering only sufficiently
1



2 HOMEWORK: PART I

small ε and by using the Lebesgue dominated convergence theprem and the fact
that u and |∇u| are integrable and the classical integration by parts formula for
smooth functions on Ω \B|varepsilon)∫

Ω

∂φ

∂xi
u = lim

ε→0+

∫
Ω\Bε

∂φ

∂xi
u = − lim

ε→0+

∫
Ω\Bε

∂u

∂xi
φ−

∫
∂Bε

xi
|x|
uφ = −

∫
Ω

∂u

∂xi
φ,

where the last equality follows from the fact that∣∣∣∣∫
∂Bε

xi
|x|
uφ

∣∣∣∣ ≤ C(φ, d)εd−1| ln ε|d → 0

as ε→ 0+. Hence, ∇u is really the weak derivative.

b) Let us assume that the following inequality holds true for all v ∈W 1,d(B1(0))

1

|B1(0)|

∫
B1(0)

∣∣∣∣∣v(x)− 1

|B1(0)|

(∫
B1(0)

v(y) dy

)∣∣∣∣∣
q

dx

≤ C(q, d)

(∫
B1(0)

|∇v(x)|ddx

) q
d

.

(1.1)

Next, assume that u ∈W 1,d(Ω) and that BR(x0) ⊂ Ω. We define

v(x) := u(Rx+ x0).

Then v ∈ W 1,d(B1(0)) and we may use (1.1). In details, we use the substitution
theorem to observe

1

|BR(x0)|

∫
BR(x0)

∣∣∣∣∣u(x)− 1

|BR(x0)|

(∫
BR(x0)

u(y) dy

)∣∣∣∣∣
q

dx

=
1

|B1(0)|

∫
B1(0)

∣∣∣∣∣v(x)− 1

|B1(0)|

(∫
B1(0)

v(y) dy

)∣∣∣∣∣
q

dx
(1.1)

≤ C(q, d)

(∫
B1(0)

|∇v(x)|ddx

) q
d

= C(q, d)

(∫
B1(0)

Rd|∇u(Rx+ x0)|ddx

) q
d

= C(q, d)

(∫
BR(x0)

|∇u(x)|ddx

) q
d

.

Thus, it remains to prove (1.1). Let us define

w(x) := v(x)− 1

|B1(0)|

∫
B1(0)

v(y) dy

then (1.1) is equivalent to∫
B1(0)

|w(x)|q dx ≤ C̃(q, d)

(∫
B1(0)

|∇w(x)|ddx

) q
d

,(1.2)

where w ∈W 1,d(Ω) and
∫
B1(0)

w(x) dx = 0.

We show two possibilities. In the first case, we may use the standard Poincaré
inequality to get (recall that w has zero mean value)

∥w∥W 1,d(B1(0)) ≤ C(d)∥∇w∥Ld(B1(0)).

Next, we can use the embedding W 1,d(B1(0)) ↪→ Lq(B1(0)) to get

∥w∥Lq(B1(0)) ≤ C(d, q)∥w∥W 1,d(B1(0)) ≤ C̃(d, q)∥∇w∥Ld(B1(0)),
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where the second inequality is just the Poincaré inequality. Hence, we see that
(1.22) holds true.

Another option is to prove (1.22) by contradiction. Hence, let us assume that
for all n ∈ N there exists wn ∈W 1,d(B1(0)) fulfilling

∫
B1(0)

wn = 0 such that

∥wn∥Lq(B1(0)) > n∥∇wn∥Ld(B1(0)).

Surely, wn ̸== 0, hence we may define

ωn :=
wn

∥wn∥W 1,d(B1(0))

.

Thus, we have ∥ωn∥1,d = 1 and

∥ωn∥Lq(B1(0)) > n∥∇ωn∥Ld(B1(0)).

Using the embedding W 1,d ↪→ Lq we also have ∥ωn∥q ≤ C∥ωn∥1,d ≤ C, and thus

n∥∇ωn∥Ld(B1(0)) ≤ C.

Using the compact embedding W 1,d ↪→↪→ Ld, we deduce that for a subsequence

ωn → ω strongly in Ld(B1(0)).

Moreover, from the above inequality, we have

∇ωn → 0 strongly in Ld(B1(0);Rd).

Furthermore,

∥ω∥dd = lim
n→∞

∥ωn∥d1,d − ∥∇ωn∥dd = lim
n→∞

1− ∥∇ωn∥dd = 1.

Since, ∇ω = 0 we know ω ̸= 0 is constant. On the other hand
∫
ω = 0 which is a

contradiction.

Problem 2: Consider the following problem:

−(1 + |x|2)∂
2u

∂x21
− (4− |x|2)∂

2u

∂x22
=
∂
√

1− |x|
∂x1

in Ω

(2x1 − x2)
∂u

∂x1
+ (x1 + 3x2)

∂u

∂x2
= 0 on ∂Ω,

where Ω ⊂ R2 is a unit ball centered at zero. Write down the weak formulation of
the above problem. Show that if the weak solution is smooth then it satisfies the
above problem.
Hint: Follow the example given during the lecture.

Solution: First, we want to rewrite the problem into the form

−div(A∇u) + bu+ c⃗ · ∇u+ div(d⃗u) = f.

Applying the derivatives, we get the identity

−
∑
i,j

Aij
∂2u

∂xi∂xj
−
∑
i,j

∂Aij

∂xi

∂u

∂xj
+ (b+ div d⃗)u+ (c⃗+ d⃗) · ∇u = f
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Comparing it with the setting of the Problem 2, we see that the parameters must
be set in the following way

(1.3)

A11(x) = 1 + |x|2, A22(x) = (4− |x|2), A12(x) + A21(x) = 0,

b+ div d⃗ = 0, c⃗j(x) + d⃗j(x)−
∑
i

Aij(x)

∂xi
= 0.

Next, we evaluate the Neumann (or Newton) condition on the boundary. We use
the explicit for of the normal vector ν⃗ = (x1, x2), and we have for all x ∈ ∂Ω that
(note that |x| = 1 on the boundary)

(−A(x)∇u(x) + d⃗(x)u(x)) · x

= −x1A11
∂u

∂x1
− x1A12

∂u

∂x2
− x2A21

∂u

∂x1
− x2A22

∂u

∂x2
+ u(x)(d⃗1(x)x1 + d⃗2(x)x2)

= −(2x1 + x2A21)
∂u

∂x1
− (3x2 + x1A12)

∂u

∂x2
+ u(x)(d⃗1(x)x1 + d⃗2(x)x2)

Hence, to make it compatible with the boundary condition, we see that we have to
set

A21(x) := −1, A12(x) = 1

and then going back to (1.3), we deduce that

d⃗ = 0, b = 0, c⃗(x) = (2x1,−2x2), f(x) :=
∂
√

1− |x|
∂x1

.

Thus, we can define the notion of weak solution: we look for u ∈ W 1,2(Ω)
fulfilling for all φ ∈W 1,2(Ω)

(1.4)

∫
Ω

A∇u · ∇φ+ φc⃗ · ∇udx =

∫
Ω

fφ

For sure, all terms on the right hand side are well defined, but we need to justify
the term on the right hand side. Since

|f | =

∣∣∣∣∣− x1

2|x|
√
1− |x|

∣∣∣∣∣ ∈ Lp(Ω)

for all p ∈ [1, 2). Consequently, using the Hölder inequality, we have for some
p ∈ (1, 2) ∫

Ω

fφ ≤ ∥f∥p∥φ∥p′ .

Therefore, we need to consider φ ∈ Lp′
for some p < 2. Because Ω is a two

dimensional domain, we have W 1,2(Ω) ↪→ Lq(Ω) for all q ∈ [1,∞) and therefore we
see that

∫
Ω
fφ is well defined for all φ ∈W 1,2(Ω).

Alternatively, denoting F :=
√
1− |x|, we see that F ≡ 0 on ∂Ω and we may

write ∫
Ω

fφ = −
∫
Ω

F
∂φ

∂x1
dx,

which is also well defined for all φ ∈ W 1,2(Ω). The second part, i.e., the part
showing that if u ∈ C2(Ω) then it is a classical solution, follows line by line the
proof given at the lecture.

DEADLINE: November 6
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Problem 3: The goal is to show that the maximal regularity1 cannot hold in
Lipschitz domains or when changing the type of boundary conditions. Let φ0 ∈
(0, 2π) be arbitrary and consider Ω ⊂ R2 given by2

Ω := {(r, φ) : r ∈ (0, 1), φ ∈ (0, φ0)}.

Denote Γi ⊂ ∂Ω in the following way (in polar coordinates (r, φ): Γ1 := {(r, 0); r ∈
(0, 1)}, Γ2 := {(r, φ0); r ∈ (0, 1)}, Γ3 := {(1, φ);φ ∈ (0, φ0)}.

Consider two functions

u1(r, φ) := rα1 sin

(
φπ

φ0

)
,

u2(r, φ) := rα2 sin

(
φπ

2φ0

)
• Find the condition on αi so that ui ∈ W 1,2(Ω) - find an explicit formula
for ∇ui - and prove that it is really the weak derivative!

• Find the proper condition on αi so that ui solves the problem

−∆u1 = 0 in Ω, u1 = 0 on Γ1 ∪ Γ2, u1 = sin

(
φπ

φ0

)
on Γ3

−∆u2 = 0 in Ω, u2 = 0 on Γ1, u2 = sin

(
φπ

2φ0

)
on Γ3,

∇u2 · n = 0 on Γ2

Check in details that for such αi’s the weak formulation of the above
elliptic equations hold!

• Find all p’s for which ui ∈ W 2,p(Ω). What is the criterium on αi so that
ui ∈W 2,2(Ω)?

• With the help of the above computation, find fi ∈ L2(Ω) such that the
problems with homogeneous boundary conditions, i.e.,

−∆v1 = f1 in Ω, v1 = 0 on ∂Ω,

−∆v2 = f2 in Ω, v2 = 0 on Γ1 ∪ Γ3,∇v2 · n = 0 on Γ2

posses unique weak solutions vi ∈W 1,2(Ω) but v1 /∈W 2,2(Ω) if φ0 > π and
v2 /∈W 2,2(Ω) for φ0 >

π
2 .

• REMEMBER: On domains with corner - the W 2,2 regularity statement
does not hold for Dirichlet problem for angels greater than π and does
not hold when changing Dirrichlet to Neumann problems on corners with
angle greater than π/2. In general W 2,2 regularity for Dirichlet problems
holds in any dimension either for convex domains or for domains with C1,1

boundary.

DEADLINE: November 27

1Maximal regularity statement means that if

∆u = f

then f ∈ Lp(Ω) =⇒ u ∈ W 2,p(Ω). The goal of the homework is to show that this is not true on
domains with corners.

2We use polar coordinates, i.e. x1 = r cosφ, x2 = r sinφ
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Solution: First of all, one should be able to derive the formula for derivatives in
polar coordinates. Since our change of coordinates is given by

x1 = r cosφ, x2 = r sinφ,

Then for any C1 function f(r, φ), we have (for r ∈ (0, 1) and φ ∈ (0, 2π))

∂f(r, φ)

∂x1
= cosφ

∂f(r, φ)

∂r
− sinφ

r

∂f(r, φ)

∂φ

∂f(r, φ)

∂x2
= sinφ

∂f(r, φ)

∂r
+

cosφ

r

∂f(r, φ)

∂φ

Consequently, we can also deduce that

∆f(r, φ) =
∂2f

∂x21
+
∂2f

∂x21

=
∂

∂x1

(
cosφ

∂f(r, φ)

∂r
− sinφ

r

∂f(r, φ)

∂φ

)
+

∂

∂x2

(
sinφ

∂f(r, φ)

∂r
+

cosφ

r

∂f(r, φ)

∂φ

)
= cosφ

∂

∂r

(
cosφ

∂f(r, φ)

∂r
− sinφ

r

∂f(r, φ)

∂φ

)
− sinφ

r

∂

∂φ

(
cosφ

∂f(r, φ)

∂r
− sinφ

r

∂f(r, φ)

∂φ

)
+ sinφ

∂

∂r

(
sinφ

∂f(r, φ)

∂r
+

cosφ

r

∂f(r, φ)

∂φ

)
+

cosφ

r

∂

∂φ

(
sinφ

∂f(r, φ)

∂r
+

cosφ

r

∂f(r, φ)

∂φ

)
Hence, evaluating the right hand side, we get that

∆f(r, φ) = cosφ

(
cosφ

∂2f(r, φ)

∂r2
+

sinφ

r2
∂f(r, φ)

∂φ
− sinφ

r

∂2f(r, φ)

∂φ∂r

)
− sinφ

r

(
− sinφ

∂f(r, φ)

∂r
+ cosφ

∂2f(r, φ)

∂r∂φ
− cosφ

r

∂f(r, φ)

∂φ
− sinφ

r

∂2f(r, φ)

∂φ2

)
+ sinφ

(
sinφ

∂2f(r, φ)

∂r2
− cosφ

r2
∂f(r, φ)

∂φ
+

cosφ

r

∂2f(r, φ)

∂φ∂r

)
+

cosφ

r

(
cosφ

∂f(r, φ)

∂r
+ sinφ

∂2f(r, φ)

∂r∂φ
− sinφ

r

∂f(r, φ)

∂φ
+

cosφ

r

∂2f(r, φ)

∂φ2

)
= cos2 φ

∂2f(r, φ)

∂r2
+

sin2 φ

r

∂f(r, φ)

∂r
+

sin2 φ

r2
∂2f(r, φ)

∂φ2

+ sin2 φ
∂2f(r, φ)

∂r2
+

cos2 φ

r

∂f(r, φ)

∂r
+

cos2 φ

r2
∂2f(r, φ)

∂φ2

=
∂2f(r, φ)

∂r2
+

1

r

∂f(r, φ)

∂r
+

1

r2
∂2f(r, φ)

∂φ2

Next, we use the hint an check for which A,B ∈ R, we have that

∆(rA sin(Bφ)) = 0 in Ω.

Note that such function is smooth outside of the origin. Consequently, using the
above computation, we see that for uAB := rA sin(Bφ)

∆uAB = A(A− 1)rA−2 sin(Bφ) +ArA−2 sin(Bφ)− rA−2B2 sin(Bφ)

=
(
A2 −B2

)
rA−2 sin(Bφ).

Hence, we require A2 = B2 in what follows. Next, we also check for which A,B we
have uAB ∈ W 1,2(Ω). Since, the classical derivatives exist in Ω, we know that the
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weak derivative also exists and we just need to specify the conditions on A,B so
that ∫

Ω

|∇uAB |2 <∞.

Using the transformation into the polar coordinates and the substitution theorem,
we have∫
Ω

|∇uAB |2 dx =

∫
Ω

(
∂uAB

∂x1

)2

+

(
∂uAB

∂x2

)2

dx

=

∫ 1

0

∫ φ0

0

(
cosφ

∂uAB

∂r
− sinφ

r

∂uAB

∂φ

)2

r +

(
sinφ

∂uAB

∂r
+

cosφ

r

∂uAB

∂φ

)2

r dφ dr

=

∫ 1

0

∫ φ0

0

((
∂uAB

∂r

)2

+
1

r2

(
∂uAB

∂φ

)2
)
r dφ dr

=

∫ 1

0

∫ φ0

0

((
ArA−1 sin(Bφ)

)2
+

1

r2
(
BrA cos(Bφ)

)2)
r dφ dr

=

∫ 1

0

∫ φ0

0

r2A−1
(
A2 sin2(Bφ) +B2 cos2(Bφ)

)
dφ dr

=

∫ 1

0

∫ φ0

0

A2r2A−1 dφ dr = A2φ0

∫ 1

0

r2A−1 dr,

where we used the fact that A2 = B2. Consequently, if we want to have the above
integral finite, we must impose the condition A > 0. Since the regularity of the
solution does not depend on the sign of B, we assume in what follows only the case
A = B > 0.

Next, we show for which p′s the function uAB ∈ W 2,p(Ω). For that reasons, we
compute the second derivatives (in term of variables (r, φ))

∂2uAB

∂x21
= cos2 φ

∂2uAB

∂r2
+

2 cosφ sinφ

r2
∂uAB

∂φ
− 2 cosφ sinφ

r

∂2uAB

∂φ∂r

+
sin2 φ

r

∂uAB

∂r
+

sin2 φ

r2
∂2uAB

∂φ2

= A(A− 1)rA−2 cos2 φ sin(Aφ) + 4ArA−2 cosφ sinφ cos(Aφ)

+ArA−2 sin2 φ sin(Aφ)−A2rA−2 sin2 φ sin(Aφ)

In the same manner we shall estimate other second derivatives to finally conclude
that ∫

Ω

|∇2uAB |p dx ∼
∫ 1

0

r(A−2)pr dr

and wee that the integral is finite if and only if (for 0 ≤ A < 2, since for A ≥ 2 it
is always finite)

p <
2

2−A
.

Finally, we apply everything to the functions u1 and u2, which are thus given as

u1 = r
π
φ0 sin

(
φπ

φ0

)
, u2 = r

π
2φ0 sin

(
φπ

2φ0

)
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and due to the above computations we get that u1, u2 ∈W 1,2(Ω) and

u1 ∈


W 2,p(Ω) for p <

2

2− π
φ0

and φ0 >
π

2

W 2,∞(Ω) for φ0 ≤ π

2

 =⇒ u1 ∈W 2,2(Ω) if φ0 < π,

u2 ∈


W 2,p(Ω) for p <

2

2− π
2φ0

and φ0 >
π

4

W 2,∞(Ω) for φ0 ≤ π

4

 =⇒ u2 ∈W 2,2(Ω) if φ0 <
π

2
.

Finally, we check that u1 and u2 are the solutions of the corresponding problem.
Since, u1 is continuous in Ω and also u1 ∈W 1,2(Ω), then evidently3 the trace of u1
is zero on Γ1 and Γ2. Next, for any smooth compactly supported function v we get
by integration by parts (we ca apply that because u1 is smooth in the interior of
Ω) ∫

Ω

∇u1 · ∇v = −
∫
Ω

∆u1v = 0,

where we used the fact that u1 is harmonic. Finally since the space C∞
0 (Ω) is dense

in W 1,2
0 (Ω) we can generalize the above relation also for any v ∈W 1,2

0 (Ω). Indeed,

for any v ∈W 1,2
0 (Ω), we can find a sequence (by density) {vn} ⊂ C∞

0 (Ω) such that
vn → v in W 1,2(Ω) and then

(1.5)

∫
Ω

∇u1 · ∇v = lim
n→∞

∫
Ω

∇u1 · ∇vn = 0.

Finally, let w be a smooth function on R2 fulfilling w = 1 in B 1
2
(0) and w = 0 on

R2 \ B 3
4
(0) and define v1 := u1w. Then evidently v1 ∈ W 1,2(Ω) ∩W 2,p(Ω) with p

specified above, v1 = 0 on ∂Ω and we have for any z ∈W 1,2
0 (Ω)∫

Ω

∇v1 · ∇z =
∫
Ω

w∇u1 · ∇z + u1∇w · ∇z

=

∫
Ω

∇u1 · ∇(wz)︸ ︷︷ ︸
(1.5)

−
∫
Ω

z∇u1 · ∇w − u1∇w · ∇z

= −
∫
Ω

(
∇u1 · ∇w + div(u1∇w)

)
z,

which is the weak formulation of

−∆v1 = −∇u1 · ∇w − div(u1∇w) =: f1

Note that thanks to the presence of w, the function f1 is smooth since u1 is regular
outside of 0 but w is constant near zero.

For v2 we could use exactly the same arguments to get the result, but we did
not formulate any result concerning the density of functions vanishing only near Γ1.
Thus, we proceed differently. Let Q : [0,∞) → [0,∞) be smooth function fulfilling
Q = 1 on [0, 1/4] and Q = 0 on [1,∞) and let R : [0,∞) → [0,∞) be smooth

3The trace operator just assign the values of the function on the boundary whenever the
function is continuous.
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nondecreasing function fulfilling R = 0 on [0, 1/2] and R = 1 on [1,∞). Next, we
define

v2(r, φ) := u2(r, φ)Q(r2)

Then it is easy to check that v2 = 0 on Γ1∪Γ3. Next we check what kind of problem
v2 satisfies. We use also the function R to cut everything near zero in order to be
able to use integration by parts. In addition, it is also a direct consequence of the
definition that ∇v2 · n = 0 on Γ2. Hence, let z ∈ W 1,2(Ω)be arbitrary fulfilling (in
sense of traces) z = 0 on Γ1 ∪ Γ3∫

Ω

∇v2 · ∇z = lim
ε→0+

∫
Ω

∇v2 · ∇zR(r2/ε2)

= − lim
ε→0+

∫
Ω

div(R(r2/ε2)∇v2)z − lim
ε→0+

∫
∂Ω

∇v1 · n︸ ︷︷ ︸
=0 on Γ2

zR(r2/ε2)︸ ︷︷ ︸
=0 on Γ1∩Γ3

= − lim
ε→0+

∫
Ω

(∇R(r2/ε2) · ∇v2 +R(r2/ε2)div(∇v2)︸ ︷︷ ︸
∆(u2Q)

)z

= −
∫
Ω

(u2∆Q+∇u2 · ∇Q)z − lim
ε→0+

2ε−2

∫
Bε(0)∩Ω

R′(r2/ε2)x · ∇v2z

Thus, if we show that the last limit is equal to zero, we see that v2 is a weak solution
to the desired problem with f2 := −(u2∆Q+∇u2 ·∇Q) which is a smooth function.

To estimate the limit, we recall the Poincaré inequality and for all z̃ ∈ W 1,2(Ω)
being equal to zero on Γ1 there holds ∥z̃∥2 ≤ C∥∇z̃∥2. Hence, if we define the
particular z̃ as

z̃(x) := z(εx)

and use the substitution and Poincaré inequality on Ω we have
(1.6)∫

Ω∩Bε(0)

|z(x)|2 dx =

∫
Ω∩Bε(0)

|z̃(x/ε)|2 dx = ε2
∫
Ω

|z̃(x)|2 dx ≤ Cε2
∫
Ω

|∇z̃(x)|2 dx

= Cε4
∫
Ω

|∇z(εx)|2 dx = Cε2
∫
Ω∩Bε(0)

|∇z(x)|2 dx

Hence, by the Hölder inequality and the above proven re-scaled Poincaréinequality,
we have∣∣∣∣∣ε−2

∫
Bε(0)∩Ω

R′(r2/ε)x · ∇v2z

∣∣∣∣∣ ≤ ∥R′∥∞

(∫
Ω∩Bε(0)

|z(x)|2 dx
ε2

) 1
2
(∫

Ω∩Bε(0)

|∇v2|2
) 1

2

≤ C∥R′∥∞∥∇z∥2

(∫
Ω∩Bε(0)

|∇v2|2
) 1

2
ε→0+→ 0

where the last limit holds since v2 ∈W 1,2(Ω).

Problem 4: Fredholm alternative vs Lax–Milgram lemma vs minimum principle.
Consider Ω ⊂ Rd a Lipschitz domain. Let A : Ω → Rd be an elliptic matrix.
Assume that c⃗ ∈ L∞(Ω;Rd) and b ≥ 0. Consider the problem

(M)
−div(A∇u) + bu+ c⃗ · ∇u = f in Ω,

u = u0 on ∂Ω.
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a) Consider the case b = 0, c⃗ = 0⃗ and f ∈ L2(Ω) fulfilling f ≥ 0. Let
u0 ∈ W 1,2(Ω) and denote m := ess infx∈∂Ωu0(x). Show that the unique
weak solution u to (M) satisfies u(x) ≥ m almost everywhere in Ω.

b) Consider b > 0 and c⃗ arbitrary. Prove that for any u0 ∈ W 1,2(Ω) and any
f ∈ L2(Ω) there exists a weak solution to (M).

Hint: a) Define φ(x) := (u(x)−m)− = min{0, (u(x)−m)}. Show that φ ∈W 1,2
0 (Ω)

and that

∇φ = ∇uχ{u(x)<m}.

Use φ as a test function in the weak formulation of (M) and show that ∇φ ≡ 0,
which implies the rest.
b1) Justify that to conclude it is enough to show that if u ∈W 1,2

0 (Ω) solves

(M0) −div(A∇u) + bu+ c⃗ · ∇u = 0 in Ω

then u ≡ 0.
b2) Consider the test function φ := (u −M)+ = max{0, u −M}. By using the
Hölder inequality and the embedding theorem, show that there exists M such that
u ≤M a.e. in Ω. Similarly also show u ≥ −M and consequently u ∈ L∞(Ω)

b3) Based on b2) show that φ := uk ∈W 1,2
0 (Ω) is a correct test function. By using

the Young inequality and the embedding theorem, one can prove that by choosing
k sufficiently large one gets φ ≡= 0.
Remark: Here it is the case, when the Lax-Milgram theorem cannot be used if
∥c⃗∥∞ ≫ 1.

DEADLINE: November 27

Solution: a) the fact that φ ∈ W 1,2(Ω) and that ∇φ = ∇uχ{u<k} was proven at
the lecture. We repeat it also here. For sake of simplicity we set m = 0. Due to
the density argument, we can find a sequence {un}∞n=1 ⊂ C∞ such that un → u in

W 1,1
loc . Finally, we set

φn,ε :=
(min{0, un})3

ε+ (min{0, un})2
, φε :=

(min{0, u})3

ε+ (min{0, u})2

Next, we set arbitrary ψ ∈ C∞
0 (Ω). Then using the Lebesgue dominated convergence

theorem and the fact that un → u strongly in L1
loc(Ω), we observe

(1.7)

∫
Ω

− ∂ψ

∂xi
φ = lim

ε→0+

∫
Ω

− ∂ψ

∂xi
φε = lim

ε→0+

(
lim

n→∞

∫
Ω

− ∂ψ

∂xi
φn,ε

)
.

On the other hand, we can use the fact that φn,ε ∈ C1(Ω) and that

∂φn,ε

∂xi
=

3ε (min{0, un})2 + (min{0, un})4

(ε+ (min{0, un})2)2
∂un

∂xi
.

Then we can use the integration by parts for smooth function to get∫
Ω

− ∂ψ

∂xi
φn,ε =

∫
Ω

ψ
3ε (min{0, un})2 + (min{0, un})4

(ε+ (min{0, un})2)2
∂un

∂xi
.
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Therefore, using the strong convergence ∇un → ∇u in L1
loc, the strong convergence

un → u in L1 and also the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
Ω

ψ
3ε (min{0, un})2 + (min{0, un})4

(ε+ (min{0, un})2)2
∂un

∂xi
=

∫
Ω

ψ
3ε (min{0, u})2 + (min{0, u})4

(ε+ (min{0, u})2)2
∂u

∂xi

=

∫
Ω∩{u<0}

ψ
3εu2 + u4

(ε+ u2)2
∂u

∂xi
=

∫
Ω∩{u<0}

ψ

(
1 +

εu2 − ε2

(ε+ u2)2

)
∂u

∂xi

Since | εu
2−ε2

(ε+u2)2 | ≤ 1 and since

εu2 − ε2

(ε+ u2)2
ε→0+→ 0 almost everywhere on {x ∈ Ω; u(x) < 0},

we can use the Lebesgue dominated convergence theorem to observe

lim
ε→0+

∫
Ω∩{u<0}

ψ

(
1 +

εu2 − ε2

(ε+ u2)2

)
∂u

∂xi
= intΩ∩{u<0}ψ

∂u

∂xi
.

Consequently, comparing the result with (1.7), we have∫
Ω

− ∂ψ

∂xi
φ =

∫
Ω

ψ
∂u

∂xi
χ{u<m},

which is the desired claim.
Next, we continue. Since u ≥ m on ∂Ω then we even get that φ ∈ W 1,2

0 (Ω).
Using φ in the weak formulation of the problem (M), we have∫

Ω

A∇u · ∇φ =

∫
Ω

fφ ≤ 0,

where the last inequality follows from the fact that f ≥ 0 φ ≤ 0 a.e. in Ω. Using
also the identification of the gradient of φ, it follows from the ellipticity of A and
the above inequality that

C1

∫
Ω

|∇φ|2
ellipticity

≤
∫
Ω

A∇φ · ∇φ =

∫
Ω

A∇u · ∇φχ{u<k} =

∫
Ω

A∇u · ∇φ ≤ 0.

Then, since φ has zero trace, we can use the Poincaré inequality and conclude that
φ ≡ 0 in Ω. Therefore u−m ≥ 0 and consequently u ≥ m a.e. in Ω.

b1) Let us define ũ := u− u0. Then u ∈W 1,2(Ω) is a weak solution to (M) if and

only if ũ ∈W 1,2
0 (Ω) solves for all φ ∈W 1,2

0 (Ω)
(1.8)∫
Ω

A∇ũ·∇φ+bũφ+ c⃗·∇ũφ =

∫
Ω

fφ−A∇u0 ·∇φ−bu0φ− c⃗·∇u0φ =: ⟨F,φ⟩W 1,2
0 (Ω).

The important change to the proof in the lecture is that F ∈ (W 1,2
0 (Ω))∗ but we do

not know that whether F ∈ L2(Ω). In case the second claim is true, we could use
the Fredholm alternative from the lecture. Here, we need to improve it, i.e., we need
to show that if the only weak solution to (M0) is u ≡ 0 then for all F ∈ (W 1,2

0 (Ω))∗

there exists a unique solution to (1.8). We prove this claim in two steps. First,
start with proving that there exists a constant C > 0 such that for any f ∈ L2(Ω)

and u0 ≡ 0 there exists unique weak solution u ∈ W 1,2
0 (Ω) to the problem (M)

fulfilling

(1.9) ∥u∥1,2 ≤ C∥F∥(W 1,2
0 (Ω))∗ := sup

φ∈W 1,2
0 (Ω); ∥φ∥1,2≤1

C

∫
Ω

Fφ.
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Clearly, since we assume that the only solution to (M0) is zero, we have that for
any f ∈ L2(Ω) there is unique weak solution. We only need to show the inequality
(1.9). Let us assume a contradiction, i.e., we have Fn ∈ L2(Ω) and a weak solution

un ∈ W 1,2
0 (Ω) to (M) such that (we can rescale to problem and assume that the

left hand side is equal to one thanks to the linearity of the equation)

(1.10) 1 = ∥un∥1,2 > n∥Fn∥(W 1,2
0 (Ω))∗ .

Due to the reflexivity, and thanks to the compact embedding, we can find subse-
quence, that we do not relabel, such that

un ⇀ u weakly in W 1,2
0 (Ω),

∇un ⇀ ∇u weakly in L2(Ω;Rd),

Fn → 0 strongly in (W 1,2
0 (Ω))∗,

un → u strongly in L2(Ω).

Recalling the definition of a weak solution: for all φ ∈W 1,2
0 (Ω)

(1.11)

∫
Ω

A∇un · ∇φ+ bunφ+ c⃗ · ∇unφ =

∫
Ω

Fnφ =: ⟨Fn, φ⟩,

we see that we can use the above convergence results and let n → ∞ in the above
identity to deduce

(1.12)

∫
Ω

A∇u · ∇φ+ buφ+ c⃗ · ∇uφ = 0

and consequently, using our assumption, we see that u ≡ 0. On the other hand, we
shall show that ∥u∥1,2 = 1, which is the desired contradiction. To do so, we use the
ellipticity of the matrix A and set φ := un − u in (1.11) to deduce (again with the
help of the weak convergence results)

lim
n→∞

C1∥∇un −∇u∥22 ≤ lim
n→∞

∫
Ω

A∇(un − u) · ∇(un − u)

= lim
n→∞

∫
Ω

A∇un · ∇(un − u)−
∫
Ω

A∇u︸ ︷︷ ︸
∈L2

· ∇(un − u)︸ ︷︷ ︸
⇀0 in L2

= lim
n→∞

∫
Ω

A∇un · ∇(un − u)
(1.11)
= lim

n→∞

∫
Ω

−bun(un − u) + c⃗ · ∇un(un − u) + ⟨Fn, un − u⟩

≤ (∥b∥∞ + ∥c⃗∥∞) lim
n→∞

∥un∥1,2(∥un − u∥2 + ∥Fn∥(W 1,2
0 (Ω))∗) = 0.

Therefore, we got that un → u strongly in W 1,2
0 (Ω) and consequently ∥u∥1,2 =

limn→∞ ∥un∥1,2 = 1 and therefore un cannot be equal to zero. Hence, (1.9) holds
true whenever F ∈ L2(Ω).

Next, we show that for any F ∈ (W 1,2
0 (Ω))∗ there exists a unique solution to

(1.8) fulfilling the estimate (1.9), provided that the only solution to (M0) is u ≡ 0.

To do so, we use theLax-Milgram theorem and find v ∈W 1,2
0 such that

(1.13)

∫
Ω

∇v · ∇φ+ vφ = ⟨F,φ⟩ for all φ ∈W 1,2
0 (Ω).
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Due to the density, we can find a sequence {vn}∞n=1 ⊂ C∞
0 such that vn → v in

W 1,2
0 (Ω). For such vn we can define

⟨Fn, φ⟩ :=
∫
Ω

∇vn · ∇φ+ vnφ =

∫
Ω

(−∆vn + v)φ,

where we used integration by parts since vn is smooth compactly supported func-
tion. Consequently we see that Fn = −∆vn+vn ∈ L2(Ω) and therefore there exists
unique un solving

(1.14)

∫
Ω

A∇un ·∇φ+bunφ+ c⃗ ·∇unφ =

∫
Ω

Fnφ = ⟨Fn, φ⟩ =
∫
Ω

∇vn ·∇φ+vnφ.

Thus using (1.9), we see that

∥un∥1,2 ≤ C∥Fn∥(W 1,2
0 )∗ ≤ C∥vn∥1,2 ≤ C̃ <∞.

Therefore, we have for a subsequence that

un ⇀ u weakly in W 1,2
0 (Ω).

Hence, we can let n → ∞ in (1.14) to get we see that we can use the above
convergence results and let n→ ∞ in the above identity to deduce

(1.15)

∫
Ω

A∇u · ∇φ+ buφ+ c⃗ · ∇uφ =

∫
Ω

∇v · ∇φ+ vφ = ⟨F,φ⟩

In addition, using the weak lower semicontinuity of norms, we have that (1.9) is
valid also for the limiting u and F .

b2) First we show that u ∈ L∞(Ω). Let m > 0 be fixed and consider the test
function φ := (u−m)+. Then we have from (M0) that∫

Ω

A∇u · ∇(u−m)+ + bu(u−m)+ = −
∫
Ω

c⃗ · ∇u(u−m)+

We estimate all terms. Trivially, we have bu(u−m)+ ≥ 0 a.e. in Ω. Also

∥(u−m)+∥21,2 ≤ C

∫
Ω

|∇(u−m)+|2 ≤ C̃

∫
Ω

A∇u · ∇(u−m)+

Finally, using the Hölder inequality and the embedding theorem (we define p :=
d/(d− 2) if d > 2 and p = 4 if d = 2) we have

−
∫
Ω

c⃗ · ∇u(u−m)+ ≤ ∥c⃗∥∞
∫
{u>m}

|∇(u−m)+||(u−m)+|

≤ C∥∇(u−m)+∥2∥(u−m)+∥2p|{u > m}|
1

2p′

≤ Ĉ∥(u−m)+∥21,2
(∫

Ω

|u|
m

) 1
2p′

≤ C(c⃗,Ω, u)

m
1

2p′
∥(u−m)+∥21,2

Thus, comparing all inequalities, we have

∥(u−m)+∥21,2 ≤ K

m
1

2p′
∥(u−m)+∥21,2,

where K is a constant depending on the data but independent of m. Thus, setting
m sufficiently large, we see that (u −m)+ ≡ 0 and consequently u ≤ m a.e. in Ω.



14 HOMEWORK: PART I

Similarly, we proceed also with the negative part of u and we have u ∈ L∞.
b3) Due to the above estimate, we have for arbitrary m ∈ N

∥∇um∥2 ≤ ∥m|∇u||um−1|∥2 ≤ m∥u∥m−1
∞ |∇u∥2 <∞.

Hence u2k+1 ∈W 1,2
0 (Ω) is a possible test function and we have the identity

I1 + I2 :=

∫
Ω

A∇u · ∇u2k+1 + buu2k+1 = −
∫
Ω

c⃗ · ∇uu2k+1 =: I3.

Again, we estimate all terms. First, using the elipticity, we have

I1 = (2k + 1)

∫
Ω

u2kA∇u · ∇u ≥ C1(2k + 1)

∫
Ω

u2k|∇u|2.

Similarly, defining the positive m > 0 by the formula m := ess infx∈Ωb(x), we have

I2 ≥ m

∫
Ω

u2k+2.

Finally, using the Young inequality, and denoting M := ∥c⃗∥∞, we have

I3 ≤
∫
Ω

(
√
2C1(2k + 1)|∇u||u|k)

(
M |u|k+1√
2C1(2k + 1)

)

≤ C1(2k + 1)

∫
Ω

u2k|∇u|2 + M2

4C1(2k + 1)

∫
Ω

u2k+2.

Putting everything together, we deduce

m

∫
Ω

u2k+2 ≤ M2

4C1(2k + 1)

∫
Ω

u2k+2.

Setting

k =
M2

4mC1
− 1

2

it follows
m

2

∫
Ω

u2k+2 ≤ 0 =⇒ u ≡ 0

and the proof is complete.

b2) + b3) Alternative approach: In previous two steps, we needed to justify
to use of u2k+1 as a test function and we used the fact that u is bounded. However,
we can overcome the proof of boundedness by the following approach. Let n ∈ N
and s ≥ 0 be arbitrary. We denote the truncation function Tn as

Tn(s) := min{n, |s|}sign s.

Then the function φ := u|Tn(u)|p belongs toW 1,2
0 (Ω), which can be proven similarly

as the case in Step a). Thus, using such φ in (1.12), we obtain

(1.16)

∫
Ω

A∇u · ∇(u|Tn(u)|p) + buu|Tn(u)|p + c⃗ · ∇uu|Tn(u)|p = 0.

Our goal is to let n → ∞ in the above identity and then to use the procedure
described above. Thus, it only remains to justify rigorously the limit passage n→
∞.
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Using the ellipticity of the matrix A and the Hölder inequality, we deduce (sim-
ilarly as above)

4C1(p+ 1)

(p+ 2)2

∫
Ω

∣∣∣∇|Tn(u)|
p+2
2

∣∣∣2 ≤ 4(p+ 1)

(p+ 2)2

∫
Ω

A∇|Tn(u)|
p+2
2 · ∇|Tn(u)|

p+2
2

= (p+ 1)

∫
Ω

A∇u · ∇u|Tn(u)|pχ{|u|<n} ≤
∫
Ω

A∇u · ∇u
(
|Tn(u)|p + p|Tn(u)|pχ{|u|<n}

)
≤
∫
Ω

A∇u · ∇(u|Tn(u)|p) + buu|Tn(u)|p
(1.16)
= −

∫
Ω

c⃗ · ∇uu|Tn(u)|p

≤ C

∫
Ω

|∇u||u|1+p,

(1.17)

whenever the last term on the right hand side is well defined and finite. Finally,
we show, that the last term is well defined for any p ≥ 0. To do so, we continue
inductively. We know that in any dimension we have W 1,2 ↪→ L2+α with some
α > 0. Next, we define p0 := 0 and pk+1 := pk + a/2. Evidently,∫

Ω

|∇u||u|1+p0 <∞.

Next we show that

(1.18)

∫
Ω

|∇u||u|1+pk <∞ =⇒
∫
Ω

|∇u||u|1+pk+1 <∞.

Consequently, we can choose p arbitrarily large in (1.17) and the proof is complete.
To show (1.18), we use (1.17) with p := pk and since the right hand side is finite,

we can let n→ ∞ to deduce that

(1.19)

∫
Ω

∣∣∣∇|u|
pk+2

2

∣∣∣2 <∞ =⇒
∫
Ω

|u|pk |∇u|2 <∞

but we can also use the embedding theorem and the Pincaré inequality to get

(1.20)

∫
Ω

∣∣∣∇|u|
pk+2

2

∣∣∣2 <∞ =⇒ ∥|u|
pk+2

2 ∥1,2 <∞ =⇒
∫
Ω

|u|
(pk+2)(2+a)

2 <∞.

To show (1.18) we use the Young inequality and (1.19)–(1.20) as follows∫
Ω

|∇u||u|1+pk+1 ≤
∫
Ω

|∇u|2|u|pk + |u|2+2pk+1−pk =

∫
Ω

|∇u|2|u|pk + |u|2+pk+a

≤
∫
Ω

|∇u|2|u|pk + |u|
(pk+2)(2+a)

2 + 1
(1.19),(1.20)

< ∞.

Therefore (1.18) holds true.

Problem 5: Lax–Milgram lemma vs Fredholm alternative II. Consider Ω ⊂ Rd

a Lipschitz domain. Let a, b ∈ R Consider the problem: For given f⃗ = (f1, f2) ∈
L2(Ω)× L2(Ω), find u⃗ = (u1, u2) ∈W 1,2

0 (Ω)×W 1,2
0 (Ω) solving

(S)
−∆u1 − a∆u2 + u1 = f1 in Ω,

−∆u2 − b∆u1 + u2 = f2 in Ω,

u1 = u2 = 0 on ∂Ω.
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Under which conditions on a, b the system (S) has for any f⃗ a weak solution? Under

which condition on f⃗ , the system (S) has a solution?
Hint: a) First, try to use the Lax-Milgram lemma. Consider the space V :=

W 1,2
0 (Ω)×W 1,2

0 (Ω) and proper bilinear form (follow the lecture).
b) Use the spectral theory or the Fredholm alternative and/or be creative:)

DEADLINE: November 27

Solution: Method a): Let us denote V := W 1,2
0 (Ω). The weak solution is defined

as u = (u1, u2) ∈ V × V solving for all ζ, ψ ∈ V∫
Ω

∇u1 · ∇ζ + a∇u2 · ∇ζ + u1ζ = ⟨f1, ζ⟩,∫
Ω

∇u2 · ∇ψ + b∇u1 · ∇ψ + u2ψ = ⟨f2, ψ⟩.

Next we try to use the Lax–Milgram theorem. The first attempt is as follows.
Let A,B > 0 be arbitrary. We define (here u := (u1, u2) and φ := (φ1, φ2))

B(u, φ) := A

∫
Ω

∇u1 ·∇φ1+a∇u2 ·∇φ1+u1φ1+B

∫
Ω

∇u2 ·∇φ2+b∇u1 ·∇φ2+u2φ2

and

⟨F,φ⟩ := A⟨f1, φ1⟩+B⟨f2, φ2⟩.
Then to find weak solutions to (S) is equivalent to find u = (u1, u2) ∈ V × V such
that for all φ = (φ1, φ2) ∈ V × V there holds

(S1) B(u, φ) = ⟨F,φ⟩V×V .

Next, we try to solve (S1) by using the Lax–Milgram theorem and proper choice
of A,B. We define the Hilbert space

H := V × V.

We check whether the assumptions of the Lax–Milgram lemma are satisfied. First,
H is evidently a Hilbert space that can be endowed (by using also the Poincaré
inequality) by the scalar product

(u, φ) :=

∫
Ω

d∑
i=1

∇ui · ∇φi.

The Hölder inequality and the linearity of the integral also implies that F ∈ H∗.
Similarly, we can directly deduce that B is bilinear and H-bounded. It remains to
check whether it is also H-elliptic. Using the definition of B we see that

B(u, u) =
∫
Ω

A|∇u1|2 +Au21 +B|∇u2|2 +Bu22 + (Aa+Bb)∇u1 · ∇u2

≥ A∥u1∥2V +B∥u2∥2V − |Aa+Bb|∥u1∥V ∥u2∥V

≥ A∥u1∥2V +B∥u2∥2V −A(1− ε)∥u1∥2V − |Aa+Bb|2

4A(1− ε)
∥u2∥2V

= Aε∥u1∥2V +

(
B − |Aa+Bb|2

4A(1− ε)

)
∥u2∥2V ≥ C1∥u∥2H ,
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where the last inequality is true if we can find positive ε,A,B such that

B − |Aa+Bb|2

4A(1− ε)
> 0

and since ε can be arbitrarily small, it is equivalent to

4AB > (Aa+Bb)2 ⇐⇒ (2
√
AB +Aa+Bb)(2

√
AB −Aa−Bb) > 0.

First, in case ab < 0, we can simply set A := |b| and B := |a| and we see that the
above inequality holds true. Next we assume ab ≥ 0. Without loss of generality we
may assume that a ≥ 0 and b ≥ 0. The case a = 0 or b = 0 is solved trivially, so
assume that ab > 0. Then the above inequality reduces to

0 > Aa+Bb− 2
√
AB ≥ Bb−B/a =

B

a
(ab− 1).

Hence, we see that we need

ab < 1

Next, we try to use the Lax–Milgram theorem again but we modify the bilinear
form such that the case when ab ≫ 1 will be handled. Without loss of generality
we assume that a > 0 and b > 0 (the opposite case is treated similarly). We define
new bilinear form as

B(u, φ) := A

∫
Ω

∇u1 ·∇φ2+a∇u2 ·∇φ2+u1φ2+B

∫
Ω

∇u2 ·∇φ1+b∇u1 ·∇φ1+u2φ1

and

⟨F,φ⟩ := A⟨f1, φ2⟩+B⟨f2, φ1⟩.
Hence we just switched the role of u1 and u2. Clearly, F belongs again to H∗, B
is bilinear and bounded. We just need to check the coercivity. Using the Hölder
inequality, we have

B(u, u) := A

∫
Ω

∇u1 · ∇u2 + a∇u2 · ∇u2 + u1u2 +B

∫
Ω

∇u2 · ∇u1 + b∇u1 · ∇u1 + u2u1

≥ Aa∥∇u2∥22 +Bb∥∇u1∥22 + (A+B)∥∇u1∥2∥∇u2∥2 + (A+B)∥u1∥2 + ∥u2∥2
Next, we recall Poincaré inequality. Since we shall use it also later, we recall that
for all v ∈W 1,2

0 (Ω), we have

∥∇v∥22 ≥ λ1∥v∥22,

where λ > 0 is the smallest eigenvalue of the Laplace operator. Consequently, we
deduce with the help of the Young inequality

B(u, u) ≥ Aa∥∇u2∥22 +Bb∥∇u1∥22 + (A+B)(1 + 1/λ1)∥∇u1∥2∥∇u2∥2

≥ Aaε∥∇u2∥22 +
(
Bb− (A+B)2(1 + λ1)

2

λ214Aa(1− ε)

)
∥∇u1∥22 ≥ α∥u∥2H ,

provided we have

Bb− (A+B)2(1 + λ1)
2

λ214Aa
> 0 ⇐⇒ ab >

(A+B)2(1 + λ1)
2

λ214AB
.

Doing the optimal choice A = B, we deduce that the sufficient condition is

ab >

(
1 +

1

λ1

)2

.
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Thus, we see that for any f1, f2 ∈ V ∗ we have the existence of a unique solution
(u1, u2) ∈ H, provided

ab /∈
[
1, (1 + 1/λ1)

2
]
.

We discuss also the case ab = 1. We multiply the first equation by b to have∫
Ω

b∇u1 · ∇ζ +∇u2 · ∇ζ + bu1ζ = b⟨f1, ζ⟩,∫
Ω

∇u2 · ∇ψ + b∇u1 · ∇ψ + u2ψ = ⟨f2, ψ⟩.

Denoting w1 := bu1 + u2 and w2 := u2 − bu1, we see that we may write∫
Ω

2∇w1 · ∇φ+ w1φ = ⟨bf1 + f2, φ⟩,(1.21) ∫
Ω

w2ψ = ⟨f2 − bf1, ψ⟩.(1.22)

Thus we see that the first equation is uniquely solvable whenever f1, f2 ∈ V ∗ but
to obtain w2 ∈ W 1,2

0 we require more smoothness for the right hand sides, i.e., we
must have

ab = 1 and f2 − bf1 ∈W 1,2
0 (Ω).

Method b): Here, we simply set A = B = 1 and consider the basis of W 1,2
0 (Ω) of

the form {wk}∞k=1, which consists of eigen functions of the Laplace operator, i.e.,
they fulfill

−∆wk = λkw
k in Ω and wk = 0 on ∂Ω.

Here {λk}∞k=1 are eigen-values, which are positive,nondecreasing and tend to infin-
ity. We know from the lecture, that such basis exists, can be made orthogonal in
W 1,2

0 (Ω) and orthonormal in L2(Ω).

We look for solution in the form of Fourier series in W 1,2
0 of the form

ui =

∞∑
j=1

ujiwj .

Due to orthonormality, we can also write fi in terms of Fourier series as follows

fi =

∞∑
j=1

f ji wj

where f ji are given as f ji :=
∫
Ω
fiw

j = ⟨fi, wj⟩. In addition, setting ζ, ψ := wj with
j = 1, . . . ,∞, we see that the weak solution satisfy for all j = 1, . . . ,∞∫

Ω

∇u1 · ∇wj + a∇u2 · ∇wj + u1wj = ⟨f1, wj⟩,∫
Ω

∇u2 · ∇wj + b∇u1 · ∇wj + u2wj = ⟨f2, wj⟩.

which is reduced (by using the properties of the basis) to

(λj + 1)uj1 + aλju
j
2 = f j1 ,

bλju
j
1 + (λ1 + 1)uj2 = f j2 .
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Hence, defining for each j ∈ N

Aj :=

(
λj + 1 aλj
bλj (λj + 1)

)
, F⃗j :=

(
f j1
f j2

)
we see that to solve the original problem, it is equivalent to solve for each j ∈ N

A
(
uj1
uj2

)
= F⃗j

Since detA = (λj + 1)2 − abλ2j we can deduce that if for each j there holds

ab ̸= (1 + 1/λj)
2

then we can find uniquely defined uji . In case ab = (1 + 1/λj)
2 then we require

bλjf
j
1 = (λ1 + 1)f j2 ⇐⇒ bf j1 =

√
abf j2 .

It remains to check that (we use the properties of the eigen vectors)

∥∇ui∥22 =

∞∑
j=1

λj(u
j
i )

2 <∞.

Since

A−1
j :=

1

(λj + 1)2 − λ2jab

(
λj + 1 −aλj
−bλj λj + 1

)
and then we can also show that if ab ̸= 1 then there exists a constant such that

|uji | ≤ C(|f j1 |+ |f j2 |)λj .
Consequently,∑

λj(u
j
i )

2 ≤ C
∑

(|f j1 |2 + |f j2 |2)/λj = C(∥f1∥2V ∗ + ∥f2∥2V ∗).

In case ab = 1, we however see that(
uj1
uj2

)
= A−1

(
f j1
f j2

)
=

1

1 + 2λj

(
λj + 1 −aλj
−bλj λj + 1

)(
f j1
f j2

)
and we see that |uji | ≲ (|f j1 |+ |f j2 ). Hence we require that f1, f2 belong to the better
space. This was already discussed in the first part.


