HOMEWORK PDE2

Problem 1: Consider the problem

$$
\begin{aligned}
-\Delta u+\ln u=f & \text { in } \Omega, \\
u=u_{d} & \text { on } \partial \Omega,
\end{aligned}
$$

where $f \in L^{2}(\Omega)$ is nonnegative, and $u_{d} \in W^{1,2}(\Omega)$ fulfills $u_{d} \geq \varepsilon>0$ a.e. in Ω.

GOAL: Show that there exists unique positive $u \in W^{1,2}(\Omega)$ solving the problem.
GOAL (not obligatory): Prove the same statement but assume only $f \in L^{2}(\Omega), u_{d} \in W^{1,2}(\Omega), u_{d}>0$ a.e. in Ω and $\int_{\Omega}\left|\ln u_{d}\right|<\infty$.
DEADLINE: April 1

Problem 2: Consider the following problem

$$
\begin{aligned}
-\Delta_{p} u+\sinh u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

where $f \in L^{\infty}(\Omega)$ and $p \in(1, \infty)$.
GOAL: Define a proper notion of a weak solution and prove the existence and the uniqueness.
DEADLINE: April 30

Problem 3: Let $\Omega \subset \mathbb{R}^{d}$ be Lipschitz. Consider the sequences v^{n} and u^{n} such that for some $p, q \in(1, \infty)$ there holds

$$
\begin{array}{cl}
u^{n} \rightharpoonup u \quad \text { weakly in } L^{2}\left(0, T ; W^{1, p}(\Omega)\right), \\
v^{n} \rightharpoonup v \quad \text { weakly in } L^{q}\left(0, T ; L^{q}(\Omega)\right) .
\end{array}
$$

In addition, assume that for all $\varphi \in \mathcal{C}_{0}^{2}((0, T) \times \Omega)$ there holds

$$
\int_{0}^{T} \int_{\Omega} u^{n} \partial_{t} \varphi+v^{n} \Delta \varphi=0
$$

GOAL: Show that there exists a subsequence such that

$$
u^{n_{k}} \rightarrow u \text { strongly in } L^{1}\left(0, T ; L^{p}(\Omega)\right) .
$$

DEADLINE: May 24

Problem 4: Consider the evolutionary parabolic problem

$$
\begin{aligned}
\partial_{t} u-\Delta u-\alpha \Delta_{p} u & =0 & & \text { in }(0, T) \times \Omega, \\
\left(\nabla u+\alpha|\nabla u|^{p-2} \nabla u\right) \cdot \vec{\nu}+\beta|u|^{q-2} u & =0 & & \text { on }(0, T) \times \partial \Omega, \\
u(0) & =u_{0} & & \text { in } \Omega .
\end{aligned}
$$

with $\Omega \subset \mathbb{R}^{d}$ Lipschitz, $\alpha, \beta \geq 0$ and $p, q \in(1,2)$ and $\vec{\nu}$ being the outer noraml vector on $\partial \Omega$.
GOAL: For any $u_{0} \in L^{2}(\Omega)$ show that there exists unique weak solution. In case that $\alpha, \beta>0$, show that there exists $t_{0} \in(0, \infty)$ such that the weak solution satisfies $u(t)=0$ for all $t \geq t_{0}$. (In other words, prove the extinction in finite time).
DEADLINE: May 24

Problem 5: Let Ω be Lipschitz and $\Gamma_{1} \subset \partial \Omega$ be such that $\left|\Gamma_{1}\right|>0$. Assume that $\vec{g} \in L^{3}\left(\partial \Omega ; \mathbb{R}^{N}\right)$, where $N \in \mathbb{N}$ is given and define the set S as ${ }^{1}$

$$
S:=\left\{\mathbf{A} \in L^{3}\left(\Omega ; \mathbb{R}^{d \times N}\right) ; \int_{\Omega} \mathbf{A}: \nabla \vec{v}=\int_{\partial \Omega \backslash \Gamma_{1}} \vec{g} \cdot \vec{v} \text { for all } \vec{v} \in V\right\}
$$

and

$$
V:=\left\{\vec{v} \in W^{1, \frac{3}{2}}\left(\Omega ; \mathbb{R}^{N}\right) ; \vec{v}=0 \text { on } \Gamma_{1}\right\} .
$$

Consider the problem: Find $\mathbf{A} \in S$ such that for all $\mathbf{B} \in S$ there holds

$$
\int_{\Omega} \frac{|\mathbf{A}|^{3}}{3}+|\mathbf{A}-\mathbf{I}|^{2} \leq \int_{\Omega} \frac{|\mathbf{B}|^{3}}{3}+|\mathbf{B}-\mathbf{l}|^{2},
$$

where $\mathbf{I} \in \mathbb{R}^{d \times N}$ is given.
GOAL: 1) Show that there exists unique \mathbf{A} solving the problem.
2) Derive the Euler-Lagrange equations.
3) Find the corresponding primary formulation - the corresponding system of PDE's and show the equivalence of primary and dual formulation.
DEADLINE: three days before exam

[^0]
[^0]: ${ }^{1}$ Here \mathbf{A} denotes the $(d \times N)$-matrix-valued function and ": " is the scalar product in the space of matrices, i.e., for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d \times N}$ there holds

 $$
 \mathbf{A}: \mathbf{B}:=\sum_{i=1}^{d} \sum_{\nu=1}^{N}(\mathbf{A})_{i, \nu}(\mathbf{B})_{i, \nu}, \quad|\mathbf{A}|^{2}:=\mathbf{A}: \mathbf{A} .
 $$

