HOMEWORK PDE2

Problem 1: Consider the problem

$$-\Delta u + \ln u = f \quad \text{in } \Omega,$$
$$u = u_d \quad \text{on } \partial\Omega,$$

where $f \in L^2(\Omega)$ is nonnegative, and $u_d \in W^{1,2}(\Omega)$ fulfills $u_d \geq \varepsilon > 0$ a.e. in Ω .

GOAL: Show that there exists unique positive $u \in W^{1,2}(\Omega)$ solving the problem.

GOAL (not obligatory): Prove the same statement but assume only $f \in L^2(\Omega), u_d \in W^{1,2}(\Omega), u_d > 0$ a.e. in Ω and $\int_{\Omega} |\ln u_d| < \infty$. **DEADLINE:** April 1

Problem 2: Consider the following problem

 $-\Delta_p u + \sinh u = f \quad \text{in } \Omega,$ $u = 0 \quad \text{on } \partial\Omega,$

where $f \in L^{\infty}(\Omega)$ and $p \in (1, \infty)$.

GOAL: Define a proper notion of a weak solution and prove the existence and the uniqueness.

DEADLINE: April 30

Problem 3: Let $\Omega \subset \mathbb{R}^d$ be Lipschitz. Consider the sequences v^n and u^n such that for some $p, q \in (1, \infty)$ there holds

$$u^n \rightharpoonup u$$
 weakly in $L^2(0,T; W^{1,p}(\Omega)),$
 $v^n \rightharpoonup v$ weakly in $L^q(0,T; L^q(\Omega)).$

In addition, assume that for all $\varphi \in \mathcal{C}_0^2((0,T) \times \Omega)$ there holds

$$\int_0^T \int_\Omega u^n \partial_t \varphi + v^n \Delta \varphi = 0.$$

GOAL: Show that there exists a subsequence such that

 $u^{n_k} \to u$ strongly in $L^1(0,T; L^p(\Omega))$.

DEADLINE: May 24

Problem 4: Consider the evolutionary parabolic problem

$$\partial_t u - \Delta u - \alpha \Delta_p u = 0 \quad \text{in } (0, T) \times \Omega,$$
$$(\nabla u + \alpha |\nabla u|^{p-2} \nabla u) \cdot \vec{\nu} + \beta |u|^{q-2} u = 0 \quad \text{on } (0, T) \times \partial \Omega,$$
$$u(0) = u_0 \quad \text{in } \Omega.$$

with $\Omega \subset \mathbb{R}^d$ Lipschitz, $\alpha, \beta \geq 0$ and $p, q \in (1, 2)$ and $\vec{\nu}$ being the outer normal vector on $\partial \Omega$.

GOAL: For any $u_0 \in L^2(\Omega)$ show that there exists unique weak solution. In case that $\alpha, \beta > 0$, show that there exists $t_0 \in (0, \infty)$ such that the weak solution satisfies u(t) = 0 for all $t \ge t_0$. (In other words, prove the extinction in finite time).

DEADLINE: May 24

Problem 5: Let Ω be Lipschitz and $\Gamma_1 \subset \partial \Omega$ be such that $|\Gamma_1| > 0$. Assume that $\vec{g} \in L^3(\partial \Omega; \mathbb{R}^N)$, where $N \in \mathbb{N}$ is given and define the set S as¹

$$S := \left\{ \mathbf{A} \in L^3(\Omega; \mathbb{R}^{d \times N}); \ \int_{\Omega} \mathbf{A} : \nabla \vec{v} = \int_{\partial \Omega \setminus \Gamma_1} \vec{g} \cdot \vec{v} \text{ for all } \vec{v} \in V \right\}$$

and

$$V := \left\{ \vec{v} \in W^{1,\frac{3}{2}}(\Omega; \mathbb{R}^N); \ \vec{v} = 0 \text{ on } \Gamma_1 \right\}.$$

Consider the problem: Find $\mathbf{A} \in S$ such that for all $\mathbf{B} \in S$ there holds

$$\int_{\Omega} \frac{|\mathbf{A}|^3}{3} + |\mathbf{A} - \mathbf{I}|^2 \le \int_{\Omega} \frac{|\mathbf{B}|^3}{3} + |\mathbf{B} - \mathbf{I}|^2,$$

where $\mathbf{I} \in \mathbb{R}^{d \times N}$ is given.

GOAL: 1) Show that there exists unique A solving the problem.

2) Derive the Euler–Lagrange equations.

3) Find the corresponding primary formulation - the corresponding system of PDE's and show the equivalence of primary and dual formulation.

DEADLINE: three days before exam

¹Here **A** denotes the $(d \times N)$ -matrix-valued function and ":" is the scalar product in the space of matrices, i.e., for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d \times N}$ there holds

$$\mathbf{A}: \mathbf{B} := \sum_{i=1}^d \sum_{\nu=1}^N (\mathbf{A})_{i,\nu} (\mathbf{B})_{i,\nu}, \qquad |\mathbf{A}|^2 := \mathbf{A}: \mathbf{A}.$$