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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Define the notion of Bochner measurability and Bochner integral.

Solution:

See lecture.
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2.[100] Let Ω ⊂ R2 be a ball of radius 1
2 centered at zero, 0 < T ≤ 1

2 unit ball and let u ∈
L2(0, T ;W 1,2

0 (Ω)) and f ∈ L∞((0, T )×Ω;R2). Assume in addition that for all φ ∈ C∞
0 ((0, T )×

Ω) there holds∫ T

0

∫
Ω

u(t, x)
∂φ(t, x)

∂t
dx dt =

∫ T

0

∫
Ω

f · ∇φ(t, x)

(t2 + |x|2) 3
4 ln(t2 + |x|2)

dxdt. (B)

Prove in details that u ∈ C([0, T ];L2(Ω)).

Solution:

Method I: Here we recall the lemma from the lecture: Let V,H, V ∗ be a Gelfand triple
and u ∈ L2(0, T ;V ) and ∂tu ∈ L2(0, T ;V ∗). Then u ∈ C([0, T ];H). The proof is a part
of the exam - see lecture.

Hence, we want to apply this result for our u and the setting V := W 1,2
0 (Ω0 and H :=

L2(Ω). Since we assume that u ∈ L2(0, T ;W 1,2
0 (Ω)) it remains to check that ∂tu ∈

L2(0, T ; (W 1,2
0 (Ω))∗).

For that purpose, let us define for almost all t ∈ (0, T ), F (t) ∈ (W 1,2
0 (Ω))∗ by

⟨F (t), v⟩ := −
∫
Ω

f · ∇v(x)

(t2 + |x|2) 3
4 ln(t2 + |x|2)

dx for all v ∈ W 1,2
0 (Ω). (D)

Evidently, for any t ∈ (0, T ) the integral is well defined and also linear with respect to
v and so F (t) ∈ V ∗. In addition, due to the assumptions on f , we see that F : t 7→ F (t)
is Bochner measurable. Finally, we show that F ∈ L2(0, T ;V ∗). To do so, for any fix
t ∈ (0, T ) we have (by the Hölder inequality)

∥F (t)∥V ∗ := sup
v∈V ;∥v∥V ≤1

⟨F (t), v⟩ (D)
= sup

v∈V ;∥v∥V ≤1

−
∫
Ω

f · ∇v(x)

(t2 + |x|2) 3
4 ln(t2 + |x|2)

dx

≤ ∥f∥L∞(0,T )×Ω sup
v∈V ;∥v∥V ≤1

∥∇v∥2
(∫

Ω

1

(t2 + |x|2) 3
2 ln2(t2 + |x|2)

dx

) 1
2

≤ C

(∫
Ω

1

(t2 + |x|2) 3
2 ln2(t2 + |x|2)

dx

) 1
2

,

where C is independent of t. Hence applying the second power to the above inequality
and integrating with respect to t ∈ (0, T ), using also the fact that |x|2 + t2 ≤ 1

2 , we see
that (here, B := B√

2
2

⊂ R3)∫ T

0

∥F (t)∥2V ∗ ≤ C

∫ T

0

∫
Ω

1

(t2 + |x|2) 3
2 ln2(t2 + |x|2)

dx dt ≤ C

∫
B

1

|z|3 ln2(|z|)
dz < ∞.

Hence, F ∈ L2(0, T ;V ∗). Finally, we show that ∂tu = F . Let η ∈ C∞
0 (0, T ) and v ∈

C∞
0 (Ω) be arbitrary. Using (B) with φ(t, x) := η(t)v(x), we see that (using the properties

of the Gelfand triple and the Bochner integral)〈∫ T

0

∂tη(t)u(t) dt, v

〉
V

=

∫
Ω

(∫ T

0

∂tη(t)u(t, x) dt

)
v(x) dx

=

∫ T

0

∂tη(t)

∫
Ω

u(t, x)v(x)dx dt =

∫ T

0

η(t)

∫
Ω

f · ∇v(x)(t, x)

(t2 + |x|2) 3
4 ln(t2 + |x|2)

dxdt

= −
∫ T

0

η(t)⟨F (t), v⟩ dt = −

〈∫ T

0

η(t)F (t) dt, v

〉
.
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Since C∞
0 (Ω) is dense in V , we see that the above identity holds for all v ∈ V and

consequently we have∫ T

0

∂tη(t)u(t) dt = −
∫ T

0

η(t)F (t) dt in V ∗.

But this is nothing else than the definition of ∂tu = F .

Method II: Here we closely follows the theorem about integration by parts from the
lecture (with no need for definition of the Gelfand triple and the corresponding duality
pairing).

We prove that u ∈ C([0, T/2];L2(Ω)). The proof for the interval (T/2, T ] is similar. For
any n ∈ N, n > 4 we define

un(t) := n

∫ t+ 1
n

t

u(τ) dτ Bochner integral on the space W 1,2
0

Evidently, we also have for almost all t ∈ (0, T/2)

∂tu
n(t) = n(u(t+ n−1)− u(t))

and then also ∂tu
n ∈ L2(0, T ;V ) (not uniformly with respect to n). Let φ ∈ C∞

0 ((0, T/2)×
Ω) be arbitrary and extend it by zero. Then

φτ (t, x) := φ(t− τ, x)

satisfies φτ ∈ C∞
0 ((0, T ) × Ω) whenever τ < T/2. Consequently, φτ can be used in (B)

to get ∫ T

0

∫
Ω

u(t, x)
∂φ(t− τ, x)

∂t
dx dt =

∫ T

0

∫
Ω

f · ∇φ(t− τ, x)

(t2 + |x|2) 3
4 ln(t2 + |x|2)

dxdt.

which gives∫ T

0

∫
Ω

u(t+ τ, x)
∂φ(t, x)

∂t
dx dt =

∫ T

0

∫
Ω

f(t+ τ, x) · ∇φ(t, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dxdt.

Integration with respect to τ ∈ (0, n−1) thus leads to∫ T

0

∫
Ω

un(t, x)
∂φ(t, x)

∂t
dx dt

=

∫ T

0

∫
Ω

(
n

∫ n−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

)
· ∇φ(t, x)dxdt.

Finally, using the fact that ∂tu
n ∈ L2(0, T ;V ) ⊂ L2(0, T ;L2(Ω), we can use the inte-

gration by parts to conclude∫ T

0

∫
Ω

∂tu
n(t, x)φ(t, x)dx dt = −

∫ T

0

∫
Ω

(
n

∫ n−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

)
· ∇φ(t, x)dxdt.
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Since φ ∈ C∞
0 ((0, T/2) × Ω) is arbitrary, the above identity implies that for almost all

t ∈ (0, T/2) and all v ∈ W 1,2
0 (Ω)∫

Ω

∂tu
n(t)v = −

∫
Ω

(
n

∫ n−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

)
· ∇v(x) dx.

(B2)
Finally, let us denote wn,m := un − um and then it follows from (B2) that∫

Ω

∂tw
n,m(t)v = −

∫
Ω

(
n

∫ n−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

−m

∫ m−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

)
· ∇v(x) dx.

(B3)

Setting v := wn,m and integrating the result over (t1, t2) we get

∥wn,m(t1)∥22 ≤ ∥wn,m(t2)∥22 − 2

∫ t2

t1

∫
Ω

(
n

∫ n−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

−m

∫ m−1

0

f(t+ τ, x)

((t+ τ)2 + |x|2) 3
4 ln((t+ τ)2 + |x|2)

dτ

)
· ∇wn,m dx dt

≤ ∥wn,m(t2)∥22 + C

(∫ T/2

0

∥∇wn,m∥22

) 1
2

∥f∥∞

(∫ T

0

∫
Ω

1

(t2 + |x|2) 3
2 ln(t2 + |x|2)

dx dt

) 1
2

≤ ∥wn,m(t2)∥22 + C

(∫ T/2

0

∥∇wn,m∥22

) 1
2

.

Due tu the properties of un, we can find t2 ∈ (0, T/2) such that un(t2) → u(t2) in L2(Ω)
and consequently the sequence wn,m(t2) is Cauchy in L2. In addition, we also know that
∇un → ∇u in L2(0, T/2;L2(Ω) and consequently the sequence ∇wn,m is also Cauchy in
L2(0, T/2;L2). Therefore taking a supremum with respect to t1 ∈ (0, T/2) in the above
inequality, we get that wn,m is Cauchy in C([0, T/2];L2(Ω)) and consequently the limit
u ∈ C([0, T ];L2(Ω)).
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3.[100] Let Ω ⊂ R3 be a Lipschitz set and define

K :=

{
f = (f1, f2, f3) ∈ L2(Ω;R3) : ∀φ ∈ C∞

0 (Ω)

∫
Ω

f · ∇φ = 0

}
and the functional

F(f) :=

∫
Ω

f2
1 + 2f2

2 + 3f2
3 + 2f1f2 − x · f dx.

Consider the following problem:

Find f ∈ K such that F(f) ≤ F(g) for all g ∈ K. (F)

20% Derive the Euler–Lagrange equations to (F).

30% Prove that to solve (F) is equivalent to solve the Euler–Lagrange equations.

20% Show the existence and the uniqueness of the solution to (F) and to its Euler–Lagrange
equations. (Hint: apply the Lax–Milgram theorem on Euler–Lagrange equations)

30% The problem (F) is the dual formulation of some elliptic problem. Find the elliptic
problem and show that a solution u to that problem fulfills ∇u = Bf for some matrix B.

Solution:

Let us define a matrix A as

A :=

1 1 0
1 2 0
0 0 3

 .

Then F can be equivalently written as

F(f) =

∫
Ω

Af · f − x · f dx.

Euler-Lagrange equations: Since K is linear space then for any t ∈ R+ and any
g ∈ K, we have that f + tg ∈ K. Consequently, if f solves (F) then we have∫

Ω

Af · f − x · f dx ≤
∫
Ω

A(f + tg) · (f + tg)− x · (f + tg) dx.

By simple manipulation it leads to

0 ≤
∫
Ω

t2Ag · g + 2tAf · g − tx · g dx.

Division by t > 0 and limit t → 0+ then gives

0 ≤
∫
Ω

2Af · g − x · g dx.

Since −g ∈ K as well we see that the above inequality must hold with equality sign, i.e.∫
Ω

Af · z dx =
1

2

∫
Ω

x · z dx for all z ∈ K. (E-L)
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Equivalence: In previous step we showed that (F) =⇒ (E-L). Here, we focus on the
opposite implication. Let f, g ∈ K such that f fulfills (E-L). Then, we have

0 ≤
∫
Ω

(f1 − g1 + f2 − g2)
2 + (f2 − g2)

2 + 3(f3 − g3)
2 =

∫
Ω

A(f − g) · (f − g)

=

∫
Ω

Ag · g + Af · f − 2Ag · f =

∫
Ω

Ag · g − Af · f + 2Af · (f − g)

= F(g)−F(f) +

∫
Ω

2Af · (f − g)− x · (f − g) = F(g)−F(f),

where for the last equality we used (E-L) with z := f − g. Hence, we see that f solves
(F) and the equivalence is proven.

Existence and uniqueness: We know that we just need to show the unique solvability
to the problem (E-L). For that purpose, it is direct to observe that K is a Hilbert space
equipped with the standard L2-norm. Next, we define a bilinear form

B(f, g) :=
∫
Ω

Af · g for all f, g ∈ K

and F ∈ K∗ by

⟨F, g⟩K :=
1

2

∫
Ω

x · g for all g ∈ K.

Thanks to the Hölder inequality both definitions are meaningfull and B is also bounded.
In addition, since A is evidently an elliptic matrix, we also have that there exists C1 > 0
such that for all f ∈ K

B(f, f) ≥ C1∥f∥2K = C1

∫
Ω

f2
1 + f2

2 + f2
3 .

Thus, according to Lax-Milgram lemma there exists a unique f ∈ K solving the problem

B(f, z) = ⟨F, z⟩,

which is however equivalent to (E-L).

Dual problem: Let us define

u0 :=
|x|2

4
.

Then u0 ∈ W 1,2(Ω) and ∇u0 = x
2 . With this notation, we can rewrite (E-L) as∫

Ω

Af · z dx =

∫
Ω

∇u0 · z dx for all z ∈ K. (E-L2)

Then, since A is positively definite, it has an inverse B := A−1, in fact we have

B =

 2 −1 0
−1 1 0
0 0 1

3


Consider the problem

div (B∇u) = 0 in Ω, u = u0 on ∂Ω.
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From the lecture, we know it has exactly one solution u ∈ W 1,2(Ω), fulfilling (u− u0) ∈
W 1,2

0 (Ω) and for all φ ∈ W 1,2
0 (Ω) ∫

Ω

B∇u · ∇φ = 0. (WF)

In addition, since C∞
0 (Ω) is dense in W 1,2

0 (Ω), we see that K also satisfies

K =

{
f = (f1, f2, f3) ∈ L2(Ω;R3) : ∀φ ∈ W 1,2

0 (Ω)

∫
Ω

f · ∇φ = 0

}
(K)

and therefore also
B∇u ∈ K. (1)

Finally, since A is elliptic, we have (A = B−1)

C1

∫
Ω

|B∇u− f |2 ≤
∫
Ω

A(B∇u− f) · (B∇u− f) =

∫
Ω

(∇u− Af) · (B∇u− f)

=

∫
Ω

(∇u−∇u0)︸ ︷︷ ︸
∈W 1,2

0

· (B∇u− f)︸ ︷︷ ︸
∈K

+

∫
Ω

(∇u0 − Af) · (B∇u− f)︸ ︷︷ ︸
∈K

= 0,

where the first integral vanishes thanks to (K) and the second integral vanishes thanks
to (E-L2).


