
PDE 2, 2022-2023 Written exam June 19, 2023

Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Given name and family name:

Question 1 2 Score

Maximum points 100 100 200

Points

1.[100] Let Ω := (0, 1)3 and T > 0. Assume that {un}∞n=1 ⊂ C1((0, T )× Ω) is a sequence of
smooth (w.r.t. x) functions on (0, T ) × Ω fulfilling for all f ∈ L2(0, T ;L2(Ω)) and all
g ∈ C∞

0 ([0, T ];W 1,∞(Ω))

lim
n→∞

∫ T

0

∫
Ω

unf = 0,

lim
n→∞

∫ T

0

∫
Ω

∂un

∂xk
f = 0 for k=1,2,3∫ T

0

∫
Ω

un∂tg =

∫ T

0

∇g · vn,

where vn is bounded in ∈ L
143
142 (0, T ;L

33
32 (Ω)).

Decide what from the following is true and prove it / find a counterexample.

1)

lim
n→∞

∫ T

0

∫
∂Ω

|un|2 = 0.

2)

lim
n→∞

∫ T

0

∥un∥L8(Ω) = 0.

Solution:

First two lines tell us that un is a sequence such that

un ⇀ 0 weakly in L2(0, T ;W 1,2(Ω)).

Consequently, using the basis from functional analysis, we also have that there exists a
constant C such that

sup
n∈N

∫ T

0

∥un∥21,2 ≤ C < ∞. (1)

Next, we use also the third line of our information and the Aubin-lions lemma and show
that

lim
n→∞

∫ T

0

∥un∥22 = 0. (2)
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To do so, we identify V1 := W 1,2, V2 := L2 and V3 = (W 1,33(Ω))∗. Then V1 ↪→↪→ V2 ↪→
V3. We also have the un is bounded in L2(0, T ;V1) and we need to say that ∂tu

n is
bounded at least in L1(0, T ;V3). In fact we prove more. From the last line it follows that

⟨∂tun, g⟩ = −
∫
Ω

∇g · v

for almost all t ∈ (0, T ). Therefore, using the density of smooth function in W 1,33, we
have

∥∂tun∥V3 = sup
g∈C1;∥g∥1,33≤1

−
∫
Ω

∇g · v2 ≤ sup
g∈C1;∥g∥1,33≤1

∥∇g∥33∥vn∥ 33
32

≤ ∥vn∥ 33
32

Therefore, we have ∫ T

0

∥∂tun∥ 143
142 ≤

∫ T

0

∥vn∥
143
142
33
32

≤ C.

Thus, we may use the Aubin–Lions lemma and we see that (2)holds.

We claim that 1) holds true. We estimate only the behaviour on a part of ∂Ω, the rest
is done similarly. Hence we have∫ 1

0

∫ 1

0

|un(x, y, 0)|2dx dy =

∫ 1

0

∫ 1

0

∫ 1

0

d

dz

(
(z − 1)|un(x, y, z)|2

)
dx dy dz

=

∫ 1

0

∫ 1

0

∫ 1

0

|un(x, y, z)|2 + 2(z − 1)un(x, y, z)
∂un(x, y, z)

∂z
dx dy dz

≤ ∥un∥2L2(Ω) + 2∥un∥L2(Ω)∥∇un∥L2(Ω).

Integration over time and using again the Hölder inequality, we have

∫ T

0

∥un∥2L2(∂Ω) ≤ C(

∫ T

0

∥un∥22 +

(∫ T

0

∥un∥22

) 1
2
(∫ T

0

∥un∥21,2

) 1
2

Using (1) and (2) we get 1).

Concerning 2), we claim it is not true. We set

un :=
(lnn)−

1
8

(n−1 + |x|2) 3
16

Note that un is smooth function independent of time. In addition we can set vn = 0 and
then the third assumption is valid. Moreover, we have

∥un∥21,2 ≤ C(lnn)−
1
8

∫
Ω

1

|x|2+ 3
4

≤ C̃(lnn)−
1
8 → 0

as n → ∞. On the other hand∫
Ω

|un|8 ≥ c(lnn)−1

∫ 1

0

r2

(n−1 + r2)
3
2

≥ c̃(lnn)−1

∫ 1

0

r2

(n− 3
2 + r3)

≥ c > 0.
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2.[100] Let Ω ⊂ R2 be Lipschitz and V ⊂ Lr(Ω;R2) defined as

V := {f = (f1, f2); f1, f2 ∈ Lr(Ω), ∀u ∈ C∞
0 (Ω)

∫
Ω

f1
∂u

∂x1
+ f2

∂u

∂x2
dx = 3

∫
Ω

u dx}

with some r ∈ (1,∞). Consider the problem: Find f ∈ V such that for all f̃ ∈ V there holds∫
Ω

(f2
1 + f2

2 + f1f2)
r
2 dx ≤

∫
Ω

(f̃2
1 + f̃2

2 + f̃1f̃2)
r
2 dx. (P)

30% Show that there exists unique f ∈ V solving (P)

20% Write down the Euler–Lagrange equation corresponding to (P)

50% The problem (P) is a dual problem to certain pde. Find this pde a precisely show the
correspondence between the minimizer f of (P) and the solution u of founded pde.

Solution:

First, one should observe that the set V consists of f ∈ Lr(Ω;R2) such that “formally”

div f = −3.

Hence defining f̂ := (−3x, 0), we see that f̂ ∈ V and so V is not empty. Next, we define
a symmetric matrix

aij :=

1 if i = j,

1

2
if i ̸= l.

This matrix is positively definite and therefore we can introduce a scalar product on R2

as

(u, v)a :=

2∑
i,j=1

aijuiuj ∀u, v ∈ R2.

The problem P thus be equivalently formulated as: Find f ∈ V such that for all f̃ ∈ V
there holds ∫

Ω

(f, f)
r
2
a dx ≤

∫
Ω

(f̃ , f̃)
r
2
a dx. (Pa)

Next, we want to show the existence of a minimizer. The functional (f, f)
r
2
a is evidently

coercive and since V is not empty, we can find a sequence {fn}∞n=1 such that

fn ⇀ f weakly in Lr(Ω;R2) (3)

and that

inf
g∈V

∫
Ω

(g, g)
r
2
a dx = lim

n→∞

∫
Ω

(fn, fn)
r
2
a dx

Consequently, if we show that f ∈ V and that

lim
n→∞

∫
Ω

(fn, fn)
r
2
a dx ≥

∫
Ω

(f, f)
r
2
a dx (4)
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then f will be a minimizer.

To show that f ∈ V , we use that fn ∈ V , i.e., ∀u ∈ C∞
0 (Ω) we have that∫

Ω

fn
1

∂u

∂x1
+ fn

2

∂u

∂x2
dx = 3

∫
Ω

u dx.

Next, having (??), we can let n → ∞ in the above identity and to show that f ∈ V .
To check (4), we use the theorem about the weak lower semicontinuity for which it is
enough to prove that

(f, f)
r
2
a

is convex. But since (·, ·)a is a scalar product and r > 1, this claim is evident and we
have a minimizer. In addition, since it is strictly convex, the minimizer is unique.

Next, we focus on Euler-Lagrange equation. We need to have a competitive functions in
the set V and therefore define

Vd := {f = (f1, f2); f1, f2 ∈ Lr(Ω), ∀u ∈ C∞
0 (Ω)

∫
Ω

f1
∂u

∂x1
+ f2

∂u

∂x2
dx = 0}

Then evidently, if f ∈ V and h ∈ Vd then for all ε > 0 we have f̃ := f + εh ∈ V . We use
this setting in (Pa) to get

0 ≤ ε−1

∫
Ω

(f + εh, f + εh)
r
2
a − (f, f)

r
2
a dx

= ε−1

∫
Ω

∫ 1

0

d

dt
(f + εth, f + εth)

r
2
a dt dx

=

∫
Ω

∫ 1

0

(f + εth, f + εth)
r−2
2

a (f + εth, h)a dt dx

Using the Lebesgue dominated convergence theorem, we can let ε → 0+ to conclude that
for all h ∈ Vd

0 ≤
∫
Ω

(f, f)
r−2
2

a (f, h)a dx

Since ±h ∈ Vd the above inequality implies that for all h ∈ Vd

0 =

∫
Ω

(f, f)
r−2
2

a (f, h)a dx =

∫
Ω

 2∑
i,j=1

aijfifj


r−2
2 2∑

i,j=1

aijfihj dx (E-L)

which are the desired Euler–Lagrange equations. Moreover, we have (it follows from the
strict monotonicity) that the solution of the Euler–Lagrange equations is unique.

To find a dual problem, let us consider the following: Find u ∈ W 1,r′

0 (Ω) such that for

all v ∈ W 1,r′

0 (Ω)

∫
Ω

(∇u,∇u)
r′
2

a−1

r′
− 3u dx ≤

∫
Ω

(∇u,∇v)
r′
2

a−1

r′
− 3v dx (D)
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where a−1 denote the inverse matrix to a (which is again positively definite). Using
the same arguments as above, we can find a unique minimizer. Also repeating almost
step by step the above procedure, we deduce the Euler–Lagrange equation valid for all
v ∈ W 1,r′(Ω)

0 =

∫
Ω

(∇u,∇u)
r′−2

2

a−1 (∇u,∇v)a−1 − 3v dx. (E-L II)

Notice that this is just weak formulation of the following problem

−
2∑

i,j=1

∂

∂xj

(
(∇u,∇u)

r′−2
2

a−1 a−1
ij

∂u

∂xi

)
= 3 in Ω,

u = 0 on ∂Ω.

Finally, we show the relation between ∇u and the minimizer f . Let us define

f̃j :=

2∑
i=1

(∇u,∇u)
r′−2

2

a−1 a−1
ij

∂u

∂xi
.

Then it follows from (E-L II) that f̃ ∈ V . Finally, we check that f̃ solves (E-L) and
due to the uniqueness of a solution to (E-L) wededuce that it is also a minimizer to the
original problem. Using a simple algebraic manipulation, we get that

∇u = (f̃ , f̃)
r−2
2

a af̃

and therefore for every h ∈ Vd∫
Ω

(f̃ , f̃)
r−2
2

a (f̃ , h)a =

∫
Ω

∇u · h dx = 0

which follows from the definition of Vd. Hence, f̃ is a minimizer to the original problem.


