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The essential reference is the textbook [1, Chapters 7 and 8]. In fact, much of what follows

draws from [1], and I strongly advise to consult that reference. When doing so, however,

one has to read with care. In [1], some quite different (and perhaps occasionally confusing)

notations are used. For example, by Ω (capital omega) we standardly denote the probability

space on which all random variables are defined. In [1], Ω ⊆ Rm is used also for the parameter

space, which we here denote by Θ ⊆ Rm. Further, the prime as in x′ or h′ is used for both

the derivative of a function and the transposition of a matrix in [1]. Here we distinguish

this and f ′ stands for the derivative of f , while xT is the transposition of a vector x. The

quantile functions of common distributions, such as the standard normal distribution or the

χ2-distribution, are also denoted and used slightly differently. For example, for α ∈ (0, 1), by

u(α) is in [1, p. 72] not denoted the α-quantile of the standard normal distribution N(0, 1),

but rather the critical value of N(0, 1), which is defined as the (1 − α)-quantile of N(0, 1).

That is, in [1] the quantity u(α) is defined as Φ−1(1 − α) for Φ the distribution function of

N(0, 1). The true value of a parameter θ is here denoted by θX ; in [1] the notation θ0 is

used, which is the same as for the value of the parameter that corresponds to a simple null

hypothesis in a testing problem.

1 Theory of point estimation

1.1 The task of point estimation

All probability distributions throughout these notes are Borel, defined on the Borel σ-algebra

of an appropriate topological space (typically the real line R or the Euclidean space Rd with

d ∈ N). All random variables are defined on a common probability space (Ω,A,P).

Definition 1. A statistical model is a collection of probability distributions F = {Pθ : θ ∈ Θ}
indexed by a parameter θ ∈ Θ. The set Θ is called the parameter space of the model F .

Depending on the dimension of Θ, the model can be

• parametric if Θ ⊆ Rp for p ∈ N; or

• nonparametric if Θ is infinite-dimensional, i.e. if F cannot be expressed as a parametric

model.

Example 1.1. Several parametric models:

F1 = {Exp(λ) : λ > 0} ,

F2 =
{
N(µ, σ2) : µ ∈ R and σ > 0

}
,

F3 =
{
Nd(µ,Σ) : µ ∈ Rd and Σ ∈ Rd×d symmetric and positive definite

}
,

F4 = {distributions P in R such that P ({1, 2, . . . ,K}) = 1} .
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In F1, F2, and F3 we have p = 1, 2, and d+ d(d+ 1)/2, respectively. In F4 the number K is

fixed in advance. What is the dimension p of the parameter space in model F4?

Examples of nonparametric models are

F5 =
{
all distributions in Rd

}
,

F6 =
{
all distributions in Rd with a continuous distribution function

}
,

F7 =
{
all distributions in Rd with a density w.r.t.1 the Lebesgue measure on Rd

}
,

F8 =
{
all distributions in Rd with a bounded density w.r.t. the Lebesgue measure on Rd

}
,

F9 = {all distributions in R with a symmetric density} .

We see that F5 ⊃ F6 ⊃ F7 ⊃ F8, but in all cases, Θ is a space of distributions (or a function

space) of infinite dimension. △

Special classes of nonparametric models are the semiparametric ones, where the parameter

space is naturally a product of a finite-dimensional and a functional component, e.g.

F = {densities of the form f(x) = g(x− δ) for all x ∈ R, with δ ∈ R and a symmetric density g} .

This model has a parametric part (δ ∈ R) and a nonparametric part (the function g), but the

dimension of Θ is infinite.

Typically, all distributions in a parametric model F are supposed to be absolutely contin-

uous with respect to a given σ-finite measure µ (typically the Lebesgue measure on Rd, or

an appropriate counting measure). We also say that the system {Pθ : θ ∈ Θ} is dominated

by µ. For statistical models F = {Pθn : n ∈ N} with countably many elements this is always

possible, as one can take for µ a properly scaled sum of all the measures µ =
∑∞

n=1 Pθn/(n
2)

defined by µ(B) =
∑∞

n=1 Pθn(B)/(n2) for each B Borel, which is by definition σ-finite. For

uncountable systems the situation is more complicated. Can you think of a system of measures

that is not dominated by any σ-finite measure?

A reasonable model also must be identifiable, meaning that if θ1 ̸= θ2, then necessarily

Pθ1 ̸= Pθ2 . This could be written also as the mapping θ 7→ Pθ being invertible, meaning that

from the knowledge of Pθ it is possible to identify a unique parameter θ.

Example 1.2. In the following model of analysis of variance

F1 =

{
N2

((
µ+ λ1

µ+ λ2

)
,

(
1 0

0 1

))
: µ, λ1, λ2 ∈ R

}

the parameter θ = (µ, λ1, λ2)
T ∈ R3 is not identifiable, as there are many combinations of

parameters θ that can lead to the same bivariate normal distribution in F1. An identifiable

1with respect to
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reparametrization of this model is e.g.

F2 =

{
N2

((
µ

µ+ λ

)
,

(
1 0

0 1

))
: µ, λ ∈ R

}
,

which shows that the model has, in fact, only a two-dimensional parameter. △

A basic problem of statistical inference is the estimation of the unknown parameter θ of

a model F = {Pθ : θ ∈ Θ} from a random vector X. We suppose that X is distributed

according to some PθX with θX ∈ Θ. Alternatively, X can be a random sample2 from PθX .

The situation when X is a random sample is a special case of the first scenario. If X is

composed of a random sample of size n ∈ N, we could simply expand the statistical model F
and consider the model with product measures Fn = {

⊗n
i=1 Pθ : θ ∈ Θ} instead. Of course,

a single random vector X from Fn is equivalent with a random sample of size n from F . It

will be always clear from the context which of the situations we consider.

Remark 1 (Boldface notation). In our notation, each individual random variable Xi can

be one-dimensional, or also a random vector in Rd of dimension d ∈ N. When considering

the random sample of n random variables (or vectors) Xi as a whole, we write also X =(
XT

1 , . . . , X
T
n

)T
, but for simplicity we will omit the transpositions inside that vector and

write only X = (X1, . . . , Xn)
T. If d = 1, we have X ∈ Rn; for general d ∈ N we have to

consider X as a (dn)-dimensional vector in Rdn.

Observe that in our notation, we distinguish multi-dimensional parameters θ ∈ Θ ⊆ Rp in a

boldface font in contrast to the one-dimensional parameters θ ∈ Θ ⊆ R. But, we do not make

this distinction for random variables or random vectors Xi as elements of X, for i = 1, . . . , n.

This slight abuse of notation will be useful in what follows, as most of the presented theory

differs when considering the dimensionality p ∈ N of the parameter, but remains the same

w.r.t. the dimension of the random sample d ∈ N.

We suppose that the model F is known, but the true value of the parameter θX ∈ Θ

from which X = (X1, . . . , Xn)
T is drawn is not. Our intention is to find a point estimator

of θX of the form θ̂n = θ̂n(X), a function of the random sample that does not depend on

the unknown parameter θ, that estimates (approximates) the true value of the parameter θX

“well”. Because in our problem the true value of the parameter θX is not known, we call θ̂n

an estimator of θ. The quality of the estimator θ̂n is assessed by its properties. The estimator

itself is a random variable, as it depends on the random variable X. We can thus talk about

its basic characteristics.

2That is, we are given X = (X1, . . . , Xn)
T whose elements X1, . . . , Xn form a random sample (a sequence

of independent, identically distributed random variables) from a distribution PθX ∈ F .
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Definition 2. Let θ̂n be an estimator of a parameter θ ∈ Θ in model F . If the expectation

of θ̂n exists, we can write

Eθ θ̂n = θ + bn(θ) for all θ ∈ Θ

for a deterministic (that is, non-random) function bn : Θ → Rp. The function bn is called

the bias of the estimator θ̂n. If the bias is a constant zero function, we call the estimator θ̂n

unbiased. If bn(θ) −−−→
n→∞

0 for each θ ∈ Θ, we call θ̂n asymptotically unbiased.

Note that some authors [8] say that θ̂n is asymptotically unbiased for θ if the expectation of

the asymptotic distribution of
√
n
(
θ̂n − θ

)
is 0 for each θ ∈ Θ. This is a condition different

from our definition of asymptotic unbiasedness.

A second order characteristic of a point estimator θ̂n for p = 1 is the mean squared error

defined as

MSEθ

(
θ̂n

)
= Eθ

(
θ̂n − θ

)2
for θ ∈ Θ,

whenever the integral on the right hand side exists. The mean squared error takes into account

both the bias and the variance of the estimator. The following lemma was proved already in

the course NMSA331 [6, Section 3.1].

Lemma 1. We can decompose the mean squared error into a squared bias term, and a vari-

ance term

MSEθ

(
θ̂n

)
= (bn(θ))

2 + varθ θ̂n,

where bn(θ) is the bias of θ̂n.

Proof. Write

MSEθ

(
θ̂n

)
= Eθ

(
θ̂n − Eθ θ̂n + Eθ θ̂n − θ

)2
= Eθ

(
θ̂n − Eθ θ̂n

)2
+ Eθ

(
Eθ θ̂n − θ

)2
+ 2Eθ

(
θ̂n − Eθ θ̂n

)(
Eθ θ̂n − θ

)
.

The first summand on the right hand side is varθ θ̂n. In the second summand the quantity(
Eθ θ̂n − θ

)2
= (bn(θ))

2 is deterministic, and equals the square of the bias of θ̂n. Likewise,

in the third summand the factor
(
Eθ θ̂n − θ

)
is not random, and can be pulled out of the

expectation. What remains is Eθ

(
θ̂n − Eθ θ̂n

)
= 0 for each θ ∈ Θ.

With the mean squared error we usually consider only the case p = 1 of one-dimensional

parameters. In the higher-dimensional case we can analyse the estimator component-wise.

A good estimator θ̂n of θ must be consistent, meaning that

θ̂n
P−−−→

n→∞
θ for all θ ∈ Θ.
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In this expression, n → ∞ formally means that the size of the random vector X grows to

infinity; usually this is intended for models Fn = {
⊗n

i=1 Pθ : θ ∈ Θ} corresponding to X =

Xn being random samples X1, . . . , Xn from some Pθ. The consistency of a one-dimensional

asymptotically unbiased estimator θ̂n follows, for example, from the analysis of its variance, or

equivalently its mean squared error. We know this result already from the course NMSA331

[6, Theorem 3.1].

Lemma 2. Let p = 1, and let θ̂n be an asymptotically unbiased estimator of θ ∈ Θ ⊆ R whose

variance varθ θ̂n is finite for each θ ∈ Θ and n ∈ N. Suppose that varθ θ̂n −−−→
n→∞

0 for each

θ ∈ Θ. Then θ̂n is consistent.

Proof. Take ε > 0 and write by the Chebyshev inequality and Lemma 1

Pθ

(∣∣∣θ̂n − θ
∣∣∣ > ε

)
≤

Eθ

(
θ̂n − θ

)2
ε2

=
MSEθ

(
θ̂n

)
ε2

=
(bn(θ))

2 + varθ θ̂n
ε2

,

where by our assumptions both bn(θ) and varθ θ̂n decay to zero as n → ∞ for all θ ∈ Θ. We

have verified the convergence in probability as needed.

The moment-based analysis of the estimator θ̂n performed using its expectation (that is,

bias) and variance (or mean squared error) is quite useful, and will be followed through-

out most of the course. It is, however, not the only possible approach. More generally, a

quantitative measure of the quality of an estimator is based on the loss function and the risk.

Definition 3. A loss function is any measurable map

Q : Θ×Θ → [0,∞).

The risk, or the expected loss, of an estimator θ̂n of parameter θ ∈ Θ, is defined as

R(θ̂n,θ) = Eθ Q(θ̂n,θ) for θ ∈ Θ.

The loss Q(θ̂n,θ) of an estimator θ̂n at θ is a random variable, and the risk is its numerical

summary. They both assess the degree of “discrepancy” of the estimator from the true

parameter. It should therefore be Q(θ,θ) = 0 for all θ ∈ Θ, and the loss should increase

as its arguments depart from each other. The use of the loss is consistent with our analysis

based on the moments from above. For p = 1 we can choose Q(x, y) = (x− y)2, in which

case the risk equals the mean squared error. More generally, typically chosen loss functions

are the quadratic loss for x,y ∈ Θ ⊆ Rp

Q(x,y) = ∥x− y∥2 (1)
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or the absolute loss p = 1 and x, y ∈ Θ ⊆ R

Q(x, y) = |x− y| .

If Θ is a bounded interval or, e.g. Θ = (0,∞) as in the case of a variance parameter, other

loss functions may be more appropriate.

For a given estimator θ̂n and a loss Q, the risk is a deterministic function Θ → [0,∞] : θ 7→
R(θ̂n,θ). Our main task is to search for estimators θ̂n minimizing the risk, if possible uni-

formly (that is, for all θ ∈ Θ) as a function on Θ. We shall be mostly concerned with the

quadratic loss (1) and p = 1, as this theory is standard, well explored, and relatively simple to

handle.3 Our main task is to find reasonable estimators uniformly minimizing the risk w.r.t.

the quadratic loss function (1). As we see in the following example, in this task we need to

impose additional restrictions — without them, our problem is not well posed.

Example 1.3. Let F = {N(θ, 1) : θ ∈ R}, that is Θ = R and p = 1. Take the estimator

θ̃n = 3 (almost surely). This estimator does not depend on the data, and is clearly not

reasonable. Its (quadratic) risk is

R(θ̃n, θ) = MSEθ

(
θ̃n

)
= Eθ (3− θ)2 = (3− θ)2 .

As a function of θ ∈ R, the risk takes the value 0 at θ = 3. That is, if the true value of

the parameter equals θ = 3, we get a perfect estimator, and any truly random estimator of θ

must have a higher risk at θ = 3. Thus, the risk function is impossible to be minimized for a

single estimator uniformly over Θ = R.
For comparison, suppose that we observe only a single realisation (n = 1) of a random

variable X ∼ N(θ, 1), and take θ̂1 = X. The risk of this estimator is

R(θ̂1, θ) = MSEθ

(
θ̂1

)
= Eθ (X − EθX)2 = varθX = 1.

Similarly, for a random sample X = (X1, . . . , Xn)
T from N(θ, 1) we could consider θ̂n(X) =

θ̂n =
∑n

i=1Xi/n = X̄n the sample mean, and obtain

R(θ̂n, θ) = MSEθ

(
θ̂n

)
= Eθ

(
X̄n − EθX1

)2
= varθ X̄n = 1/n.

None of these estimators is better than the trivial θ̃n if the true parameter θX is close enough

to 3. However, in contrast to θ̃n, the sample means θ̂n are unbiased for θ. △

3It is however important to note that choosing a different loss function, other estimators would be preferred,

and a different theory of estimation arises. The choice of the absolute loss, for example, results in the so-called

theory of robust estimation, giving estimators that are less sensitive to measurement errors and misspecified

statistical models. That theory is covered in more advanced courses.
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For this reason, in the task of minimizing the risk, we cannot consider just any estimator,

but need to restrict to a smaller sensible class of estimators. This is typically the class of the

unbiased estimators of θ. An unbiased estimator that minimizes the quadratic risk for all

θ ∈ Θ among all unbiased estimators of θ is called the best unbiased estimator (BUE) of a

parameter θ. In the first part of this course, we will search for best unbiased estimators. As

we will show later, the sample mean X̄n in Example 1.3 is BUE in that setting.

1.2 Fisher information and Rao-Cramér theorem

1.2.1 One-dimensional parameter

We are given a random vector composed of X1, . . . , Xn, denoted also by X = (X1, . . . , Xn)
T.

The distribution ofX depends only on a parameter θ ∈ Θ. For the beginning, we suppose that

we deal with a one-dimensional parameter Θ ⊆ R, and a known measurable function g : Θ →
R. To deal with our estimation problem more generally, we want to estimate the transformed

parameter g(θ) ∈ R. We call g(θ) a parametric function of θ. We intend to estimate θ or some

g(θ) based on X. Not to confuse θ and its estimators with the estimators of its parametric

functions g(θ), we shall write also T = T (X), or equivalently also Tn = Tn(X) if the length n

of the vector X plays a role, for the estimators of g(θ) based on X = (X1, . . . , Xn)
T. We will

use θ̂n only for the estimator of θ. The common situation is with g an identity function, in

which case g(θ) = θ; the general function g allows to consider also possible reparametrizations

of our problem.

Often, the elementsX1, . . . , Xn ofX form a random sample from a distribution parametrized

by θ. Nevertheless, for the following theory this is not necessary, and the random variables

X1, . . . , Xn are allowed to be dependent, or may fail to be identically distributed. The only

requirement is that the distribution of the whole vector X depends only on θ. Recall that

according to our Remark 1, our setup also applies to the situation when p = 1, but we ob-

serve n multivariate random vectors, each of dimension d ∈ N. In that case, the length of the

vector X is in fact dn. This is not a problem as we did not assume anything about the joint

distribution of X. Instead, to search for the BUE of g(θ), we need the following regularity

conditions.

Definition 4 (Regular system of densities — one-dimensional parameter). Let the distribu-

tion of the random vector X depend only on the parameter θ ∈ Θ. Suppose that X has a

density f(x; θ) w.r.t. a given σ-finite measure µ. The system of densities {f(x; θ) : θ ∈ Θ} is

called a regular system of densities if the following conditions hold:

(R1) The parameter space Θ ⊆ R is a non-empty open set.
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(R2) The set M = {x : f(x; θ) > 0} does not depend on θ.

(R3) For µ-almost all x ∈M there exists a finite partial derivative

f ′(x; θ) =
∂f(x; θ)

∂θ
.

(R4) For all θ ∈ Θ we can write
∫
M f ′(x; θ) dµ(x) = 0.

(R5) The integral

Jn(θ) =

∫
M

(
f ′(x; θ)

f(x; θ)

)2

f(x; θ) dµ(x) (2)

is finite and non-zero for every θ ∈ Θ.

For a regular system of densities, the function Jn : Θ → (0,∞) from (2) is called the Fisher

information of θ contained in X.

Conditions (R1)–(R5) are quite natural, and all lead to the definition of the Fisher infor-

mation in (2). In (R1) we require that we can take a derivative w.r.t. θ. Condition (R2) deals

with the support4 of the distribution of X, and requires that this support does not depend

on the unknown parameter. Note that, since densities are defined uniquely only µ-almost

everywhere, (R2) in fact states that there exists a version of the density f with this property.

Condition (R3) is needed for the definition of the Fisher information (2), and in (R4) we can

recognize a swap of a limit and an integral. Indeed, since all f (·; θ) are densities, we know

that ∫
M
f(x; θ) dµ(x) =

∫
Rn

f(x; θ) dµ(x) = 1 for all θ ∈ Θ,

and taking the derivative of both sides of this equation w.r.t. θ we obtain

∂
∫
M f(x; θ) dµ(x)

∂θ
= 0 for all θ ∈ Θ.

Condition (R4) states that the derivative and the integral on the left hand side can be in-

terchanged, which is for common densities usually true. Finally, the Fisher information (2)

in (R5) can be also seen as an integral over Rn (or Rdn) instead of overM , because for x /∈M

we have by (R2) that f(x; θ) = 0 for all θ ∈ Θ. Thus, the integral can be rewritten as an

expectation in the forms

Jn(θ) = Eθ

(
f ′(X; θ)

f(X; θ)

)2

= Eθ

(
∂ log f(X; θ)

∂θ

)2

.

4The support of (the distribution of) a random vector X ∈ Rn is the smallest closed set S ⊆ Rn such that

P (X ∈ S) = 1. We will use this term more freely, and also the set M ⊆ Rn of all points where the density

of X is positive will be called the support of X. Note the small difference between these two terms; take, for

instance, n = 1 and the density f(x) = 1 for x ∈ (0, 1), f(x) = 0 elsewhere.
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Similarly, also Condition (R4) can be rewritten as an expectation

0 =

∫
M
f ′(x; θ) dµ(x) = Eθ

(
f ′(X; θ)

f(X; θ)

)
= Eθ

(
∂ log f(X; θ)

∂θ

)
for all θ ∈ Θ.

This formula will appear frequently in our proofs.

Example 1.4 (Normal distribution and µ). Let X = (X1, . . . , Xn)
T be a random sample

from N (µ, 1) for µ ∈ R. The corresponding system of densities is easily seen to be regular.

For instance, Θ = R in (R1) and M = Rn in (R2). We compute the Fisher information of µ

contained in X, first by its definition in (R5). We have

f(x;µ) =

(
1√
2π

)n

exp

(
−1

2

n∑
i=1

(xi − µ)2

)
for x = (x1, . . . , xn)

T ∈ Rn.

This gives

log f(x;µ) = −n
2
log (2π)− 1

2

n∑
i=1

(xi − µ)2,

and
∂ log f(x;µ)

∂µ
=

n∑
i=1

(xi − µ).

For the Fisher information of µ we get

Jn(µ) = Eµ

(
∂ log f(X;µ)

∂µ

)2

= Eµ

(
n∑

i=1

(Xi − µ)

)2

= varµ

(
n∑

i=1

(Xi − µ)

)
+

(
Eµ

n∑
i=1

(Xi − µ)

)2

= n.

△

For the next example, let X = (X1, . . . , Xn)
T be a random sample from N

(
0, σ2

)
with

σ2 > 0. Now, there are two natural parametrizations of this system: either (i) θ = σ2, or

(ii) θ = σ. In both situations, the corresponding systems of densities are regular, and we

could compute both Jn(σ
2) in the first case, or also Jn(σ) in the second. These two Fisher

informations are not the same. Let us first explore what happens with θ = σ2; the situation

with θ = σ will be treated below in Example 1.9.

Example 1.5 (Normal distribution and σ2). For θ = σ2 we get

f(x; θ) =

(
1√
2π θ

)n

exp

(
− 1

2 θ

n∑
i=1

x2i

)
for x = (x1, . . . , xn)

T ∈ Rn,

which gives

log f(x; θ) = −n
2
log (2π)− n

2
log θ − 1

2 θ

n∑
i=1

x2i .
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We take a derivative w.r.t. θ to get

∂ log f(x; θ)

∂θ
= − n

2 θ
+

1

2 θ2

n∑
i=1

x2i .

For the Fisher information of θ = σ2 we have

Jn(θ) = Eθ

(
∂ log f(X; θ)

∂θ

)2

= Eθ

(
− n

2 θ
+

1

2 θ2

n∑
i=1

X2
i

)2

=
n2

4 θ2
+ Eθ

(
1

2 θ2

n∑
i=1

X2
i

)2

− 2Eθ
n

2 θ

1

2 θ2

n∑
i=1

X2
i

=
n2

4 θ2
+

1

4 θ4
Eθ

(
n∑

i=1

X2
i

)2

− n

2 θ3
Eθ

n∑
i=1

X2
i .

Now, since the variables Xi are independent and each distributed as N (0, θ), we get that Yi =

Xi/σ are independent and identically N(0, 1)-distributed, with
∑n

i=1X
2
i =

∑n
i=1 (σYi)

2 =

σ2Tn for Tn having the chi-squared distribution χ2
n. We know that E Tn = n and var Tn = 2n,

which gives

Jn(θ) =
n2

4 θ2
+

1

4 θ4
Eθ

(
σ2Tn

)2 − n

2 θ3
Eθ σ

2Tn.

=
n2

4 θ2
+

1

4 θ2

(
var Tn + (E Tn)

2
)
− n

2 θ2
E Tn

=
n2

4 θ2
+

1

4 θ2
(
2n+ n2

)
− 2n

4 θ2
n =

n

2 θ2
=

n

2σ4
.

△

Very roughly speaking, the Fisher information quantifies how much “information”, or

“knowledge” about θ can be extracted from the random vector X — the higher the Fisher

information is, the better estimators of θ can be constructed. It has interesting properties.

Theorem 1. Let {f(x; θ) : θ ∈ Θ} be a regular system of densities. Suppose further that the

second derivative

f ′′(x; θ) =
∂2f(x; θ)

∂θ2

exists for µ-almost all x ∈M , and a condition analogous to (R4)∫
M
f ′′(x; θ) dµ(x) = 0 (3)

is valid for all θ ∈ Θ. Then we can write

Jn(θ) = −
∫
M

∂2 log f(x; θ)

∂θ2
f(x; θ) dµ(x) = −Eθ

∂2 log f(X; θ)

∂θ2
.

11



Proof. A direct computation gives

∂2 log f(x; θ)

∂θ2
=
∂f ′(x; θ)/f(x; θ)

∂θ
=
f ′′(x; θ) f(x; θ)− (f ′(x; θ))2

(f(x; θ))2
=
f ′′(x; θ)

f(x; θ)
−
(
f ′(x; θ)

f(x; θ)

)2

,

which results in

−
∫
M

∂2 log f(x; θ)

∂θ2
f(x; θ) dµ(x) = −

∫
M
f ′′(x; θ) dµ(x)+

∫
M

(
f ′(x; θ)

f(x; θ)

)2

f(x; θ) dµ(x) = Jn(θ),

since the first summand on the right hand side vanishes by our assumption (3).

Theorem 1 simplifies the computation of the Fisher information substantially. Take, for

example, the normal distribution as above.

Example 1.6. For X = (X1, . . . , Xn)
T a random sample from N (µ, 1) as in Example 1.4 we

get
∂2 log f(x;µ)

∂µ2
=
∂ (
∑n

i=1(xi − µ))

∂µ
= −n,

and directly

Jn(µ) = −Eµ
∂2 log f(X;µ)

∂µ2
= n.

Similarly, in the setup of Example 1.5, where we assumed a random sample from N
(
0, σ2

)
and θ = σ2, we have

∂2 log f(x;µ)

∂θ2
=
∂
(
− n

2 θ +
1

2 θ2
∑n

i=1 x
2
i

)
∂θ

=
n

2 θ2
− 1

θ3

n∑
i=1

x2i ,

and for the Fisher information of θ we can write

Jn(θ) = −Eθ

(
n

2 θ2
− 1

θ3

n∑
i=1

X2
i

)
= − n

2 θ2
+
n

θ2
=

n

2 θ2
.

△

If the random variables X1, . . . , Xn from X = (X1, . . . , Xn)
T are independent, the Fisher

information of X is the sum of the Fisher informations of its components.

Theorem 2. Let the distributions of the random vectors Y = (Y1, . . . , Ym1)
T and Z =

(Z1, . . . , Zm2)
T both depend only on the parameter θ ∈ Θ, and suppose that Y and Z are

independent of each other. Let both Y and Z correspond to regular systems of densities w.r.t.

the σ-finite measures µ1 and µ2, respectively. Denote the Fisher information of Y by JY and

the Fisher information of Z by JZ . Then the joint random vector X =
(
Y T,ZT

)T
has a

regular system of densities, and its Fisher information JX equals JY + JZ .
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Proof. Write fY (y; θ) for the density of Y w.r.t. µ1, and fZ (z; θ) for the density of Z w.r.t.

µ2. Because Y and Z are independent, the joint density f(x; θ) of the vector X takes the

form of the product

f(x; θ) = fY (y; θ) fZ(z; θ) for x =
(
yT, zT

)T
∈ Rm1+m2 .

This density is taken w.r.t. the product measure µ = µ1 × µ2 on Rm1+m2 . Verification

of (R1)–(R5) for this system of densities is straightforward. For instance, if M1 ⊆ Rm1 and

M2 ⊆ Rm2 are the sets from (R2) for Y and Z, respectively, then the support of X takes the

form M =M1 ×M2 and also does not depend on θ. The derivative of f in (R3) is

f ′(x; θ) = f ′Y (y; θ) fZ(z; θ) + fY (y; θ) f
′
Z(z; θ).

We compute the Fisher information of X. We have for θ ∈ Θ

JX(θ) =

∫
M

(
f ′(x; θ)

f(x; θ)

)2

f(x; θ) dµ(x)

=

∫
M1

∫
M2

(
f ′Y (y; θ) fZ(z; θ) + fY (y; θ) f

′
Z(z; θ)

fY (y; θ) fZ(z; θ)

)2

fY (y; θ) fZ(z; θ) dµ2(z) dµ1(y)

=

∫
M1

∫
M2

(
f ′Y (y; θ)

fY (y; θ)
+
f ′Z(z; θ)

fZ(z; θ)

)2

fY (y; θ) fZ(z; θ) dµ2(z) dµ1(y)

=

∫
M1

∫
M2

(
f ′Y (y; θ)

fY (y; θ)

)2

fY (y; θ) fZ(z; θ) dµ2(z) dµ1(y)

+

∫
M1

∫
M2

(
f ′Z(z; θ)

fZ(z; θ)

)2

fY (y; θ) fZ(z; θ) dµ2(z) dµ1(y)

+ 2

∫
M1

∫
M2

f ′Y (y; θ)

fY (y; θ)

f ′Z(z; θ)

fZ(z; θ)
fY (y; θ) fZ(z; θ) dµ2(z) dµ1(y)

=

∫
M1

(
f ′Y (y; θ)

fY (y; θ)

)2

fY (y; θ) dµ1(y)

∫
M2

fZ(z; θ) dµ2(z)

+

∫
M1

fY (y; θ) dµ1(y)

∫
M2

(
f ′Z(z; θ)

fZ(z; θ)

)2

fZ(z; θ) dµ2(z)

+ 2

∫
M1

f ′Y (y; θ) dµ1(y)

∫
M2

f ′Z(z; θ) dµ2(z)

= JY (θ) + JZ(θ),

where in the final equality we used that both fY and fZ are densities and thus integrate to

one, the definition of the Fisher information (2), and Condition (R4) for both Y and Z.

An important consequence of Theorem 2 comes for a vector X whose elements form a

random sample X1, . . . , Xn. Applying Theorem 2 several times, we obtain that in this case

Jn(θ) = nJ1(θ), meaning that the Fisher information contained in a random sample is n-

times larger than the Fisher information contained in each individual random variable. We
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already saw this is Examples 1.4, 1.5, and 1.6. Using Theorem 2, we actually did not need

to work with the whole density of X in any of those examples, but a density of a single

variable X1 would be enough to obtain that J1(µ) = 1 in Example 1.4, and J1(θ) = 1/(2 θ2)

in Example 1.5.

Our first application of the Fisher information is a lower bound on the variance of an

unbiased estimator.

Theorem 3 (Rao-Cramér). Let Tn = Tn(X) be an unbiased estimator of a parametric func-

tion g(θ) that satisfies varθ Tn <∞ for all θ ∈ Θ. Let the following conditions be satisfied:

(RC1) the system of densities {f(x; θ) : θ ∈ Θ} of X is regular;

(RC2) the derivative g′(θ) of g exists for every θ ∈ Θ;

(RC3) the following interchange of a derivative and an integral is valid for all θ ∈ Θ

∂

∂θ

∫
M
Tn(x)f(x; θ) dµ(x) =

∫
M
Tn(x)f

′(x; θ) dµ(x).

Then it holds true that

varθ Tn = Eθ (Tn − g(θ))2 ≥ (g′(θ))2

Jn(θ)
for all θ ∈ Θ. (4)

Proof. Because Tn is an unbiased estimator of g(θ), we know that for each θ ∈ Θ we have

Eθ Tn =

∫
M
Tn(x)f(x; θ) dµ(x) = g(θ).

Take a derivative of the previous equality. Using (RC2) and (RC3) we obtain

g′(θ) =

∫
M
Tn(x)f

′(x; θ) dµ(x) =

∫
M
Tn(x)

f ′(x; θ)

f(x; θ)
f(x; θ) dµ(x). (5)

At the same time (R4) gives for all θ ∈ Θ

0 =

∫
M
f ′(x; θ) dµ(x) =

∫
M
g(θ)

f ′(x; θ)

f(x; θ)
f(x; θ) dµ(x),

which together with (5) allows us to write

g′(θ) =

∫
M

(Tn(x)− g(θ))
f ′(x; θ)

f(x; θ)
f(x; θ) dµ(x).

We apply the Cauchy-Schwarz inequality to the last integral. The integral is taken w.r.t. the

probability measure given by f(x; θ) dµ(x), that is, the measure on Rn (or Rdn, or M) with

density f(·; θ) w.r.t. µ. We obtain

g′(θ) ≤

√∫
M

(Tn(x)− g(θ))2 f(x; θ) dµ(x)

∫
M

(
f ′(x; θ)

f(x; θ)

)2

f(x; θ) dµ(x)

=
√
Jn(θ) varθ Tn,

(6)

as needed.
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The proof above is quite straightforward but its idea is not completely clear; the following

alternative approach may be more insightful.

Alternative proof of Theorem 3. Fix θ ∈ Θ and denote

Sn(x; θ) =
f ′(x; θ)

f(x; θ)
and Sn = Sn(X; θ),

where Sn is random, and the random vectorX plugged into Sn has a distribution with density

f(x; θ) for our particular value of θ ∈ Θ. By (R4) we know that

Eθ Sn =

∫
M
Sn(x; θ)f(x; θ) dµ(x) = 0 for all θ ∈ Θ,

and by (R5)

varθ Sn =

∫
M

(Sn(x; θ))
2 f(x; θ) dµ(x) = Jn(θ).

For the covariance of Sn and Tn we can write using (RC3) and (R4)

cov (Tn, Sn) =

∫
M
(Tn(x)− g(θ))Sn(x; θ)f(x; θ) dµ(x)

=

∫
M
(Tn(x)− g(θ))f ′(x; θ) dµ(x)

=

∫
M
Tn(x)f

′(x; θ) dµ(x)− g(θ)

∫
M
f ′(x; θ) dµ(x)

=
∂

∂θ

∫
M
Tn(x)f(x; θ) dµ(x)− 0 = g′(θ).

The covariance matrix of the vector (Tn, Sn)
T thus takes the form

Σn =

(
varθ Tn g′(θ)

g′(θ) Jn(θ)

)
.

As a covariance matrix, Σn must be positive semi-definite, and in particular its determinant

must be non-negative for any θ ∈ Θ. Thus,

0 ≤ detΣn = Jn(θ) varθ Tn −
(
g′(θ)

)2
.

In Theorem 3 we found a lower bound on the variance of an unbiased estimator. Let us

explore what this theorem gives for the normal distribution.

Example 1.7. In the scenario of Examples 1.3 and 1.4 of X1, . . . , Xn a random sample from

N(µ, 1) we have Jn(µ) = n, and Theorem 3 gives that for any (regular enough) unbiased

estimator Tn = Tn(X) of g(µ) = µ we have

varµ Tn ≥ (g′(µ))2

Jn(µ)
=

1

n
for all µ ∈ R.
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On the other hand, for Tn = X̄n =
∑n

i=1Xi/n we know that

varµ Tn =
1

n
for all µ ∈ R.

Thus, the Rao-Cramér bound gives that the sample average is the best unbiased estimator of

µ in the model N(µ, 1) (at least among all estimators that satisfy condition (RC3)).

In the situation of Example 1.5 where X1, . . . , Xn is a random sample from N(0, θ) we have

from Theorem 3 that for any (regular enough) unbiased estimator Tn = Tn(X) of θ = σ2 we

have

varθ Tn ≥ 1

Jn(θ)
=

2 θ2

n
=

2σ4

n
for all θ = σ2 > 0.

For the estimator Vn =
∑n

i=1X
2
i /n it is easy to see that we attain the Rao-Cramér bound.

Thus, Vn is the best unbiased estimator of σ2 in the model N(0, σ2) (again, among all esti-

mators that satisfy (RC3)).

Later on we will see that in the more common situation when both parameters µ and σ2

are unknown, the situation with best unbiased estimators is slightly more involved. △

Combined with Theorem 2, the Rao-Cramér theorem gives that under appropriate reg-

ularity conditions, no unbiased estimator of a parameter θ based on a random sample of

observations of size n can have the variance of order smaller than O(n−1). It is important to

note that if the regularity conditions are not met, there can still exist better estimators, as

we show in the following example.

Example 1.8. Let X1, . . . , Xn be a random sample from the uniform distribution on the

interval [0, θ] for θ > 0. The corresponding system of densities is not regular, as Condition (R2)

is clearly violated. Consider the estimator Tn = (n + 1)maxi=1,...,nXi/n. It is easy to show

that Tn is unbiased for θ, and at the same time

varθ Tn =
θ2

n(n+ 2)
.

We see that the rate of convergence of the variance of Tn to zero is O(n−2), and Tn does not

obey the Rao-Cramér bound. In fact, because (R2) is violated, the Fisher information of θ

contained in X1, . . . , Xn is not even well defined. △

It is interesting to observe that for a general parametric function g(θ), the term g′(θ) in the

Rao-Cramér bound corresponds to the Fisher information of the transformed parameter g(θ).

To see this, we first return to Example 1.5 with the unknown parameter being the variance

of a normal distribution.
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Example 1.9 (Normal distribution with σ and σ2). In the situation of X = (X1, . . . , Xn)
T

being a random sample from N(0, σ2), take θ = σ2, and g(θ) = σ =
√
θ. The Rao-Cramér

bound of Theorem 3 then gives that for any regular unbiased estimator Tn of σ we have

varθ Tn ≥ (g′(θ))2

Jn(θ)
=

1

4 θ

2 θ2

n
=

θ

2n
=
σ2

2n
for all θ = σ2 > 0. (7)

On the other hand, take now θ = σ with Θ = (0,∞), and compute the Fisher information of

σ contained in X. For a single observation X1 we have

log f(x; θ) = −1

2
log (2π)− log θ − x2

2 θ2
for x ∈ R,

and

∂2 log f(x; θ)

∂θ2
=
∂
(
−1

θ + x2

θ3

)
∂θ

=
1

θ2
− 3x2

θ4
.

The Fisher information of θ = σ contained in X is therefore

Jn(θ) = −nEθ
∂2 log f(X1; θ)

∂θ2
= n

(
− 1

θ2
+

3EX2
1

θ4

)
=

2n

θ2
=

2n

σ2
for θ = σ > 0.

Applying Theorem 3 with θ = σ and g(θ) = θ, we thus also obtain that for any unbiased

estimator Tn of σ we get (7). △

The fact that both Rao-Cramér bounds in Example 1.9 are equal is, of course, not a

coincidence. Let σ be the original parameter, and let g(σ) = σ2. In both cases, to compute

the Fisher information we need the density f(x;σ) of X that can be parametrized either by

σ, or by g(σ) = σ2. For the Fisher information of σ we then take

Jn(σ) = Eσ

(
∂ log f(X;σ)

∂σ

)2

, (8)

while for the Fisher information of η = g(σ) = σ2 we need to find

J̃n(η) = Eσ

(
∂ log f(X;σ)

∂g(σ)

)2

.

We have added a tilde above the Fisher information of η = g(σ) to distinguish this notation

from the Fisher information of the original parameter σ. To relate the two expressions Jn

and J̃n, we use the chain rule for derivatives, and express the integrand in (8) as

∂ log f(x;σ)

∂σ
=
∂ log f(x;σ)

∂g(σ)

∂g(σ)

∂σ
for all x ∈ Rn.
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Plugging this into (8) we get

Jn(σ) = Eσ

(
∂ log f(X;σ)

∂σ

)2

= Eσ

(
∂ log f(X;σ)

∂g(σ)

∂g(σ)

∂σ

)2

=

(
∂g(σ)

∂σ

)2

Eσ

(
∂ log f(X;σ)

∂g(σ)

)2

=
(
g′(σ)

)2
J̃n(η) =

(
g′(σ)

)2
J̃n(g(σ)),

where on the left hand side we have the Fisher information of σ, and on the right hand side

the Fisher information of g(σ) = η. Observe that in our argument, we used only the chain

rule for derivatives and the fact that the function g is differentiable. As in Condition (R5) we

require that Fisher informations are positive, we also need to impose g′(σ) ̸= 0. This gives

the following more general result.

Theorem 4. Let Jn(θ) be the Fisher information of θ ∈ Θ contained in a random vector X,

and let g : Θ → R be a differentiable function such that g′(θ) ̸= 0 for all θ ∈ Θ. Then the

Fisher information J̃n(g(θ)) of the parametric function g(θ) contained in X is

J̃n(g(θ)) =
Jn(θ)

(g′(θ))2
for all θ ∈ Θ.

We now explore when, under the given regularity conditions, can the Rao-Cramér bound

of Theorem 3 be attained. Looking at the first proof of Theorem 3, the bound followed by

a direct application of the Cauchy-Schwarz inequality in (6). We know that the Cauchy-

Schwarz inequality is strict unless the two functions multiplied in the integrand are linearly

dependent. Suppose therefore that there is equality in the Rao-Cramér inequality (4) for each

θ ∈ Θ. Necessarily, for every θ ∈ Θ we then have a constant c(θ) ∈ R such that

c(θ) (Tn(x)− g(θ)) =
f ′(x; θ)

f(x; θ)
=
∂ log f(x; θ)

∂θ
for µ-almost all x ∈M.

We integrate the previous equality w.r.t. θ. Denoting by C(θ) the primitive function of c(θ)

and by G(θ) the primitive function of c(θ) g(θ), we can express

C(θ)Tn(x)−G(θ) +H(x) = log f(x; θ) for µ-almost all x ∈M,

where H(x) is the constant term obtained by integration which does not depend on θ. Take

an exponential of both sides of the last formula, giving

f(x; θ) = exp (C(θ)Tn(x))u(x)v(θ) for µ-almost all x ∈M, (9)

where u(x) = exp (H(x)) and v(θ) = exp (G(θ)). In addition to (9) we know by (R2) that

f(x; θ) = 0 for x /∈ M , meaning that if the Rao-Cramér bound can be attained, the density

of X must possess a very special form where the contribution of x and θ factorizes, except
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for the single exponential term exp (C(θ)Tn(x)). This is a special case of a density called a

density of an exponential type. The class of exponential-type densities is very important and

will be dealt with in a greater detail later in the course. Many common densities are of an

exponential type.

Given an unbiased estimator Tn of g(θ), Theorem 3 allows us to check whether Tn is BUE.

If varθ Tn attains the Rao-Cramér bound, by Lemma 1 we know that the mean squared error

of Tn is the smallest among all unbiased estimators. This leads to the following definition.

Definition 5. We call an estimator T a regular estimator of θ if it satisfies all the assumptions

of Theorem 3 with g(θ) = θ. For a regular estimator of θ, the efficiency of T is defined as the

ratio

e(θ) =
1

Jn(θ) varθ T
for θ ∈ Θ.

A regular estimator of θ is called efficient if e(θ) = 1 for all θ ∈ Θ.

By Theorem 3, the efficiency of a regular estimator of θ is bounded in the interval (0, 1]. An

efficient estimator is surely BUE, but we saw that efficient estimators exist only for special

types of systems of densities. For many other models, efficient estimators do not exist. Thus,

it is of interest to refine the Rao-Cramér bound. One such statement is found in a theorem

of Bhattacharya that will follow. Before stating its result, we provide a useful lemma about

determinants and inverses of matrices divided into blocks. This lemma will be used in the

next, and several other proofs in the sequel.

Lemma 3. Let

J =

(
A B

C D

)
be a square matrix whose blocks A and D are also square. Let D be non-singular. Then the

determinant of J can be written in the form

det(J) = det(A−BD−1C) det(D).

If, in addition, also J and A are non-singular, then we can express the inverse of J as

J−1 =

((
A−BD−1C

)−1
0

0
(
D −CA−1B

)−1

)
·

(
I −BD−1

−CA−1 I

)

=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−
(
D −CA−1B

)−1
CA−1

(
D −CA−1B

)−1

)
.

Proof. For the statement about the determinant, notice that we can write with I the identity

matrix (
A B

C D

)
·

(
I 0

−D−1C D−1

)
=

(
A−BD−1C BD−1

0 I

)
.
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A determinant of a block triangular matrix equals the product of determinants of the blocks on

the diagonal of a matrix, as follows from the Laplace expansion of the determinant. Also, the

determinant commutes with matrix multiplication, meaning that we can apply determinant

to both sides of the previous formula to get

det(J) det(I) = det(A−BD−1C) det(D),

as we wanted to show.

For the expression for the inverse matrix, write

M1 =
(
A−BD−1C

)−1
,

M2 =
(
D −CA−1B

)−1

By direct multiplication, starting from the right(
M1 0

0 M2

)
·

(
I −BD−1

−CA−1 I

)
·

(
A B

C D

)

=

(
M1 0

0 M2

)
·

(
A−BD−1C 0

0 D −CA−1B

)

=

(
I 0

0 I

)

for I the unit square matrix of an appropriate dimension.

We are now ready to prove Bhattacharya’s extension of the Rao-Cramér theorem.

Theorem 5 (Bhattacharya). Let T = T (X) be an unbiased estimator of the parametric

function g(θ) that satisfies varθ T < ∞ for all θ ∈ Θ. Suppose further that for some k ∈ N
the following is true:

(B1) the system of densities {f(x; θ) : θ ∈ Θ} is regular;

(B2) the k-th derivative g(k)(θ) exists for all θ ∈ Θ;

(B3) for each j = 1, . . . , k there exists the j-th derivative f (j)(x; θ) = ∂jf(x;θ)
∂θj

and∫
M
f (j)(x; θ) dµ(x) = 0;

(B4) for each j = 1, . . . , k the following interchange of a derivative and an integral is valid

for all θ ∈ Θ

∂j

∂θj

∫
M
T (x)f(x; θ) dµ(x) =

∫
M
T (x)f (j)(x; θ) dµ(x).
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(B5) for each j, ℓ = 1, . . . , k and θ ∈ Θ we have∫
M

∣∣∣∣∣f (j)(x; θ)f(x; θ)

f (ℓ)(x; θ)

f(x; θ)

∣∣∣∣∣ f(x; θ) dµ(x) <∞;

(B6) for each j, ℓ = 1, . . . , k denote

Vj,ℓ(θ) =

∫
M

f (j)(x; θ)

f(x; θ)

f (ℓ)(x; θ)

f(x; θ)
f(x; θ) dµ(x) = Eθ

f (j)(X; θ)

f(X; θ)

f (ℓ)(X; θ)

f(X; θ)
.

Let the matrix V (θ) = (Vj,ℓ(θ))
k
j,ℓ=1 be non-singular for all θ ∈ Θ.

Denote h(θ) =
(
g′(θ), . . . , g(k)(θ)

)T
. Then we can bound

varθ T = E (T − g(θ))2 ≥ h(θ)TV (θ)−1h(θ). (10)

Proof. Let for j = 1, . . . , k

Sj(x; θ) =
f (j)(x; θ)

f(x; θ)
and Sj = Sj(X; θ),

where Sj is random, and the random vectorX plugged into Sj has a distribution correspond-

ing to θ. By (B3) we know that

Eθ Sj =

∫
M
Sj(x; θ)f(x; θ) dµ(x) = 0 for each j = 1, . . . , k,

and thus for the elements of the covariance matrix of T and all Sj we can write using (B4)

cov (T, Sj) =

∫
M
(T (x)− g(θ))Sj(x; θ)f(x; θ) dµ(x)

=

∫
M
(T (x)− g(θ))f (j)(x; θ) dµ(x) =

∫
M
T (x)f (j)(x; θ) dµ(x)

=
∂j

∂θj

∫
M
T (x)f(x; θ) dµ(x) = g(j)(θ),

cov (Sj , Sℓ) =

∫
M
Sj(x; θ)Sℓ(x; θ)f(x; θ) dµ(x) = Vj,ℓ(θ).

The covariance matrix of the vector (T, S1, . . . , Sk)
T thus takes the form

Σ =

(
varθ T h(θ)T

h(θ) V (θ)

)
.

As a covariance matrix, Σ must be positive semi-definite, and in particular its determinant

must be non-negative. Using the rule for the determinant of a block matrix from Lemma 3

we arrive at

det(Σ) = det(V ) det(varθ T−h(θ)TV (θ)−1h(θ)) = det(V )
(
varθ T − h(θ)TV (θ)−1h(θ)

)
≥ 0.

Because also V is a covariance matrix, its determinant is non-negative, meaning that neces-

sarily varθ T − h(θ)TV (θ)−1h(θ) ≥ 0 as we wanted to show.
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Certainly, V1,1(θ) = Jn(θ) is the Fisher information of X, and Theorem 5 applied with

k = 1 gives the Rao-Cramér bound of Theorem 3. Using a little matrix algebra [10, p. 347], it

is also possible to show that the sequence of Bhattacharya’s bounds is, in fact, non-decreasing

in k ∈ N. In particular, the Bhattacharya bound is always an improvement over the Rao-

Cramér bound. This is easiest to see if one considers g(θ) = θ the identity function; for the

general case of a parametric function g(θ), reparametrization relations such as those from

Theorem 4 can be applied.

Theorem 6. Suppose that g(θ) = θ and that the assumptions of Theorem 5 are satisfied for

both k ∈ N and k+1. Denote by Bk(θ) the constant on the right hand side of the Bhattacharya

bound (10). Then

Bk+1(θ) ≥ Bk(θ) for all θ ∈ Θ.

Proof. In the case of g(θ) = θ, Theorem 5 gives with h(θ) = (1, 0, . . . , 0)T the bound

varθ T ≥ Bk(θ) = V
1,1
k (θ), (11)

where V 1,1
k (θ) stands for the first diagonal element of the matrix V k(θ)

−1, where we have

emphasized by a subscript k that the matrix V (θ) = V k(θ) is considered with k derivatives

taken in Theorem 5. Our task is to show that with k replaced by k + 1 in (11) we obtain a

stronger bound, meaning that

Bk(θ) = V
1,1
k (θ) ≤ V 1,1

k+1(θ) = Bk+1(θ) for all θ ∈ Θ. (12)

We need the following matrix identity.

Lemma 4 (Woodbury matrix identity). For any A and D non-singular square matrices and

any matrices B, C with conformable sizes we have(
A−BD−1C

)−1
= A−1 +A−1B

(
D −CA−1B

)−1
CA−1.

Proof. We can proceed by a direct multiplication. Writing X =
(
D −CA−1B

)−1
we have(

A−BD−1C
) (
A−1 +A−1BXCA−1

)
= I +BXCA−1 −BD−1CA−1 −BD−1CA−1BXCA−1

=
(
I −BD−1CA−1

)
+
(
BXCA−1 −BD−1CA−1BXCA−1

)
=
(
I −BD−1CA−1

)
+B

(
I −D−1CA−1B

) (
XCA−1

)
=
(
I −BD−1CA−1

)
+BD−1

(
D −CA−1B

) (
XCA−1

)
=
(
I −BD−1CA−1

)
+BD−1X−1XCA−1

=
(
I −BD−1CA−1

)
+BD−1CA−1

= I.
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We have the matrix V k+1(θ) and intend to express the first diagonal element of its inverse.

To do this, we partition V k+1(θ) into a block matrix

V k+1(θ) =

(
V k(θ) vk+1(θ)

vk+1(θ)
T Vk+1,k+1(θ)

)
=

(
A B

C D

)
, (13)

where vk+1(θ) = (V1,k+1(θ), . . . , Vk,k+1(θ))
T, and Vj,k+1(θ) is defined analogously as in (B6)

but with k replaced by k+ 1. To find the first diagonal element of V k+1(θ) we use Lemma 3

to get that the top left k × k block of the inverse V k+1(θ) takes the form(
A−BD−1C

)−1
=
(
V k(θ)− vk+1(θ)Vk+1,k+1(θ)

−1vk+1(θ)
T
)−1

which by the Woodbury identity from Lemma 4 equals

A−1 +A−1B
(
D −CA−1B

)−1
CA−1

= V k(θ)
−1 + V k(θ)

−1vk+1(θ)
(
D −CA−1B

)−1
vk+1(θ)

TV k(θ)
−1

= V k(θ)
−1 +

b · bT

Vk+1,k+1(θ)− vk+1(θ)TV k(θ)−1vk+1(θ)

(14)

with b = V k(θ)
−1vk+1(θ). For the denominator on the right hand side we have, in the

notation from (13), that

1

Vk+1,k+1(θ)− vk+1(θ)TV k(θ)−1vk+1(θ)
=
(
D −CA−1B

)−1
.

This is by Lemma 3 the last diagonal element of the matrix V k+1(θ)
−1. Because V k+1(θ) is

assumed to be positive definite for all θ ∈ Θ in (B6), this term must be positive as well.

We thus obtained in equation (14) that the first diagonal term of V k+1(θ)
−1 is equal to

the first diagonal term of V k(θ)
−1 plus a non-negative term, meaning that (12) is true as we

wanted to show.

Example 1.10. Take X = (X1, . . . , Xn)
T a random sample from N (µ, 1), and suppose that

we want to estimate g(µ) = µ2. We start from Un = Un(X) = (
∑n

i=1Xi/n)
2 =

(
X̄n

)2
, which

is a consistent estimator of g(µ), and observe that since X̄n ∼ N (µ, 1/n), we have that Un

has the same distribution as Z/
√
n+ µ for Z ∼ N(0, 1). Thus we can write

Eµ Un = Eµ

(
Z/

√
n+ µ

)2
= Eµ Z

2/n+ µ2 +
2µ√
n
Eµ Z = g(µ) +

1

n
,

which gives an unbiased estimator of g(µ)

Tn =
(
X̄n

)2 − 1

n
.
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For the variance of Tn we have

varµ Tn = varµ

((
X̄n

)2 − 1

n

)
= varµ

(
Z/

√
n+ µ

)2
=

1

n2
varµ Z

2 +

(
2µ√
n

)2

varµ Z =
4µ2

n
+

2

n2
,

(15)

where we used that Z and Z2 are uncorrelated, due to the symmetry of Z.

The standard Rao-Cramér bound from Theorem 3 gives

varµ Tn ≥ (g′(µ))2

Jn(µ)
=

4µ2

n
,

which is only the first term in (15), and Tn does not attain this bound. For a second order

bound we use Bhattacharya’s Theorem 5 with k = 2. First we compute the matrix V (µ),

for which we need the first two derivatives of the density f(x;µ) w.r.t. µ. We have for

x = (x1, . . . , xn)
T ∈ Rn

f (1)(x;µ)

f(x;µ)
=
f(x;µ)

∑n
i=1(xi − µ)

f(x;µ)
=

n∑
i=1

(xi − µ),

f (2)(x;µ)

f(x;µ)
=
f(x;µ) (

∑n
i=1(xi − µ))2 − n f(x;µ)

f(x;µ)
=

(
n∑

i=1

(xi − µ)

)2

− n,

which gives

V1,1(µ) = Jn(µ) = n,

V1,2(µ) = Eµ

(
f (1)(X;µ)

f(X;µ)

f (2)(X;µ)

f(X;µ)

)

= Eµ

 n∑
i=1

(Xi − µ)

( n∑
i=1

(Xi − µ)

)2

− n

 = 0,

V2,2(µ) = Eµ

(
f (2)(X;µ)

f(X;µ)

)2

= Eµ

( n∑
i=1

(Xi − µ)

)2

− n

2

= 2n2.

The matrix V (µ) takes the form

V (µ) =

(
n 0

0 2n2

)
,

and the Bhattacharya bound from Theorem 5 is

varµ Tn ≥
(
g′(µ), g(2)(µ)

)
V (µ)−1

(
g′(µ), g(2)(µ)

)T
=

4µ2

n
+

2

n2
,

which matches the variance of Tn. Therefore, we have found that Tn is the best unbiased

estimator of g(µ) = µ2, even though it does not attain the Rao-Cramér bound. △
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1.2.2 Multi-dimensional parameter

Having dealt with the one-dimensional parameter θ, we now turn to the multi-dimensional

situation. Suppose that we have a model parametrized by θ ∈ Θ ⊆ Rp with p ∈ N. Our

interest is in the estimation of either a one-dimensional parametric function g(θ) ∈ R with

g : Θ → R measurable, or a simultaneous estimation of a vector of parameters g(θ) ∈ Rk for

a measurable map g : Θ → Rk.

We now extend the theory from the situation p = 1 to the general setup. We begin with

the generalized Fisher information.

Definition 6 (Regular system of densities — multi-dimensional parameter). Let the distri-

bution of the random vector X depend only on parameter θ = (θ1, . . . , θp)
T ∈ Θ. Suppose

that X has a density f(x;θ) w.r.t. a given σ-finite measure µ. The system of densities

{f(x;θ) : θ ∈ Θ} is called a regular system of densities if the following conditions hold:

(R1) The parameter space Θ ⊆ Rp is a non-empty open set.

(R2) The set M = {x : f(x;θ) > 0} does not depend on θ.

(R3) For µ-almost all x ∈M and all j = 1, . . . , p there exist finite partial derivatives

f ′j(x;θ) =
∂f(x;θ)

∂θj
.

(R4) For all θ ∈ Θ and all j = 1, . . . , p we can write
∫
M f ′j(x;θ) dµ(x) = 0.

(R5) For all j, k = 1, . . . , p the integral

Jj,k,n(θ) =

∫
M

f ′j(x;θ)

f(x;θ)

f ′k(x;θ)

f(x;θ)
f(x;θ) dµ(x)

is finite for every θ ∈ Θ.

(R6) The matrix Jn(θ) = (Jj,k,n(θ))
p
j,k=1 is positive definite for all θ ∈ Θ.

For a regular system of densities, the matrix-valued function Jn : Θ → Rp×p from (2) that

for each θ ∈ Θ takes values in the space of positive definite matrices is called the Fisher

information matrix of θ contained in X.

For the Fisher information matrix, results analogous to Theorems 1 and 2 hold true. We

provide explicitly only the first one, but also the statement on the Fisher information matrix

of independent random vectors from Theorem 2 generalizes readily, using an analogous proof.

In particular, for a single random vector X whose n elements constitute a random sample we

have Jn(θ) = nJ1(θ).
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Theorem 7. Let {f(x;θ) : θ ∈ Θ} be a regular system of densities. Suppose further that the

second derivatives

f ′′j,k(x;θ) =
∂2f(x;θ)

∂θj∂θk

exist for µ-almost all x ∈M and all j, k = 1, . . . , p. Also, let a condition analogous to (R4)∫
M
f ′′j,k(x;θ) dµ(x) = 0

be valid for all θ ∈ Θ and j, k = 1, . . . , p. Then we can write

Jj,k,n(θ) = −
∫
M

∂2 log f(x;θ)

∂θj∂θk
f(x;θ) dµ(x) = −Eθ

∂2 log f(X;θ)

∂θj∂θk
.

Proof. Completely analogous to that of Theorem 1.

Example 1.11. Let X = (X1, . . . , Xn)
T be a random sample from distribution N

(
µ, σ2

)
,

and take θ =
(
µ, σ2

)T ∈ Θ = R× (0,∞). To compute the Fisher information matrix of θ we

take the the density of X1 and use Theorem 7. We get

f(x;θ) =
1√

2π σ2
exp

(
− 1

2σ2
(x− µ)2

)
,

log f(x;θ) = −1

2
log (2π)− 1

2
log
(
σ2
)
− 1

2σ2
(x− µ)2 ,

from which we get
∂ log f(x;θ)

∂µ
=
x− µ

σ2
,

∂ log f(x;θ)

∂σ2
= − 1

2σ2
+

(x− µ)2

2 (σ2)2
,

and
∂2 log f(x;θ)

∂µ2
= − 1

σ2
,

∂2 log f(x;θ)

∂µ ∂σ2
= −x− µ

(σ2)2
,

∂2 log f(x;θ)

∂ (σ2)2
=

1

2 (σ2)2
− (x− µ)2

(σ2)3
.

Now we replace x by the random variableX1 and take the negative expectation of the previous

formulae to get

J1,1,1(θ) = −Eθ
∂2 log f(X1;θ)

∂µ2
=

1

σ2
,

J1,2,1(θ) = −Eθ
∂2 log f(X1;θ)

∂µ ∂σ2
= 0,

J2,2,1(θ) = −Eθ
∂2 log f(X1;θ)

∂ (σ2)2
=

1

2σ4
.
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Together, we computed that

J1(θ) =

(
1
σ2 0

0 1
2σ4

)
,

and Jn(θ) = nJ1(θ). Of course, the diagonal terms of the Fisher information matrix agree

with the Fisher informations of the individual elements µ and σ2 from Example 1.6. △

Having introduced the Fisher information matrix, we provide two versions of the theorem

of Rao and Cramér for multi-dimensional parameters. The first theorem deals with a scalar-

valued parametric function; the latter with a vector-valued estimated parameter.

Theorem 8 (Rao-Cramér, multi-dimensional I). Let Tn = Tn(X) be an unbiased estimator

of a (scalar) parametric function g(θ) that satisfies varθ Tn <∞ for all θ ∈ Θ ⊂ Rp. Let the

following conditions be satisfied:

(RC1) the system of densities {f(x;θ) : θ ∈ Θ} of X is regular;

(RC2) the partial derivatives g′j(θ) =
∂g(θ)
∂θj

of g exist for every j = 1, . . . , p in every θ ∈ Θ;

(RC3) the following interchange of a derivative and an integral is valid for all j = 1, . . . , p and

θ ∈ Θ
∂

∂θj

∫
M
Tn(x)f(x;θ) dµ(x) =

∫
M
Tn(x)

∂f(x;θ)

∂θj
dµ(x).

Denote h(θ) =
(
g′1(θ), . . . , g

′
p(θ)

)T
. Then we can bound

varθ Tn = Eθ (Tn − g(θ))2 ≥ h(θ)T (Jn(θ))
−1 h(θ) for all θ ∈ Θ.

Proof. The proof method is quite similar to that of the usual Rao-Cramér theorem (Theo-

rem 3) and the Bhattacharya theorem (Theorem 5). We use the score statistics

Sj =
∂ log f(X;θ)

∂θj
for j = 1, . . . , p.

By (R4) we know that Eθ Sj = 0 for each j = 1, . . . , p. Computing the covariance matrix of

the random vector (Tn, S1, . . . , Sp)
T we obtain, using (RC3), the fact that Tn is an unbiased

estimator of g(θ), and (R4), that

covθ (Tn, Sj) =

∫
M
(Tn(x)− g(θ))f ′j(x;θ) dµ(x)

=
∂

∂θj

∫
M
Tn(x)f(x;θ) dµ(x)− g(θ)

∫
M
f ′j(x;θ) dµ(x)

= g′j(θ),

covθ (Sj , Sk) =

∫
M

f ′j(x;θ)

f(x;θ)

f ′k(x;θ)

f(x;θ)
f(x;θ) dµ(x) = Jj,k,n(θ)
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for each j, k = 1, . . . , p. The covariance matrix thus takes the form

covθ

(
(Tn, S1, . . . , Sp)

T
)
=

(
varθ Tn h(θ)T

h(θ) Jn(θ)

)
. (16)

Exactly in the same way as argued in the proof of Theorem 5, the positive semi-definiteness

of this matrix gives the desired bound.

In formula (16) in the proof of Theorem 8 we see that the Fisher information matrix is, in

fact, the covariance matrix of the p-dimensional random vector

S =
∂ log f(X;θ)

∂θ
. (17)

As such, it must be always positive semi-definite, and the additional requirement (R6) only

states that it should not be singular for any θ ∈ Θ. The random vector (17) is sometimes

called the score, or the score statistic. Note, however, that the latter term is not appropriate

as the score in general still depends on the unknown value of the parameter θ, and thus is

formally speaking not a statistic. The term score statistic is therefore more fitting in the

situation when the unknown θ is in (17) substituted by a fixed, known value θ0 ∈ Θ, as we

will do in the second part of this course. For x fixed, when considered as a function of the

parameter θ ∈ Θ, the function

Θ → R : θ 7→ ∂ log f(X;θ)

∂θ

is also called the score function. The scores and the score functions will be of great importance

in the maximum likelihood estimation.

Example 1.12. For a random sample X1, . . . , Xn from N(µ, σ2) and θ =
(
µ, σ2

)T
as in

Example 1.11 we have

Jn(θ) =

(
n
σ2 0

0 n
2σ4

)
.

Consider a parametric function g(θ) = µ + c σ with c > 0 fixed and given. In the notation

from Theorem 8 we therefore get

h(θ)T =
(
g′1(θ), g

′
2(θ)

)T
=
(
1,

c

2σ

)T
,

and by Theorem 8 we have for any unbiased estimator Tn of g(θ) the Rao-Cramér bound

varθ Tn ≥ h(θ)T (Jn(θ))
−1 h(θ) =

σ2

n

(
1 +

c2

2

)
for all θ ∈ Θ.

△
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We conclude this section by another extension of the Rao-Cramér theorem, this time to

the setup of vector-valued parametric functions. For that result, we first provide an auxiliary

lemma about the characterization of positive semi-definiteness of block matrices.

Lemma 5 (Schur’s complement lemma). Let M be any symmetric block matrix

M =

(
A B

BT D

)
,

such that D is positive definite. ThenM is positive semi-definite if and only if A−BD−1BT

is positive semi-definite.

Proof. It is easy to verify that we can write(
A B

BT D

)
=

(
I BD−1

0 I

)
︸ ︷︷ ︸

=NT

(
A−BD−1BT 0

0 D

)
︸ ︷︷ ︸

=T

(
I BD−1

0 I

)T

︸ ︷︷ ︸
=N

,

where

T =

(
A−BD−1BT 0

0 D

)
is a symmetric square matrix. Since obviously(

I BD−1

0 I

)(
I −BD−1

0 I

)
=

(
I 0

0 I

)
,

the matrix

N =

(
I BD−1

0 I

)T

is invertible. We found that we can write

M =NTTN .

For any compatible vector x ̸= 0 we thus have

xTMx = xTNTTNx = (Nx)T T (Nx)T ,

meaning that M is positive semi-definite if and only if T is. Because D is assumed to be

positive definite, we get that M is positive semi-definite if and only if the first block on the

diagonal of T , which is A−BD−1BT, is positive semi-definite.

Theorem 9 (Rao-Cramér, multi-dimensional II). Let T n = T = (T1, . . . , Tk)
T = T (X) be an

unbiased estimator of a vector-valued parametric function g(θ) = (g1 (θ) , . . . , gk (θ))
T, where

g : Θ → Rk for k ∈ N. Suppose that for each j = 1, . . . , k this estimator satisfies varθ Tj <∞
for all θ ∈ Θ ⊂ Rp. Let the following conditions be satisfied:
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(RC1) the system of densities {f(x;θ) : θ ∈ Θ} of X is regular;

(RC2) all partial derivatives

∂gj(θ)

∂θℓ
for j = 1, . . . , k and ℓ = 1, . . . , p

of g exist for every θ ∈ Θ;

(RC3) the following interchange of a derivative and an integral is valid for all j = 1, . . . , k,

ℓ = 1, . . . , p and θ ∈ Θ

∂

∂θℓ

∫
M
Tj(x)f(x;θ) dµ(x) =

∫
M
Tj(x)

∂f(x;θ)

∂θℓ
dµ(x).

Denote

H(θ) =

(
∂gj(θ)

∂θℓ

)k,p

j=1,ℓ=1

.

Then we can bound for varθ T n = Eθ (T n − g(θ)) (T n − g(θ))T

varθ T n −H(θ) (Jn(θ))
−1H(θ)T ≥ 0 for all θ ∈ Θ.

The last inequality means that the resulting k × k-matrix on the left hand side is positive

semi-definite.

Proof. The proof is completely analogous to that of Theorem 8. We compute the covariance

matrix of the vector (T1, . . . , Tk, S1, . . . , Sp)
T and establish that it takes the form(

varθ T n H(θ)

H(θ)T Jn(θ)

)
.

To conclude, we apply the Schur complement lemma stated as Lemma 5 for this positive

semi-definite matrix.

1.3 Sufficiency and its role in estimation

We now turn to the problem of finding best unbiased estimators of parametric functions. In

this respect, an eminent role is played by the concept of sufficiency. Intuitively, a sufficient

statistic extracts all the (Fisher) information about a parameter θ from the random vector

X whose distribution depends on θ. Formally, it is defined as follows.

Definition 7. A statistic S = S(X) is called sufficient for parameter θ if the conditional

distribution of the random vector X given S does not depend on θ.

30



Sufficient statistics are of great importance in the estimation theory. They allow us to

reduce the problem of finding the best unbiased estimators to the task of finding unbiased

functions of certain sufficient statistics. The simplest sufficient statistic is the vector X itself,

as obviously the distribution of X given X = x is the trivial Dirac measure at x, which does

not involve θ at all.

Example 1.13. Let X = (X1, X2)
T be a vector composed of X1, X2 ∼ Bernoulli(p) with

p ∈ (0, 1), independent of each other. The vector X is distributed according to the following

frequency table

X2 = 0 X2 = 1

X1 = 0 (1− p)2 p(1− p)

X1 = 1 p(1− p) p2

Take T = X1 + X2, and find the conditional distribution of X given T = t. The random

variable T takes one of the values t = 0, 1, 2, almost surely. Trivially, for t = 0 we get that the

conditional distribution (X | T = 0) corresponds to the constant (0, 0)T almost surely, and

analogously the distribution of (X | T = 2) is the Dirac measure at (1, 1)T. In the remaining

situation t = 1 we have

Pp

(
X = (0, 1)T | T = 1

)
=

Pp

(
X = (0, 1)T

)
Pp (T = 1)

=
p(1− p)

2 p(1− p)
= 1/2,

Pp

(
X = (1, 0)T | T = 1

)
=

Pp

(
X = (1, 0)T

)
Pp (T = 1)

=
p(1− p)

2 p(1− p)
= 1/2.

Thus, the distribution of (X | T = 1) is uniform in the two points (0, 1)T and (1, 0)T. Overall,

the distribution ofX given T does not depend on the parameter p, and T is a sufficient statistic

for p. △

Observe that since any statistic T = T (X) is a function of X, it necessarily reduces (or,

more precisely, cannot increase) the information available in the random vector X. Indeed,

knowing only the observed value t of T we are usually unable to recover the original observed

value x of the random vector X. In Example 1.13, for instance, if t = 0 or t = 2, we identify

the observed value x of X uniquely — it is x = (0, 0)T if t = 0, or x = (1, 1)T if t = 2.

In the situation when t = 1, we are however not able to determine whether x = (0, 1)T or

x = (1, 0)T was observed. Naturally, any statistic T = T (X) therefore introduces a certain

“partitioning” of the sample space into collections of sets

T−1(t) = {x : T (x) = t} for all possible values t of T . (18)

Roughly speaking, the larger these sets are, the greater reduction of information occurs when

working with T instead of with X.
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From this perspective, the intuitive meaning of sufficiency becomes more clear. The dis-

tribution of X depends on our parameter of interest θ. We choose a statistic T = T (X).

Directly from the definition of the conditional distribution, we know that knowing (i) the

distribution of X is equivalent with the knowledge of (ii) the marginal distribution of T ,

and the conditional distribution of X given T . If the statistic T is sufficient, the conditional

distribution (X | T ) does not depend on θ at all. Therefore, everything we can obtain from

X about θ is contained in the distribution of T alone.

Take again Example 1.13, and suppose that we know only the distribution of T , which is

of course the binomial distribution T ∼ Bi(2, p). Because T is sufficient for p and the distri-

bution of X given T does not depend on p, we could use the (completely known) conditional

distribution of (X | T ) and reconstruct the whole distribution of the random vector X. But,

why would we do this? In the process of reconstruction of X we would only add randomness

that does not involve p to our problem. Therefore, it appears that using sufficient statistics

allows us to simplify the problem of inference about θ substantially; instead of the whole

observed vector X, we can only extract a (typically much “smaller”) statistic T , without

losing anything interesting about θ.

The easiest way to determine whether a statistic S is sufficient is given by the following

criterion. In full generality, its proof is rather technical and is given in e.g. [9, Corollary 2.6.1].

Theorem 10 (Neyman’s factorization criterion). Let X be a random vector with density

f(x;θ) w.r.t. a σ-finite measure µ for all θ ∈ Θ. Then the statistic S = S(X) is sufficient

for θ if and only if there exist measurable functions g and h such that

f(x;θ) = g (S(x),θ) h(x) for µ-almost all x.

Proof. We prove the theorem only for X discrete. In that case, also S is necessarily discrete,

and we can take µ to be the counting measure on the union of the supports of X and S,

which must be an at most countable set.

Let S be sufficient, and take x such that Pθ (X = x) > 0. Then Pθ (S(X) = S(x)) ≥
Pθ (X = x) > 0, and the density rewrites into

Pθ (X = x) = Pθ (X = x,S(X) = S(x)) = Pθ (X = x | S(X) = S(x)) Pθ (S(X) = S(x)) .

Take g(S(x),θ) = Pθ (S(X) = S(x)) and note that indeed, g depends on x only through

S(x). Further, with h(x) = Pθ (X = x | S(X) = S(x)) we know that, by the assumption of

sufficiency of S, the term on the right hand side does not depend on θ, and h is therefore

only a function of x. We have factorized the density as required.

32



For the other implication, suppose that the density f factorizes as in the statement of the

theorem. For any s we have

Pθ (S(X) = s) =
∑

{x : S(x)=s}

Pθ (X = x) = g(s,θ)
∑

{x : S(x)=s}

h(x). (19)

We compute the conditional distribution of X given S directly. If Pθ (S(X) = s) > 0 we

have

Pθ (X = x | S(X) = s) =
Pθ (X = x,S(X) = s)

Pθ (S(X) = s)
=

0 if S(x) ̸= s,
g(s,θ)h(x)

g(s,θ)
∑

{y : S(y)=s} h(y)
if S(x) = s.

Since Pθ (S(X) = s) > 0, the factor g(s,θ) cannot be zero if S(x) = s, and thus it cancels

out. We have computed the conditional distribution of X given S(X), and see that it does

not depend on θ. Therefore, S is sufficient.

Remark 2 (Density of a sufficient statistic). It is important to observe that in the proof of

Theorem 10 we obtained the form of the density fS(s;θ) of the sufficient statistic S. For S

with a discrete distribution, we derived in (19) that this density takes the form

fS(s;θ) = g(s,θ)H(s) for all s, (20)

with g the function from the factorization of the density of X, and H a function that does

not depend on θ. An analogous result can be shown also more generally. For instance, for

distributions with densities w.r.t. the Lebesgue measure in Rn, this can be seen using the

standard transformation of densities [4, Theorem 1 on p. 318]. Indeed, let f(x;θ) be the

density of X and suppose for simplicity that x 7→ S(x) is invertible with an inverse function

S−1. The density of S(X) at s is then given by

fS(s;θ) = f(S−1(s);θ)JS−1(s) = g(S(S−1(s));θ)JS−1(s)h(S−1(s))

= g(s;θ)JS−1(s)h(S−1(s)),

for JS−1 the Jacobian determinant of the inverse function S−1. We see that (20) is true with

H(s) = JS−1(s)h(S−1(s)), which does not depend on θ.

Directly from the definition of the sufficient statistic we also see that any one-to-one map-

ping of a sufficient statistic is itself a sufficient statistic.

Theorem 11. Let S = S(X) be a sufficient statistic, and let t be any measurable mapping

that does not depend on θ, which has an inverse τ . Then the statistic T = t(S) = t(S(X))

is also sufficient.
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Proof. Follows directly from the definition of sufficiency, and the definition of the conditional

distribution. Alternatively, one could use Theorem 10 and see that the density of X can be

rewritten also in the form

f(x;θ) = g (S(x),θ)h(x) = g (τ (T (x)) ,θ)h(x) for µ-almost all x.

Set g1(T (x),θ) = g(τ (T (x)) ,θ) and observe that we found a factorization of the density for

statistic T as in Theorem 10. Thus, also T is a sufficient statistic.

Example 1.14. Take X = (X1, . . . , Xn)
T whose elements are independent random variables

with distribution N
(
µ, σ2

)
, for θ =

(
µ, σ2

)T ∈ R× (0,∞). The joint density of X w.r.t. the

Lebesgue measure in Rn is

f(x;θ) =

n∏
i=1

(
1√

2π σ2
exp

(
−(xi − µ)2

2σ2

))

=
1

(2π σ2)n/2
exp

(
− 1

2σ2

(
n∑

i=1

x2i − 2µ
n∑

i=1

xi + nµ2

))

for x = (x1, . . . , xn)
T ∈ Rn. Theorem 10 gives that a sufficient statistic for θ is S =(∑n

i=1Xi,
∑n

i=1X
2
i

)T
, with g the whole function f and h(x) ≡ 1. By Theorem 11, an-

other sufficient statistic for θ is T =
(
X̄n, S

2
n

)T
, where X̄n is the sample average and

S2
n =

∑n
i=1

(
Xi − X̄n

)2
/(n − 1) is the sample variance of X. By Remark 2 we are also

able to determine the first factor g(t,θ) of the density of T . This is not difficult to be

verified to indeed correspond to the exact distribution of T , which we know to be the prod-

uct of N
(
µ, σ2/n

)
and a multiple of the χ2

n−1 distribution by the factor σ2/(n − 1), see [6,

Theorem 2.8]. △

A sufficient statistic S possesses the same Fisher information about θ as the original random

vector X. In this sense, we see that also formally, no reduction of information occurs when

working with sufficient statistics.

Theorem 12. Let X correspond to a regular system of densities with Fisher information

matrix Jn(θ), and let S = S(X) be sufficient for θ. Suppose that also S has a regular system

of densities, and denote its Fisher information matrix by J̃n(θ). Then J̃n(θ) = Jn(θ) for all

θ ∈ Θ.

Proof. We give only an outline of the formal proof, relying on the statement of Remark 2

that we proved only partially.

Any regular system of densities is dominated by some σ-finite measure µ. By Theorem 10

we therefore get that the density of X factorizes into the product f(x;θ) = g (S(x),θ) h(x),
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where h does not depend on θ. The partial derivative f ′j of f w.r.t. θj is therefore for each

j, k = 1, . . . , p

f ′j(x;θ) = g′j (S(x),θ) h(x)

where g′j is, of course, the partial derivative of g w.r.t. θj . For the Fisher information matrix

of X we therefore get

Jj,k,n(θ) = Eθ

(
f ′j(X;θ)

f(X;θ)

f ′k(X;θ)

f(X;θ)

)
= Eθ

(
g′j(S(X),θ)

g(S(X),θ)

g′k(S(X),θ)

g(S(X),θ)

)
.

It remains to realise that by our Remark 2, the density of the sufficient statistic S takes

the form g(s,θ)H(s), and H does not depend on θ. The last expression for Jj,k,n(θ) above

therefore equals the element J̃j,k,n(θ) of the Fisher information matrix of S = S(X), and the

two matrices are the same.

From what we saw, there are clearly many sufficient statistics. For example, any one-to-one

map of the random vector X is sufficient. It will be interesting to find a sufficient statistic

which, in a sense, is the smallest possible. It turns out that this notion of a “small” sufficient

statistic is not captured well by the dimensionality of the statistic. Consider the following

example, and compare it with Example 1.16 below.

Example 1.15. In the setup of Example 1.13 we found two sufficient statistics — the trivial

X = (X1, X2)
T, and T = X1 + X2. We also saw that T reduces the information provided

in X, because from the knowledge of T = 1 we cannot recover the original value of X.

Therefore, T is in this sense “smaller” than X. Take, however, another sufficient statistic

S =
(
X1 +X2, (X1 +X2)

2, (X1 +X2)
3
)T

. Because X1 + X2 ∈ {0, 1, 2} almost surely, any

element of S carries the same information about X as T does. Indeed, S takes only one of

the values (0, 0, 0)T, (1, 1, 1)T, (2, 4, 8)T almost surely, and using the preimage map (18) we

get

S−1
(
(0, 0, 0)T

)
= {(0, 0)} = T−1(0),

S−1
(
(1, 1, 1)T

)
= {(0, 1), (1, 0)} = T−1(1),

S−1
(
(2, 4, 8)T

)
= {(1, 1)} .

Therefore, the partitioning of the sample space of X induced by S is exactly the same as for

the statistic T . In fact, knowing T and knowing S is equivalent; from the value of one of

them we can obtain the other. Thus, even though the dimension of S is 3 and the dimension

of T is 1, the information reduction obtained by S and T are the same. △

We follow Theorem 11 and define the smallest sufficient statistic to be one that can be

written as a function of any other sufficient statistic.
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Definition 8. A sufficient statistic S is called minimal sufficient if it can be written as a

measurable function of any other sufficient statistic.

The following general lemma is useful for dealing with functions of statistics.

Lemma 6. Let X,Y, Z be sets and let g : X → Y and f : X → Z be any functions. Then

there exists a function h : Y → Z such that f(x) = (h ◦ g)(x) = h(g(x)) for all x ∈ X if and

only if the following implication holds true for all x, y ∈ X:

g(x) = g(y) implies f(x) = f(y). (21)

Proof. One direction is trivial; if the implication (21) is not true, then h(g(x)) = h(g(y))

would have to take both values f(x) and f(y), which is impossible. For the other direction,

one defines h(z) = f(g−1(z)) and verifies that if (21) holds true, then h : Y → Z is well-defined

and satisfies f = h ◦ g as needed.

Using the idea of preimages of statistics from (18), the definition of a minimal sufficient

statistics is a natural one. The minimal sufficient statistic generates the “coarsest” set of

preimages in the sample space of X that still corresponds to a sufficient statistic. In this

sense, it reduces the information present in X to the maximum possible extent, without

losing anything of interest about θ.

Example 1.16. Take X ∼ N
(
0, σ2

)
and let θ = σ2. Since we have only a single random

variable X, one could guess that X is the minimal sufficient statistic. This is, however, not

true, as T = X2 is also sufficient for θ by Theorem 10, but X cannot be written as a function

of T . △

Clearly, not every function of a sufficient statistic is sufficient. On the other hand, if T is

sufficient, and T is a function of S, then also S must be sufficient. In the following theorem

we give a simple criterion on how to verify that a statistic is minimal sufficient.

Theorem 13 (Lehmann-Scheffé on minimal sufficient statistics). Let X be a random vector

with density f(x;θ) with respect to a σ-finite measure µ on Rn, and let θ ∈ Θ. Suppose

that the support M = {x ∈ Rn : f(x;θ) > 0} does not depend on θ ∈ Θ. Let T = T (X) be

sufficient for θ, and denote

h(x,y;θ) =
f(x;θ)

f(y;θ)
for x,y ∈M and θ ∈ Θ.

Suppose that for every x,y ∈ M the fraction h(x,y;θ) does not depend on θ implies that

T (x) = T (y). Then T (X) is a minimal sufficient statistic.
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Proof. First note that for y ∈ M is the density f(y;θ) positive for all θ ∈ Θ. Thus, the

fraction h(x,y;θ) is well defined.

We need to show that T is a function of any other sufficient statistic U = U(X) for θ.

Thanks to the Neyman factorization criterion from Theorem 10 applied to U there exist

functions g0 and h0 such that

f(x;θ) = g0 (U(x),θ) h0(x).

Suppose that x,y ∈ M are such that U(x) = U(y). Then necessarily g0 (U(x),θ) =

g0 (U(y),θ), and in the ratio of densities we have

h(x,y;θ) =
f(x;θ)

f(y;θ)
=
g0 (U(x),θ) h0(x)

g0 (U(x),θ) h0(y)
=
h0(x)

h0(y)
.

The last inequality is valid because for y ∈ M we know that f(y;θ) > 0. We see that the

fraction h(x,y;θ) does not depend on θ, and by our assumptions it follows that T (x) = T (y).

We have verified that for any x and y the equality U(x) = U(y) implies T (x) = T (y).

This means that by Lemma 6, T can be written as a function of U for x ∈ M . Because

P (X ∈M) =
∫
M f(x;θ) dµ(x) =

∫
Rn f(x;θ) dµ(x) = 1, it follows that T (X) is a function

of U(X) almost surely, and we have proved that T (X) is a minimal sufficient statistic.

The criterion from Theorem 13 gives only one implication. It does not allow us to conclude

that a sufficient statistic is not minimal.

Example 1.17. In the setup of normal distributions N(µ, σ2) with θ =
(
µ, σ2

)T
from Ex-

ample 1.14 we have M = Rn and

h(x,y;θ) =
f(x;θ)

f(y;θ)
= exp

(
− 1

2σ2

(
n∑

i=1

x2i −
n∑

i=1

y2i

)
+

µ

σ2

(
n∑

i=1

xi −
n∑

i=1

yi

))
.

The last expression does not depend on θ if and only if
∑n

i=1 xi =
∑n

i=1 yi and at the same time∑n
i=1 x

2
i =

∑n
i=1 y

2
i . Thus, Theorem 13 gives that the statistic S =

(∑n
i=1Xi,

∑n
i=1X

2
i

)T
is

minimal sufficient. Is the other sufficient statistic T =
(
X̄n, S

2
n

)T
from Example 1.14 minimal

sufficient? △

The final important notion is that of a complete statistic.

Definition 9. A statistic S is said to be complete if for every measurable real-valued function

w we have that

Eθ w(S) = 0 for all θ ∈ Θ implies w(S) = 0 almost surely for all θ ∈ Θ.
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If a minimal sufficient statistic exists, any complete sufficient statistic must be already

minimal. The assumption of the existence of a minimal sufficient statistic is a weak one.

Under mild regularity conditions it can be shown that a minimal sufficient statistic of a

system of measures dominated by a σ-finite measure always exists.

Theorem 14. Suppose that a minimal sufficient statistic exists. Let S = S(X) be a complete

sufficient statistic such that Eθ S exists for all θ ∈ Θ. Then S is a minimal sufficient statistic.

Proof. Let T = T (X) be any minimal sufficient statistic. Then T must be a function of the

(complete) sufficient statistic S, say T = h(S). But then the difference S − E (S | T ) =

S − E (S | h(S)) is also a function of S only, and at the same time Eθ (S − E (S | h(S))) =
Eθ S − Eθ S = 0 for all θ ∈ Θ. Because S is complete, necessarily S = E (S | T ) almost

surely, and therefore we are able to write S as a function of T . We have found a one-to-one

mapping between the statistics S and T . Because T is minimal sufficient, it is a function of

any other sufficient statistic. But, since S is a function of T , it is also a function of any other

sufficient statistic. Necessarily, also S is minimal sufficient.

Being complete sufficient is a better property than being minimal sufficient. There are

statistics that are minimal sufficient, but not complete. In general, it is not easy to determine

whether a statistic is complete. Sometimes, this is possible to be verified directly from the

definition. More often, the following theorem is quite useful.

Theorem 15. Let X1, . . . , Xn be a random sample from a distribution whose density f(x;θ)

w.r.t. a σ-finite measure µ is of exponential type, meaning that

f(x;θ) = q(θ)h(x) exp

 p∑
j=1

bj(θ)Rj(x)

 for all x and θ = (θ1, . . . , θp)
T,

for some functions q, h, bj and Rj, j = 1, . . . , p. Suppose that

• the set
{
(b1(θ), . . . , bp(θ))

T : θ ∈ Θ
}
⊆ Rp has non-empty interior; and

• the set of functions {bj}pj=1 is affinely independent, meaning that

p∑
j=1

λj bj(θ) ≡ λ0 for some λj ∈ R, j = 0, . . . , p, implies that λj = 0 for all j = 0, . . . , p.

(22)

Denote

Tj =
n∑

i=1

Rj(Xi) and T = (T1, . . . , Tp)
T .

Then T is a complete minimal sufficient statistic for θ.
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Proof. The statistic T is sufficient directly by the factorization criterion of Theorem 10. Its

minimality follows from Theorem 13. First observe thatM = {x : f(x;θ) > 0} = {x : h(x) > 0}
for all θ ∈ Θ, meaning that the support of X1 does not depend on θ. We have5 for any

x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T in the support Mn of X = (X1, . . . , Xn)
T that∏n

i=1 f(xi;θ)∏n
i=1 f(yi;θ)

=
q(θ)n

∏n
i=1 h(xi)

q(θ)n
∏n

i=1 h(yi)
exp

 n∑
i=1

p∑
j=1

bj(θ)Rj(xi)−
n∑

i=1

p∑
j=1

bj(θ)Rj(yi)


=

∏n
i=1 h(xi)∏n
i=1 h(yi)

exp

 p∑
j=1

bj(θ)

n∑
i=1

(Rj(xi)−Rj(yi))


=

∏n
i=1 h(xi)∏n
i=1 h(yi)

exp

 p∑
j=1

bj(θ)aj


where we denoted aj =

∑n
i=1 (Rj(xi)−Rj(yi)) ∈ R, j = 1, . . . , p. By the assumption of affine

independence of {bj}pj=1 in (22) we get that the ratio of densities above does not depend on

θ implies that all aj = 0, meaning that

n∑
i=1

Rj(xi) =
n∑

i=1

Rj(yi) for all j = 1, . . . , p.

We have verified the condition from Theorem 13, and T is minimal sufficient.

The proof of completeness of T is technical, and involves the theory of analytic functions

in the complex plane. It will not be given here in full; a complete proof can be found in e.g.

[5, Lemma 2.13]. For the main argument, we use the observation from Remark 2 that the

density of the sufficient statistic T takes the form

fT (t;θ) = g(t,θ)H(t) = q(θ)n exp

 p∑
j=1

bj(θ) tj

H(t) for all t = (t1, . . . , tp)
T ,

where g is the function from the factorization of the density of X, and H does not depend on

θ. This density is taken w.r.t. a σ-finite measure ν on Rp (not necessarily equal to µ). The

assumption Eθ w(T ) = 0 for all θ ∈ Θ from the definition of completeness rewrites into

0 =

∫
Rp

w(t)fT (t;θ) d ν(t) = q(θ)n
∫
Rp

w(t)H(t) exp

 p∑
j=1

bj(θ) tj

 d ν(t) for all θ ∈ Θ.

To simplify the expression, divide both sides by the positive term q(θ)n and write ηj = bj(θ)

for j = 1, . . . , p. We get an integral equation

0 =

∫
Rp

w(t)H(t) exp

 p∑
j=1

ηj tj

 d ν(t) for all θ ∈ Θ, (23)

5Here we follow the notational convention from Remark 1 and even with d > 1 we write x = (x1, . . . , xn)
T ∈

Rdn instead of x =
(
xT
1 , . . . , x

T
n

)T ∈ Rdn for simplicity.
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and by our assumption of non-empty interior of the transformed parameter space, this must

be also true for all (η1, . . . , ηp)
T in an open subset of Rp. The right hand side of (23) is

an integral transform of the function w(t)H(t) that can be interpreted as a special Laplace

transform. This transform can be shown to be injective, meaning that (23) already implies

w(t)H(t) = 0 for ν-almost all t for all θ ∈ Θ, or equivalently w(T ) = 0 almost surely for all

θ ∈ Θ as we wanted to show.

Note that the random variables Xi in Theorem 15 can be one-dimensional (that is, d = 1),

or also d-dimensional random vectors with d > 1. The assumption of affine independence

in Theorem 15 is needed to guarantee that the density f cannot be reparametrized using a

smaller number of parameters.

Example 1.18. For the distribution N(µ, σ2) with p = 2 and θ =
(
µ, σ2

)T
we have

f(x;θ) =
exp

(
−µ2/(2σ2)

)
√
2π σ2

exp

(
µ

σ2
x− 1

2σ2
x2
)

for x ∈ R.

Take

b1(θ) =
µ

σ2
, b2(θ) = − 1

2σ2
,

and

R1(x) = x, R2(x) = x2.

The pair of functions {b1(θ), b2(θ)} is affinely independent. The transformed parameter space{
(b1(θ), b2(θ))

T : θ ∈ Θ
}
=

{(
µ

σ2
,− 1

2σ2

)T

:
(
µ, σ2

)T ∈ R× (0,∞)

}
= R× (−∞, 0)

has non-empty interior in R2. Thus, Theorem 15 applies and we get that

S =

(
n∑

i=1

R1(Xi),

n∑
i=1

R2(Xi)

)T

=

(
n∑

i=1

Xi,

n∑
i=1

X2
i

)T

is a complete minimal sufficient statistic for θ based on X1, . . . , Xn sampled independently

from N(µ, σ2). △

The main relevance of complete and minimal sufficient statistics rests in the following three

crucial theorems. They substantially simplify the search for the best unbiased estimators.

Theorem 16 (Rao-Blackwell). Let S be a sufficient statistic and let a(θ) be a parametric

function of θ ∈ Θ ⊆ Rp. Let T = T (X) be any statistic that satisfies varθ T < ∞ for all

θ ∈ Θ. Denote U = E (T | S). Then U = U(S) is also a statistic which satisfies

Eθ U = Eθ T and Eθ (T − a(θ))2 ≥ Eθ (U − a(θ))2 for all θ ∈ Θ.

The last inequality turns to an equality if and only if U = T almost surely.
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Proof. Because S is sufficient, the conditional distribution of X given S does not depend on

θ. Hence also the conditional distribution of T = T (X) given S does not depend on θ, and

so also the expression for the random variable U = E (T | S) does not depend on θ. We have

verified that U is a statistic. For U we have

Eθ U = Eθ E (T | S) = Eθ T for all θ ∈ Θ,

and

Eθ (T − a(θ))2 = Eθ (T − U + U − a(θ))2

= Eθ (T − U)2 + Eθ (U − a(θ))2 + 2Eθ (T − U) (U − a(θ))

= Eθ (T − U)2 + Eθ (U − a(θ))2 + 2Eθ E ((T − U(S)) (U(S)− a(θ)) | S)

= Eθ (T − U)2 + Eθ (U − a(θ))2 + 2Eθ (U(S)− a(θ))E ((T − E (T | S)) | S)

= Eθ (T − U)2 + Eθ (U − a(θ))2 + 2Eθ (U(S)− a(θ)) (E (T | S)− E (T | S))

= Eθ (T − U)2 + Eθ (U − a(θ))2 ≥ Eθ (U − a(θ))2 .

The inequality turns to equality if and only if Eθ (T − U)2 = 0, in which case T = U almost

surely.

In words, the Rao-Blackwell theorem says that by conditioning on a sufficient statistic,

any initial statistic T can be changed to a statistic with the same expectation, but a smaller

mean squared error. If T is unbiased for a(θ), then also U must be unbiased for a(θ), and

Theorem 16 guarantees that the variance of U cannot be larger than that of T . In the

particular situation with T unbiased, Theorem 16 takes a quite familiar form. Indeed, using

the law of total variance we know that

varθ T = varθ E (T | S) + Eθ var (T | S) = varθ U + Eθ var (T | S) ≥ varθ U.

We have used that var (T | S) ≥ 0 almost surely, with equality if and only if T = E (T | S) =
U almost surely. This is precisely the Rao-Blackwell theorem for T unbiased for a(θ).

Example 1.19. Let X1, . . . , Xn be independent from a distribution with a density f(·;θ)
w.r.t. a σ-finite measure µ on R, where θ ∈ Θ ⊆ Rp. Denote by X(1) ≤ · · · ≤ X(n) the

ordered random sample, and let S =
(
X(1), . . . , X(n)

)T
. The density of X = (X1, . . . , Xn)

T

w.r.t. the product measure of n copies of µ is

n∏
i=1

f(xi;θ) =

n∏
i=1

f(x(i);θ) for all x1, . . . , xn ∈ R,

where by x(1) ≤ · · · ≤ x(n) we denoted the ordered points x1, . . . , xn. By the Neyman

factorization criterion from Theorem 10 we therefore see that the ordered random sample S

is always a sufficient statistic for Θ.
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Take now a parametric function a(θ), and suppose that T = h(X1) is unbiased for a(θ),

i.e. Eθ h(X1) = a(θ) for all θ ∈ Θ. By the Rao-Blackwell theorem, we can improve T by

conditioning on the ordered random sample S. We obtain

E (T | S) = E
(
h(X1) | X(1), . . . , X(n)

)
= E

(
h(Xi) | X(1), . . . , X(n)

)
for all i = 1, . . . , n,

(24)

because by the assumption of independence and identical distribution, the random vector X

is exchangeable, meaning that each permutation of its elements has the same distribution.

By summing all the equations in (24) we obtain

E (T | S) = 1

n

n∑
i=1

E
(
h(Xi) | X(1), . . . , X(n)

)
=

1

n
E

(
n∑

i=1

h(X(i)) | X(1), . . . , X(n)

)

=
1

n

n∑
i=1

h(X(i)) =
1

n

n∑
i=1

h(Xi).

The second equality follows because
∑n

i=1 h(Xi) =
∑n

i=1 h(X(i)) almost surely, the third one

because
∑n

i=1 h(X(i)) is a function of S. The Rao-Blackwell theorem gives that whenever

T = h(X1) is unbiased for a(θ), its symmetrized version Un =
∑n

i=1 h(Xi)/n is (of course)

also unbiased for a(θ), and the variance of Un is smaller than that of T .

This observation can be generalized substantially. Suppose for example that h(X1, X2) is

unbiased for a(θ). Using an argument similar to (24) we obtain that

Un =
1(
n
2

) ∑
1≤i1<i2≤n

h(Xi1 , Xi2)

is unbiased for a(θ) too, and its variance cannot exceed that of h(X1, X2). Analogous conclu-

sions hold true for statistics of the type h(X1, . . . , Xm) with m ≤ n. Symmetric functions of

the data that can be written as Un above are called U-statistics. They play an important role

in the estimation theory. Overall, the Rao-Blackwell theorem says that whenever the random

vector X has an exchangeable distribution, symmetrization w.r.t. the data always improves

the estimators. △

We saw that the Rao-Blackwell theorem gives a way to improve unbiased estimators by

means of conditioning. This brings a natural question: under what conditions can we guar-

antee that the improved estimator U is already the best unbiased? An answer is given in the

following two theorems.

Theorem 17 (first Lehmann-Scheffé theorem). Let T be an unbiased estimator of a paramet-

ric function a(θ) such that varθ T <∞ for all θ ∈ Θ. Let S be a complete sufficient statistic,

and define U = E (T | S). Then U is the unique best unbiased estimator of a(θ).
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Proof. By Theorem 16 we know that U = U(S) is an unbiased estimator of a(θ) with the

property varθ U ≤ varθ T . For any other unbiased estimator Z of a(θ) with finite variance we

can use Theorem 16 again and find V = E (Z | S). But then both U and V are functions of

S only, and we have

Eθ (U(S)− V (S)) = a(θ)− a(θ) = 0 for all θ ∈ Θ.

Because S is complete, necessarily U = V almost surely, and thus also varθ U = varθ V for

each θ ∈ Θ.

Theorem 18 (second Lehmann-Scheffé theorem). Let S be a complete sufficient statistic, and

let W = g(S) be an unbiased estimator of a parametric function a(θ) such that varθW <∞
for all θ ∈ Θ. Then W is the unique best unbiased estimator of a(θ).

Proof. Since W is a function of S, we have E (W | S) = W . The rest follows directly from

Theorem 17.

Lehmann-Scheffé’s theorems guide the construction of best unbiased estimators. Given

that a complete sufficient statistic S is known, to find a unique BUE it is enough to either

condition any unbiased estimator T on S, or to find any unbiased function of S.

Example 1.20. For X1, . . . , Xn independent from N
(
µ, σ2

)
with

(
µ, σ2

)T
= θ we know by

Example 1.18 that S =
(∑n

i=1Xi,
∑n

i=1X
2
i

)T
is a complete minimal sufficient statistic for θ.

We also know that for a1(θ) = µ, the sample mean X̄n is an unbiased estimator of a1(θ) that

can be written as a function of S. By Theorem 18 we see that X̄n is the BUE of µ in our

model. Analogously, for a2(θ) = σ2 we know that the sample variance S2
n is a an unbiased

estimator of a2(θ) that is also a function of S. Thus, it is the BUE of σ2 for a random sample

from a normal distribution.

Comparing our results with Example 1.12 and the Rao-Cramér bound from Theorem 8 we

see that X̄n attains the Rao-Cramér bound and thus it must be the BUE for µ. But, for S2
n

we have by [6, Theorem 2.8] that

varθ S
2
n =

2σ4

n− 1
>

2σ4

n
,

where on the right hand side we have the corresponding Rao-Cramér bound for σ2. We see

that even though the Rao-Cramér bound is not attained, there is no better unbiased estimator

of σ2 in our model than the sample variance. △
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1.4 Ancillary statistics

In connection with the sufficient statistics, sometimes also the term ancillarity appears. An-

cillary statistics are in a sense the opposite to sufficient statistics. While we saw that sufficient

statistics exhaust the complete information about a parameter θ, ancillary statistics do not

carry any information about θ.

Definition 10. Let the distribution of a random vector X depend only on parameter θ ∈ Θ.

A statistic T = T (X) is called ancillary for parameter θ if the distribution of T does not

depend on θ.

An interesting result about ancillary statistics is the following theorem.

Theorem 19 (Basu). Let U = U(X) be a complete sufficient statistic, and let V = V (X)

be an ancillary statistic for parameter θ. Then U is independent of V for each θ ∈ Θ.

Proof. The proof is given only for the situation of discrete distribution of X; the general case

is analogous, yet requires to work with conditional distributions.

Because by our assumptions the distribution of V does not depend on θ, we can denote

Pθ (V = v) = h(v)

for some function h that does not depend on θ. Since U is a sufficient statistic, the conditional

distribution Pθ (V = v | U = u) also does not depend on θ. Thus, we can also denote

Pθ (V = v | U = u) = g(u,v) (25)

for a function g that also does not depend on θ. Combining both these results and noting

that U is a statistic, we found that also the function x 7→ g(U(x),v)−h(v) does not depend
on θ, and therefore the random variable g(U ,v) − h(v) = g(U(X),v) − h(v) is a statistic.

For its expectation, we have

Eθ g(U ,v) =
∑
u

g(u,v)Pθ (U = u) =
∑
u

Pθ (V = v | U = u)Pθ (U = u)

=
∑
u

Pθ (V = v,U = u) = Pθ (V = v) = h(v),

where the sum is taken over those u such that Pθ(U = u) > 0. Hence,

Eθ (g(U ,v)− h(v)) = 0 for all θ ∈ Θ.

We assumed that U is complete, meaning that necessarily g(U ,v) = h(v) almost surely for

all θ ∈ Θ. Thus, g(U ,v) is almost surely a constant h(v) that depends only on v. Plugging

this into (25) we get that also for any u such that Pθ(U = u) > 0 we have that

Pθ (V = v | U = u) = g(u,v) = h(v) = Pθ (V = v)
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does not depend on u for all θ ∈ Θ. That is equivalent with the independence of U and V

for each θ ∈ Θ.

Example 1.21. Let X1, . . . , Xn be independent from N(µ, σ2) with µ = θ ∈ R an unknown

parameter and σ2 > 0 fixed and known. The sample mean X̄n is a complete sufficient statistic

for θ by Theorem 15. The sample variance

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
=

1

n− 1

n∑
i=1

(Xi − µ)− 1

n

n∑
j=1

(Xj − µ)

2

can be written as a function the random sample X1−µ, . . . ,Xn−µ from distribution N(0, σ2)

that does not depend on θ. Thus, S2
n is ancillary for θ. By Theorem 19 the sample mean

and the sample variance must be independent of each other. This result was shown, in a

completely different way, already in [6, Theorem 2.8]. △

2 Maximum likelihood estimation

2.1 The maximum likelihood method

In the second large section of this course, we study the principles of maximum likelihood-

based procedures. The main idea of maximum likelihood is relatively simple. Our task is

to estimate the unknown parameter θ ∈ Θ, based on a realisation of a random vector X

whose distribution depends on θ. Typically, the random vector X has elements forming a

random sample of d-dimensional vectors with d ∈ N, but this is not always needed. Denote

the observed value of X by x ∈ Rdn. Since all we know about the parameter θ is contained

in x, we can ask how much “likely” it was that, for a given value of a parameter θ ∈ Θ, the

vector x was observed. If the distribution of X is discrete, we can evaluate the probability of

observing x directly, and consider Pθ (X = x). The higher value this function of θ takes, the

more “probable” it was that the true distribution ofX corresponded to the parameter θ. The

maximizer of the function Θ → [0,∞) : θ 7→ Pθ (X = x) is called the maximum likelihood

estimator of θ.

Take now the situation when the distribution of X is absolutely continuous w.r.t. the

Lebesgue measure ν on Rdn, for each θ ∈ Θ. Now, the evaluation of Pθ (X = x) directly does

not help, as the probability of observing any fixed x ∈ Rdn is zero, for any θ ∈ Θ. Instead of

considering the probability directly, we therefore consider the density f(x;θ) as a surrogate for

the probability. The intuition behind this comes from the Lebesgue differentiation theorem,

roughly stating that for ν-almost all x ∈ Rdn we have that

lim
ε→0+

∫
B(x,ε) f(y;θ) d ν(y)∫

B(x,ε) 1 d ν(y)
= f(x;θ). (26)
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Here, B(x, ε) is the closed ball in Rdn centred at x with radius ε > 0. The numerator on the

left hand side in (26) is the probability Pθ (X ∈ B(x, ε)); the denominator is the volume of the

ball B(x, ε). We see that taking the density ofX instead of the exact probability Pθ (X = x),

we in fact approximate the probability ofX lying “near” x, and therefore basing our inference

on the value of the density is still well interpretable. Again, any maximizer of the density of

X as a function of θ ∈ Θ is called the maximum likelihood estimator of θ.

Our motivation leads us to the following important definition.

Definition 11. Let X = (X1, . . . , Xn)
T be a random vector whose distribution depends on

the parameter θ ∈ Θ. Suppose that the density f(x;θ) of X exists w.r.t. some σ-finite

measure ν, for each θ ∈ Θ. Then, for a fixed value of x, is the function

Θ → [0,∞) : θ 7→ f(x;θ)

called the likelihood function of θ at point x ∈ Rdn. Any value θ̂n that maximizes the

likelihood function of θ is called the maximum likelihood estimator (MLE) of θ.

The maximum likelihood estimator is a function of x that does not depend on θ. We

consider the maximum likelihood estimator from two different perspectives. From a practical

point of view, once the observed value x of X is known, the MLE is a function of x, and

is thus a fixed value in Θ. From the theoretical perspective, it is important to understand

how MLE behaves when the distribution of X is involved. In this case, we do not take any

particular value of x but instead we consider X to be random, and explore the distribution

of the MLE being a function of X. Thus, the MLE is still a function of x, but this time we

do not restrict to the particular observed value x, but let x to be random and distributed as

X. In this way, the MLE is random and therefore, it is a statistic.

Very often, the random vectorX has elements forming a random sample from a distribution

with a density f(x;θ) with x ∈ Rd. In that case, the joint density of X takes the form of a

product f(x;θ) =
∏n

i=1 f(xi;θ) with x = (x1, . . . , xn)
T ∈ Rdn. This function is cumbersome

to maximize, as taking a derivative w.r.t. θ of a multiple product is tedious. Therefore, a

simple trick is used. Because the logarithm log is a strictly increasing function on (0,∞), we

first take the logarithm of f(x;θ), and only then optimize for θ. This transformation does

not change the arguments of maxima of the likelihood function, and is much easier to work

with as

log
n∏

i=1

f(xi;θ) =
n∑

i=1

log f(xi;θ).

The logarithm of a density is already well known to us. In the form of scores and the score

function we already encountered it in (17) in the theory of point estimation.
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Definition 12. The logarithm of the likelihood function f(x;θ) is called the log-likelihood

function of θ ∈ Θ ⊆ Rp. For x ∈ Rdn fixed it is denoted by

Ln(θ;x) = log f(x; θ).

The map Ln is formally a function of both θ and x. Since x is, however, often held fixed, we

will also frequently denote

Ln(θ) = Ln(θ;x)

where no confusion can arise. If the function Ln is differentiable (as a function of θ =

(θ1, . . . , θp)
T), the vector of its partial derivatives

∂Ln(θ)

∂θ
=

(
∂Ln(θ)

∂θ1
, . . . ,

∂Ln(θ)

∂θp

)T

is called the score function of θ. The system of p equations

∂Ln(θ)

∂θ
= 0 (27)

is called the system of likelihood equations.

If we can write the system of likelihood equations, any MLE θ̂n of θ must be a root of this

system. We therefore usually search for MLE by solving (27).

Example 2.1. Let X1, . . . , Xn be independent from N
(
µ, σ2

)
and let θ =

(
µ, σ2

)T ∈ R ×
(0,∞). The density of X = (X1, . . . , Xn)

T w.r.t. the n-dimensional Lebesgue measure is for

x = (x1, . . . , xn)
T ∈ Rn given by

f(x;θ) =

n∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

The log-likelihood function of θ is

Ln(θ) = log f(x;θ) = −n
2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(xi − µ)2 .

This function is differentiable in θ, and we can express the likelihood equations as

∂Ln(θ)

∂µ
=

1

σ2

n∑
i=1

(xi − µ) ,

∂Ln(θ)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2 .

Solving the system (27) we obtain a root

µ̂n =
1

n

n∑
i=1

xi, σ̂2n =
1

n

n∑
i=1

(xi − µ̂n)
2 . (28)
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To verify that θ̂n =
(
µ̂n, σ̂2n

)T
is indeed the maximizer of the likelihood, consider the Hessian

matrix of Ln. This is the matrix of all second partial derivatives of Ln w.r.t. the elements of

θ. We obtain

∂2Ln(θ)

∂θ∂θT
=

∂2Ln(θ)
∂µ2

∂2Ln(θ)
∂µ∂(σ2)

∂2Ln(θ)
∂(σ2)∂µ

∂2Ln(θ)
∂(σ2)2

 =

(
− n

σ2 − 1
σ4

∑n
i=1 (xi − µ)

− 1
σ4

∑n
i=1 (xi − µ) n

2σ4 − 1
σ6

∑n
i=1 (xi − µ)2

)
.

Plugging in the solution to the likelihood equations θ̂n we get

∂2Ln(θ̂n)

∂θ∂θT
=

− n

σ̂2
n

0

0 − n

2
(
σ̂2
n

)2

 . (29)

This matrix is negative definite, meaning that θ̂n is a local maximum of Ln over θ ∈ Θ.

Since it is the only local extreme, it is easy to see that θ̂n is indeed the maximum likelihood

estimator of θ. Our estimator in (28) was considered for fixed observed values x ∈ Rn; to

obtain the true maximum likelihood estimator of θ, we need to replace the fixed observed

values x in (28) by the random vector X again, and conclude that our maximum likelihood

estimator of θ takes the form

θ̂n =

(
X̄n,

n− 1

n
S2
n

)T

,

where as usual, X̄n and S2
n stand for the sample mean and the sample variance ofX. Note that

maximum likelihood estimation does not guarantee unbiased estimators of θ; our estimator

σ̂2n is a biased one. △

Observe that in formula (29) it is not the first time that we see the Hessian of the log-density

of X; we already encountered it in Example 1.11 when we computed the Fisher information

matrix of N(µ, σ2). More generally, from Theorem 7 we see that the negative expected Hessian

is, in fact, the Fisher information matrix of θ. This gives another interpretation to the Fisher

information matrix — the “more negative definite” the Hessian is at θ ∈ Θ, the “more

positive definite” the Fisher information matrix Jn(θ) is. That is, high Fisher information

corresponds to “more peaked” density f(x;θ) as a function of θ. High peakedness of f in

turn, makes it easier to estimate θ from the data using the maximum likelihood principle.

These arguments will recur several times in the theory that follows.

Our first observation about the maximum likelihood method concerns the behaviour of

MLE and reparametrizations. That is, we first transform the parameter θ using a function

u : Θ → Rk to a different parameter τ = u(θ), then express the likelihood as a function of τ ,

and finally find the MLE of τ by maximizing the likelihood w.r.t. τ . If the transformation u

is one-to-one, the previous procedure is simple and naturally

Ln(θ) = Ln(u
−1(τ )) for all θ ∈ Θ,
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meaning that Ln is maximized in θ at θ̂n if and only if it is maximized in τ in τ̂n = u(θ̂n).

We shall, however, prove a more general invariance principle, which covers also the case when

u is not injective. In that case, we need to specify what exactly do we mean by the likelihood

w.r.t. τ , as several values of θ can correspond to a single value τ . Therefore, define for

τ ∈ Rk its pre-image via u as u−1(τ ) = {θ ∈ Θ : u(θ) = τ}, see also (18). Note that u−1(τ )

may be an empty set. The induced log-likelihood function of τ is defined as

L∗
n(τ ) = sup

θ∈u−1(τ )

Ln(θ) for τ ∈ Rk. (30)

In words, we set the likelihood of τ to be the maximum likelihood of those θ that map to

τ . Recall that the supremum of an empty set is −∞, meaning that in the case when no θ

maps to τ , L∗
n(τ ) = −∞. Any maximizer of the induced log-likelihood is called the maximum

likelihood estimator of the parameter τ .

Theorem 20 (Zehna’s invariance principle). Let a random vector X have a density f(x;θ)

w.r.t. some σ-finite measure, with θ ∈ Θ ⊆ Rp. Let u : Θ → Rk. If θ̂n is the maximum

likelihood estimator of θ, then the maximum likelihood estimator of τ = u(θ) is τ̂n = u(θ̂n).

Proof. The collection of sets
{
u−1(τ ) : τ ∈ Rk

}
forms a partitioning of the parameter space

Θ. Since θ̂n ∈ Θ is the maximum likelihood estimator of θ, it maximizes the log-likelihood

over Θ. Then for τ̂n = u(θ̂n) we have that θ̂n ∈ u−1(τ̂n), and we can write

Ln(θ̂n) ≤ sup
θ∈u−1(τ̂n)

Ln(θ) = L∗
n(τ̂n) ≤ sup

τ∈Rk

L∗
n(τ )

= sup
τ∈Rk

sup
θ∈u−1(τ )

Ln(θ) = sup
θ∈Θ

Ln(θ) = Ln(θ̂n).

In the first inequality we used that θ̂n ∈ u−1(τ̂n). In the second last equality we used that

the sets u−1(τ ) cover the whole parameter space Θ. In the last equality we use that θ̂n is

MLE for θ. It follows that L∗
n(τ̂n) = supτ∈Rk L∗

n(τ ), which means that τ̂n is the maximum

likelihood estimator of τ . Because θ̂n ∈ u−1(τ̂n), we see that u(θ̂n) = τ̂n as we wanted to

show.

Theorem 20 is valuable not only because it allows us to determine the maximum likelihood

estimator of a one-to-one transformation of θ. It is important especially because the map u

does not have to be one-to-one. Consider the following example.

Example 2.2. Let X = (X1, . . . , Xn)
T be a random sample from N(µ, σ2), where θ =(

µ, σ2
)T ∈ Θ = R× (0,∞). By Example 2.1, for x = (x1, . . . , xn)

T ∈ Rn the observed values

of X, the log-likelihood of θ takes the form

Ln(θ) = −n
2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(xi − µ)2 .
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Say that we are interested only in parameter µ, and σ2 is a nuisance parameter. We thus

choose a transform u : Θ → R :
(
µ, σ2

)T 7→ µ. Theorem 20 allows us to simplify the log-

likelihood. Because u−1(µ) corresponds to the interval {µ} × (0,∞) ⊂ Θ for each µ ∈ R, we
can write the induced log-likelihood of µ as

L∗
n(µ) = sup

σ2>0

Ln

((
µ, σ2

)T)
= Ln

(µ,∑n
i=1 (xi − µ)2

n

)T


= −n
2
log

(
2π
∑n

i=1 (xi − µ)2

n

)
− n

2
.

(31)

By Theorem 20 we know that maximizing this likelihood function over µ ∈ R, we obtain

the maximizer
∑n

i=1 xi/n, which leads to the maximum likelihood estimator of µ in the form

µ̂n = X̄n as we obtained in Example 2.1. △

Of course, the log-likelihood in Example 2.2 is easy to maximize also simultaneously in

both µ and σ2 as we did in Example 2.1. What is interesting about the approach that we

took in Example 2.2 is that this application of Zehna’s principle allows us to reduce also fairly

complex maximum likelihood problems into simpler (lower-dimensional) optimization tasks.

The one-dimensional likelihood function in (31) is easier to visualise or understand than the

full log-likelihood Ln(θ). We will return to this idea with the notion of the profile likelihood

in Section 2.4.

An important question is that of consistency of the maximum likelihood estimators. As a

first step, we have the following result.

Theorem 21. For each n ∈ N, let X = (X1, . . . , Xn)
T be a random vector such that

X1, . . . , Xn form a random sample of d-variate random vectors from a distribution which

depends on θ ∈ Θ. Let f(x1;θ) for x1 ∈ Rd be the density of X1 w.r.t. a σ-finite measure

µ on Rd. Suppose that the support M =
{
x1 ∈ Rd : f(x1;θ) > 0

}
does not depend on θ ∈ Θ,

and assume that f(x1;θ1) = f(x1;θ2) for µ-almost all x1 ∈ Rd if and only if θ1 = θ2. Denote

by θX the true value of the parameter from which X1, . . . , Xn are sampled. Then for any fixed

θ ∈ Θ such that θ ̸= θX we have that

PθX

(
n∏

i=1

f(Xi;θX) >
n∏

i=1

f(Xi;θ)

)
−−−→
n→∞

1.

Proof. The inequality
∏n

i=1 f(Xi;θX) >
∏n

i=1 f(Xi;θ) is equivalent with

1

n

n∑
i=1

log
f(Xi;θ)

f(Xi;θX)
< 0. (32)
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This is an average of independent and identically distributed random variables with expecta-

tion

EθX log
f(Xi;θ)

f(Xi;θX)
< log EθX

f(Xi;θ)

f(Xi;θX)
= log

∫
M

f(xi;θ)

f(xi;θX)
f(xi;θX) dµ(xi)

= log

∫
Rd

f(xi;θ) dµ(xi) = log 1 = 0.

(33)

The inequality in (33) follows from Jensen’s inequality applied to the strictly concave function

log(x) for x ∈ (0,∞). The inequality is strict because of our identifiability assumption, which

guarantees that f(Xi;θ)/f(Xi;θX) is not a constant almost surely. Indeed, because θX ̸= θ,
we know that f(x1;θ)/f(x1;θX) ̸= 1 in a set of x1 ∈ Rd of positive µ-measure. The ratio

f(x1;θ)/f(x1;θX) also cannot take any other constant value λ ̸= 1 because in that case

1 =

∫
Rd

f(x1;θ) dµ(x1) = λ

∫
Rd

f(x1;θX) dµ(x1) = λ,

a contradiction. The equality on the second line of (33) follows from our assumption about

the common support of all densities in the system. From (33) we see that in (32) we have an

average of independent identically distributed random variables with a negative expectation.

Thus, the law of large numbers applies, and almost surely as n → ∞ the left hand side of

(32) converges to a negative quantity. Note that this argument applies also to the case when

the expectation is −∞, in which case it can be shown that the sum on the left hand side

of (32) converges almost surely to −∞. The proof of the last claim follows via a truncation

argument, i.e. by applying the standard law of large numbers to the sequence

1

n

n∑
i=1

max

{
−M, log

f(Xi;θ)

f(Xi;θX)

}
for M > 0,

and then taking M → ∞; for details see [3, Theorem 2.4.5].

Theorem 21 is very general, but does not immediately guarantee the consistency of the

maximum likelihood estimator, since the limit expression is valid only for a single parameter

value θ ̸= θX fixed. It therefore guarantees consistency only if the set Θ has finitely many

elements, which is a rare situation. To prove better results about the consistency of MLE,

more assumptions need to be introduced, and the results become more elaborate. We will

see some of such results in our separate treatment of one-dimensional, and multi-dimensional

MLE, respectively.

We now turn to the additional properties of the maximum likelihood estimators and derived

quantities. We begin with the simpler case of a parameter of dimension p = 1.
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2.2 Properties of MLE — one-dimensional parameter

Throughout this section, we need the following assumptions.

(P1) The parametric space Θ ⊆ R contains the true value of the parameter θX in its interior.

In other words, there exists an open interval Θ0 ⊆ Θ such that θX ∈ Θ0.

(P2) The random vector X = (X1, . . . , Xn)
T corresponds to a random sample X1, . . . , Xn,

where the random variable Xi has a density f(x; θ) w.r.t. a σ-finite measure µ on Rd.

(P3) The support M =
{
x ∈ Rd : f(x; θ) > 0

}
does not depend on θ ∈ Θ.

(P4) For any θ1, θ2 ∈ Θ we have that f(x; θ1) = f(x; θ2) for µ-almost all x ∈ Rd if and only

if θ1 = θ2.

Conditions (P1)–(P4) are again quite natural. (P1) is here to be able to differentiate the

likelihood. Condition (P2) ensures that the joint density of X takes the form f(x; θ) =∏n
i=1 f(xi; θ) when considered w.r.t the product measure ν =

⊗n
i=1 µ. The stated form of

(P2) is still somewhat strict, and weaker versions of our results can be found in the literature

even if the data are not forming a random sample. Assumption (P3) is standard, and allows

us to avoid pathologies such as those arising in Example 1.8, where estimators outperforming

the Rao-Cramér bound exist. Finally, (P4) is a simple identifiability criterion that guarantees

that no two different parameter values can correspond to the same density. Note that for

p = 1, these conditions are exactly analogous to the assumptions of Theorem 21. For p = 1,

we can however prove more about the consistency of the maximum likelihood estimator.

Theorem 22. Let the conditions (P1)–(P4) be satisfied, and in addition suppose that for

every θ ∈ Θ0 the derivative f ′(x; θ) = ∂f(x;θ)
∂θ exists for µ-almost all x ∈M . Then as n→ ∞

with probability converging to one does the likelihood equation

∂Ln(θ;x)

∂θ
= 0 (34)

have a root θ̂n(x) such that the estimator θ̂n(X) converges to the true value θX in probability.

Proof. Let ε > 0 be small enough so that [θX − ε, θX + ε] ⊂ Θ0. Set

Sn =
{
x ∈ Rdn : Ln(θX ;x) > Ln(θX − ε;x) and Ln(θX ;x) > Ln(θX + ε;x)

}
.

Here, the points θX − ε and θX + ε are both elements of Θ and are fixed. For AC = Ω \A, we
use the simple inequality P(A ∩B) = 1− P(AC ∪BC) ≥ 1− P(AC)− P(BC) to get that

PθX (X ∈ Sn) = PθX ((Ln(θX ;X) > Ln(θX − ε;X)) ∩ (Ln(θX ;X) > Ln(θX + ε;X)))

≥ 1− PθX (Ln(θX ;X) ≤ Ln(θX − ε;X))− PθX (Ln(θX ;X) ≤ Ln(θX + ε;X))
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where the right hand side converges to 1 because of Theorem 21. We obtain that

PθX (X ∈ Sn) −−−→
n→∞

1.

Take now x ∈ Sn. The likelihood Ln(θ;x) as a function of θ takes a higher value at a

point θX inside the interval [θX − ε, θX + ε] than at any of the two points of its boundary.

Because of our assumption, the function Ln(θ;x) is differentiable in θ ∈ Θ0, so it must be

also continuous in θ ∈ Θ0. Therefore, it must attain a local maximum at some θ̂εn(x) ∈
(θX − ε, θX + ε), and as a differentiable function, at θ = θ̂εn(x) it must satisfy equation (34).

Clearly,
∣∣∣θ̂εn(x)− θX

∣∣∣ < ε.

Overall, we have found that for any ε > 0 small enough, there exists a sequence
{
θ̂εn (X)

}∞

n=1

such that

PθX

(∣∣∣θ̂εn(X)− θX

∣∣∣ < ε
)
−−−→
n→∞

1. (35)

It remains to show that such a sequence can be found also independent of ε.

Let θ̂n(x) be a root of the likelihood equation (34) as above that is the closest to θX . In case

there is an infinite sequence of roots, denote by an(x) the infimum of distances |θX − rn(x)|
over all roots rn(x) of (34), and take as θ̂n(x) any root of (34) satisfying

∣∣∣θX − θ̂n(x)
∣∣∣ ≤

an(x) + 1/n. Such a root exists by the definition of an infimum, so θ̂n(x) is well defined.

Certainly θ̂n(x) does not depend on ε, and at the same time
∣∣∣θ̂n(x)− θX

∣∣∣ ≤ ∣∣∣θ̂εn(x)− θX

∣∣∣+
1/n. Allowing x to be random again, from (35) we get that for any ε > 0 small enough

PθX

(∣∣∣θ̂n(X)− θX

∣∣∣ < ε+ 1/n
)
≥ PθX

(∣∣∣θ̂εn(X)− θX

∣∣∣ < ε
)
−−−→
n→∞

1.

We get that
∣∣∣θ̂n(X)− θX

∣∣∣ P−−−→
n→∞

0 as we wanted to show.

It is important to give several remarks about Theorem 22.

1. It is not claimed that the maximum likelihood estimator is a consistent estimator of θ.

The theorem only says that there exists a sequence of local maxima of the likelihood

functions that converges to the true value of θ. These local maxima do not have to be

global, and in fact it is possible to construct examples where some sequence of local

maxima is consistent, but the corresponding sequence of the global maxima (that is,

the sequence of the maximum likelihood estimators) is not.

2. Even though Theorem 22 ensures that some sequence of local maxima of the likelihood

function is consistent, in practice we do not know which one, because, of course, the

true value θX is not known. The only exception is the case when there is only a single

local maximum of the likelihood function.
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3. Theorem 22 also does not guarantee the existence of a root θ̂n(x) as in its statement

for all x, or even if the sample size n is fixed for any given x ∈ Rdn. It only asserts that

as n→ ∞, with probability increasing to one, a consistent root can be found.

We are now interested in the distributional asymptotics of the maximum likelihood esti-

mator. Before stating our main result, we need the following definition.

Definition 13. We say that a sequence of random variables {Yn}∞n=1 is bounded in probability

if for every ε > 0 there exists K > 0 and an index n0 ∈ N such that for all n ≥ n0 we have

P (|Yn| > K) < ε.

For the proofs of the following theorems, a lemma will be useful.

Lemma 7. The following is true:

(i) If the sequence {Yn}∞n=1 of random variables converges in distribution, then it is bounded

in probability.

(ii) Let {Yn}∞n=1 and {Zn}∞n=1 be sequences of random variables that satisfy |Zn| ≤ |Yn| for
all n ∈ N almost surely. If {Yn}∞n=1 is bounded in probability, then also {Zn}∞n=1 is

bounded in probability.

Proof. The notion of boundedness in probability is clearly equivalent with the idea of tight-

ness of the laws of the corresponding random variables. On the other hand, convergence in

distribution is equivalent with weak convergence of the underlying laws. It is a well known

fact ([7, Theorem 12.8], or [2, Theorem 11.5.4]) that a weakly convergent sequence of measures

is tight, which proves part (i) of the lemma.

For part (ii) it is enough to realise that

P (|Zn| > K) ≤ P (|Yn| > K) < ε,

and setting the same K for Zn as for Yn is enough to show that {Zn}∞n=1 are bounded in

probability.

In the following theorem, the Fisher information J(θ) = J1(θ) is the information contained

in a single observation Xi.

Theorem 23. Let {f(x; θ) : θ ∈ Θ} be a regular system of densities with the Fisher infor-

mation J(θ). Suppose that the assumptions (P1)–(P4) are satisfied, and let the following be

true:

1. The partial derivative f ′′′(x; θ) = ∂3f(x;θ)
∂θ3

exists for µ-almost all x ∈M , for all θ ∈ Θ0.
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2. For all θ ∈ Θ0 we have ∫
M
f ′′(x; θ) dµ(x) = 0.

3. There exists a function H(x) ≥ 0 so that

E θXH(X1) <∞,

and ∣∣∣∣∂3 log f(x; θ)∂θ3

∣∣∣∣ ≤ H(x) for all θ ∈ Θ0 and µ-almost all x ∈M. (36)

Then the following holds true:

(i) We have
1√
n
L′
n(θX)

d−−−→
n→∞

N (0, J(θX)) . (37)

(ii) Any consistent sequence θ̂n = θ̂n(X) of roots of the system of likelihood equations sat-

isfies
√
n
(
θ̂n − θX

)
d−−−→

n→∞
N

(
0,

1

J (θX)

)
. (38)

Proof. For part (i) note that6

1√
n
L′
n(θX) =

1√
n

n∑
i=1

∂ log f(Xi; θX)

∂θ
.

The random variables ∂ log f(Xi;θX)
∂θ are independent and identically distributed for i = 1, . . . , n.

We have

EθX

∂ log f(Xi; θX)

∂θ
=

∫
M
f ′(x; θX) dµ(x) = 0

by (R3) from the regularity of the system of densities of X, and

varθX
∂ log f(Xi; θX)

∂θ
=

∫
M

(
f ′(x; θX)

f(x; θX)

)2

f(x; θX) dµ(x) = J(θX)

by (R5). Thus, it is enough to apply the central limit theorem to conclude.

The proof of part (ii) is more involved. For x fixed, we use Taylor’s expansion of L′
n(θ̂n)

around θX to get

L′
n(θ̂n) = L′

n(θX) + (θ̂n − θX)L′′
n(θX) +

1

2
(θ̂n − θX)2L′′′

n (θ
∗
n),

6For a function f(x; θ) we write ∂f(x;θX )
∂θ

for the partial derivative of f(x; θ) w.r.t. θ, taken at θ = θX .

This notation is used throughout this section.
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where θ∗n lies in the interval between θ̂n and θX . Because θ̂n is a root of the likelihood equation,

L′
n(θ̂n) = 0, and we can rewrite the previous formula into

√
n(θ̂n − θX) =

L′
n(θX)√

n

−L′′
n(θX)
n − 1

2n(θ̂n − θX)L′′′
n (θ

∗
n)
. (39)

We performed the Taylor’s expansion for x fixed, but since it can be done for any x, it must

be true also for x replaced by the random vector X. Thus, at this point it is important

to realise that all L′
n, L

′′
n and L′′′

n depend also on the random sample X. As n → ∞, the

numerator converges in distribution to N (0, J(θX)) by part (i). For the first term in the

denominator in (39) we have by the law of large numbers and Theorem 1

−L
′′
n(θX)

n
= − 1

n

n∑
i=1

∂2 log f(Xi; θX)

∂θ2
P−−−→

n→∞
−EθX

∂2 log f(X1; θX)

∂θ2
= J(θX). (40)

Finally, for the second summand in the denominator we know that because θ̂n is a consistent

estimator of θX ∈ Θ0 and θ∗n lies between θ̂n and θX , for all n large enough also θ∗n lies in Θ0

with high probability. Thus, whenever θ∗n ∈ Θ0, we can use our assumption (36) and bound∣∣∣∣ 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ =
∣∣∣∣∣ 1

2n

n∑
i=1

∂3 log f(Xi; θ
∗
n)

∂θ3

∣∣∣∣∣ ≤ 1

2n

n∑
i=1

H(Xi)
P−−−→

n→∞

EθX H(X1)

2
<∞. (41)

The last limit follows from the law of large numbers. We now use the last bound to show that

the second summand in the denominator of (39) converges to zero in probability. To show

that, let ε > 0 be given and compute

PθX

(∣∣∣∣−(θ̂n − θX

) 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ > ε

)
= PθX

(∣∣∣θ̂n − θX

∣∣∣ ∣∣∣∣ 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ > ε, θ̂n ∈ Θ0

)
+ PθX

(∣∣∣θ̂n − θX

∣∣∣ ∣∣∣∣ 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ > ε, θ̂n /∈ Θ0

)
≤ PθX

(∣∣∣θ̂n − θX

∣∣∣ ∣∣∣∣ 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ > ε, θ∗n ∈ Θ0

)
+ PθX

(
θ̂n /∈ Θ0

)
≤ PθX

(∣∣∣θ̂n − θX

∣∣∣ 1

2n

n∑
i=1

H(Xi) > ε

)
+ PθX

(
θ̂n /∈ Θ0

)
.

We wrote the first equality because simply either θ̂n lies in Θ0, or it does not. In the following

inequality we used that because θ∗n lies between θX and θ̂n, necessarily θ̂n ∈ Θ0 implies

θ∗n ∈ Θ0. In the second inequality we used the bound (41), under the condition that θ∗n ∈ Θ0.

On the right hand side of the last formula we have the random variable∣∣∣θ̂n − θX

∣∣∣ 1

2n

n∑
i=1

H(Xi)
P−−−→

n→∞
0, (42)
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where the convergence follows because by our assumption, θ̂n is a consistent estimator of θX ,

meaning that θ̂n(X)
P−−−→

n→∞
θX , and the expression with H converges in probability to a finite

constant by (41). Thus, by the continuous mapping theorem, also the product of these two

random variables converges to zero in probability. From this we have that for any ε > 0

PθX

(∣∣∣θ̂n − θX

∣∣∣ 1

2n

n∑
i=1

H(Xi) > ε

)
−−−→
n→∞

0,

but also because θ̂n is a consistent estimator of θX ∈ Θ0

PθX

(
θ̂n /∈ Θ0

)
−−−→
n→∞

0.

Combining both results we obtain

PθX

(∣∣∣∣−(θ̂n − θX

) 1

2n
L′′′
n (θ

∗
n)

∣∣∣∣ > ε

)
−−−→
n→∞

0

for each ε > 0, or that the second summand in the denominator of (39) vanishes in probability

as n→ ∞.

It remains to combine all together. We found that

L′
n(θX)√
n

d−−−→
n→∞

N (0, J(θX)) ,

−L
′′
n(θX)

n

P−−−→
n→∞

J(θX),

and

− 1

2n
(θ̂n − θX)L′′′

n (θ
∗
n)

P−−−→
n→∞

0.

By the continuous mapping theorem

−L
′′
n(θX)

n
− 1

2n
(θ̂n − θX)L′′′

n (θ
∗
n)

P−−−→
n→∞

J(θX),

and finally by the Cramér-Slutsky theorem and (39)

√
n(θ̂n − θX)

d−−−→
n→∞

N

(
0,

1

J(θX)

)
.

2.3 Asymptotically efficient estimation based on MLE

Comparing our main result of Theorem 23 with the Rao-Cramér bound of Theorem 3 we see

that the distribution of the consistent root of the likelihood equations θ̂n is approximately

N
(
θX , (nJ(θX))−1

)
,
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meaning that the mean of the asymptotic distribution is the true parameter θX and its

variance is (nJ(θX))−1 = (Jn(θX))−1. This should be compared with the Rao-Cramér bound

that states that among all unbiased estimators of θ, minimum variance that is possible to

be attained is (Jn(θX))−1. These two statements are remarkably close, and suggest that the

maximum likelihood estimation may produce consistent estimators with decent properties. In

one way this is true. But, one has to be careful when formulating such statements, especially

for the following reasons:

1. The maximum likelihood estimators are not asymptotically unbiased in the sense of

Definition 2. They only satisfy that the expectation of the asymptotic distribution of
√
n
(
θ̂n − θX

)
equals 0. But, this does not mean that they have to be unbiased, even

under the conditions of Theorems 22 and 23. The convergence in (38) to a centred

random variable in distribution does not in general imply that that EθX

√
n
(
θ̂n − θX

)
converges to 0, or that the bias of θ̂n converges to 0, as n → ∞. Strictly speaking, the

Rao-Cramér bound is therefore not applicable to maximum likelihood estimators.

2. Likewise, the variance of the asymptotic distribution in (38) does not imply that varθX θ̂n

approaches (Jn(θX))−1 as n → ∞. There are examples where the variance of θ̂n does

not even exists for any n ∈ N.

Under the assumptions of Theorem 22 we know that a consistent sequence of roots to the

likelihood equations exists. We can therefore apply Theorem 23 to this sequence, and obtain

the convergence in (38). In practice, it may be however difficult to identify the root of the

likelihood equation that results in a consistent estimator of θX , especially as the equations

can have many different roots. In that case, three standard approaches are possible to be

taken.

1. Theorem 22 was formulated for a sequence of local maxima of the likelihood function,

and thus not necessarily for the maximum likelihood estimators directly. Under ad-

ditional technical assumptions such as those given in [12], it is possible to prove that

also the sequence of maximum likelihood estimators consistently estimates θX . These

results are however much more involved than our proofs, and their conditions are not

always simple to verify.

2. Suppose that we are given any sequence of consistent estimators δn = δn(X) of θ. For

each n ∈ N pick θ̂n to be the root of the likelihood equation that is closest to δn. Such

a closest root exists by the proof of Theorem 22. By Theorem 22 we know that there

exists a consistent sequence of roots of the likelihood equations θ̃n. Because both δn and

θ̃n are consistent, we get
∣∣∣δn − θ̃n

∣∣∣ P−−−→
n→∞

|θX − θX | = 0. Hence, because θ̂n is defined
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as the closest root to δn, we have
∣∣∣δn − θ̂n

∣∣∣ ≤ ∣∣∣δn − θ̃n

∣∣∣ P−−−→
n→∞

0, and also the sequence

θ̂n is consistent for θ. Therefore, Theorem 23 can be applied to the sequence θ̂n, and

the asymptotic distribution (38) is valid.

3. Another interesting method is the refinement of an initial consistent estimator of θ by

means of the maximum likelihood estimation. We begin from the Newton-Raphson

iterative procedure for finding the roots of an equation numerically. The procedure for

finding a root of the likelihood equation

L′
n(θ) = 0 (43)

proceeds by replacing the left hand side by its Taylor’s expansion about some approxi-

mate solution θ̃n. If θ̂n denotes the root of (43), we approximate

0 = L′
n(θ̂n) ≈ L′

n(θ̃n) + (θ̂n − θ̃n)L
′′
n(θ̃n),

which leads to the approximate equality

θ̂n ≈ θ̃n − L′
n(θ̃n)

L′′
n(θ̃n)

. (44)

The Newton-Raphson procedure for finding a root of (43) proceeds iteratively. It ini-

tialises in some value θ0 ∈ Θ, and plugs θ0 instead of θ̃n into the right hand side of (44),

obtaining θ1. This procedure is usually iterated until convergence.

In our task of statistical estimation, we use the iterative procedure in (44) to improve

an initial estimator θ̃n of θ. We plug θ̃n into the right hand side of (44) and obtain the

so-called one-step Newton-Raphson estimator based on θ̃n given by

δn = θ̃n − L′
n(θ̃n)

L′′
n(θ̃n)

. (45)

It turns out that if the estimator θ̃n has nice properties, the improved estimator δn

already satisfies the asymptotic efficiency as in (38).

Theorem 24. Suppose that the assumptions of Theorem 23 are satisfied. Let θ̃n be a
√
n-

consistent estimator of θ, meaning that
√
n
(
θ̃n − θX

)
is bounded in probability. Then the

estimator δn given by (45) has the property

√
n (δn − θX)

d−−−→
n→∞

N

(
0,

1

J(θX)

)
.
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Proof. 7 The proof is similar to that of Theorem 23. We apply the Taylor expansion to the

function L′
n(θ̃n) around θX to get

L′
n(θ̃n) = L′

n(θX) + (θ̃n − θX)L′′
n(θX) +

1

2
(θ̃n − θX)2L′′′

n (θ
∗
n)

for θ∗n lying between θ̃n and θX . Plug this expression into (45) to get

δn = θ̃n −
L′
n(θX) + (θ̃n − θX)L′′

n(θX) + 1
2(θ̃n − θX)2L′′′

n (θ
∗
n)

L′′
n(θ̃n)

.

From here we express

√
n (δn − θX) =

√
n
(
θ̃n − θX

)
−

√
nL′

n(θX)

L′′
n(θ̃n)

−
√
n
(θ̃n − θX)L′′

n(θX) + 1
2(θ̃n − θX)2L′′′

n (θ
∗
n)

L′′
n(θ̃n)

= −
√
nL′

n(θX)

L′′
n(θ̃n)︸ ︷︷ ︸
=S1

+
√
n
(
θ̃n − θX

)(
1− L′′

n(θX)

L′′
n(θ̃n)

− 1

2
(θ̃n − θX)

L′′′
n (θ

∗
n)

L′′
n(θ̃n)

)
︸ ︷︷ ︸

=S2

.

We denoted the first summand on the right hand side by S1 and the second by S2. We analyse

them separately.

For S1, we have

S1 = −L
′
n(θX)/

√
n

L′′
n(θX)/n

L′′
n(θX)/n

L′′
n(θ̃n)/n

.

From (37) and (40) we have, using the Cramér-Slutsky theorem,

L′
n(θX)/

√
n

L′′
n(θX)/n

d−−−→
n→∞

N

(
0,

1

J(θX)

)
.

Next we show that the second factor in S1 converges in probability to 1. To see this, expand

L′′
n(θX) around θ̃n to get

L′′
n(θX) = L′′

n(θ̃n) + (θX − θ̃n)L
′′′
n (θ

∗∗
n ),

for θ∗∗n between θX and θ̃n. Rewriting the last formula we get

1

n
L′′
n(θX)− 1

n
L′′
n(θ̃n) = (θX − θ̃n)

1

n
L′′′
n (θ

∗∗
n ).

We assumed that θ̃n is
√
n-consistent, which gives directly that θ̃n

P−−−→
n→∞

θX . The term

L′′′
n (θ

∗∗
n )/n is dominated by a random variable that converges in probability to a finite con-

stant, as can be proved in the same way as in (41) and we can conclude as in (42) that

1

n
L′′
n(θX)− 1

n
L′′
n(θ̃n) = (θX − θ̃n)

L′′′
n (θ

∗∗
n )

n

P−−−→
n→∞

0.

7This proof was not done at the lectures.
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Because by (40) we have that

− 1

n
L′′
n(θX)

P−−−→
n→∞

J(θX),

necessarily also

− 1

n
L′′
n(θ̃n)

P−−−→
n→∞

J(θX), (46)

and we can use the continuous mapping theorem to assert the desired

L′′
n(θX)/n

L′′
n(θ̃n)/n

P−−−→
n→∞

1. (47)

This concludes our analysis of S1, as the Cramér-Slutsky theorem gives

S1 = −L
′
n(θX)/

√
n

L′′
n(θX)/n

L′′
n(θX)/n

L′′
n(θ̃n)/n

d−−−→
n→∞

N

(
0,

1

J(θX)

)
.

To finish the proof of the theorem, it remains to show that S2
P−−−→

n→∞
0. By our assumption

of
√
n-consistency of θ̃n, we know that

√
n
(
θ̃n − θX

)
is bounded in probability. Thus, it is

enough to show
L′′
n(θX)

L′′
n(θ̃n)

+
1

2
(θ̃n − θX)

L′′′
n (θ

∗
n)

L′′
n(θ̃n)

P−−−→
n→∞

1.

By (47) we have that it is enough to show

(θ̃n − θX)
L′′′
n (θ

∗
n)/(2n)

L′′
n(θ̃n)/n

P−−−→
n→∞

0. (48)

But θ̃n − θX
P−−−→

n→∞
0 by our assumption of

√
n-consistency of θ̃n, L

′′′
n (θ

∗
n)/(2n) is dominated

by a sequence of random variables that converges in probability to a finite constant as in (41),

and by (46) we can write −L′′
n(θ̃n)/n

P−−−→
n→∞

J(θX). Putting all together we get the needed

(48).

Often, it is not difficult to find estimators θ̃n of θ that are
√
n-consistent. As initial estima-

tors θ̃n, one could for example use the method of moments. Another important application

of Theorem 24 comes with the numerical solution of the likelihood equation. It turns out

that often, an explicit solution to the likelihood equation is difficult, or impossible to obtain

explicitly. In that case, it is again possible to use maximum likelihood theory in conjunction

with an arbitrary initial
√
n-consistent estimator θ̃n of θ to obtain an estimator (45) that is

easier to work with, and is asymptotically as good as the maximum likelihood estimator.
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2.4 Extension of MLE — Profile likelihood

Often, the unknown parameter θ ∈ Θ = Rp is p-dimensional, but only one part of θ is of

interest. In that case, we split θ = (θ1, . . . , θp)
T into two sub-vectors τ = (θ1, . . . , θq)

T and

ψ = (θq+1, . . . , θp)
T with 1 ≤ q < p, so that θT =

(
τT,ψT

)
. We are primarily interested in

the estimation of τ . The sub-vector ψ is a so-called nuisance parameter whose value is also

unknown, but we are not interested in it. In Zehna’s invariance result from Theorem 20 we

could therefore choose the mapping u : Rp → Rq : (θ1, . . . , θp)
T 7→ (θ1, . . . , θq)

T, and express

the induced log-likelihood L∗
n of τ = (θ1, . . . , θq)

T from (30) as

L∗
n(τ ) = sup

ψ∈Rp−q

Ln

((
τT,ψT

)T)
for τ ∈ Rq.

In this expression, we “profiled out” the contribution of the nuisance parameter ψ, and

obtained only a log-likelihood for our parameter of interest τ ; the function L∗
n is therefore

called the profile log-likelihood of parameter τ . Theorem 20 gives that maximizing the profile

log-likelihood in τ is equivalent with the joint maximization of the log-likelihood Ln(θ) in

both τ and ψ. For q = 1, results analogous to Theorems 22 and 23 can be derived also

for profile log-likelihood. We saw profiling already in Example 2.2, now we consider a more

interesting setup of the so-called Box-Cox transforms to normality.

Example 2.3. Let Y1, . . . , Yn form a random sample in R from a distribution F such that

F (0) = 0, that is Y1 > 0 almost surely. Because of the assumption of positivity, the dis-

tribution F cannot be normal. But, we believe that there might exist a simple transform

g : [0,∞) → R that will make g(Y1) normal. Our intent is to find such a transform. We

consider the family of Box-Cox transforms given by

gλ(y) =


yλ−1
λ if λ ̸= 0,

log y if λ = 0,
for y > 0.

Observe that this family is continuous in λ, because

lim
λ→0

gλ(y) = lim
λ→0

exp (λ log y)− 1

λ
= lim

λ→0

∞∑
j=0

(
1

λ

(λ log y)j

j!
− 1

λ

)
= lim

λ→0

∞∑
j=1

λj−1 (log y)
j

j!
= g0(y)

for all y > 0. Also, note that gλ is essentially just a power transform y 7→ yλ for λ ̸= 0, properly

scaled and shifted to make gλ satisfy this continuity condition at λ = 0. We assume that for

some λ ∈ R, the transformed distribution of gλ(Y1) is normal, with parameters
(
µ, σ2

)T ∈
R × (0,∞). The complete vector of unknown parameters is therefore θ =

(
λ, µ, σ2

)T
. We

want to find τ = λ, but are not interested in the values of ψ =
(
µ, σ2

)T
. To do that we derive
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the profile log-likelihood of τ . Since we assume that gλ(Y1) ∼ N
(
µ, σ2

)
, we have

F (y) = P (Y1 ≤ y) = P (gλ(Y1) ≤ gλ(y)) = Φ

(
gλ(y)− µ

σ

)
for y > 0,

where Φ is the distribution function of N (0, 1). Taking the derivative of F w.r.t. y we obtain

the density of gλ(Y1)

f(y) =
∂

∂y
Φ

(
gλ(y)− µ

σ

)
= φ

(
gλ(y)− µ

σ

)
1

σ

∂gλ(y)

∂y
=
yλ−1

σ
φ

(
gλ(y)− µ

σ

)
for y > 0, where φ stands for the density of N(0, 1). The log-likelihood of θ is therefore

Ln(θ) =
n∑

i=1

log f(yi) = −n
2
log (2π)− n

2
log
(
σ2
)
− 1

2σ2

n∑
i=1

(gλ(yi)− µ)2 + (λ− 1)
n∑

i=1

log yi.

To profile out ψ, we fix λ ∈ R and maximize Ln(θ) in µ and σ2. We obtain solutions

µ̃n(λ) =
1

n

n∑
i=1

gλ(yi), and σ̃2n(λ) =
1

n

n∑
i=1

(gλ(yi)− µ̃n(λ))
2 .

Plugging them into Ln(θ) we get the profile log-likelihood of λ in the form

L∗
n(λ) = −n

2
log (2π)− n

2
log
(
σ̃2n(λ)

)
− n

2
+ (λ− 1)

n∑
i=1

log yi.

This is already a simple function of λ, which can be visualised and inspected. For the resulting

transform, we are usually not interested in the exact maximizer λ̂n of L∗
n. Rather, we choose

a “reasonable” and well-interpretable value of λ not too far from λ̂n — usual choices are λ = 0

which corresponds to Y1 being log-normal, λ = 1 that is equivalent to no transformation, or

(half-)integer values λ = −1, 1/2, 2 etc. △

The Box-Cox transform from Example 2.3 is usually taken as an informal data preprocessing

step. Ignoring the nuisance parameters
(
µ, σ2

)T
, we first search for a reasonable transform gλ

that takes Y1 “close to” a normal distribution, then transform all random variables Y1, . . . , Yn

into Zi = gλ(Yi) for i = 1, . . . , n, and finally work with Z1, . . . , Zn as with a random sample

from a normal (or at least more regular) distribution. Note, however, that this procedure is

more of a useful heuristic than an exact method of analysis. First, since we assumed that

Y1 > 0 almost surely, Zi = gλ(Yi) > −1/λ almost surely for any λ ̸= 0, and Zi can thus never

be exactly normal if λ ̸= 0. The expression gλ(Y1) ∼ N
(
µ, σ2

)
used for the derivation of the

log-likelihood in Example 2.3 is therefore only approximate. Second, each Zi now depends

also on the chosen λ, which in turn depends on all Y1, . . . , Yn. Thus, the random variables

Z1, . . . , Zn are dependent. Both these problems are often ignored in the analysis.
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2.5 Properties of MLE — multi-dimensional parameter

Analogously as in the one-dimensional situation, we make the following assumptions.

(P∗
1) The parameter space Θ ⊆ Rp contains the true value of the parameter θX in its interior.

In other words, there exists an open ball Θ0 ⊆ Θ such that θX ∈ Θ0.

(P∗
2) The random vector X = (X1, . . . , Xn)

T corresponds to a random sample X1, . . . , Xn,

where the random variable Xi has a density f(x;θ) w.r.t. a σ-finite measure µ on Rd.

(P∗
3) The support M =

{
x ∈ Rd : f(x;θ) > 0

}
does not depend on θ ∈ Θ.

(P∗
4) For any θ1,θ2 ∈ Θ we have that f(x;θ1) = f(x;θ2) for µ-almost all x ∈ Rd if and only

if θ1 = θ2.

A multivariate version of Theorem 23 is covered by the following statement. Also in this

theorem, J(θ) = J1(θ) is the Fisher information matrix of θ contained in a single observation

X1.

Theorem 25. Let {f(x;θ) : θ ∈ Θ} be a regular system of densities with the Fisher informa-

tion matrix J(θ). Suppose that the assumptions (P∗
1)–(P

∗
4) are satisfied, and let the following

be true:

(I) For µ-almost all x ∈ M the partial derivative ∂3f(x;θ)
∂θj∂θk∂θℓ

exists for all θ ∈ Θ0, and for

all j, k, ℓ = 1, . . . , p.

(II) For all θ ∈ Θ0 we have∫
M
f ′′j,k(x;θ) dµ(x) = 0 for all j, k = 1, . . . , p.

(III) For all j, k, ℓ = 1, . . . , p there exist functions Hj,k,ℓ(x) ≥ 0 so that

E θXHj,k,ℓ(X1) <∞,

and ∣∣∣∣∂3 log f(x;θ)∂θj∂θk∂θℓ

∣∣∣∣ ≤ Hj,k,ℓ(x) for µ-almost all x ∈M and all θ ∈ Θ0.

Then the following holds true:

(i) There exists a solution θ̂n = θ̂n(X) to the likelihood equations that converges in proba-

bility to θX as n→ ∞.
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(ii) For the vector of scores

Un(θ) =

(
∂Ln(θ)

∂θ1
, . . . ,

∂Ln(θ)

∂θp

)T

it holds true that
1√
n
Un(θX)

d−−−→
n→∞

Np (0,J(θX)) .

(iii) Any consistent sequence θ̂n = θ̂n(X) of roots of the system of likelihood equations

satisfies
√
n
(
θ̂n − θX

)
d−−−→

n→∞
Np

(
0, (J (θX))−1

)
. (49)

Proof. Part (i). For the proof of part (i), we proceed in analogy to the proof of Theorem 22

that established the existence of a consistent solution to the likelihood equations for p = 1.

Since in the case of a multivariate parameter the neighbourhood of θX is a p-dimensional

ball, we cannot argue directly as for p = 1; we need to control the behaviour of the likelihood

in the whole neighbourhood of θX uniformly.

Take ε > 0 small enough so that the sphere Sε = {θ ∈ Rp : ∥θ − θX∥ = ε} centred at θX

with radius ε is contained in Θ0. We show that if ε > 0 is small enough, we get

Ln(θ) < Ln(θX) for all θ ∈ Sε with probability converging to 1. (50)

If this is true, by the same argument as in the proof of Theorem 22 we get that there must

exist a local maximum of Ln(θ) inside the open ball centred at θX with radius ε, and this

solution to the likelihood equations will be taken for the construction of our estimator. The

rest of the proof follows analogously as that of Theorem 22.

Denote by θ = (θ1, . . . , θp)
T the elements of θ, and analogously write θX = (θX,1, . . . , θX,p)

T.

To show (50), we employ the multivariate Taylor expansion of the log-likelihood Ln(θ) for

θ ∈ Sε around the true value θX [11, Theorem 11.3.28]. We use the expansion for a fixed

value x ∈ Rdn, and in the notation emphasize that the quantities depend on both θ and x.

After dividing by n, we get

1

n
Ln(θ)−

1

n
Ln(θX) =

1

1!n

p∑
j=1

Aj(x,θX) (θj − θX,j)

+
1

2!n

p∑
j=1

p∑
k=1

Bj,k(x,θX) (θj − θX,j) (θk − θX,k)

+
1

3!n

p∑
j=1

p∑
k=1

p∑
ℓ=1

Cj,k,ℓ(x,θ
∗
n) (θj − θX,j) (θk − θX,k) (θℓ − θX,ℓ)

= S1(x) + S2(x) + S3(x)

65



where

Aj(x,θX) = L′
n,j(θX) =

∂Ln(θX)

∂θj
=

n∑
i=1

∂ log f(xi;θX)

∂θj
,

Bj,k(x,θX) = L′′
n,j,k(θX) =

∂2Ln(θX)

∂θj∂θk
=

n∑
i=1

∂2 log f(xi;θX)

∂θj∂θk
,

Cj,k,ℓ(x,θ
∗
n) = L′′′

n,j,k,ℓ(θ
∗
n) =

∂3Ln(θ
∗
n)

∂θj∂θk∂θℓ
=

n∑
i=1

∂3 log f(xi;θ
∗
n)

∂θj∂θk∂θℓ
,

for θ∗n on the straight line between θ ∈ Sε and θX , meaning that θ∗n ∈ Θ0. We will show that

in the Taylor expansion above, with high probability the summands S1(X) and S3(X) are

small compared to S2(X), and that the maximum of S2(X) over θ ∈ Sε is negative. Thus,

the sum Ln(θ)−Ln(θX) is negative for all θ ∈ Sε with probability converging to 1, and (50)

can be applied.

As usual, we use laws of large numbers to control terms Aj and Bj,k when considered as

functions of the random variable X, as we have

1

n
Aj (X,θX) =

1

n

n∑
i=1

∂ log f(Xi;θX)

∂θj

P−−−→
n→∞

EθX
∂ log f(Xi;θX)

∂θj
= 0,

1

n
Bj,k (X,θX) =

1

n

n∑
i=1

∂2 log f(Xi;θX)

∂θj∂θk

P−−−→
n→∞

EθX
∂2 log f(Xi;θX)

∂θj∂θk
= −Jj,k(θX)

(51)

The first convergence follows by (R4), the second by our assumption (II) and Theorem 7.

Here, of course, Jj,k is the (j, k)-th element of the matrix J .

As in the previous proofs, the third summand is dominated by a convergent sequence of

random variables, as by (III) we have∣∣∣∣ 1nCj,k,ℓ(X,θ∗n)

∣∣∣∣ ≤ 1

n

n∑
i=1

Hj,k,ℓ(Xi)
P−−−→

n→∞
EθX Hj,k,ℓ(X1) <∞ (52)

for each j, k, ℓ = 1, . . . , p.

We have now all ready to bound the three terms S1(X), S2(X), S3(X) in probability; for

simplicity, we write Sj instead of Sj(X). We use that since θ ∈ Sε, necessarily |θj − θX,j | ≤ ε

for each j = 1, . . . , p. For S1, we have

|S1| ≤ ε

p∑
j=1

|Aj(X,θX)|
n

.

Because Aj(X;θX)/n
P−−−→

n→∞
0 if and only if |Aj(X;θX)| /n P−−−→

n→∞
0, we know that

PθX
(
|S1| ≥ p ε3

)
≤ PθX

ε p∑
j=1

|Aj(X,θX)|
n

≥ p ε3


≤

p∑
j=1

PθX

(
|Aj(X,θX)|

n
≥ ε2

)
−−−→
n→∞

0.
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Equivalently,

PθX
(
|S1| < pε3

)
−−−→
n→∞

1. (53)

As for S2 we write

2S2 =

p∑
j=1

p∑
k=1

(−Jj,k(θX)) (θj − θX,j) (θk − θX,k)

+

p∑
j=1

p∑
k=1

(
1

n
Bj,k (X,θX)− (−Jj,k(θX))

)
(θj − θX,j) (θk − θX,k)

= S2,1 + S2,2.

The second summand S2,2 above can be bounded using (51) in the same way as we did for

S1 before, and we can write

PθX
(
|S2,2| < p2 ε3

)
−−−→
n→∞

1. (54)

As for S2,1, note that this is in fact a non-random quadratic form of the Fisher information

matrix J

S2,1 = − (θ − θX)T J(θX) (θ − θX) ,

taken with θ ∈ Sε. The matrix J(θX) symmetric, and assumed to be positive definite by (R6).

Therefore, it can be diagonalised to the form J(θX) = UTΛU for U ∈ Rp×p orthogonal and

Λ = diag (λ1, . . . , λp) a diagonal matrix whose diagonal entries are the ordered eigenvalues

0 < λp ≤ · · · ≤ λ1. Using this decomposition we get

S2,1 = − (θ − θX)TUTΛU (θ − θX) = − (U (θ − θX))TΛU (θ − θX)

= −
p∑

j=1

λjζ
2
j ≤ −λp

p∑
j=1

ζ2j ,

where (ζ1, . . . , ζp)
T = U (θ − θX) is the image of θ − θX by the orthogonal transformation

given by U . Since θ ∈ Sε, we have ∥θ − θX∥ = ε, and

p∑
j=1

ζ2j = ∥U (θ − θX)∥2 = (U (θ − θX))TU (θ − θX)

= (θ − θX)TUTU (θ − θX) = ∥θ − θX∥2 = ε2,

where we used the orthogonality of the matrix U . In other words, for any θ ∈ Sε we can

bound

S2,1 ≤ −λp ε2. (55)

Finally, for S3 we have by (52)

PθX

(∣∣∣∣ 1nCj,k,ℓ(X,θ∗n)

∣∣∣∣ ≤ 2EθX Hj,k,ℓ(X1)

)
−−−→
n→∞

1, (56)
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and we can bound

|S3| ≤
ε3

6

p∑
j=1

p∑
k=1

p∑
ℓ=1

∣∣∣∣ 1nCj,k,ℓ(X,θ∗n)

∣∣∣∣ ,
which together with (56) gives

PθX

|S3| ≤
ε3

3

p∑
j=1

p∑
k=1

p∑
ℓ=1

EθX Hj,k,ℓ(X1)

 −−−→
n→∞

1. (57)

It remains to combine all the bounds that we obtained. From (53), (54), (55), and (57) we

get that

PθX

(
sup
θ∈Sε

(S1 + S2 + S3) ≤ p ε3 +
p2

2
ε3 − λp

2
ε2 + b ε3

)
−−−→
n→∞

1,

where we denoted

b =
1

3

p∑
j=1

p∑
k=1

p∑
ℓ=1

EθX Hj,k,ℓ(X1) ∈ (0,∞).

For

ε <
λp

p(2 + p) + 2 b
,

which is equivalent with p ε3 + p2

2 ε
3 − λp

2 ε
2 + b ε3 < 0, we thus get

PθX

(
sup
θ∈Sε

(S1 + S2 + S3) < 0

)
= PθX

(
sup
θ∈Sε

Ln(θ) < Ln(θX)

)
−−−→
n→∞

1,

as we needed to show in (50). This concludes the proof of part (i).

Part (ii). Part (ii) follows by a direct application of the central limit theorem, analogously

as in the proof of Theorem 23.

Part (iii). A detailed proof of part (iii) is quite similar to that of Theorem 23, and involves

multivariate Taylor’s expansions in the same spirit as in the proof of part (i) above. Similarly

as in part (i), we denote

L′
n,j(θ) =

∂Ln(θ)

∂θj
,

L′′
n,j,k(θ) =

∂2Ln(θ)

∂θj∂θk
,

L′′′
n,j,k,ℓ(θ) =

∂3Ln(θ)

∂θj∂θk∂θℓ
,

for j, k, ℓ = 1, . . . , p. We start from the system of likelihood equations

0 = L′
n,j(θ̂n) for j = 1, . . . , p, (58)
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and denote θ̂n =
(
θ̂n,1, . . . , θ̂n,p

)T
. Performing a multivariate Taylor’s expansion to the j-th

equation from this system, we get

0 = L′
n,j(θX)

+
1

1!

p∑
k=1

L′′
n,j,k(θX)

(
θ̂n,k − θX,k

)
+

1

2!

p∑
k=1

p∑
ℓ=1

L′′′
n,j,k,ℓ(θ

∗
n,j)

(
θ̂n,k − θX,k

)(
θ̂n,ℓ − θX,ℓ

)
for some θ∗n,j on the line segment between θX and θ̂n, for all j = 1, . . . , p. All these equations

can be rewritten in a matrix form, if we use the notation from part (ii) of this theorem

Un(θ) =
(
L′
n,1(θ), . . . , L

′
n,p(θ)

)T ∈ Rp,

and writeL′′
n(θ) for the (p×p)-matrix whose (j, k)-th element is L′′

n,j,k(θ), and finally denote by

Rn,j the (p×p)-matrix whose (k, ℓ)-th element is 1
2L

′′′
n,j,k,ℓ(θ

∗
n,j). The system of equations (58)

then becomes

0 = Un(θX) +L′′
n(θX)

(
θ̂n − θX

)
+


(
θ̂n − θX

)T
Rn,1(θ̂n − θX)

. . .(
θ̂n − θX

)T
Rn,p(θ̂n − θX)



= Un(θX) +L′′
n(θX)

(
θ̂n − θX

)
+


(
θ̂n − θX

)T
Rn,1

. . .(
θ̂n − θX

)T
Rn,p

 (θ̂n − θX)

= Un(θX) +
(
L′′

n(θX) +Rn

)
(θ̂n − θX),

(59)

where

Rn =


(
θ̂n − θX

)T
Rn,1

. . .(
θ̂n − θX

)T
Rn,p

 .

Rearranging (59), we get(
− 1

n
L′′

n(θX)− 1

n
Rn

)√
n(θ̂n − θX) =

1√
n
Un(θX), (60)

which is the multivariate analogue of (39). By part (ii) of this theorem, we know that the

right hand side of the expression above converges in distribution to Np (0,J(θX)). Just as

for p = 1, it is also easy to see that on the left hand side of (60),

− 1

n
L′′

n(θX)
P−−−→

n→∞
J(θX).
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Finally, thanks to the consistency of θ̂n and our condition (III), we can in the same way as

for p = 1 find that each element of the random matrix 1
nRn converges to zero in probability,

that is (
− 1

n
L′′

n(θX)− 1

n
Rn

)
P−−−→

n→∞
J(θX).

Multiplying both sides of (60) by the matrix (J(θX))−1 and applying the Cramér-Slutsky

theorem, we get the final representation

√
n
(
θ̂n − θX

)
=

1√
n
(J(θX))−1Un(θX) + R̃n, (61)

where the remainder term R̃n is negligible, meaning that it satisfies∥∥∥R̃n

∥∥∥ P−−−→
n→∞

0.

The final expression for the distributional asymptotics of θ̂n then follows by a combination

of part (ii) and (61).

3 Theory of statistical hypotheses testing

In the final part of the lecture, we are concerned with statistical hypotheses testing. Similarly

as for the theory of point estimation, we intend to find a way to construct either optimal

tests, or at least tests that are almost optimal in a certain sense. Before doing so, we recall

some basic facts about testing hypotheses.

Suppose that a random vector8 X = (X1, . . . , Xn)
T ∈ Rn has a distribution that depends

on the unknown parameter θ ∈ Θ. We know that the parameter space Θ can be an arbitrary

set; typically it is a subset of Rp, but if the parameter θ is, e.g., the whole density of X, it

can be also a space of functions.

Our intention is to infer about the true value of the parameter θ from whichX was sampled.

We denote this true value by θX ∈ Θ. More specifically, for a given subset Θ0 ⊂ Θ, based on

our datasetX we want to decide whether the true value of the parameter θX belongs to Θ0 or

not. To do this, we distinguish between the null hypothesis H0 : θX ∈ Θ0 and the alternative

H1 : θX /∈ Θ0. We can also write Θ1 = Θ\Θ0, in which case we have H1 : θX ∈ Θ1. If Θ0 or

Θ1 is a single point set, we say that the hypothesis or the alternative is simple, respectively.

Otherwise, the hypothesis or alternative are called composite.

Formally speaking, a statistical test ϕ is a function that to the values x of X assigns a

decision of either rejecting, or not rejecting H0. The set W ⊂ Rn defined by those values of

8In this section we do not assume that the elements of X form a random sample. Therefore, there is no

need to consider X ∈ Rdn as in the previous sections, and we simplify our argumentation to the equivalent

X ∈ Rn.
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X that reject H0 using a test ϕ is called the critical region of the test ϕ. It will be convenient

to denote the decision of the test ϕ numerically. From now on, the test ϕ takes value 0 if it

does not reject the null hypothesis, and 1 if it does reject H0. In this notation, a test ϕ is a

measurable function from Rn to {0, 1}.
Using any test ϕ we can arrive at the correct decision, or to make one of the two errors:

(i) the error of the first kind of rejecting H0 when in fact H0 is true; or

(ii) the error of the second kind of not rejecting H0 when H1 is true.

We search for tests that give small probabilities of both these errors. In non-trivial situations,

for the sample size n fixed, both these errors are impossible to be controlled simultaneously.

We therefore fix a small number α ∈ (0, 1) called the level of significance of the test, and

under the condition that

sup
θ∈Θ0

Pθ (ϕ(X) = 1) ≤ α (62)

we want to minimize the probability of the error of the second kind

Pθ (ϕ(X) = 0) for all θ ∈ Θ1. (63)

The supremum on the left hand side of (62) is called the size of the test ϕ. It determines

the largest probability of the error of the first kind that we are willing to accept. The task of

minimizing the function of θ ∈ Θ1 in (63) is equivalent with the problem of maximizing the

probability of rejecting H0 for all θ ∈ Θ1

Pθ (ϕ(X) = 1) , (64)

which is called the power of the test ϕ against the alternative θ ∈ Θ1. Considered as a

function of θ ∈ Θ, the probability of rejection of H0 is called the power function of the test ϕ.

Overall, we search for tests whose power function does not exceed α for θ ∈ Θ0, and whose

power function is as large as possible for θ ∈ Θ1.

When dealing with discrete distributions, it is often impossible to find tests of size exactly

α. For that reason, and for the reason of simplification of the subsequent mathematical

arguments, we therefore expand the previous setting by considering also randomized tests.

We saw that a usual (non-randomized) test is a measurable function ϕ : Rn → {0, 1}, with
ϕ taking value 1 if and only if H0 is rejected. For randomized tests we allow, instead of a

hard decision of not rejecting (ϕ = 0) or rejecting (ϕ = 1) H0, for ϕ to take any value in the

interval [0, 1]. The value ϕ(x) ∈ [0, 1] can then be interpreted as the probability of rejecting

H0. If ϕ(x) ∈ (0, 1) for x the observed value of X, we interpret the outcome of the test as a

Bernoulli random variable with the probability of rejecting H0 being ϕ(x), and the probability
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1 − ϕ(x) of not rejecting H0. Thus, formally, a randomized test is any measurable function

ϕ : Rn → [0, 1]. The function ϕ is also called the critical function of the test. Setting ϕ as the

indicator of the critical region of a (non-randomized) test, we return to the usual setting.

Randomized tests are quite convenient to work with. Using randomization it is always

possible to find a test of the exact size α ∈ (0, 1). One such test is the trivial test ϕ(x) = α

for all x ∈ Rn. In practice, it is of course not acceptable that a result of a test is random.

When possible, randomization is therefore avoided, and non-randomized tests are used. If,

for discrete distributions, an exact test of size α is not possible to be constructed without

resorting to randomization, the level of significance α is usually slightly changed so that a

non-randomized test with that level of significance exists.

For randomized tests, it is simple to extend the notion of power function of ϕ from (64) by

considering

Eθ ϕ(X) =

∫
Rn

ϕ(x) dPθ(x).

In analogy to the standard setting, we search for a test ϕ that maximizes the power

Eθ ϕ(X) for all θ ∈ Θ1,

while keeping its size bounded by the given level α ∈ (0, 1)

sup
θ∈Θ0

Eθ ϕ(X) ≤ α. (65)

The problem of finding tests that maximize power for all θ ∈ Θ1 while satisfying (65) is

frequently not well posed, and there does not exist a single test ϕ of size α that maximizes

power uniformly in θ ∈ Θ1. If, however, such a test exists, we call it the uniformly most

powerful test of size α in our testing problem. In the first part of this section we are interested

in constructing uniformly most powerful tests when possible.

3.1 Simple hypothesis and alternative: Neyman-Pearson theorem

An important situation when a uniformly most powerful test can always be found is that of a

simple hypothesis and a simple alternative. Then, Θ = {θ0,θ1}, and Θ0 = {θ0}, Θ1 = {θ1}.
For stating the fundamental theorem of Neyman and Pearson that gives the form of the

uniformly most powerful test, a simple lemma will be useful.

Lemma 8. Let f : S → (0,∞), and let µ be a σ-finite measure. Then
∫
S f(x) dµ(x) = 0

implies µ(S) = 0.

Proof. Let Sn = {x ∈ S : f(x) ≥ 1/n}. Then S =
⋃

n∈N Sn, and therefore µ(S) ≤
∑∞

n=1 µ(Sn).

Also,

µ(Sn) =

∫
{x∈S : f(x)≥1/n}

1 dµ(x) ≤ n

∫
Sn

f(x) dµ(x) ≤ n

∫
S
f(x) dµ(x) = 0,
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for each n ∈ N, which gives µ(S) = 0 as we needed.

Theorem 26 (Neyman-Pearson). Let P0 and P1 be probability distributions that correspond

to the values of the parameter θ0 and θ1, respectively. Suppose that P0 and P1 have densities

p0 and p1 respectively w.r.t. a σ-finite measure µ on Rn.

(i) For testing

H0 : θX = θ0 against H1 : θX = θ1 (66)

at level α ∈ (0, 1) there exists a test ϕ and a constant k ≥ 0 such that

Eθ0 ϕ(X) = α, (NP1)

and

ϕ(x) =

1 when p1(x) > k p0(x),

0 when p1(x) < k p0(x).
(NP2)

The test given by (NP1) and (NP2) is almost surely unique.

(ii) If a test satisfies (NP1) and (NP2) for some k ≥ 0, then it is the most powerful for

testing (66) at level α.

(iii) If ϕ is the most powerful test for testing (66) at level α, then for some k ≥ 0 it satisfies

(NP2) µ-almost everywhere. If there does not exist a test of size smaller than α with

power 1, it also satisfies (NP1).

Proof. In the proof we write f(x−) for the limit of the function f : R → R at x ∈ R from the

left.

Part (i). Let α(c) = P0 (p1(X) > cp0(X)) for c ≥ 0. Since this probability is computed

w.r.t. the measure P0, the probability in α(c) needs to be considered only in the set where p0

is positive, meaning that P0 (p0(X) = 0) = 0. Thus, α(c) is the probability that the almost

surely non-negative random variable p1(X)/p0(X) exceeds c ≥ 0. The expression

1− α(c) = P0

(
p1(X)

p0(X)
≤ c

)
is therefore the cumulative distribution function of the random variable p1(X)/p0(X), and

α(c) must therefore be non-increasing, continuous from the right, satisfy

α(c−)− α(c) = P0

(
p1(X)

p0(X)
= c

)
,

α(0−) = 1 and limc→∞ α(c) = 0. For any α ∈ (0, 1) let c0 ≥ 0 be any number such that

α(c0) ≤ α ≤ α(c0−). (67)
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Consider the test defined by

ϕ(x) =


1 when p1(x) > c0 p0(x),

α−α(c0)
α(c0−)−α(c0)

when p1(x) = c0 p0(x),

0 when p1(x) < c0 p0(x).

The middle expression remains undefined if α(c0−) = α(c0). But, the test ϕ(X) is well

defined both P0-almost everywhere, and P1-almost everywhere. To see that, observe that if

α(c0−) = α(c0) then

P0 (p1(X) = c0 p0(X)) = α(c0−)− α(c0) = 0, (68)

and the test is defined P0-almost everywhere. For measure P1 write

P1 (p1(X) = c0 p0(X)) = P1 (p1(X) = c0 p0(X), p0(X) > 0)

+ P1 (p1(X) = c0 p0(X), p0(X) = 0) .
(69)

For the second summand on the right hand side of (69) we have

P1 (p1(X) = c0 p0(X), p0(X) = 0) ≤ P1 (p1(X) = 0) =

∫
{y : p1(y)=0}

p1(x) dµ(x) = 0.

For the first summand in (69), we denote

S = {x : p1(x) = c0 p0(x), p0(x) > 0} .

By (68) we have∫
S
p0(x) dµ(x) = P0 (X ∈ S) ≤ P0 (p1(X) = c0 p0(X)) = 0,

and setting f = p0 in Lemma 8 we get µ(S) = 0. Because P1 is absolutely continuous w.r.t.

µ, it therefore must be also that P1(S) = 0. Putting the two bounds together, we get that

the probability in (69) equals zero, and we have indeed proved that the test ϕ is well defined

also P1-almost everywhere.

For the size of the test ϕ we have

Eθ0 ϕ(X) = P0

(
p1(X)

p0(X)
> c0

)
+

α− α(c0)

α(c0−)− α(c0)
P0

(
p1(X)

p0(X)
= c0

)
= α(c0)+(α− α(c0)) = α.

We can therefore choose k to be c0, and we obtain the test from part (i) of the theorem.

It remains to show that the test given by ϕ is P0-almost surely unique, and P1-almost surely

unique. The only situation where there could be more values of c0 that satisfy (67) is when
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there is an interval of values (c′, c′′) ⊂ [0,∞) such that α(c) = α for all c ∈ (c′, c′′). In that

case, denote

C =

{
x : p0(x) > 0 and c′ <

p1(x)

p0(x)
< c′′

}
.

Then we have P0(C) = α(c′) − α(c′′−) = α − α = 0, and by Lemma 8 we have that also

µ(C) = 0. Because we assumed that P1 is absolutely continuous w.r.t. µ, it must be that

also P1(C) = 0. Thus, the sets corresponding to two different values of c differ only in a set

which has probability 0 under both P0 and P1, and for all practical purposes, the test ϕ is

almost surely unique.

Part (ii). Let ϕ be a test that satisfies both (NP1) and (NP2), and let ϕ∗ be any other test

with Eθ0 ϕ
∗(X) ≤ α. Denote

S+ = {x : ϕ(x) > ϕ∗(x)} ,

S− = {x : ϕ(x) < ϕ∗(x)} .
(70)

If x ∈ S+, then ϕ(x) > 0 and thus p1(x) ≥ k p0(x). In the same way if x ∈ S−, we have

ϕ(x) < 1 and p1(x) ≤ k p0(x). We can therefore write∫
Rn

(ϕ(x)− ϕ∗(x)) (p1(x)− k p0(x)) dµ(x)

=

∫
S+∪S−

(ϕ(x)− ϕ∗(x)) (p1(x)− k p0(x)) dµ(x) ≥ 0.

Rewriting this expression, we get that the difference in power of these tests is

Eθ1 ϕ(X)− Eθ1 ϕ
∗(X) =

∫
Rn

(ϕ(x)− ϕ∗(x)) p1(x) dµ(x)

≥ k

∫
Rn

(ϕ(x)− ϕ∗(x)) p0(x) dµ(x)

= k (Eθ0 ϕ(X)− Eθ0 ϕ
∗(X)) ≥ k (α− α) = 0,

as we wanted to prove. We get that the test ϕ∗ cannot have a greater power than ϕ.

Part (iii). Let ϕ∗ be the most powerful test at level α for testing (66), and let ϕ satisfy both

(NP1) and (NP2). First, we want to show that ϕ∗ must satisfy (NP2) µ-almost everywhere.

Take the sets S+ and S− defined in (70), and let S = (S+ ∪ S−) ∩ {x : p1(x) ̸= k p0(x)}. It

is enough to prove that µ(S) = 0. For a contradiction, suppose that µ(S) > 0. Analysing by

cases as in part (ii) of this proof, we get that

• for x ∈ S+, necessarily ϕ(x) > 0 and thus p1(x) ≥ k p0(x), and

• for x ∈ S−, necessarily ϕ(x) < 1, and thus p1(x) ≤ k p0(x).
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Because for x ∈ S we also assume that p1(x) ̸= k p0(x), we get that the function (ϕ− ϕ∗) (p1 − k p0)

is strictly positive on S. From Lemma 8 it therefore follows that∫
S+∪S−

(ϕ(x)− ϕ∗(x)) (p1(x)− k p0(x)) dµ(x)

=

∫
S
(ϕ(x)− ϕ∗(x)) (p1(x)− k p0(x)) dµ(x) > 0,

meaning that ϕ is more powerful against P1 than ϕ∗. That can be asserted in the same way

as in part (ii) of this proof. This is a contradiction with ϕ∗ being the most powerful test, and

thus µ(S) = 0 as we wanted to prove.

Finally, if ϕ∗ does not satisfy (NP1), i.e. if Eθ0 ϕ
∗(X) < α and if the power of ϕ∗ is less

than 1, then it would be possible to expand the critical region of ϕ∗ (more precisely, construct

a test ϕ∗∗ such that ϕ∗∗(x) ≥ ϕ∗(x)). That would increase both the size and the power of the

test ϕ∗, until either the size would be exactly α, or the power would be exactly 1. Thus for

the uniformly most powerful test ϕ∗ it must be either Eθ0 ϕ
∗(X) = α or Eθ1 ϕ

∗(X) = 1 as we

wanted to show.

The assumption of both P0 and P1 having a density w.r.t. µ is not restrictive. One can,

for example, always take for µ the sum of the measures P0 and P1, w.r.t. which both P0 and

P1 are absolutely continuous.

Theorem 27. The power β of the most powerful test at level α ∈ (0, 1) for testing (66)

satisfies β ≥ α, with equality only if P0 = P1.

Proof. Comparing the uniformly most powerful test ϕ from (26) with the trivial test ϕ∗(x) = α

for all x ∈ Rn we have

β = Eθ1 ϕ(X) ≥ Eθ1 ϕ
∗(X) = α.

If α = β, also the test ϕ∗ is the most powerful, and so by part (iii) of Theorem 26 it must

satisfy (NP2) µ-almost everywhere. But, since α ∈ (0, 1), in (NP2) we necessarily get that

{x ∈ Rn : p1(x) ̸= k p0(x)}must be of null µ-measure, and hence p1(x) = k p0(x) for µ-almost

all x ∈ Rn. Because both p0 and p1 integrate to one, it must be that k = 1, and the measures

P0 and P1 are the same.

Theorem 26 of Neyman and Pearson gives the form of the (uniformly) most powerful test

of any simple hypothesis against a simple alternative, and Theorem 27 asserts that the power

of this test is always larger than its size.

Example 3.1. Let X = (X1, . . . , Xn)
T with X1, . . . , Xn a random sample from an exponen-

tial distribution with density f(x;λ) = λ exp (−λx) I (x > 0), where λ ∈ (0,∞) is unknown.
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We want to test

H0 : λX = λ0 against H1 : λX = λ1,

where 0 < λ0 < λ1 are given. We use Theorem 26 to find the most powerful test. The test

statistic takes the form

p1(x)

p0(x)
=

∏n
i=1 f(xi;λ1)∏n
i=1 f(xi;λ0)

=
λn1 exp (−λ1

∑n
i=1 xi)

λn0 exp (−λ0
∑n

i=1 xi)
=

(
λ1
λ0

)n

exp

(
(λ0 − λ1)

n∑
i=1

xi

)
.

According to part (iii) of Theorem 26, the uniformly most powerful test rejectsH0 if p1(x)/p0(x)

is too large. Since in our case λ0 − λ1 < 0, that is equivalent with rejection of H0 if
∑n

i=1 xi

is too small. To determine the threshold value k in the test, we must therefore find the

exact distribution of the test statistic
∑n

i=1Xi under H0. Under H0, each Xi is distributed

exponentially with parameter λ0, which is the same as the gamma distribution Γ(1, 1/λ0) (in

the shape-scale parametrization). A sum of independent gamma distributions is gamma dis-

tributed, and we have
∑n

i=1Xi ∼ Γ (n, 1/λ0). To obtain the desired size of the test α ∈ (0, 1),

we must therefore have

ϕ(x) =

1 if
∑n

i=1 xi < qα,

0 if
∑n

i=1 xi ≥ qα,
(71)

where qα > 0 is the α-quantile of the distribution Γ (n, 1/λ0). Since the distribution of the test

statistic
∑n

i=1Xi is continuous, we do not have to worry about the situation
∑n

i=1 xi = qα,

which occurs with null probability under both H0 and H1. Therefore, we do not have to

randomize our test. △

Note that in Example 3.1 we had the luck to know the exact distribution of the test statistic∑n
i=1Xi under H0. This is often not the case. Nevertheless, even if we did not know the exact

distribution of
∑n

i=1Xi under H0, we could still use the central limit theorem to find at least

the asymptotic distribution of the equivalent test statistic (1/n)
∑n

i=1Xi under H0, and use

that distribution to approximate the quantile qα. Yet another alternative is to approximate

the quantile qα by simulating independently random variables
∑n

i=1Xi under H0; think about

how this could be done.

3.2 Simple hypothesis and composite alternative

The theorem of Neyman and Pearson is a quite valuable result, but the situation with a

two-points parameter space Θ = {θ0,θ1} is very specific. We are therefore in the sequel

concerned with tests for one-dimensional parameters θ ∈ Θ ⊆ R of two more common types:

for θ0 ∈ Θ given we consider either one-sided tests of the type

H0 : θX ≤ θ0 against H1 : θX > θ0, (72)
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or two-sided tests that take the form

H0 : θX = θ0 against H1 : θX ̸= θ0. (73)

The one-sided test in (72) is, of course, equivalent to the test of the other form

H0 : θX ≥ θ0 against H1 : θX < θ0,

because of the obvious symmetry of the problem — one just needs to reparametrize θ 7→ −θ.
For simplicity, we therefore consider only the tests of the form (72). Without additional

assumptions, it turns out that both testing problems can also be looked upon as tests with

simple hypotheses. In (72), we can restrict our parameter space Θ only to the interval [θ0,∞),

and search for a test of

H0 : θX = θ0 against H1 : θX > θ0.

This reduction is not completely equivalent with (72) as in the computation of the size of

the test (62) we must control supθ≤θ0 Eθ ϕ(X) ≤ α in (72), but only Eθ0 ϕ(X) ≤ α in the

restricted formulation. But, we will see that for the tests that we are going to construct, both

formulations are equivalent.

For general distributions, the uniformly most powerful test does not exist for neither the

one-sided (72) nor the two-sided (73) alternative. An exception are families with monotone

likelihood ratio.

Definition 14. A family of densities {pθ : θ ∈ Θ ⊆ R} w.r.t. a σ-finite measure µ on Rn is

said to have a monotone likelihood ratio if there exists a measurable function T : Rn → R
such that for any θ < θ′ in Θ the densities pθ and pθ′ correspond to different distributions,

and the ratio pθ′(x)/pθ(x) is a non-decreasing function of T (x).

For families of distributions with monotone likelihood ratio, Theorem 26 of Neyman and

Pearson is simple to be extended to the situation with one-sided tests.

Theorem 28. Let θ ∈ Θ ⊆ R and let the random vector X have probability density pθ(x)

with monotone likelihood ratio in T (x).

(i) For the one-sided test (72) with θ0 ∈ Θ given there exists a uniformly most powerful

test, which is given by

ϕ(x) =


1 when T (x) > C,

γ when T (x) = C,

0 when T (x) < C,

(74)

where C and γ are determined by

E θ0ϕ(X) = α. (75)
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(ii) The power function

β(θ) = Eθ ϕ(X)

of this test is strictly increasing for all points θ for which 0 < β(θ) < 1.

(iii) For all θ′ ∈ Θ, the test determined by (74) and (75) is uniformly most powerful for

testing

H0 : θX ≤ θ′ against H1 : θX > θ′

at level α′ = β(θ′).

(iv) For any θ < θ0 this test minimizes β(θ), that is the probability of the error of the fist

kind, among all tests satisfying (75).

Proof. Parts (i) and (ii). Take first the test of a simple hypothesis H0 : θX = θ0 against

the simple alternative H1 : θX = θ1 for θ1 > θ0 fixed. By Theorem 26 we know that the

best possible critical region for this test is the set of those x ∈ Rn for which the ratio

r(x) = pθ1(x)/pθ0(x) = g (T (x)) is large enough. Here g : R → R is a non-decreasing function

from the definition of the monotone likelihood ratio. If x′ ∈ Rd is such that T (x′) > T (x),

then r(x′) ≥ r(x). Therefore, if x lies in the critical region of this test, then also x′ does.

Thus, the test which rejects H0 for large values of T (x) is the most powerful test. In the

same way as in the proof of part (i) of Theorem 26, it is seen that there exist constants C and

γ ∈ (0, 1) such that (74) and (75) hold. Now, by part (ii) of Theorem 26 we also know that

this test is the most powerful for testing H0 : θX = θ′ against H1 : θX = θ′′ at level α′ = β(θ′)

for any θ′ < θ′′. Part (ii) of the present theorem now follows from Theorem 27. Because we

found that β(θ) is non-decreasing, we have that

β(θ) = Eθ ϕ(X) ≤ α for θ ≤ θ0. (76)

The family of tests that satisfy condition (76) is a subset of the family of tests with size

Eθ0 ϕ(X) ≤ α. Since by the Neyman’s and Pearson’s Theorem 26 this test maximizes β(θ1)

among all tests within this larger class of tests, it must maximize β(θ1) also among all tests

that satisfy (76). And, because the test does not depend on the alternative θ1 > θ0, it must

be the uniformly most powerful test for testing (72).

Part (iii) follows completely analogously. For part (iv) it is enough apply Theorem 26 again

to the test H0 : θX = θ0 against H1 : θ = θ1, and to realise that a test that minimizes the

power β(θ1) is the test from Theorem 26 with all inequalities reversed.

An important class of distributions that satisfies the conditions of Theorem 28 is the one-

parameter exponential family of densities, defined in the next result.
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Theorem 29. Let θ ∈ Θ ⊆ R, and let X have a density of the form

pθ(x) = C(θ) exp (Q(θ)T (x))h(x) for x ∈ Rn, (77)

w.r.t. a σ-finite measure µ on Rn, where Q : R → R is strictly monotone. Then there exists

a uniformly most powerful test ϕ for testing (72) for θ0 ∈ Θ given. If Q is increasing,

ϕ(x) =


1 when T (x) > C,

γ when T (x) = C,

0 when T (x) < C,

(78)

where C and γ are determined by Eθ0 ϕ(X) = α. If Q is decreasing, the inequalities in (78)

are reversed.

Proof. The system of densities satisfies for θ < θ′

pθ′(x)

pθ(x)
=
C(θ′) exp (Q(θ′)T (x))

C(θ) exp (Q(θ)T (x))
=
C(θ′)

C(θ)
exp

(
T (x)

(
Q(θ′)−Q(θ)

))
.

If Q is increasing, Q(θ′) − Q(θ) > 0 and the likelihood ratio is a non-decreasing function of

T (x). It remains to apply Theorem 28.

The family of densities of exponential type turns out to be the only important class of

distributions which verifies the conditions of Theorem 28. It can be shown that, under

additional weak regularity conditions, only for densities of exponential type, uniformly most

powerful one-sided tests exist for all values n ∈ N.

Example 3.2. In the setup of testing with exponential distributions from Example 3.1,

suppose that we now want to test

H0 : λX ≤ λ0 against H1 : λX > λ0,

where 0 < λ0 is given. Using Theorems 26 and 28 we find that the test from (71) is the

uniformly most powerful test also in the present situation. This is, of course, possible because

the test ϕ was in Example 3.1 constructed in a way not depending on the value of λ1, as long

as λ1 > λ0. △

For testing against a two-sided alternative (73) the situation is even more complicated. It

can be shown that even for densities of exponential type, uniformly most powerful tests do not

exist. To proceed, one needs to impose an additional restriction, and search for a uniformly

most powerful unbiased test, meaning that in addition to the given size supθ∈Θ0
Eθ ϕ(X) ≤ α,

we require also that under the alternative, the power of the test is at least α, meaning that
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Eθ ϕ(X) ≥ α for all θ ∈ Θ1. Here, of course, Θ1 and Θ2 are the subsets partitioning the

parameter space Θ into the hypothesis and the alternative, respectively. For the special case

of exponential families of distributions (77), there exist uniformly most powerful unbiased

tests for the two-sided alternative (73). As one could expect, under reasonable assumptions,

the tests take the form

ϕ(x) =


1 when T (x) < K1 or T (x) > K2,

γj when T (x) = Kj for j = 1, 2,

0 when T (x) ∈ (K1,K2).

Here, K1 < K2 and γ1, γ2 ∈ (0, 1) are constants that need to be determined. One of the

constraints defining these constants is obtained by taking Eθ0 ϕ(X) = α, and the other by

assuming that the power function β(θ) = Eθ ϕ(X) is minimized at θ0. The latter assumption

requires control of the derivative of β(θ) at θ0. The proof of this last result is not difficult,

yet it is a rather technical extension of the theory we provided. For a comprehensive account

of these tests, one can consult [1, Section 8] and [9, Section 4.2].

3.3 Asymptotic tests based on the likelihood

We now turn to the practical problem of exploiting the advances we gathered on the maximum

likelihood estimation, and use them to construct useful statistical tests. Similarly as in the

theory of point estimation, the likelihood based tests will usually not have to be the best,

or optimal in any specific sense. They are, however, extremely useful in practice as they are

simple to design, and widely used in all kinds of scenarios. We will deal with two situations

separately. First, we consider the multi-dimensional parameter θ ∈ Θ ⊆ Rp and design tests

for the hypotheses of the type

H0 : θX = θ0 against H1 : θX ̸= θ0, (79)

for θ0 ∈ Θ given. In the second step, we will be concerned with tests only about a sub-vector

of the whole vector θ, where the rest of the parameter θ is not of interest, and remains

unspecified.

3.3.1 Tests without nuisance parameters

In what follows we construct three families of asymptotic tests for the hypothesis (79) based

on the log-likelihood function Ln(θ): (i) the Rao score test based on the score function

Un(θ) = ∂Ln(θ)
∂θ ; (ii) the Wald test defined using the asymptotic distribution of

(
θ̂n − θ0

)
under H0 for θ̂n the maximum likelihood estimator of θ; and (iii) the likelihood ratio test
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which can be seen as an extension of the idea of the Neyman-Pearson testing procedure from

Theorems 26 and 28.

For simplicity, in our first theorem we begin with the case of a one-dimensional parameter

θ ∈ Θ ⊆ R.

Theorem 30. Suppose that all conditions of Theorem 23 are satisfied, and let θ0 ∈ Θ be

given. Then, if the true value of the parameter θX is θ0, we have the following.

1. The Rao score test.

Rn =
L′
n(θ0)√
nJ(θ0)

d−−−→
n→∞

N (0, 1) ,

R2
n =

(L′
n(θ0))

2

nJ(θ0)

d−−−→
n→∞

χ2
1.

2. Wald test. If the Fisher information J(θ) is continuous in θ0, then

Wn =

√
nJ(θ̂n)

(
θ̂n − θ0

)
d−−−→

n→∞
N (0, 1) ,

W 2
n = nJ(θ̂n)

(
θ̂n − θ0

)2 d−−−→
n→∞

χ2
1.

3. Likelihood ratio test. If the Fisher information J(θ) is continuous in θ0, then

LRn = 2
(
Ln(θ̂n)− Ln(θ0)

)
d−−−→

n→∞
χ2
1.

Proof. The asymptotic distribution of Rn and R2
n follows directly from the asymptotic distri-

bution of the score statistic L′
n(θ0) = L′

n(θX) established in (37) in Theorem 23.

For the Wald statistics Wn and W 2
n , we know from (38) that√

nJ(θ0)
(
θ̂n − θ0

)
d−−−→

n→∞
N(0, 1).

Because we assume that the Fisher information is continuous in θ0, and by Theorem 23

we also know that θ̂n
P−−−→

n→∞
θ0, the continuous mapping theorem gives J(θ̂n)

P−−−→
n→∞

J(θ0).

An application of the Cramér-Slutsky theorem gives the asymptotic result for Wn, and the

continuous mapping theorem concludes also for W 2
n .

We need to prove only the statement about the likelihood ratio test. We apply the Taylor

expansion to the log-likelihood function

Ln(θ0) = Ln(θ̂n) + (θ0 − θ̂n)L
′
n(θ̂n) +

1

2
(θ0 − θ̂n)

2L′′
n(θ̂n) +

1

6
(θ0 − θ̂n)

3L′′′
n (θ

∗
n),

where θ∗n lies in the interval between θ0 and θ̂n. Since θ̂n solves L′
n(θ̂n) = 0, we can reorganize

the expression above and write

2
(
Ln(θ̂n)− Ln(θ0)

)
= −

(
θ̂n − θ0

)2
L′′
n(θ̂n) +

1

3
(θ̂n − θ0)

3L′′′
n (θ

∗
n). (80)
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By (40) from the proof of Theorem 23 we know that

−L
′′
n(θ0)

n

P−−−→
n→∞

J(θ0). (81)

Further, we can use Taylor’s expansion again and get

1

n
L′′
n(θ0)−

1

n
L′′
n(θ̂n) =

(
θ0 − θ̂n

) 1

n
L′′′
n (θ

∗∗
n ),

for some θ∗∗n between θ0 and θ̂n. In (41) in the proof of Theorem 23 we established that

L′′′
n (θ

∗∗
n )/n is bounded in probability. We also know by Theorem 23 that θ̂n

P−−−→
n→∞

θ0. Thus,

the Cramér-Slutsky theorem gives

1

n
L′′
n(θ0)−

1

n
L′′
n(θ̂n)

P−−−→
n→∞

0. (82)

From (81) and (82) we obtain

− 1

n
L′′
n(θ̂n)

P−−−→
n→∞

J(θ0).

We therefore see that for the first summand in (80) we have

(√
n
(
θ̂n − θ0

))2(
−L

′′
n(θ̂n)

n

)
d−−−→

n→∞
χ2
1.

We used (38). Plugging this into (80) we see that it remains to show that the second summand

in (80) vanishes in probability as n→ ∞. To see this, we write

1

3
(θ̂n − θ0)

3L′′′
n (θ

∗
n) =

1

3
(θ̂n − θ0)

(√
n
(
θ̂n − θ0

))2 1

n
L′′′
n (θ

∗
n).

By (41) from the proof of Theorem 23 again, we know that L′′′
n (θ

∗
n)/n is bounded in probability.

Also, by (38),
(√

n
(
θ̂n − θ0

))2
is bounded in probability, and finally by the consistency of

θ̂n we know that (θ̂n − θ0)
P−−−→

n→∞
0. Altogether, the remainder in (80) does indeed converge

to zero in probability
1

3
(θ̂n − θ0)

3L′′′
n (θ

∗
n)

P−−−→
n→∞

0,

and the asymptotic distribution of LRn is χ2
1 as we wanted to show.

The result of Theorem 30 can be used for the construction of asymptotic tests about

hypotheses on θ. For the both-sided tests H0 : θX = θ0 against H1 : θX ̸= θ0 for θ0 ∈ Θ

given, any of the test statistics in Theorem 30 can be used. For tests using Rn or Wn, we

reject H0 at level α if the observed absolute value of the test statistic exceeds u1−α/2, the

(1 − α/2)-quantile of the standard normal distribution N(0, 1). For tests based on R2
n, W

2
n ,

or LRn the asymptotic critical region is [F−1
1 (1 − α),∞), for F−1

1 the quantile function of
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the χ2
1 distribution. The test statistics Rn and Wn allow us also to test against one-sided

alternatives; their squares or the likelihood ratio test do not permit this.

Note that the Fisher information J(θ0) is in Theorem 30 estimated using different ap-

proaches — for the Rao score tests we use directly J(θ0), but for the Wald tests we plug in

J(θ̂n) and assume that the function J is continuous in θ0. In principle, we could in both

tests use J(θ0), or also J(θ̂n) if J is continuous. The asymptotic distributions of the statistics

would not be affected by this change. Our choice in Theorem 30 is a customary one. Note

that in the Rao score test, we do not have to have access to the estimator θ̂n, as in this way,

the test works also without being able to find θ̂n explicitly.

Example 3.3. Consider a random sample X1, . . . , Xn from an exponential distribution with

density f(x;λ) = λ exp (−λx) I (x > 0) as in Example 3.1. The parameter λ ∈ (0,∞) is

unknown and we want to test a hypothesis

H0 : λX = λ0 against H1 : λX ̸= λ0,

for λ0 > 0 given. The log-likelihood of X = (X1, . . . , Xn)
T is

Ln(λ) = n log λ− λ
n∑

i=1

xi + log

(
I
(

min
i=1,...,n

xi > 0

))
,

for x1, . . . , xn the observed values of X. The maximum likelihood estimator λ̂n satisfies the

likelihood equation

L′
n(λ) =

n

λ
−

n∑
i=1

xi = 0,

and clearly λ̂n =
(
X̄n

)−1
. For the Fisher information of λ we have

−L′′
n(λ) =

n

λ2
= Jn(λ).

Applying Theorem 30 we obtain three test statistics

R2
n =

(n/λ0 −
∑n

i=1Xi)
2

n/λ20
=

(√
n
(
X̄n − 1/λ0

)
1/λ0

)2

,

W 2
n =

n

λ̂2n

(
λ̂n − λ0

)2
=
(√
n X̄n

(
1/X̄n − λ0

))2
,

LRn = 2n
(
log
(
λ̂n/λ0

)
− X̄n

(
λ̂n − λ0

))
.

Each test is different, but they all reject H0 if and only if the observed value of the test

statistic exceeds the (1 − α)-quantile of the distribution χ2
1. Note that the test statistic R2

n

can be interpreted using the central limit theorem directly, as under H0 we have

√
n
(
X̄n − 1/λ0

)
=

√
n
(
X̄n − EX1

) d−−−→
n→∞

N (0, varX1) = N
(
0, 1/λ20

)
.
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Analogously, the form of the test statistic W 2
n follows from the previous formula by applying

the delta theorem with function g(t) = 1/t, giving

√
n
(
1/X̄n − λ0

) d−−−→
n→∞

N
(
0, λ20

)
.

In this case, the parameter λ in the variance term is approximated by λ̂n in W 2
n , which is

allowed by the Cramér-Slutsky theorem. △

An extension of Theorem 30 to a multi-dimensional parameter θ ∈ Θ ⊆ Rp is straightfor-

ward.

Theorem 31. Suppose that all conditions of Theorem 25 are satisfied, and let θ0 ∈ Θ be

given. Then, if the true value of the parameter θX is θ0, we have the following.

1. The Rao score test. Writing θ = (θ1, . . . , θp)
T and denoting

Un(θ) =

(
∂Ln(θ)

∂θ1
, . . . ,

∂Ln(θ)

∂θp

)T

=
∂Ln(θ)

∂θ

we have that

Rn =
1

n
(Un(θ0))

T (J (θ0))
−1Un(θ0)

d−−−→
n→∞

χ2
p.

2. Wald test. If the Fisher information matrix J(θ) is continuous in θ0, then

Wn = n
(
θ̂n − θ0

)T
J(θ̂n)

(
θ̂n − θ0

)
d−−−→

n→∞
χ2
p.

3. Likelihood ratio test. If the Fisher information matrix J(θ) is continuous in θ0, then

LRn = 2
(
Ln(θ̂n)− Ln(θ0)

)
d−−−→

n→∞
χ2
p.

Proof. The proof is based on Theorem 25. For the Rao score test and the Wald test it follows

directly. The derivation of the asymptotic distribution for the likelihood ratio statistic is more

technical, but completely analogous to that from the proof of Theorem 30. One starts from

the multivariate Taylor series for Ln(θ0) around θ̂n and gets

Ln(θ0) = Ln(θ̂n) +
1

1!

p∑
j=1

L′
n,j(θ̂n)

(
θ0,j − θ̂n,j

)
+

1

2!

p∑
j=1

p∑
k=1

L′′
n,j,k(θ̂n)

(
θ0,j − θ̂n,j

)(
θ0,k − θ̂n,k

)
+

1

3!

p∑
j=1

p∑
k=1

p∑
ℓ=1

L′′′
n,j,k,ℓ(θ

∗
n)
(
θ0,j − θ̂n,j

)(
θ0,k − θ̂n,k

)(
θ0,ℓ − θ̂n,ℓ

)
,
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where θ0 = (θ0,1, . . . , θ0,p)
T, θ̂n =

(
θ̂n,1, . . . , θ̂n,p

)T
, θ∗n lies in the line segment between θ0

and θ̂n, and

L′
n,j(θ̂n) =

∂Ln(θ̂n)

∂θj
,

L′′
n,j,k(θ̂n) =

∂2Ln(θ̂n)

∂θj∂θk
,

L′′′
n,j,k,ℓ(θ̂n) =

∂3Ln(θ̂n)

∂θj∂θk∂θℓ
.

For the term with the first derivatives we know that L′
n,j(θ̂n) = 0 for all j = 1, . . . , p.

Analogously as in the proof of Theorem 30 we derive that

−
L′′
n,j,k(θ̂n)

n

P−−−→
n→∞

Jj,k(θ0), (83)

where Jj,k(θ) is the (j, k)-th element of the Fisher information matrix J(θ), for all j, k =

1, . . . , p. That gives

−
p∑

j=1

p∑
k=1

L′′
n,j,k(θ̂n)

(
θ0,j − θ̂n,j

)(
θ0,k − θ̂n,k

)
= −

(√
n
(
θ0 − θ̂n

))T L′′
n(θ̂n)

n

(√
n
(
θ0 − θ̂n

))
,

where by L′′
n(θ̂n) we denoted the matrix whose (j, k)-the element is L′′

n,j,k(θ̂n). By Theorem 25

we know that
√
n
(
θ0 − θ̂n

)
d−−−→

n→∞
Np

(
0, (J(θ0))

−1
)
,

while from (83) we know that

−L
′′
n(θ̂n)

n

P−−−→
n→∞

J(θ0). (84)

Combining all together we get using the Cramér-Slutsky theorem that

−
p∑

j=1

p∑
k=1

L′′
n,j,k(θ̂n)

(
θ0,j − θ̂n,j

)(
θ0,k − θ̂n,k

)
d−−−→

n→∞
χ2
p.

It remains to show that the last term in the Taylor expansion

1

3!

p∑
j=1

p∑
k=1

p∑
ℓ=1

L′′′
n,j,k,ℓ(θ

∗
n)
(
θ0,j − θ̂n,j

)(
θ0,k − θ̂n,k

)(
θ0,ℓ − θ̂n,ℓ

)
vanishes in probability as n → ∞. This is shown exactly in the same way as in the proof of

Theorem 30.

The three tests based on the use of the likelihood have different pros and cons:

• In the Rao score test, we do not need to know the maximum likelihood estimator θ̂n,

but need to find an inverse of the Fisher information matrix. This does not have to be

simple.
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• For the Wald test, we need to know the maximum likelihood estimator explicitly, and

need to have access to the Fisher information matrix.

• For the likelihood ratio test, we do not need to know the Fisher information matrix at

all, but need to have an explicit maximum likelihood estimator.

The tests in the multi-dimensional case are, of course, well suited only for hypotheses of the

type (79); no reasonable one-sided alternatives in the situation p > 1 exist. In all cases, we

reject H0 : θX = θ0 if and only if the observed value of the test statistic exceeds F−1
p (1− α),

for F−1
p the quantile function of the χ2

p distribution.

In both Theorems 30 and 31 we assumed by (P2) or (P
∗
2) that the elements ofX correspond

to a random sample of size n. Also, recall that the Fisher information J(θ) or J(θ) in this

situation corresponds to the Fisher information contained in a single observation X1 ∈ Rd.

Then, we know by Theorem 2 and an analogous result for the Fisher information matrix that

the Fisher information contained in the whole sample X = (X1, . . . , Xn)
T equals Jn(θ) =

nJ(θ) or Jn(θ) = nJ(θ). Thus, in all test statistics, in both Rao score tests and Wald tests

the factor n in fact corresponds to the Fisher information being based on n observations.

Finally, it may happen that the computation of the Fisher information matrix J(θ) is

difficult. Sometimes it is therefore easier to plug in instead of J(θ0) or J(θ̂n) the so-called

observed Fisher information matrix, which is an estimator of the Fisher information matrix

given by

Ĵn(θ̂n) = − 1

n

∂Un(θ̂n)

∂θT
= − 1

n

n∑
i=1

∂2 log f(Xi; θ̂n)

∂θ∂θT
.

Here, the derivative ∂θ gives Un(θ̂n) being a column vector of length p. The additional

derivative ∂θT takes the p partial derivatives of all the elements of Un(θ), taken as rows. It

results in the expression on the right hand side being indeed a p× p matrix of second partial

derivatives of log f(Xi;θ), evaluated at θ = θ̂n. Based on Theorem 7, under mild and obvious

integrability assumptions and the continuity of J in θ0, the law of large numbers guarantees

that

Ĵn(θ̂n)
P−−−→

n→∞
J(θ0).

Therefore, also the observed Fisher information matrix could be used in the asymptotic tests

instead of J(θ0) or J(θ̂n). This is useful, especially if the explicit Fisher information matrix

is difficult to obtain. Note that since Ĵn(θ̂n) estimates only the Fisher information matrix

J(θ0) contained in a single observation Xi, the factor n in the tests must still be used.
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3.3.2 Tests with nuisance parameters

We now turn to the problem of hypotheses testing with the presence of the so-called nuisance

parameters. Suppose that we are in the situation when θ ∈ Θ ⊆ Rp is the complete parameter

determining the distribution of a random vector X. We split this p-dimensional vector θ =

(θ1, . . . , θp)
T into two parts: a q-dimensional sub-vector τ of the parameters of interest with

1 ≤ q < p, and the remaining (p− q)-dimensional sub-vector ψ of parameters that we are not

interested in. Overall, we have

τ = (θ1, . . . , θq)
T and ψ = (θq+1, . . . , θp)

T ,

and θT =
(
τT,ψT

)
. The true value of the parameter is likewise denoted by θTX =

(
τT
X ,ψ

T
X

)
.

We have rearranged the elements of the vector θ so that its first q elements are the parameters

of interest — this is of course without loss of generality. Our intention is to perform a test of

the hypothesis

H0 : τX = τ 0 against H1 : τX ̸= τ 0,

for τ 0 ∈ Rq given. For the construction of likelihood-based tests, we split also the maximum

likelihood estimator of θ into

θ̂
T

n =
(
τ̂T
n , ψ̂

T

n

)
.

In the asymptotic tests about the whole parameter θ in Section 3.3.1 we compared θ̂n with

its hypothesized value θ0 under H0. In the present situation, it is natural also to compare

θ̂n, but this time with the maximum likelihood estimator of θ under H0 : τX = τ 0. That is,

for the null hypothesis our intention is to maximize the likelihood of θ, under the restriction

τ = τ 0, as a function of the remaining parameters ψ. We thus denote by

ψ̃n = argmaxψ∈Rp−qLn

((
τT
0 ,ψ

T
)T)

the maximum likelihood estimator of ψ given τ = τ 0, which is basically the profile likelihood

from Section 2.4. This way, we can also formally denote by

θ̃
T

n =
(
τT
0 , ψ̃

T

n

)
the complete estimator of θ under H0.

In what follows we need to consider the asymptotic distributions of τ̂n and θ̂n separately.

According to the asymptotic distribution of θ̂n from Theorem 25, we will therefore need to

deal with the partitioned score function

Un(θ)
T =

(
U1 (θ)

T ,U2(θ)
T
)
,
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where

U1(θ) =
∂Ln(θ)

∂τ
=

(
∂Ln(θ)

∂θ1
, . . . ,

∂Ln(θ)

∂θq

)T

,

U2(θ) =
∂Ln(θ)

∂ψ
=

(
∂Ln(θ)

∂θq+1
, . . . ,

∂Ln(θ)

∂θp

)T

.

(85)

The functions U1 and U2, of course, also depend on n and we should formally write Un,1

and Un,2. We omit the index n for brevity. To use Theorem 25 appropriately we also need to

partition the inverse Fisher information matrix (J(θX))−1 from (49) into parts corresponding

to τ and ψ given by

(J(θ))−1 =

(
J1,1(θ) J1,2(θ)

J2,1(θ) J2,2(θ)

)
,

where the blocks are of dimensions q× q for J1,1, q× (p− q) for J1,2, (p− q)× q for J2,1, and

(p− q)× (p− q) for J2,2.

Because θ̂n is the maximum likelihood estimator of θ, we know that

Un(θ̂n) = 0.

Also, because of the definition of θ̃n we have that

Un(θ̃n)
T =

(
U1(θ̃n)

T,0T
)
. (86)

Using our Lemma 3 on the inverse of a matrix partitioned into blocks, we can also express all

blocks J i,j of the inverse (J(θ))−1 in terms of the blocks of the original Fisher information

matrix J(θ). The blocks of the inverse Fisher information matrix are of great importance

since, e.g., from (49) it follows that

√
n

(
τ̂n − τX

ψ̂n −ψX

)
d−−−→

n→∞
Np

(
0, (J(θX))−1

)
,

meaning that
√
n (τ̂n − τX)

d−−−→
n→∞

Nq

(
0,J1,1(θX)

)
. (87)

In our final theorem we derive the variants of the asymptotic likelihood based tests under the

presence of nuisance parameters.

Theorem 32. Suppose that all conditions of Theorem 25 are satisfied, vector θ is split into

τ and ψ as described above, and let τ 0 ∈ Rq be given. Suppose that the Fisher information

matrix J(θ) is continuous in the true value of the parameter θTX =
(
τT
0 ,ψ

T
X

)
. Then we can

write the following.

1. The Rao score test.

R∗
n =

1

n

(
U1(θ̃n)

)T
J1,1

(
θ̃n

)
U1(θ̃n)

d−−−→
n→∞

χ2
q .
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2. Wald test.

W ∗
n = n (τ̂n − τ 0)

T
(
J1,1(θ̂n)

)−1
(τ̂n − τ 0)

d−−−→
n→∞

χ2
q .

3. Likelihood ratio test.

LR∗
n = 2

(
Ln(θ̂n)− Ln(θ̃n)

)
d−−−→

n→∞
χ2
q .

Proof. We begin with the simplest case of the Wald test. From (87) we know the asymp-

totic distribution of τ̂n. Because the matrix J1,1(θX) is assumed to be square, positive

definite, and symmetric, there exists a unique square, positive definite, and symmetric matrix(
J1,1 (θX)

)1/2
that satisfies

(
J1,1 (θX)

)1/2 · ((J1,1 (θX)
)1/2)T

= J1,1(θX).

This follows from the spectral decomposition of a symmetric positive definite matrix. Apply-

ing the inverse
(
J1,1 (θX)

)−1/2
of this square root matrix to (87) we get

V n =
√
n
(
J1,1 (θX)

)−1/2
(τ̂n − τX)

d−−−→
n→∞

Nq (0, I)

for I the q × q identity matrix. Transforming the last expression into a quadratic form and

using the continuous mapping theorem, we get

V T
nV n = n (τ̂n − τ 0)

T (J1,1(θX)
)−1

(τ̂n − τ 0)
d−−−→

n→∞
χ2
q .

It remains to substitute J1,1(θX) by its consistent estimator J1,1(θ̃n), and note that this

consistency holds true because we assumed the continuity of J(θ), and J1,1(θ) can be written

by Lemma 3 as a continuous function of the blocks of J(θ). The proof for the Wald test is

concluded.

Analogously to the first part of this proof, for the asymptotic distribution of the Rao score

test it is enough to find that

1√
n
U1

(
θ̃n

)
d−−−→

n→∞
Nq

(
0,
(
J1,1(θX)

)−1
)
.

This is done using Taylor’s expansion of the q-dimensional function U1(θ̃n) around θX . This

proof is not difficult, but somewhat lengthy and tedious. We omit those technical derivations;

they can be found, e.g. in [1, Theorem 8.25].

We prove the result about the asymptotics of the likelihood ratio test. The proof begins

very similarly to that of Theorem 31 for the likelihood ratio test without nuisance parameters.
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We start by expanding the log-likelihood Ln(θ̃n) around θ̂n into a Taylor series

Ln(θ̃n) = Ln(θ̂n) +
1

1!

p∑
j=1

L′
n,j(θ̂n)

(
θ̃n,j − θ̂n,j

)
+

1

2!

p∑
j=1

p∑
k=1

L′′
n,j,k(θ̂n)

(
θ̃n,j − θ̂n,j

)(
θ̃n,k − θ̂n,k

)
+

1

3!

p∑
j=1

p∑
k=1

p∑
ℓ=1

L′′′
n,j,k,ℓ(θ

∗
n)
(
θ̃n,j − θ̂n,j

)(
θ̃n,k − θ̂n,k

)(
θ̃n,ℓ − θ̂n,ℓ

)

= Ln(θ̂n) + 0− 1

2

(√
n
(
θ̃n − θ̂n

))T(
−L

′′
n(θ̂n)

n

)(√
n
(
θ̃n − θ̂n

))
+R1,n.

(88)

Here θ̃n =
(
θ̃n,1, . . . , θ̃n,p

)T
, θ∗n lies in the line segment between θ̃n and θ̂n, and

R1,n =
1

3!

p∑
j=1

p∑
k=1

p∑
ℓ=1

L′′′
n,j,k,ℓ(θ

∗
n)
(
θ̃n,j − θ̂n,j

)(
θ̃n,k − θ̂n,k

)(
θ̃n,ℓ − θ̂n,ℓ

)

is a remainder term that converges to zero in probability because θ̃n− θ̂n
P−−−→

n→∞
θX−θX = 0,

exactly as in the proof of Theorem 31. All the remaining notations above are from the proof

of Theorem 31. Since we will need to operate with several more remainder terms, in the rest

of this proof whenever we write Rj,n for j = 1, 2, . . . , we always mean a sequence of random

vectors that vanish in probability, i.e. Rj,n
P−−−→

n→∞
0.

Using (84) we know that we can rewrite (88) into

2
(
Ln(θ̂n)− Ln(θ̃n)

)
=
(√

n
(
θ̂n − θ̃n

))T
J(θX)

(√
n
(
θ̂n − θ̃n

))
+R2,n. (89)

To prove part (iii) of Theorem 25 we have found in (61) that

√
n
(
θ̂n − θX

)
=

1√
n
(J(θX))−1Un(θX) +R3,n. (90)

Exactly in the same way, an analogous result can be derived for θ̃n, or more precisely for its

non-trivial part ψ̃n. It takes the form

√
n
(
ψ̃n −ψX

)
=

1√
n
(J2,2(θX))−1Un,2(θX) +R4,n (91)

where J2,2 (θX) is the (p− q)× (p− q) block of the matrix

J (θX) =

(
J1,1 (θX) J1,2 (θX)

J2,1 (θX) J2,2 (θX)

)
(92)
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that corresponds to its last rows and columns. In (91) we wrote Un,2 for what we denoted by

U2 in (85) to emphasize the dependence on the sample size n. Putting (90) and (91) together

we obtain
√
n
(
θ̂n − θ̃n

)
= A(θX)

1√
n
Un(θX) +R5,n.

The symmetric matrix A(θX) takes the form

A(θX) = (J(θX))−1 −

(
0 0

0 (J2,2(θX))−1

)
.

We can therefore rewrite (89) to

LR∗
n =

1√
n
(Un(θX))TA(θX)J(θX)A(θX)

1√
n
Un(θX) +R6,n.

By part (iii) of Theorem 25 we know that

1√
n
Un(θX)

d−−−→
n→∞

Np (0,J(θX)) .

The distribution of LR∗
n is therefore basically a quadratic form of an asymptotically nor-

mal p-dimensional random vector. Thus, by the Cramér-Slutsky theorem we have that

LR∗
n converges in distribution to the quadratic form ZTA(θX)J(θX)A(θX)Z, where Z ∼

Np (0,J (θX)). It remains to specify its distribution; note that while the random vector

Z is p-dimensional, the matrix A(θX)J(θX)A(θX) is singular, and the distribution of the

quadratic form must be examined with care. To do that, we use the following lemma, proved

in e.g. [6, Lemma A.4] or [1, Theorem 4.16]. For the statement of the lemma recall that a

square matrix C is called idempotent if CC = C.

Lemma 9. Let Z ∼ Np (0,J) and let B be a positive semidefinite p× p matrix such that the

matrix BJ is non-zero and idempotent with trace q. Then

ZTBZ ∼ χ2
q .

To use Lemma 9 with J = J(θX) and B = A(θX)J(θX)A(θX) notice that

A(θX)J(θX) = Ip −

(
0 0

(J2,2(θX))−1 J2,1 (θX) Ip−q

)
(93)

for Ip the p× p identity matrix and J2,1 a block of J from (92). This gives

BJ = A(θX)J(θX)A(θX)J(θX) = Ip −

(
0 0

(J2,2(θX))−1 J2,1 (θX) Ip−q

)
= A(θX)J(θX),
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which means that

(BJ) (BJ) = (A(θX)J(θX)A(θX)J(θX)) (A(θX)J(θX)A(θX)J(θX))

= A(θX)J(θX)A(θX)J(θX) = BJ = A(θX)J(θX),

that is BJ is idempotent. Its trace (equal to its rank) is from (93) equal to p− (p− q) = q,

concluding the proof.

Due to (86), the Rao score test statistic can be written equivalently in a perhaps more

elegant form

R∗
n =

1

n

(
Un(θ̃n)

)T (
J
(
θ̃n

))−1
Un(θ̃n).

It is however important to observe that even though we see that R∗
n has been written as a

quadratic form of a p-dimensional vector Un(θ̃n), its asymptotic distribution is χ2
q with q < p

degrees of freedom. The reason for this is that the (p− q)-dimensional sub-vector U2(θ̃n) of

Un(θ̃n) is equal to the constant zero vector.

Just as for the likelihood-based tests about the complete vector θ, also in the test statis-

tics R∗
n and W ∗

n can the matrices J1,1
(
θ̃n

)
and J1,1

(
θ̂n

)
respectively be replaced by any

estimator of the block J1,1(θX) that is consistent under H0.

We conclude our exposition by giving an example of the use of Theorem 32.

Example 3.4. For a random sample X1, . . . , Xn ∼ N
(
µ, σ2

)
with θ =

(
µ, σ2

)T ∈ Θ =

R× (0,∞) we want to test

H0 : µX = µ0 against H1 : µX ̸= µ0,

for µ0 ∈ R given. We have p = 2 and q = 1; from Example 2.1 we know that

θ̂n =
(
τ̂n, ψ̂n

)T
=

(
X̄n,

n− 1

n
S2
n

)T

=
(
X̄n, σ̂2n

)T
,

the log-likelihood takes the form

Ln(θ) = −n
2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(Xi − µ)2 ,

and the score function is

Un(θ) =

(
U1(θ)

U2(θ)

)
=

(
∂Ln(θ)

∂µ
∂Ln(θ)
∂σ2

)
=

(
1
σ2

∑n
i=1 (Xi − µ)

− n
2σ2 + 1

2σ4

∑n
i=1 (Xi − µ)2

)
.

To compute θ̃n we maximize the log-likelihood underH0, that is under the condition µ = µ0.

We obtain

ψ̃n = σ̃2n = argmaxσ2>0Ln

((
µ0, σ

2
)T)

=
1

n

n∑
i=1

(Xi − µ0)
2
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and

θ̃n =
(
µ0, ψ̃n

)T
=

(
µ0,

1

n

n∑
i=1

(Xi − µ0)
2

)T

.

In Example 1.11 we found that

J(θ) =

(
1
σ2 0

0 1
2σ4

)
.

To get J1,1(θ) we need to invert J , and take its first diagonal term. We get

J1,1(θ) = σ2.

Putting all the elements together, we obtain three test statistics

R∗
n =

1

n

(
U1(θ̃n)

)T
J1,1

(
θ̃n

)
U1(θ̃n) = n

(
X̄n − µ0

)2
σ̃2n

,

W ∗
n = n (τ̂n − τ 0)

T
(
J1,1(θ̂n)

)−1
(τ̂n − τ 0) = n

(
X̄n − µ0

)2
σ̂2n

,

LR∗
n = 2

(
Ln(θ̂n)− Ln(θ̃n)

)
= −n log

(
σ̂2n

σ̃2n

)
− 1

σ̂2n

n∑
i=1

(
Xi − X̄n

)2
+

1

σ̃2n

n∑
i=1

(Xi − µ0)
2

= −n log

(
σ̂2n

σ̃2n

)
− n+ n = n log

( ∑n
i=1 (Xi − µ0)

2∑n
i=1

(
Xi − X̄n

)2
)
.

In all cases, we reject H0 at level α ∈ (0, 1) if and only if the observed value of the test

statistic exceeds the (1 − α)-quantile of the χ2
1 distribution. Note the similarity of both R∗

n

and W ∗
n to the square of the usual t-test statistic in this setup. △
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[8] E. L. Lehmann and George Casella. Theory of point estimation. Springer Texts in

Statistics. Springer-Verlag, New York, second edition, 1998.

[9] E. L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Springer Texts in

Statistics. Springer, New York, third edition, 2005.

[10] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, random variables, and

stochastic processes. McGraw-Hill Book Co., New York, fourth edition, 2002.

[11] L. Pick, S. Hencl, J. Spurný, and M. Zelený. Matematická analýza 1. https://www2.
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