Logarithmic transformation of response

Logarithmic transformation of response
Often, support \mathcal{S} of Y is $\mathcal{S}=(0, \infty)$.
Logarithm is then one of transformations to consider when trying to obtain a correct (wrong but useful) model.

Suppose that the following model is correct:

$$
\log (Y)=\mathbf{x}^{\top} \boldsymbol{\beta}+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Then

$$
Y=\exp \left(\mathbf{x}^{\top} \boldsymbol{\beta}\right) \eta, \quad \eta=\exp (\varepsilon) \sim \mathcal{L} \mathcal{N}\left(0, \sigma^{2}\right)
$$

i.e., errors and a regression function are combined multiplicatively.

Properties of the log-normal distribution:

$$
\begin{aligned}
\mathbb{E}(\eta) & =M=\exp \left(\frac{\sigma^{2}}{2}\right)>1 \text { for } \sigma^{2}>0 \\
\operatorname{var}(\eta)=V & =\left\{\exp \left(\sigma^{2}\right)-1\right\} \exp \left(\sigma^{2}\right)
\end{aligned}
$$

Logarithmic transformation of response

$\operatorname{var}(Y ; x)$ increases with $\mathbb{E}(Y ; x)$
Captured by a normal linear model for $\log (Y)$ as then

$$
\begin{aligned}
\mathbb{E}(Y ; x) & =M \exp \left(\mathbf{x}^{\top} \boldsymbol{\beta}\right) \\
\operatorname{var}(Y ; x) & =V \exp \left(2 \mathbf{x}^{\top} \boldsymbol{\beta}\right)=V\left(\frac{\mathbb{E}(Y ; x)}{M}\right)^{2}
\end{aligned}
$$

which is increasing function of $\mathbb{E}(Y ; x)$ for Y with a support $\mathcal{S}=(0, \infty)$.
It is then said that the logarithmic transformation stabilizes the variance.
$\mathcal{D}(Y ; x)$ skewed
Often sufficiently captured (leads to a model which is wrong but useful) by a normal linear model for $\log (Y)$ as then

$$
\mathcal{D}(Y ; x)=\mathcal{L N}\left(\mathbf{x}^{\top} \boldsymbol{\beta}, \sigma^{2}\right),
$$

and a log-normal distribution is one of the "benchmark" skewed distributions.

Logarithmic transformation of response

Interpretation of regression coefficients
Let $\mathbf{x}_{1}=\left(x_{1,0}, \ldots, x_{1, j}, \ldots, x_{1, k-1}\right)^{\top}$,
$\mathbf{x}_{2}=\left(x_{2,0}, \ldots, x_{1, j}+1, \ldots, x_{2, k-1}\right)^{\top}$,
$\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{k-1}\right)^{\top}$.
Then

$$
\frac{\mathbb{E}\left(Y ; \mathbf{x}_{2}\right)}{\mathbb{E}\left(Y ; \mathbf{x}_{1}\right)}=\frac{M \exp \left(\mathbf{x}_{2}^{\top} \boldsymbol{\beta}\right)}{M \exp \left(\mathbf{x}_{1}^{\top} \boldsymbol{\beta}\right)}=\exp \left(\beta_{j}\right)
$$

When $\left(\beta_{j}^{L}, \beta_{j}^{U}\right)$ is the confidence interval for β_{j} with a coverage of $1-\alpha$ then

$$
\left(\exp \left(\beta_{j}^{L}\right), \exp \left(\beta_{j}^{U}\right)\right)
$$

is the confidence interval for $\frac{\mathbb{E}\left(Y ; \mathbf{x}_{2}\right)}{\mathbb{E}\left(Y ; \mathbf{x}_{1}\right)}$ with a coverage of $1-\alpha$.

Interpretation of regression coefficients

When ANOVA linear model with log-transformed response is fitted, estimated differences between the group means of log-response are equal to estimated ratios between the group means of the original response.

When a model with logarithmically transformed response if fitted, estimated regression coefficients, estimates of estimable parameters etc. and their confidence intervals are often reported back-transformed (exponentiated) due to above interpretation.

