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Abstract

The present paper investigates the asymptotic behaviour of a studentized
permutation test for testing equality of (Pearson) correlation coefficients in
two populations. It is shown that this test is asymptotically of exact level
and has the same power for contiguous alternatives as the corresponding
asymptotic test. As a by-product we specify the assumptions needed for
the validity of the permutation test suggested in Sakaori (2002). A small
simulation study compares the finite sample properties of the considered
tests.
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1. Introduction

Suppose we observe two independent random samples of sizes n1 and n2
of independent bivariate random vectors

X1 = (X
(1)
1 , X

(2)
1 )t, . . . , Xn1 = (X

(1)
n1 , X

(2)
n1 )t i.i.d. F,

Y1 = (Y
(1)
1 , Y

(2)
1 )t, . . . , Yn2 = (Y

(1)
n2 , Y

(2)
n2 )t i.i.d. G,

(1)

that are defined on a common probability space (Ω,A, P ) and put n =
n1 + n2. Suppose that both covariance matrices of X1 and Y1 are positive
definite and that

E(‖X1‖4 + ‖Y1‖4) <∞, (2)
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where ‖ · ‖ stands for an Euclidean norm. Put

ρ1 =
cov(X

(1)
1 , X

(2)
1 )√

var (X
(1)
1 ) var (X

(2)
1 )

and ρ2 =
cov(Y

(1)
1 , Y

(2)
1 )√

var (Y
(1)
1 ) var (Y

(2)
1 )

for the (Pearson product-moment) correlation coefficients corresponding to
the vectors X1 and Y1. In the following we will be interested in testing the
null-hypothesis of equal correlation coefficients H0 : ρ1 = ρ2 against the
one-sided alternative H1 : ρ1 > ρ2.

There is a large amount of literature on testing properties of correlation
matrices, but most of the authors consider testing the equality of coefficients
within a single correlation matrix. The asymptotic χ2-test for the equality
of an arbitrary number of independent population correlation coefficients in
the bivariate case was already given by Pearson and Wilks (1933) (see p.
374) and the problem was further studied by Paul (1989). Kullback (1967)
has generalized this test to correlation matrices. A different test aiming at
comparing only two correlation matrices was proposed in Jennrich (1970).
But in all those papers normality of observations is required.

Nevertheless, a simple asymptotic test that does not require the normal-
ity of observations follows for instance from formula (1.1) given in Jennrich
(1970). This test can be rewritten for the bivariate case as follows. Put
Rn1 and Rn2 for the empirical correlation coefficients of the first and second
sample respectively, that is

Rn1 :=
1
n1

∑n1
i=1(X

(1)
i −X

(1)
n1

)(X
(2)
i −X

(2)
n1

)√
1
n1

∑n1
j=1(X

(1)
j −X

(1)
n1

)2 1
n1

∑n1
k=1(X

(2)
k −X

(2)
n1

)2
=:

En1

Dn1

(3)

and similarly

Rn2 :=
1
n2

∑n2
i=1(Y

(1)
i − Y (1)

n2
)(Y

(2)
i − Y (2)

n2
)√

1
n2

∑n2
j=1(Y

(1)
j − Y (1)

n2
)2 1
n2

∑n2
k=1(Y

(2)
k − Y (2)

n1
)2

=:
En2

Dn2

. (4)

Then the test statistic is given by

T̃n :=
an(Rn1 −Rn2)

Vn
, (5)

where an =
√

n1n2
n is a normalizing sequence and V 2

n is the estimate of the
asymptotic variance of the difference an(Rn1 −Rn2) that will be given later
(see (14)).
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In order to improve upon the small sample properties of the asymptotic
test (5) Sakaori (2002) suggested a permutation test (ϕ∗n) assuming that both
samples follow the same distribution up to possible differences in locations
and scales of the marginal distributions. His test is based on the difference
Tn = an(Rn1 − Rn2) and the significance of this statistic is assessed by the
permutation of the standardized pooled sample Sn = (Sn,1, . . . , Sn,n), where

Sn,i :=

 X
(j)
i −X

(j)
n1√

1
n1

∑n1
k=1(X

(j)
k −X

(j)
n1

)2


j=1,2

for 1 ≤ i ≤ n1 (6)

and

Sn,n1+i :=

 Y
(j)
i − Y (j)

n2√
1
n2

∑n2
k=1(Y

(j)
k − Y (j)

n2
)2


j=1,2

for 1 ≤ i ≤ n2. (7)

The validity of this test is only very briefly sketched in Sakaori (2002). In
this paper the assumptions of this test are exactly specified. Furthermore,
we suggest a permutation test that is based on the studentized statistic T̃n
given by (5). We will show that this test is asymptotically correct even if
the bivariate distributions are different.

¿From the methodology point of view our paper follows the footsteps of
Romano (1990), Neuhaus (1993) and Janssen (1997) who showed that un-
der certain mild assumptions permutation tests are asymptotically correct
even if the random variables are not exchangeable. More details on the-
ory and applications of permutation tests can be found in the monographs
of Edgington and Onghena (2007), Good (2005) and Pesarin and Salmaso
(2010).

The paper is organized as follows. In Section 2, we describe the tests and
state the asymptotic results. In Section 3, we investigate the finite sample
properties of the tests. Section 4 adresses some possible extensions. The
proofs are given in the Appendix.

2. Permutation tests for correlations

Recall that permutation tests are conditional tests given the data. In our
situation the test can be formally constructed as follows. Let τ : (Ω̃, Ã, P̃ )→
Sn be a random variable on some further probability space (Ω̃, Ã, P̃ ) that is
uniformly distributed on the symmetric group Sn (the set of all permutations
of (1, . . . , n)) and independent of the data X1, . . . , Xn, where for simplicity
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of notations we set Xn1+i := Yi for 1 ≤ i ≤ n2. Thereby independent means
independence on the joint probability space (Ω× Ω̃,A⊗Ã, P ⊗ P̃ ), on which
all random variables can be defined via projections.

Let Tn = Tn((Xi)i≤n) be a test statistic such that large values speak
against the null hypothesis. Then for fixed observations X1(ω), . . . , Xn(ω),
ω ∈ Ω the data dependent critical value cn(α) = cn(α, ω) is calculated as the
(1− α)-quantile of the permutation distribution of T ∗n = Tn((Xτ(i)(ω))i≤n).

2.1. Permutation test ϕ∗n

First note that using the test statistic Tn = an(Rn1 − Rn2) and per-
muting the original observations results in a test that is exact under a very
restricted null hypothesis {F = G}, see e.g. Lehmann and Romano (2005).
Unfortunately, the practical use of this test is very limited as it is not in gen-
eral asymptotically correct if the distributions differ in any way (for instance
only in location or scale). That is rather disappointing as a correlation co-
efficient is location and scale invariant. This leads naturally to the test ϕ∗n
suggested by Sakaori (2002), that permutes the standardized pooled sample
Sn = (Sn,1, . . . , Sn,n) (defined by (6) and (7)).

To explore the asymptotic properties of the test ϕ∗n, the following asymp-
totic representation of the statistic Tn is useful (for its derivation see the
Appendix)

Tn − an(ρ1 − ρ2) = an

(
1

n1

n1∑
i=1

ZXi −
1

n2

n2∑
i=1

ZYi

)
+ oP (1), (8)

where

ZXi = X̃
(1)
i X̃

(2)
i −

ρ1
2

(
(X̃

(1)
i )2 + (X̃

(2)
i )2

)
, 1 ≤ i ≤ n1, (9)

ZYi = Ỹ
(1)
i Ỹ

(2)
i − ρ2

2

(
(Ỹ

(1)
i )2 + (Ỹ

(2)
i )2

)
, 1 ≤ i ≤ n2, (10)

with

X̃
(j)
i =

X
(j)
i − E(X

(j)
i )√

var (X
(j)
i )

and Ỹ
(j)
i =

Y
(j)
i − E(Y

(j)
i )√

var (Y
(j)
i )

. (11)

Further assume that n1
n → p ∈ (0, 1) as n → ∞ and put q = 1 − p.

With the help of (8) the central limit theorem yields that under the null
hypothesis

Tn
d→ N(0, σ2Z), where σ2Z = q σ2X + p σ2Y , (12)
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with σ2X = var (ZX1 ) and σ2Y = var (ZY1 ). Here ’
d→’ stands for convergence

in distribution as n → ∞ and N(µ, σ2) for a normally distributed random
variable with mean µ and variance σ2.

Thus for the asymptotic validity of the test ϕ∗n it is crucial that the per-
mutation procedure asymptotically reproduces the null distribution of Tn. If
so then one would expect that the permutation test ϕ∗n has ‘similar’ asymp-
totic properties as the following test

ϕn = I{Tn > σZ u1−α},

where u1−α is the (1−α)-quantile of the standard normal distributionN(0, 1).
The asymptotic ‘similarity’ of the tests ϕn and ϕ∗n is quantified by the fol-
lowing theorem.

Theorem 1. Suppose that (2) and n1
n → p ∈ (0, 1) hold as n→∞. Further

assume that either p = 1
2 or var (ZX1 ) = var (ZY1 ). Then under the null

hypothesis H0

E(|ϕ∗n − ϕn|)→ 0 as n→∞. (13)

A nice consequence of the L1-convergence (13) is that ϕ∗n and ϕn have
not only the same asymptotic level, but also the same power functions for
contiguous alternatives (e.g. see Section 6 of Janssen and Pauls (2003)).

Remark 1. Theorem 1 implies that the conjecture of Sakaori (2002) is right
and the test ϕ∗n is asymptotically valid provided the distributions F and G
coincide up to differences in location and scale parameters as those do not
affect the equation var (ZX1 ) = var (ZY1 ). Note that the validity also hold if
the sample sizes are asymptotically balanced, that is n1

n2
→ 1.

2.2. The studentized permutation test

The proof of Theorem 1 (given in Appendix) reveals that the validity of
the test ϕ∗n is not generally true as the permutation procedure interchanges
the ratios p and q in the limit variance of the conditional permutation distri-
bution. This is already a well-understood problem of permutation tests, see
e.g. Romano (1990) or Janssen (1997). The solution to this problem is to
permute the studentized test statistic T̃n given by (5). The straightforward
estimator of the variance of the statistic Tn is given by

V 2
n = V 2

n (Sn) :=
σ̂2X
n1

+
σ̂2Y
n2
, (14)
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where

σ̂2X :=
1

n1 − 1

n1∑
i=1

(Ẑn,i − Zn1)2, σ̂2Y :=
1

n2 − 1

n∑
i=n1+1

(Ẑn,i − Zn2)2

with
Ẑn,i := S

(1)
n,iS

(2)
n,i −

1
2

(
n1
n Rn1 + n2

n Rn2

)[
(S

(1)
n,i )

2 + (S
(2)
n,i )

2
]

(15)

and

Zn1 :=
1

n1

n1∑
i=1

Ẑn,i, Zn2 :=
1

n2

n∑
i=n1+1

Ẑn,i.

The studentized asymptotic test is defined as ϕ̃n = I{T̃n > u1−α}, where T̃n
is defined in (5).

Put ϕ̃∗n for the permutation version of the test ϕ̃n. Note that this test
runs as follows. Let τ be a given permutation of the indices {1, . . . , n}.
In the ‘permutation world’ the role of the original observations (Xi)i and
(Yj)j is played by the permuted pooled sample of standardized observations

Sn,τ = (Sn,τ(1), . . . , Sn,τ(n)). Thus when computing T̃ ∗n from this data one
needs to standardize ‘once more’ and use

S∗n,τ(i) :=

 S
(j)
n,τ(i) − S̄

(j)
n1,τ√

1
n1

∑n1
k=1(S

(j)
n,τ(k) − S̄

(j)
n1,τ )2


j=1,2

, 1 ≤ i ≤ n1,

S∗n,τ(n1+i)
:=

 S
(j)
n,τ(n1+i)

− S̄(j)
n2,τ√

1
n2

∑n2
k=1(S

(j)
n,τ(n1+k)

− S̄(j)
n2,τ )2


j=1,2

, 1 ≤ i ≤ n2,

where

S̄(j)
n1,τ =

1

n1

n1∑
k=1

S
(j)
n,τ(k), S̄(j)

n2,τ =
1

n2

n1+n2∑
k=n1+1

S
(j)
n,τ(k).

Roughly speaking, in an analogous way as the original statistic T̃n is a
function of the standardized observation Sn, the permuted statistic T̃ ∗n is
a function of S∗n,τ = (S∗n,τ(1), . . . , S

∗
n,τ(n)). Formally, the permutation test

is defined as ϕ̃∗n = I{T̃n > c̃∗n(α)}, where c̃∗n(α) is the conditional (1 − α)-
quantile of T̃n(S∗n,τ ).

Theorem 2. Assume (2) and n1
n → p ∈ (0, 1) as n→∞.
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(a) If the null hypothesis holds, then

E(|ϕ̃∗n − ϕ̃n|)→ 0 as n→∞.

(b) If ρ1 6= ρ2, then for n→∞

E(ϕ̃∗n)→

{
1, for ρ1 > ρ2,

0, for ρ1 < ρ2.

Theorem 2(a) implies that the permutation test ϕ̃∗n is asymptotically of
exact level under the null hypothesis. Moreover, the test ϕ̃∗n has the same
asymptotic power function for contiguous alternatives as the studentized
asymptotic test ϕ̃n.

3. Simulations

A small Monte Carlo study was conducted to investigate the finite sample
properties of the following tests:

• the asymptotic test ϕ̃n = I{T̃n > u1−α}, where T̃n is defined in (5),

• the (non-studentized) permutation test ϕ∗n of Sakaori (2002) which is
based on permuting the statistic Tn = an(Rn1 −Rn2),

• the (studentized) permutation test ϕ̃∗n which is based on permuting
the statistic T̃n (see Section 2.2).

The null hypothesis H0 : ρ1 ≤ ρ2 was tested against the one-sided alternative
H1 : ρ1 > ρ2 for the following model

X
(2)
j = ρ1X

(1)
j +

√
1− ρ21 e

X
j , Y

(2)
j = ρ2 Y

(1)
j +

√
1− ρ22 e

Y
j , (16)

where eXj is independent of X
(1)
j and eYj is independent of Y

(1)
j .

To illustrate our experience gained from the simulations we report only
on the following scenarios

1. X
(1)
j , eXj as well as Y

(1)
j , eYj follow the standard normal distribution

N(0, 1).

2. X
(1)
j , eXj follow N(0, 1) and Y

(1)
j , eYj follow a Laplace (double expo-

nential) distribution with the density f(x) = 1
2 e
−|x|.
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ρ1 = ρ2 -0.6 -0.3 0.0 0.3 0.6

Scenario 1 (normal vs. normal).

ϕ̃n 0.065 0.073 0.077 0.077 0.064
ϕ̃∗
n 0.046 0.047 0.052 0.055 0.054

ϕ∗
n 0.040 0.046 0.048 0.049 0.035

Scenario 2 (normal vs. laplace).

ϕ̃n 0.074 0.077 0.068 0.070 0.065
ϕ̃∗
n 0.050 0.050 0.045 0.052 0.058

ϕ∗
n 0.050 0.053 0.040 0.044 0.044

Scenario 3 (exponential vs. normal).

ϕ̃n 0.067 0.073 0.076 0.076 0.072
ϕ̃∗
n 0.048 0.049 0.055 0.054 0.055

ϕ∗
n 0.042 0.044 0.047 0.041 0.029

Table 1: Levels of the tests ϕn, ϕ
∗
n and ϕ̃∗

n when n1 = 20, n2 = 10.

3. X
(1)
j , eXj follow an exponential distribution with the density f(x) =

e−x I{x > 0} and Y
(1)
j , eYj follow N(0, 1).

Note that in all scenarios corr(X
(1)
j , X

(2)
j ) = ρ1 and corr(Y

(1)
j , Y

(2)
j ) = ρ2.

While the first scenario represents the situation when multivariate distri-
butions generating the two samples coincide, the multivariate distributions
differ for the other two scenarios. The second scenario compares the corre-
lation coefficients in two symmetric multivariate distributions. Finally, in
the third scenario only one of the multivariate distributions is symmetric.

Unless stated otherwise the sample sizes are n1 = 20, n2 = 10. The p-
value of the permutation test was approximated by generating 999 random
permutations (see page 158 of Davison and Hinkley (1997)). The p-value
was compared with the level α = 0.05. 10 000 repetitions were used to
approximate the level as well as the power of the test. The simulations were
conducted with the help of R-computing environment, version 2.12.1 (see
R Development Core Team (2010)).

The levels of the test for the sample sizes n1 = 20 and n2 = 10 are to be
found in Table 1. One can see that the asymptotic test ϕ̃n has considerable
difficulties in keeping the prescribed level for small sample sizes. The stu-

8



ρ1 = ρ2 = 0.0 ρ1 = ρ2 = 0.6
n1 20 40 200 2000 20 40 200 2000
n2 10 20 100 1000 10 20 100 1000

Scenario 1 (normal vs. normal)
ϕ̃n 0.077 0.066 0.049 0.053 0.064 0.056 0.050 0.050
ϕ̃∗
n 0.052 0.055 0.045 0.052 0.054 0.052 0.051 0.050

ϕ∗
n 0.048 0.052 0.045 0.051 0.035 0.043 0.050 0.050

Scenario 2 (normal vs. laplace).
ϕ̃n 0.068 0.062 0.052 0.049 0.065 0.060 0.052 0.049
ϕ̃∗
n 0.045 0.053 0.053 0.049 0.058 0.060 0.056 0.049

ϕ∗
n 0.040 0.050 0.050 0.049 0.044 0.054 0.061 0.060

Scenario 3 (exponential vs. normal).
ϕ̃n 0.076 0.059 0.050 0.052 0.072 0.072 0.055 0.052
ϕ̃∗
n 0.055 0.043 0.040 0.049 0.055 0.055 0.047 0.050

ϕ∗
n 0.047 0.044 0.046 0.052 0.029 0.029 0.036 0.033

Table 2: Scenario 2 (normal vs. laplace) – levels of the tests.

dentized permutation test ϕ̃∗n does a much better job in this aspect, but in
some situations it is also slightly anti-conservative (with the actual level usu-
ally between 0.045 and 0.058). Finally, the (non-studentized) permutation
test ϕ∗n seems to be conservative for small sample sizes.

It is interesting to note that the conservativeness of the test ϕ∗n holds
even in situations where asymptotic calculations predict the test to be anti-
conservative. For instance for Scenario 2 (normal vs. laplace) the asymptotic
level of the test ϕ∗n is exactly 0.050 for ρ1 = ρ2 = 0, but 0.063 for ρ1 = ρ2 =
0.6. The actual levels of the tests in these two situations for different sample
sizes are to be found in Table 2. One can see that the asymptotic results
about the level of the tests need sample sizes larger than 100 to kick in.
Note also that the asymptotic test ϕ̃n can be recommended for moderate
sample sizes (> 100).

Finally, we also investigated the power of the tests. The results for
Scenario 1 and 3 are to be found in Table 3. Findings for Scenario 2 are
similar.

Note that for small samples the power of the asymptotic test ϕ̃n cannot
be strictly compared with the power of the two competitors as the asymp-
totic test is very anti-conservative (see Table 1). But it is interesting to
see that the studentized permutation test ϕ̃∗n does not loose much in terms
of power in comparison with the asymptotic test, while having the levels
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Scenario 1 Scenario 3
(normal vs normal) (exp. vs normal)

ρ1 ρ2 ϕ̃n ϕ̃∗
n ϕ∗

n ϕ̃n ϕ̃∗
n ϕ∗

n

0.9 0.6 0.508 0.530 0.369 0.462 0.443 0.213
0.9 0.3 0.796 0.818 0.690 0.736 0.718 0.484
0.9 0.0 0.927 0.940 0.885 0.887 0.878 0.717
0.9 -0.3 0.979 0.985 0.967 0.964 0.957 0.890
0.9 -0.6 0.997 0.998 0.996 0.993 0.992 0.980
0.9 -0.9 1.000 1.000 1.000 1.000 1.000 1.000
0.6 0.3 0.257 0.222 0.184 0.264 0.218 0.149
0.6 0.0 0.518 0.464 0.424 0.502 0.444 0.360
0.6 -0.3 0.773 0.722 0.706 0.743 0.690 0.635
0.6 -0.6 0.944 0.921 0.922 0.935 0.908 0.896
0.6 -0.9 0.999 0.998 0.998 0.998 0.998 0.998
0.3 0.0 0.220 0.170 0.160 0.232 0.186 0.160
0.3 -0.3 0.482 0.402 0.393 0.479 0.414 0.395
0.3 -0.6 0.786 0.708 0.720 0.812 0.757 0.759
0.3 -0.9 0.991 0.982 0.987 0.995 0.990 0.995
0.0 -0.3 0.219 0.162 0.159 0.230 0.178 0.172
0.0 -0.6 0.529 0.431 0.442 0.562 0.489 0.500
0.0 -0.9 0.957 0.922 0.931 0.974 0.960 0.970

-0.3 -0.6 0.267 0.196 0.196 0.267 0.213 0.203
-0.3 -0.9 0.843 0.779 0.769 0.848 0.804 0.792
-0.6 -0.9 0.556 0.485 0.425 0.477 0.425 0.370

Table 3: Power comparison of ϕn, ϕ
∗
n and ϕ̃∗

n when n1 = 20, n2 = 10.

much closer to the prescribed value of 0.05. Similarly, as the test ϕ̃∗n keeps
approximately the level and the (non-studentized) permutation test ϕ∗n is
conservative in our scenarios, the power of ϕ̃∗n is usually higher.

Our simulation experience may be summarized as follows.

• The asymptotic test seems to be the best option for samples larger
than 100. For smaller samples the test is often quite anti-conservative.

• The non-studentized permutation test ϕ∗n is usually conservative for
small samples and thus it can be of interest in such situations. How-
ever, the price to pay can sometimes be a considerable lack of power
for alternatives close to the null hypothesis. Note also that this is
purely simulation experience for small samples that lacks theoretical
justification. With moderate and large samples, the asymptotic results
start to kick in and the test requires the assumptions of Theorem 1
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to have asymptotically the correct level (which are e.g. not fulfilled in
our Scenarios 2 and 3 if ρ1ρ2 6= 0).

• The actual level of the studentized permutation test ϕ̃∗n is usually
between 0.045 and 0.058. If one is willing to accept this fact then the
test ϕ̃∗n is a good option for small samples.

4. Further discussion

For the brevity of the presentation we considered only the test statis-
tic an(Rn1−Rn2) (as well as its studentized version (5)) and one-sided tests
when investigating permutation tests for testing equality of correlation co-
efficients. Besides considering two-sided tests our results can be generalized
in a straightforward way in the following directions.

4.1. Fisher’s z-transformation

Inspired by the bivariate normal model one can try to stabilize the vari-
ance with the help of Fisher’s z-transformation (see for instance Example
3.6 in Van der Vaart (2000)). That is why Sakaori (2002) suggested also a
permutation test based on the following statistic

TFn = an

[
1
2 log

(
1+Rn1
1−Rn1

)
− 1

2 log
(
1+Rn2
1−Rn2

)]
.

By similar arguments as in the proof of (8) one can show that provided
ρ1 = ρ2

TFn =
an(R2 −R1)

1− ρ21
+ oP (1).

Thus the asymptotic analysis of the permutation tests based on TFn can be
derived by modifying the arguments given in our paper. Regarding the finite
sample properties our simulation experience (not presented in this paper) is
that the properties of the tests based on TFn are slightly better for normally
distributed data but can be considerable worse in other situations.

4.2. Comparing multiple samples

Our results can also be generalized to the problem of testing the equality
of correlation coefficients of k-independent samples. Let Rni be the empirical
correlation coefficient in the i-th sample and ni the corresponding sample
size. Provided that it is reasonable to assume that all the samples come
from the same distribution (up to possible changes in scale and location in
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marginals), or provided that ni
n ≈

1
k for i = 1, . . . , k, one can use e.g. the

test statistic

k∑
i=1

ni(Rni −Rn)2, where Rn =
1

n

k∑
i=1

niRni.

If neither of the above assumptions is satisfied then one can use one of the
test statistics that are modifying ANOVA in presence of heteroscedasticity,
see e.g. Argaç (2003) and the references therein.

4.3. Comparing more than one aspect of the data

In this paper we concentrated on comparison of Pearson correlation co-
efficients of two bivariate populations that may differ in all other aspects.
Researches are very often interested in comparing the populations from more
than one aspect. The general methodology for permutational approach to
multiaspect tests can be found in Pesarin and Salmaso (2010) and a nice ap-
plication to comparison of two multivariate distributions in Brombin et al.
(2011). Note that with the help of the methodology described in those
work, one can for instance construct tests of the joint equality of several
measures of associations (e.g. Pearson correlations coefficient, Spearman’s
rho, Kendall’s tau, . . . ) or the tests for equality of correlation matrices in
more than two dimensions.

Appendix

Note that in the following, one can assume without loss of generality that

the original observations X
(1)
j , X

(2)
j , Y

(1)
j , Y

(2)
j are standardized otherwise

one can switch to X̃
(1)
j , X̃

(2)
j , Ỹ

(1)
j , Ỹ

(2)
j defined by (11) without affecting

the values of the empirical correlations coefficients Rn1 and Rn2 .

Proof of (8)

Note that thanks to (2) and the central limit theorem it holds

√
n1X

(j)
n1

= OP (1),
1
√
n1

n1∑
i=1

[
(X

(j)
i )2 − 1

]
= OP (1), j = 1, 2. (A1)

Furthermore, a Taylor expansion of x 7→
√
x at the point 1 and (A1) yield( 1

n1

n1∑
i=1

(X
(j)
i −X

(1)
n1

)2
)1/2

= 1 +
1

2n1

n1∑
i=1

[
(X

(j)
i )2 − 1

]
+ oP ( 1√

n1
), (A2)
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which implies that

Dn1 =

{
1 +

1

2n1

n1∑
i=1

[
(X

(1)
i )2 − 1

]}{
1 +

1

2n1

n1∑
i=1

[
(X

(2)
i )2 − 1

]}
+oP ( 1√

n1
)

=
1

2n1

n1∑
i=1

(X
(1)
i )2 +

1

2n1

n1∑
i=1

(X
(2)
i )2 + oP ( 1√

n1
). (A3)

With the help of (9), (A1) and (A3) one can derive

√
n1(Rn1 − ρ1) =

1

Dn1

√
n1 (En1 − ρ1Dn1)

=
1
√
n1

n1∑
i=1

(
X

(1)
i X

(2)
i −

ρ1
2 (X

(1)
i )2 − ρ1

2 (X
(2)
i )2

)
+ oP (1)

=
1
√
n1

n1∑
i=1

ZXi + oP (1). (A4)

Analogously one can show that

√
n2(Rn2 − ρ2) =

1
√
n2

n2∑
i=1

ZYi + oP (1),

which together with (A4) implies (8).

Auxiliary result - Conditional central limit theorem

Let {cn,i, i = 1, . . . , n} be a triangular array of constants such that

n∑
i=1

c2n,i = 1,
√
n max

1≤i≤n
(cn,i − c̄n) = O(1), (A5)

where c̄n = 1
n

∑n
i=1 cn,i. Next, let Xn = {Xn,i, i = 1, . . . , n} be a triangular

array of random variables defined on (Ω,A, P ). Further, recall that τ :
(Ω̃, Ã, P̃ ) → Sn is ‘a random permutation’, that is a random variable that
is uniformly distributed on the symmetric group Sn and independent of the
triangular array Xn. Finally, let the symbol d stand for a distance that
metrizes weak convergence, e.g. the Levy distance, see p.398 in Dudley
(2002).

The following lemma states the conditional (given Xn) central limit the-
orem for the quantity

∑n
i=1 cn,τ(i)Xn,i in a way that will be useful in the

13



proofs of Theorem 1 and 2. Here ’
P−→ ’ stands for convergence in probability

with respect to the probability measure P .

Lemma 1. Suppose that (A5) holds and the triangular array Xn satisfies

max
1≤i≤n

|Xn,i −Xn|
P−→ 0, (A6)

n∑
i=1

(Xn,i −Xn)2
P−→σ2 ∈ (0,∞) (A7)

as n→∞. Then

d
(
L
( n∑
i=1

cn,τ(i)(Xn,i −Xn)|Xn

)
, N(0, σ2)

)
P−→ 0, as n→∞. (A8)

Proof. Let us first assume that (A6) and (A7) hold almost surely (a.s.), i.e.
for all fixed ω ∈M c with P (M) = 0. For a fixed ω ∈M c define

bn(i) := cn,i and an(i) :=
Xn,i(ω)−Xn(ω)√∑n
j=1(Xn,j(ω)−Xn(ω))2

and denote

τ2 = lim
n→∞

1

n

n∑
i=1

(an(i)− ān)2
n∑
i=1

(bn(i)− b̄n)2,

where ān = 1
n

∑n
i=1 an(i) and analogously for b̄n.

Theorem 4 of Hoeffding (1951) states that the quantity

Sn :=

n∑
i=1

an(i)bn(τ(i))

is asymptotically normal with zero mean and variance τ2, provided

lim
n→∞

max1≤i≤n(an(i)− ān)2∑n
i=1(an(i)− ān)2

max1≤i≤n(bn(i)− b̄n)2∑n
i=1(bn(i)− b̄n)2

= 0. (A9)

As the condition (A9) is satisfied thanks to (A5), (A6) and (A7), one can
conclude that ∑n

i=1 cn,τ(i)(Xn,i(ω)−Xn(ω))∑n
i=1(Xn,i(ω)−Xn(ω))2

(A10)

14



converges to a standard normal distribution N(0, 1). As for all fixed ω ∈M c

one has
∑n

i=1(Xn,i(ω)−Xn(ω))2 → σ2, the convergence (A8) holds even a.s.
(with respect to P ). Now the desired result follows from the subsequence
principle for convergence in probability, see e.g. Theorem 9.2.1. in Dudley
(2002).

In the sequel we will apply Lemma 1 with the following two triangular
arrays of coefficients:

1. cn,i :=

√
n1n2
n
·
{ 1

n1
, for 1 ≤ i ≤ n1,

− 1
n2
, for n1 < i ≤ n. (A11)

2. dn,i :=

√
n1n

n2
·
{ 1

n1
, for 1 ≤ i ≤ n1,

0, for n1 < i ≤ n. (A12)

Proof of Theorem 1

Note that the statistic Tn = an(Rn2 − Rn1) can be written as a func-
tion of the standardized observations Sn = (Sn,1, . . . , Sn,n). For a random
permutation τ put Sn,τ = (Sn,τ(1), . . . , Sn,τ(n)).

Assume for a moment that under H0 it holds that

d
(
L(Tn(Sn,τ )|Sn), N(0, p σ2X + q σ2Y )

) P−→ 0, as n→∞, (A13)

where σX1 and σY1 are defined below the equation (12). As by the assump-
tions of Theorem 1 one gets p σ2X + q σ2Y = q σ2X +p σ2Y , Lemma 1 of Janssen
and Pauls (2003) and the asymptotic normality of Tn given by (12) imply
the statements of Theorem 1.

Suppose for a moment that the following analogy of (8) holds

Tn(Sn,τ ) =
n∑
i=1

cn,iZ̃n,τ(i) + o
P⊗P̃ (1), (A14)

where {Z̃n,i} were defined in (15) and {cn,i} in (A11). Since the non-

vanishing linear part of (A14) is equal in distribution to
∑n

i=1 cn,τ(i)Z̃n,i
(conditionally on Sn) it is straightforward to verify (A13) using the expan-
sion (A14) and Lemma 1. Thus it remains to prove (A14).

When verifying (A14) we proceed as in the proof of (8). Thus we need
to show that for j = 1, 2

1
√
n1

n1∑
i=1

S
(j)
n,τ(i) = O

P⊗P̃ (1) (A15)
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and
1
√
n1

n1∑
i=1

[
(S

(j)
n,τ(i))

2 − 1
]

= O
P⊗P̃ (1). (A16)

Note that as
∑n

i=1 S
(j)
n,i = 0 one has the following equality of distributions

1
√
n1

n1∑
i=1

S
(j)
n,τ(i)

d
=

1
√
n1

n1∑
i=1

dn,τ(i)(Xn,i − X̄n),

where the coefficients {dn,i} are defined in (A12) and Xn,i =
√

n2
n1n

S
(j)
n,i .

Condition (A6) is satisfied thanks to the law of large numbers and assump-
tion (2). Moreover, we have

n∑
i=1

(Xn,i −Xn)2 =
n2
n1n

n∑
i=1

(S
(j)
n,i)

2

=
n2
n1n

(
n1∑
i=1

(S
(j)
n,i)

2 +
n∑

i=n1+1

(S
(j)
n,i)

2

)

=
n2
n

+
n22
n1 n

=
n2
n1
→ 1− p

p
,

thus (A7) also holds. Now Lemma 1 yields that the quantity 1√
n1

∑n1
i=1 S

(j)
n,τ(i)

is asymptotically normal in the sense of (A8), which further implies (A15).

Analogously one can prove (A16) by taking Xn,i =
√

n2
n1n

(S
(j)
n,i)

2 and

utilizing that 1
n

∑n
i=1(S

(j)
n,i)

2 = 1.
Finally, by the same reasoning as in the proof of (8) one can conclude

the proof of (A14) and thus the proof of the theorem is finished. �

Proof of Theorems 2(a)

First note that by the law of large numbers

V 2
n

P−→ q σ2X + p σ2Y as n→∞, (A17)

where V 2
n is the variance estimator for the test statistic Tn defined by (14).

Suppose for a moment that

V 2
n (S∗n,τ )

P⊗P̃−→ q σ2X + p σ2Y as n→∞, (A18)
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where S∗n,τ = (S∗n,τ(1), . . . , S
∗
n,τ(n)). Then Slutsky’s Lemma and the already

proved result (A13) for the statistic Tn imply that

d
(
L(T̃n(S∗n,τ )|Sn), N(0, 1)

) P−→ 0 as n→∞. (A19)

Now Lemma 1 of Janssen and Pauls (2003) together with (A19) concludes
the statement (a) of the theorem.

Thus it remains to verify (A18). After some algebraic manipulations this
problem reduces to proving that

1

n1

n1∑
i=1

(S
(1)
n,τ(i))

l1(S
(2)
n,τ(i))

l2 = p ξ
(l1,l2)
X + q ξ

(l1,l2)
Y + o

P⊗P̃ (1), (A20)

where

ξ
(j,k)
X := E

[
(X

(1)
1 )j(X

(2)
1 )k

]
, ξ

(j,k)
Y := E

[
(Y

(1)
1 )j(Y

(2)
1 )k

]
.

and (l1, l2) ∈M = {(i, j) : i, j ∈ {0, 1, 2, 3, 4}, i+ j ≤ 4}.
To simplify the notation for fixed (l1, l2) ∈M put Wn,i = (S

(1)
n,i )

l1(S
(2)
n,i )

l2 .
Thus our aim is to prove that

1

n1

n1∑
i=1

Wn,τ(i) = p ξ
(l1,l2)
X + q ξ

(l1,l2)
Y + o

P⊗P̃ (1). (A21)

To prove (A21) we will proceed similarly as in the proof of Lemma 4.1
of Janssen (1997). For C > 0 introduce the truncated observations

WC
n,i =

{
Wn,i I{|X(1)

i | ≤ C , |X
(2)
i | ≤ C}, i = 1, . . . , n1,

Wn,n1+i I{|Y
(1)
i | ≤ C , |Y

(2)
i | ≤ C}, i = 1, . . . , n2.

Note that thanks to

X
(j)
n1

P−→ 0,
1

n1

n1∑
i=1

(X
(j)
i )2

P−→ 1, Y
(j)
n2

P−→ 0,
1

n2

n2∑
i=1

(Y
(j)
i )2

P−→ 1,

one can assume that |WC(j)
n,i | ≤ (4C)l1+l2 holds on a set of asymptotic

probability 1. Further define

ξ
(l1,l2)

XC = E
[
(X

C(1)
1 )l1 (X

C(2)
1 )l2

]
, where X

C(j)
1 = X

(j)
1 I{|X(j)

1 | ≤ C},

for j = 1, 2. Analogously define ξ
(l1,l2)

Y C .
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Now everything is ready to decompose

1

n1

n1∑
i=1

Wn,τ(i) − pξ
(l1,l2)
X − qξ(l1,l2)Y

=
1

n1

n1∑
i=1

Wn,τ(i) −
1

n1

n1∑
i=1

WC
n,τ(i) (A22)

+
1

n1

n1∑
i=1

WC
n,τ(i) −

1

n

n∑
i=1

WC
n,i (A23)

+
1

n

n∑
i=1

WC
n,i − pξ

(l1,l2)

XC − qξ(l1,l2)
Y C (A24)

+ p ξ
(l1,l2)

XC + q ξ
(l1,l2)

Y C − p ξ(l1,l2)X − q ξ(l1,l2)Y . (A25)

Thanks to assumption (2) the fourth term (A25) can be made arbitrarily
small by taking C large enough. Next, the third term (A24) is oP (1) by
applying the law of large numbers. Further, as one can suppose that the
random variables {WC

n,i, i ≤ n} are bounded (see the note below the defi-

nition of WC
n,i), the second term (A23) is o

P̃
(1) by Chebyshev’s inequality.

Finally, with the help of the Markov’s inequality, and the law of large num-
bers the first term (A22) can be handled as

P̃

[∣∣∣∣∣ 1

n1

n1∑
i=1

Wn,τ(i) −
1

n1

n1∑
i=1

WC
n,τ(i)

∣∣∣∣∣ > ε

]

≤ 1

ε
E
P̃

∣∣∣∣∣ 1

n1

n1∑
i=1

Wn,τ(i) −
1

n1

n1∑
i=1

WC
n,τ(i)

∣∣∣∣∣ ≤ 1

n ε

n∑
i=1

∣∣Wn,i −WC
n,i

∣∣
≤ 1

n ε

(
n1∑
i=1

∣∣∣(X(1)
i )l1(X

(2)
i )l2 − (X

C(1)
i )l1(X

C(2)
i )l2

∣∣∣
+

n2∑
i=1

∣∣∣(Y (1)
i )l1(Y

(2)
i )l2 − (Y

C(1)
i )l1(Y

C(2)
i )l2

∣∣∣)+ oP (1)

≤ pE
∣∣∣(X(1)

1 )l1(X
(2)
1 )l2 − (X

C(1)
1 )l1(X

C(2)
1 )l2

∣∣∣
+qE

∣∣∣(Y (1)
1 )l1(Y

(2)
1 )l2 − (Y

C(1)
1 )l1(Y

C(2)
1 )l2

∣∣∣+ oP (1),

which can be made arbitrarily small by taking C large enough. Thus we
have proved (A21), which concludes the proof of part (a) of Theorem 2. �
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Proof of Theorems 2 (b)

Note that as ρ1 6= ρ2 the limits of the variances V 2
n and V 2

n (S∗n,τ ) are
generally different. For the variance estimator V 2

n we still have the conver-
gence (A17). Next, by the same arguments as in the proof of Theorems 2(a)
one can show that

V 2
n (Sn,τ ) = p var (Z̃X) + q var (Z̃Y ) + o

P⊗P̃ (1), (A26)

where

Z̃X = X̃
(1)
1 X̃

(2)
1 −

ρ
2

(
(X̃

(1)
1 )2 + (X̃

(2)
1 )2

)
,

Z̃Y = Ỹ
(1)
1 Ỹ

(2)
1 − ρ

2

(
(Ỹ

(1)
1 )2 + (Ỹ

(2)
1 )2

)
,

with ρ := pρ1 + qρ2.
Note that all the above variances are positive. This can be justified by

the fact that for |a| ≤ 1 the equation

xy − a
2 (x2 + y2) = 0,

has the only solutions x = cy. Thus for any two non-degenerate zero mean
random variables U and V such that | corr(U, V )| < 1

var {U V − a
2 (U2 + V 2)} > 0 for |a| ≤ 1.

Finally (A17), (A26), together with 1
an
Tn

P−→ ρ1 − ρ2, and 1
an
Tn(Sn,τ ) =

o
P⊗P̃ (1) imply the consistency of the test ϕ̃∗n, which completes the proof. �
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