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1. Introduction

Suppose the observations are independent identically distributed three-dimensional vec-

tors (Y11, Y21, X1)
T, . . . , (Y1n, Y2n, Xn)

T from (Y1, Y2, X)T with cumulative distribution func-

tion H(y1, y2, x). The contributions in this paper are valid for the case of random design (X

is a random variable) and fixed regular design (X is not random), with the design density

satisfying some assumptions (see also Section 2.3). In this paper we are interested in studying

the dependence structure between the variables Y1 and Y2 conditionally upon X. We start by

motivating the problem via an example. From the World Factbook of the Central Intelligence

Agency (CIA) we retrieved a data set consisting of life expectancies of males and females and

under-five mortality rates (referring to the total risk over five years) per thousand life births

for 221 countries. In Figure 1 we present the life expectancies of males and females using

different symbols for countries for which the logarithm of the under-five mortality rates is:

(1) less than 1, (2) between 1 and 1.5 and (3) larger than 1.5. From this figure it is clear

that there is a relationship between the life expectancies of males and females, but that the

strength of the relationship is not the same for the three categories of countries: the data-

points are more scattered in the second category and less scattered in the last category when

compared to the first category (with lowest under-five mortality rate).

The life expectancies of males and females (over all countries) are strongly associated with

a Kendall’s tau equal to 0.86 and a Pearson correlation coefficient of 0.98. The under-five

mortality rate does not only strongly influence the life expectancies, but it is often used as one

of the measures characterizing the development status of a given country. Thus, it seems quite

natural to explore whether the relationship of life expectancies of males and females is the

same for countries with ‘low’ and ‘high’ under-five mortality rate. The observation made in

Figure 1 is further explored in Figure 2(a) where the life expectancies of males and females are

plotted in function of the logarithm of the under-five mortality rate from which it is clear that

there is a relationship between life expectancies (of males and of females) and the under-five

mortality rate in a country. Gijbels et al. (2011) suggested two nonparametric estimators of

the conditional dependence function and showed how the corresponding association measures

may be constructed. Figure 2(b) presents the resulting estimates of the conditional Kendall’s

tau association measure (see also Section 3.2 of this paper) of life expectancies of males and

females as a function of the under-five mortality rate. While the estimator tau1 is based
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on original observations, the estimator tau2 uses observations which are transformed to the

uniform, through (4). For both estimators a bandwidth 0.5 was used. A first observation

is that the estimated conditional Kendall’s tau clearly changes with the under-five mortality

rate (i.e. is far from a constant). Further, the most striking feature of both estimators seems

to be a sharp increase in the dependence of life expectancies of males and females for countries

with under-five mortality rate between 101.4
.
= 25 and 101.8

.
= 63. This ‘local’ feature of the

conditional association of life expectancies thus complements Kendall’s partial correlation

coefficient introduced in Kendall (1942), which equals 0.68 and which gives us only a ‘global’

measure of association of life expectancies when adjusted for under-five mortality rate.
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Figure 1. Life expectancies of males and females for three different categories

of countries (indicated by the symbols “+”, “4”and “◦”) according to the

logarithm of the under-five mortality rate (mort).

Let us now formally introduce the setup and the problem. Denote the joint and marginal

distribution functions of (Y1, Y2)
T, conditionally upon X = x, as

Hx(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2 |X = x),

F1x(y1) = P (Y1 ≤ y1 |X = x), F2x(y2) = P (Y2 ≤ y2 |X = x).
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Figure 2. Life expectancies of males and females as a function of the loga-

rithm of the under-five mortality rate (mort).

If F1x(y) and F2x(y) are continuous in y, then according to Sklar’s theorem (see e.g. Nelsen

(2006)) there exists a unique copula Cx which equals

Cx(u1, u2) = Hx(F
−1
1x (u1), F

−1
2x (u2)), (1)

where F−1
1x (u) = inf{y : F1x(y) ≥ u} is the conditional quantile function of Y1 given X = x

and F−1
2x is the conditional quantile function of Y2 given X = x. The conditional copula Cx

fully describes the conditional dependence structure of (Y1, Y2)
T given X = x.

Based on the sample of observations we have the following empirical estimator forHx(y1, y2):

Hxh(y1, y2) =

n∑
i=1

wni(x, hn) I{Y1i ≤ y1, Y2i ≤ y2}, (2)

where {wni(x, hn)} is a sequence of weights that smooth over the covariate space and hn > 0

is a bandwidth tending to zero as the sample size increases. The weights do not need to be

positive, but throughout the paper we assume that P{ min
1≤i≤n

wni(x, hn) < 0} tends to zero as

n tends to infinity. Further, in (2), I{A} denotes the indicator of an event A. Gijbels et al.

(2011) suggested the following empirical estimator of the copula Cx (0 ≤ u1, u2 ≤ 1),

Cxh(u1, u2) = Hxh

(
F−1
1xh(u1), F

−1
2xh(u2)

)
=

n∑
i=1

wni(x, hn) I{Y1i ≤ F−1
1xh(u1), Y2i ≤ F−1

2xh(u2)}, (3)

where F1xh and F2xh are corresponding marginal distribution functions ofHxh. They observed

however that this estimator may be strongly biased if any of the marginal distributions is
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influenced by the covariate. To remove this influence they suggested the following estimator.

First, transform the original observations to reduce the effect of the covariate by

(Ũ1i, Ũ2i)
T = (F1Xig1(Y1i), F2Xig2(Y2i))

T, i = 1, . . . , n, (4)

where

F1Xig1(y) =

n∑
j=1

wnj(Xi, g1n) I{Y1j ≤ y},

F2Xig2(y) =
n∑

j=1

wnj(Xi, g2n) I{Y2j ≤ y},

and g1 = {g1n} ↘ 0 and g2 = {g2n} ↘ 0. Second, use the transformed observations (Ũ1i, Ũ2i)
T

in a similar way as the original observations, and construct

C̃xh(u1, u2) = G̃xh

(
G̃−1

1xh(u1), G̃
−1
2xh(u2)

)
, (5)

where

G̃xh(u1, u2) =
n∑

i=1

wni(x, hn) I{Ũ1i ≤ u1, Ũ2i ≤ u2},

and G̃1xh and G̃2xh are its corresponding marginals.

Gijbels et al. (2011) compared the estimators Cxh and C̃xh in a Monte Carlo study and

showed that the variances of the estimators are approximately the same, while C̃xh has in

some situations a dramatically lower bias.

In this paper we provide a detailed theoretical study and we compare asymptotic biases

and variances of the estimators. We show that while the asymptotic variances of the estima-

tors Cxh and C̃xh are the same, the expression for the asymptotic bias of the estimator C̃xh

consists only of those terms in the asymptotic bias of Cxh, which do not include partial deriva-

tives of the conditional marginal distribution functions F1x and F2x with respect to the value

of the covariate.

The paper is organised as follows. In Section 2 we state the main theoretical results and

discuss the regularity conditions. In Section 3 we show how the results of Section 2 can be ap-

plied to find the asymptotic distribution of some conditional measures of association. Further

discussions are in Section 4. The proofs of the asymptotic results are given in Appendices A

and B in the supplementary material on the journals web site.
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2. Main theoretical results

The aim of this section is to establish asymptotic representations for the estimators, to de-

rive weak convergence results, and to evaluate asymptotic bias and variance of the estimators.

More precisely, we are interested in the asymptotic properties of the following processes

C(E)
xn (u1, u2) =

√
nhn(Cxh(u1, u2)− Cx(u1, u2)), (0 ≤ u1, u2 ≤ 1), (6)

C̃(E)
xn (u1, u2) =

√
nhn(C̃xh(u1, u2)− Cx(u1, u2)), (0 ≤ u1, u2 ≤ 1). (7)

All the theoretical results provided in this section are for a fixed but arbitrary value of x,

and are uniform with respect to u1 and u2.

2.1. The process C(E)
xn . Suppose

hn = O(n−1/5), n hn → ∞. (8)

Note that (8) allows for hn ∼ n−1/5, which is often the optimal rate for bandwidths in

nonparametric problems. All other conditions are given in Sections 2.3 and 2.4.

Denote by C
(1)
x (u1, u2) and C

(2)
x (u1, u2) the first order partial derivatives of the cop-

ula Cx(u1, u2) with respect to u1 and u2 respectively. The following theorem is proved in

Appendix A.

Theorem 1. Assume (8), (R1)-(R2) and (W1)–(W6). Then it holds uniformly in (u1, u2) ∈

[0, 1]2

C(E)
xn (u1, u2) =

√
nhn

n∑
i=1

wni(x, hn) ξi(u1, u2) + oP (1), (9)

where

ξi(u1, u2) = I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)} − Cx(u1, u2)

− C(1)
x (u1, u2)

[
I{Y1i ≤ F−1

1x (u1)} − u1
]
− C(2)

x (u1, u2)
[
I{Y2i ≤ F−1

2x (u2)} − u2
]
. (10)

Define a process Zxn =
√
nhn

∑n
i=1wni(x, hn) ξi, where ξi’s are given in (10). As (W5)

holds, typically there exists a finite positive constant V such that

nhn

n∑
i=1

w2
ni(x, hn) = V 2 + oP (1).
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Then for all 0 ≤ u1, u2, v1, v2 ≤ 1

cov (Zxn(u1, u2), Zxn(v1, v2)) → V 2 cov (ξx(u1, u2), ξx(v1, v2)) , as n → ∞, (11)

where

ξx(u1, u2) = I{F1x(Y1x) ≤ u1, F2x(Y2x) ≤ u2} − Cx(u1, u2)

− C(1)
x (u1, u2) [I{F1x(Y1x) ≤ u1} − u1]− C(2)

x (u1, u2) [I{F2x(Y2x) ≤ u2} − u2] .

Thus with the help of (11) it is straightforward to verify the finite dimensional convergence

of the process {Zxn(u1, u2), (u1, u2) ∈ [0, 1]2}. As the asymptotic tightness of this process is

(in a more general setting) verified in Step 1 of the proof of Theorem 1, we deduce that Zxn

converges weakly to a Gaussian process Zx.

Further suppose that there exists H such that (nh5n) → H2, with H ≥ 0. Typically

hn ∼ n−1/5 so that H > 0. In that case, using Taylor expansion and assumption (R1) we

can approximate the expectation of the limiting process Zx and find out that (uniformly in

(u1, u2))

EZxn(u1, u2) = H
[
DK Ċx(u1, u2) +

EK
2 Bx(u1, u2)

]
+ o(1), (12)

with DK and EK being constants depending on the chosen system of weights {wni} and on

the type of the design (see (W12) and (W13) in Section 2.3) and

Bx(u1, u2) = Ḧx(F
−1
1x (u1), F

−1
2x (u2))− C(1)

x (u1, u2) F̈1x(F
−1
1x (u1))− C(2)

x (u1, u2) F̈2x(F
−1
2x (u2))

= C̈x(u1, u2) + 2 Ċ(1)
x (u1, u2) Ḟ1x(F

−1
1x (u1)) + 2 Ċ(2)

x (u1, u2) Ḟ2x(F
−1
2x (u2))

+C(1,1)
x (u1, u2)

[
Ḟ1x(F

−1
1x (u1))

]2
+ C(2,2)

x (u1, u2)
[
Ḟ2x(F

−1
2x (u2))

]2
(13)

+ 2C(1,2)
x (u1, u2) Ḟ1x(F

−1
1x (u1)) Ḟ2x(F

−1
2x (u2)),

where a dot indicates a derivative with respect to the covariate x, e.g. Ḟz(u1) =
∂
∂zFz(u1),

C̈z(u1, u2) = ∂2

∂z2
Cz(u1, u2); the symbol (i) indicates a derivative with respect to ui, e.g.

C
(i,j)
x (u1, u2) = ∂2Cx(u1,u2)

∂ui∂uj
; and Ċ

(i)
z (u1, u2) = ∂2Cz(u1,u2)

∂z ∂ui
, which is a mixture of the above

notational rules.

Corollary 1. If (11), (nh5n) → H2, (W12), (W13) and the assumptions of Theorem 1 hold,

then the process C(E)
xn converges in distribution to a Gaussian process Zx, which can be written
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as

Zx(u1, u2) = V
{
Wx(u1, u2)− C(1)

x (u1, u2)Wx(u1, 1)− C(2)
x (u1, u2)Wx(1, u2)

}
+Rx(u1, u2)

where Wx is a bivariate Brownian bridge on [0, 1]2 with covariance function

E [Wx(u1, u2)Wx(v1, v2)] = Cx(u1 ∧ v1, u2 ∧ v2)− Cx(u1, u2)Cx(v1, v2). (14)

and

Rx(u1, u2) = H
[
DK Ċx(u1, u2) +

EK
2 Bx(u1, u2)

]
. (15)

Proof. The proof follows from Theorem 1 and the reasoning given above. �

The constants V , DK and EK in general also depend on x, but for simplicity this is not

made explicit in the notations.

It should be mentioned that to prove Corollary 1 it is only needed that assumptions (W12)

and (W13) hold without supremum (for z = x) and for an = hn.

2.2. The process C̃(E)
xn . In the following we suppose that for j = 1, 2

√
nhn g

2
jn = O(1), hn

gjn
= O(1), n min(hn, g1n, g2n) → ∞. (16)

Note that (16) allows for the same rates of hn as in (8). Further, hn ∼ n−1/5 implies that

gjn ∼ n−1/5 for j = 1, 2 as well. All other conditions are given in Sections 2.3 and 2.4.

Theorem 2. Assume (16), (W1)–(W13) and (R̃1)–(R̃3), for i = 1, . . . , n, put (U1i, U2i)
T =

(F1Xi(Y1i), F2Xi(Y2i))
T, then uniformly in (u1, u2)

C̃(E)
xn (u1, u2) =

√
nhn

n∑
i=1

wni(x, hn) ξ̃i(u1, u2) + oP (1), (17)

where

ξ̃i(u1, u2) = I{U1i ≤ u1, U2i ≤ u2} − Cx(u1, u2)

− C(1)
x (u1, u2) [I{U1i ≤ u1} − u1]− C(2)

x (u1, u2) [I{U2i ≤ u2} − u2] , (18)

Similarly as in Section 2.1 we can state the following corollary.
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Corollary 2. If (11), (nh5n) → H2 and the assumptions of Theorem 2 hold, then the pro-

cess C̃(E)
xn converges in distribution to a Gaussian process Z̃x, which can be written as

Z̃x(u1, u2) = V
{
Wx(u1, u2)− C(1)

x (u1, u2)Wx(u1, 1)− C(2)
x (u1, u2)Wx(1, u2)

}
+ R̃x(u1, u2)

where Wx is a bivariate Brownian bridge on [0, 1]2 with covariance function (14) and

R̃x(u1, u2) = H
[
DK Ċx(u1, u2) +

EK
2 B̃x(u1, u2)

]
, (19)

with B̃x(u1, u2) = C̈x(u1, u2).

Thus comparing the limiting processes Zx and Z̃x from Corollary 1 and 2 we see that the

only difference is in the bias terms. This difference is a consequence of different random

variables that are involved in the Bahadur representations of the processes
√
nhn (C̃xh −Cx)

and
√
nhn (Cxh − Cx). The original observations (Y1i, Y2i)

T in (10) are replaced by the

unobserved (U1i, U2i)
T in (18). The key point is that the conditional marginal distributions

of (U1i, U2i)
T are uniform for each value of the covariate Xi and thus do not depend on the

values of the covariate, which results in a much simpler expression for the asymptotic bias

given in (19).

Remark 1. There is no guarantee that the asymptotic bias expression for the estimator C̃xh

given by (19) is always closer to zero than that for Cxh given in expression (15). Suppose

for simplicity that DK = 0, which holds for example for a local linear system of weights (see

Section 2.3). Then Bx(u1, u2) of (15) may be closer to zero than B̃x(u1, u2) if the additional

terms in (13) turn out to be of opposite sign of the first term C̈x(u1, u2). For example, suppose

that the covariate is standard normal distributed and we are interested in the point X = 1.

The copula which joins the margins (Y1, Y2) is taken to be a Frank copula with the parameter

depending on the value of the covariate X = z as θ(z) = 5 + ρ sin( (z−1)π
6 ). Further, the

margins are taken to be normal with unit variances and mean functions µ1(z) = µ2(z) =

sin(z).

Consider two values of the parameter ρ. The case ρ = 1 represents a situation where the

conditional dependence structure is only very mildly affected by the value of the covariate.

The plot of the diagonals of the functions Bx and B̃x in Figure 3(a) clearly indicates that

in terms of bias the estimator C̃xh is in this situation strongly preferable. This is further
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Figure 3. Diagonals of the functions Bx and B̃x for ρ = 1 (a) and ρ = 7 (b).

confirmed by calculating L2([0, 1]
2)-norms of the functions Bx and B̃x, which equal 0.014 and

0.001 respectively.

When ρ = 7 the conditional dependence structure is strongly influenced by the covariate.

Figure 3(b) shows that for this model it is not so easy to judge which estimator should be

preferred. At some points Bx is closer to zero and at other points it is the other way around.

The L2([0, 1]
2)-norms of the functions Bx and B̃x now equal 0.011 and 0.012 indicating that

the estimator Cxh might be slightly preferable if the interest is in estimation of the whole

copula function and the mean integrated squared error is taken as the criterion for the quality

of the estimate.

Our experience is that it is rather difficult to construct models where the estimator Cxh

is (more than slightly) preferable to C̃xh. In such models, both conditional marginals as well

as the conditional dependence structure have to be strongly dependent on the value of the

covariate. Further it must be the case that by a ‘lucky coincidence’ the additional terms

in (13) help to reduce the effect of C̈x. As this is difficult to predict, one stays on the safe

side by using the estimator C̃xh.

Remark 2. The proofs of Theorems 1 and 2 are rather technical and are given in Appendices A

and B of the supplementary material posted on the journals web site. While the proof of the

weak convergence of the empirical process associated with Hxh is quite straightforward, the
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difficulties in copula estimation arise from the fact that the empirical distribution function

estimator Hxh is evaluated at the estimated quantiles F−1
1xh(u1) and F−1

2xh(u2) leading to a

double stochastic structure of the estimator Cxh. Similarly as in Omelka et al. (2009) we find

the decomposition (A7) useful. Now Theorem 2.11.1 of van der Vaart & Wellner (1996) is

used to show that the first term Ahn
n is negligible, while an adaptation of Lemma 4 of Omelka

et al. (2009) helps to treat the term Chn
n . The proof of Theorem 2 is even more involved as the

estimated conditional marginal distributions used in transformation (4) differ for i = 1, . . . , n.

A crucial point of the proof is that thanks to assumption (W11) it is sufficient to consider

only such transformations (F1Xig1 , F2Xig2) whose Xi’s are in a neighbourhood of the point x

with radius of order O(hn). Thus we can prepare everything to make use of the methodology

developed in Ghoudi & Rémillard (1998), which helps us to tackle the most difficult term

Ān in (B6). Combining the above, also the other terms B̄n and En can be proved to be

asymptotically negligible giving us (B1). Theorem 1 is then used to conclude the proof of

Theorem 2.

2.3. Some common choices of weights. As the list of conditions on the weights given in

Section 2.4 might be rather discouraging in particular for readers who are less interested in

technical details, we comment on several commonly used weight schemes.

Assume for concreteness that a kernel density functionK has support [−1, 1] and is symmet-

ric and continuously differentiable. Further suppose that hn ∼ n−1/5 and g1n ∼ g2n ∼ n−1/5.

It can be shown that for Nadaraya-Watson weights (see Nadaraya (1964) or Watson (1964)),

which are defined as

wni(x, hn) =
K(Xi−x

hn
)∑n

j=1K(
Xj−x
hn

)
, i = 1, . . . , n,

assumptions (W1)–(W13) hold, provided

(F1) fX = F ′
X is continuous and positive at the point x,

(F2) f ′
X = F ′′

X is continuous in a neighbourhood of the point x,

where FX is the (marginal) distribution function of the covariate X.
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Another system of weights, very commonly employed, is a local linear [LL] system of weights

(see e.g. p. 20 of Fan & Gijbels (1996)), which is given by

wni(x, hn) =

1
nhn

K(Xi−x
hn

)
(
Sn,2 − Xi−x

hn
Sn,1

)
Sn,0 Sn,2 − S2

n,1

, i = 1, . . . , n, (20)

where

Sn,j =
1

nhn

n∑
i=1

(
Xi−x
hn

)j
K
(
Xi−x
hn

)
, j = 0, 1, 2.

The nice thing about LL weights is that thanks to
∑n

i=1wni(x, hn)(Xi−x) = 0, it is sufficient

to assume only (F1).

In a fixed regular design case (see e.g. Müller (1987)), there exists an absolutely continuous

distribution function FX (with associated density fX) such that xi = F−1
X

(
i

n+1

)
. In this case

the design points are ordered, that is x1 ≤ x2 . . . ≤ xn. In this setting Gasser-Müller [GM]

weights (see Gasser & Müller (1979)) are quite popular. Consider fixed, but arbitrary values

x0 < x1 and xn+1 > xn. Then GM weights are defined as

wni(x, hn) =
1
hn

∫ si+1

si

K( z−x
hn

) dz, where si = (xi + xi−1)/2, i = 1, . . . , n. (21)

In a fixed regular design case, we conjecture that to verify (W1)–(W13) it is sufficient to

assume (F1).

2.4. Regularity conditions. Let us denote bn = max{hn, g1n, g2n}, I(n)x = {i : wni(x, bn) 6=

0} and J
(n)
x = [min

i∈I(n)
x

Xi,max
i∈I(n)

x
Xi]. Let an stand for a sequence of positive constants

such that (nan) → ∞ and an = O(n−1/5). The following is a listing of assumptions on the

system of weights {wni; i = 1, . . . , n} in random design. The conditions for a fixed design,

may be derived easily by replacing Xi by xi and omitting the symbol P in the index.

(W1) max
1≤i≤n

|wni(x, hn)| = oP

(
1√
nhn

)
, (W2)

n∑
i=1

wni(x, hn)− 1 = oP

(
1√
nhn

)
,

(W3)
n∑

i=1

wni(x, hn)(Xi − x) = OP

(
1√
nhn

)
, (W4)

n∑
i=1

wni(x, hn)(Xi − x)2 = OP

(
1√
nhn

)
,

(W5)
n∑

i=1

w2
ni(x, hn) = OP

(
1

nhn

)
, (W6)

(
max
i∈I(n)

x

Xi − min
i∈I(n)

x

Xi

)
= oP (1),
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(W7)
n∑

i=1

|wni(x, hn)| = OP (1), (W8) sup
z∈J(n)

x

∣∣∣∣∣
n∑

i=1

wni(z, gjn)− 1

∣∣∣∣∣ = oP
(
g2jn
)
,

(W9) sup
z∈J(n)

x

n∑
i=1

[wni(z, gjn)]
2 = OP

(
1

n gjn

)
, (W10) sup

z∈J(n)
x

n∑
i=1

[w′
ni(z, gjn)]

2 = OP

(
1

n g3jn

)
,

∃C<∞ P

[
sup

z∈J(n)
x

max
1≤i≤n

|wni(z, hn) I{|Xi − z| > C hn}| > 0

]
= o(1),(W11)

∃DK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑

i=1

wni(z, an)(Xi − z)− a2nDK

∣∣∣∣∣ = oP
(
a2n
)
,(W12)

∃EK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑

i=1

wni(z, an)(Xi − z)2 − a2nEK

∣∣∣∣∣ = oP
(
a2n
)
,(W13)

where w′
ni(z, gjn) denotes the derivative with respect to z.

Conditions (W7)–(W13) make a finer control on the behaviour of the weights not only

at the point x but also in a (shrinking) neighbourhood of this point. This better control

is needed to justify that the transformation (4) is ‘painless’. Nevertheless, as argued in the

previous section, these conditions hold under usual regularity conditions on the distribution

of the covariate X.

Further, we require the conditional copula Cz and the conditional marginals F1z and F2z

to satisfy:

(R1) The functions Ḣz(F
−1
1x (u1), F

−1
2x (u2)) and Ḧz(F

−1
1x (u1), F

−1
2x (u2)) are uniformly con-

tinuous in (z, u1, u2), where z takes value in a neighbourhood of x.

(R2) The first order partial derivatives C
(1)
x , C

(2)
x with respect to u1 and u2 respectively

are continuous on [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}

(R̃1) Ċz(u1, u2) = ∂
∂zCz(u1, u2), C̈z(u1, u2) = ∂2

∂z2
Cz(u1, u2) exist and are continuous as

functions of (z, u1, u2), where z takes value in a neighbourhood of x;

(R̃2) The functions C
(1)
z (u1, u2) and C

(2)
z (u1, u2) are uniformly continuous in (z, u1, u2) ∈

U(x) × ([0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}), where U(x) is a neighbourhood of the

point x.

(R̃3) For j = 1, 2: Fjz(F
−1
jz (u)), Ḟjz(F

−1
jz (u)), F̈jz(F

−1
jz (u)) are continuous as functions of

(z, u) for z in a neighbourhood of x, where Ḟjz(y) =
∂
∂z Fjz(y), F̈jz(y) =

∂2

∂z2
Fjz(y).
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3. Conditional measures of association

In many situations researchers try to characterize the dependence between variables by just

one number. As copulas are invariant to strictly increasing transformations of the marginal

distributions, most traditional nonparametric measures of dependence may be expressed as

functionals of copulas.

In the following let us observe the vector (Y1, Y2, X)T and put F1 and F2 for the (uncondi-

tional) marginal distributions of Y1 and Y2. Further, let C be the (unconditional marginal)

copula corresponding to Y1 and Y2. Next, Ĉxh will stand either for the estimator Cxh or C̃xh

and similarly for the bias function R̂. Finally, (Z1i, Z2i)
T will be either the original observa-

tions (Y1i, Y2i)
T or the transformed ones (Ũ1i, Ũ2i)

T.

3.1. Blomqvist beta. Blomqvist (1950) proposed and studied the following simple measure

of association

β = P
[(
Y1 − F−1

1 (0.5)
) (

Y2 − F−1
2 (0.5)

)
> 0
]
− P

[(
Y1 − F−1

1 (0.5)
) (

Y2 − F−1
2 (0.5)

)
< 0
]
,

which is often also called the medial correlation coefficient. Let C be the copula corresponding

to Y1 and Y2. Then β can be expressed simply as β = 4C(0.5, 0.5) − 1 (see pp.182–183 of

Nelsen (2006)). In the presence of a covariate we can consider Blomqvist beta conditionally

on X = x and define it as βx = 4Cx(0.5, 0.5)− 1. The considered estimator is then

β̂xh = 4 Ĉxh(0.5, 0.5)− 1,

With the help of Corollary 1 (or 2) it is straightforward to show that
√
nhn(β̂xh − βx) is

asymptotically normal with the variance equal to 16Cx(0.5, 0.5)(1 − Cx(0.5, 0.5)) and the

mean 4 R̂(0.5, 0.5).

3.2. Kendall’s tau. Kendall’s tau is definitely one of the most popular nonparametric mea-

sures of association. Gijbels et al. (2011) suggested to estimate its conditional version by

τ̂n(x) =
4

1−
∑n

i=1w
2
ni(x, hn)

n∑
i=1

n∑
j=1

wni(x, hn)wnj(x, hn) I{Z1i < Z1j , Z2i < Z2j} − 1.

With the help of assumption (W5) this equation may be further rewritten as

τ̂n(x) =
4

1−
∑n

i=1 w
2
ni(x,hn)

∫∫
Ĉxh dĈxh −

1+3
∑n

i=1 w
2
ni(x,hn)

1−
∑n

i=1 w
2
ni(x,hn)

= 4

∫∫
Ĉxh dĈxh − 1 +OP (

1
nhn

).
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Provided that the estimator Ĉxh is
√
nhn-weakly convergent, the asymptotic normality of

√
nhn(τ̂n(x)− τ(x)) follows by Hadamard differentiability of the functional C 7→

∫∫
C dC at

the point C = Cx (tangentially to the set of continuous functions on [0, 1]2). This Hadamard

differentiability is verified in Lemma 1 at the end of Section 3. Finally, the mean µ of the

asymptotic distribution of
√
nhn(τ̂n(x)− τ(x)) equals

µ =

∫∫
R̂(u1, u2) dCx(u1, u2) +

∫∫
Cx(u1, u2) dR(u1, u2) = 2

∫∫
R̂(u1, u2) dCx(u1, u2),

where we have used the following formula for integration by parts∫ 1

0

∫ 1

0
Cx(u1, u2) dα(u1, u2)

= α(1, 1) +

∫ 1

0

∫ 1

0
α(u1, u2) dCx(u1, u2)−

∫ 1

0
α(u, 1) du−

∫ 1

0
α(1, u) du, (22)

which can be taken as a definition of the integral
∫∫

Cx dα when the function α is continuous

on [0, 1]2.

3.3. Other measures of association. There are some other measures of association that

may be expressed as functionals of a copula (see Chapter 5 of Nelsen (2006)). Among others

let us mention

Spearman’s rho ρ = 12

∫∫
C(u1, u2) du1 du2 − 3.,

Gini’s coefficient γ = 2

∫∫
[|u1 + u2 − 1| − |u1 − u2|] dC(u1, u2),

dependence index Φ2 = 90

∫∫
[C(u1, u2)− u1 u2]

2 du1du2.

We can consider conditional versions of any of these measures simply by substituting the con-

ditional copula Cx for C. The asymptotic distribution of the estimators of these conditional

measures can be derived similarly as discussed for Kendall’s tau.

3.4. Hadamard differentiability of Kendall’s tau. The following lemma is a slight gen-

eralization of Lemma 3.9.17 of van der Vaart & Wellner (1996).

Lemma 1. The map φ : C →
∫∫

C dC is Hadamard-differentiable at every point C, which is

a copula, tangentially to the set of functions that are continuous on [0, 1]2. The derivative is

given by

φ′(α) =

∫
C dα+

∫
αdC,
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where
∫∫

C dα is defined via integration by parts (see formula (22)) if α is not of bounded

variation.

Proof. Let αt → α (uniformly on [0, 1]2) and put Ct = C + t αt. As the variation of copula C

equals one, we can consider only perturbations such that Ct is of variation bounded by 2.

Expanding∫∫
Ct dCt =

∫∫
C dC + t

∫∫
αt dC + t

∫∫
C dαt + t

∫∫
αt d(Ct − C)

gives us

∫∫
Ct dCt −

∫∫
C dC

t
−
∫∫

αdC −
∫∫

C dα

=

∫∫
(αt − α) dC +

∫∫
C d(αt − α) +

∫∫
αt d(Ct − C).

The first term on the right-hand side of the above equation converges to zero as αt → α

uniformly and C is of bounded variation. For the second term we apply the same reasoning

after using the integration by parts (see formula (22)). The third term may be further

rewritten as ∫∫
αt d(Ct − C) =

∫∫
(αt − α) d(Ct − C) +

∫∫
αd(Ct − C).

The first term on the right-hand side of the above equation converges to zero, as αt → α

uniformly and Ct − C is of variation bounded by 3. Finally, we will use the continuity of

the function α to bound the second term. For a given ε > 0 let us find partitions 0 = t0 <

t1 < . . . < tm1 = 1 and 0 = s0 < s1 < . . . < sm2 = 1, such that α varies less than ε on

each rectangle [ti−1, ti]× [sj−1, sj ]. Let α̃ be the discretization that is constant and equal to

α(ti−1, sj−1) on [ti−1, ti]× [sj−1, sj ]. Then we can bound∣∣∣∣∫ αd(Ct − C)

∣∣∣∣ ≤ 3 ‖α− α̃‖∞ +

m1∑
i=1

m2∑
j=1

|α(ti−1, sj−1)|

∣∣∣∣∣
∫∫

[ti−1,ti]×[sj−1,sj ]
d(Ct − C)

∣∣∣∣∣
≤ 3 ε+ 4m1m2‖α‖∞‖Ct − C‖∞ → 3 ε,

where ‖ · ‖∞ stands for the supremum norm. As we can choose ε arbitrarily small, we have

just proved that
∫
αd(Ct−C) converges to zero which concludes the proof of the lemma. �
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4. Further discussion

We derived the asymptotic distribution of the estimators of the conditional copula proposed

in Gijbels et al. (2011). As illustrated in Remark 1 our results clearly indicate why the

estimator C̃xh may have a dramatically smaller bias than the ‘straightforward’ estimator Cxh.

On the other hand, the estimator Cxh involves the choice of only one smoothing parameter

(in contrast to three smoothing parameters needed for C̃xh) and hence might be preferable in

situations where the conditional marginal distributions do not change with the covariate.

For a triplet (Y1, Y2, X) of random variables several natural questions arise: (1). What is

the relation between Y1 and X?; and between Y2 and X?; (2). Is there a relation between Y1

and Y2?; (3) Is there a relation between Y1 and Y2, when X is accounted for?; (4). What is

the relation between Y1 and Y2 when X is accounted for? In this paper we deal with the last

question, but question (1) automatically pops up when we wonder whether the conditional

marginal distributions change or not with the covariate. Question (2) is for example asking

for estimation of an unconditional copula function; see Omelka et al. (2009). Question (3)

means that we would look into tests for conditional independence. Further interesting open

issues are testing problems related to conditional dependencies, such as for example testing

for constancy of the conditional Kendall’s tau. These kind of questions are quite challenging

and the subject of current research by some of the authors.

A general strategy for conditional copula estimation in not very large samples may be

as follows. First, check the scatterplots of the pairs (X,Y1)
T and (X,Y2)

T. If there is no

obvious pattern, then the estimator Cxh may be used. If this is not the case, we recommend

to try to transform the variables Y1 and Y2 such that the influence of the covariate on the

conditional marginal distributions is suppressed. This might be done in several ways. The

transformation (4) is very general and in view of Theorem 2 it cannot be improved if we

aim at eliminating the effect of the covariate on the marginals. The price we have to pay

is that we have to specify two new bandwidths g1n and g2n. Fortunately, the Monte Carlo

simulation results of Gijbels et al. (2011) indicate that the rules for bandwidth selection in

nonparametric regression may be employed or if hn is already fixed then using g1n = g2n = hn

for C̃xh usually results in an estimator which is at least as good as Cxh.

Alternatively, in small samples we may try to stabilize the estimator by specifying a simple

parametric model for the pairs (X,Y1)
T and (X,Y2)

T. For instance, suppose simple linear
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regression models

Y1i = α0 + α1Xi + ε1i, Y2i = β0 + β1Xi + ε2i, (23)

where ε1i and ε2i are independent of Xi. Then it seems natural to replace the original

observations (Y1i, Y2i)
T with the estimated residuals from models (23). As the estimators

of the unknown parameters converge at rate n−1/2, the estimator based on the estimated

residuals may be shown to be asymptotically equivalent with the one based on the unobserved

residuals (ε1i, ε2i)
T and thus the main effect of the covariate on the marginal distributions is

usually removed.

A further step towards the general transformation (4) may be to assume nonparametric

models

Y1j = m1(X) + ε1i, Y2j = m2(X) + ε2i, i = 1, . . . , n,

where ε1i, ε2i are independent of X and m1(·) and m2(·) are unknown, but sufficiently smooth

functions. Let m̂1 and m̂2 be corresponding nonparametric estimators. Then in view of the

results of Akritas & van Keilegom (2001) and methods to prove these results, we conjecture

that the estimator Cxh based on the estimated residuals

(ε̂1i, ε̂2i)
T = (Y1i − m̂1(Xi), Y2i − m̂2(Xi))

T , i = 1, . . . , n (24)

will have the same asymptotic properties as the estimator based on the unobserved (ε1i, ε2i)
T.

However, such an estimation procedure involves the same number of smoothing parameters

and the model does not adjust for heteroscedasticity. Allowing (24) for possible heteroscedas-

ticity would result even in five smoothing parameters.

We are only at the beginning of the theoretical as well as applied research on conditional

copulas. Comparing with the well explored field of nonparametric regression several research

issues arise. We only mention a few of them.

• Our results are only pointwise in the covariate x. Uniform results are surely of interest.

As the distributions of the estimator of the conditional copula at different points

are asymptotically independent, we cannot hope that there may be convergence of

{C(E)
xn , x ∈ I} to a limiting Gaussian process (with parameters (x, u1, u2)). But we

may hope that rates for uniform consistency similar as in nonparametric regression

may be obtained.
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• As usual in statistics, one would like to construct confidence intervals for quantities

of interest, e.g. Blomqvist beta or Kendall’s tau. Our experience is that it is not so

difficult to estimate the variance, but it is not at all clear how to take into consideration

possible bias, which is extremely difficult to estimate. One obvious way to kill the bias

is to choose a bandwidth hn such that nh5n → 0, implying H = 0 and the asymptotic

biases in (15) and (19) diminish. However such a choice excludes theoretically optimal

bandwidths, and relies on asymptotic (large sample) results.

• The bandwidth selection problem is in fact a completely unexplored area in this

setup. Although a lot of work has been done in nonparametric regression, it is not at

all straightforward how the methods should be modified or extended for conditional

copula estimation.
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Estimation of a conditional copula and association measures

Noël Veraverbeke, Marek Omelka and Irène Gijbels

Supplementary material

Appendix A – Proof of Theorem 1

Some preliminary considerations.

Random design versus fixed design. We prove Theorem 1 for fixed design. This is justified as

follows. Let ε > 0 be given. With the help of (W1) we find a sequence εn of constants going

to zero such that for all sufficiently large n

P

(
max
1≤i≤n

|wni(x, hn)| ≤ εn√
nhn

)
≥ 1− ε

6 . (A1)

Let us denote (the sequence of) events

A1n =

[
max
1≤i≤n

|wni(x, hn)| ≤ εn√
nhn

]
, n = 1, 2, . . . .

Similarly we construct sequences of events A2n, . . . , A6n, which are related to the other con-

ditions (W2)–(W6) needed in Theorem 1. The proof for the random design can then go

conditionally on the sequence of events An = A1n ∩ . . . ∩ A6n, as An has the probability

greater than 1− ε for all sufficiently large n.

Thus in the following we for simplicity write xi instead of Xi.

Estimation of a conditional marginal distribution. Using the well known inequality of Singh

(1975) and assumption (W5) we deduce that for each ε > 0

lim
n→∞

P

[
sup
y∈R

|Fjxh(y)− EFjxh(y)| > ε

]
= 0, j = 1, 2. (A2)

Further by assumptions (W6) and (R1)

lim
n→∞

sup
y∈R

|EFjxh(y)− Fjx(y)| = 0, j = 1, 2. (A3)
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Combining (A2) and (A3) yields

lim
n→∞

P

(
sup
y∈R

|Fjxh(y)− Fjx(y)| > ε

)
= 0, j = 1, 2. (A4)

Thus by assumption (W1) and standard arguments we prove that for each ε > 0 (for j = 1, 2)

P

[
sup
u

(
F−1
jxh(u)− F−1

jx (u+ ε)
)
≥ 0

]
≤ P

[
sup
u

(
u− Fjxh(F

−1
jx (u+ ε

2))
)
≥ 0

]
≤ P

[
sup
y∈R

(Fjx(y)− Fjxh(y)) ≥ ε
2

]
→ 0, for n → ∞. (A5)

Similarly, we can show

lim
n→∞

P
[
inf
u

(
F−1
jxh(u)− F−1

jx (u− ε)
)
≤ 0
]
= 0,

which together with (A5) yields for each ε > 0

lim
n→∞

P
[
F−1
jx (u− ε) ≤ F−1

jxh(u) ≤ F−1
jx (u+ ε), u ∈ [0, 1]

]
= 1. (A6)

Expectation with a substitution of a random function. In the rest of this section the expec-

tations of the form E f(Yi1, Yi2;F1xh, F2xh) have to be understood in a way that the func-

tions F1xh, F2xh are fixed (nonrandom) and the expectation is computed only with respect

to Yi1 and Yi2. Formally

E f(Yi1, Yi2;F1xh, F2xh) =

∫∫
f(y1, y2;F1xh, F2xh) dHxi(y1, y2),

whenever the integral on the right-hand side exists. The reason for this notation is to simplify

the presentation of the proof. This notation as well as the following decomposition apply the

ideas of van der Vaart & Wellner (2007).

Decomposition. Let us decompose the copula process
√
nhn(Cxh − Cx) as√

nhn (Cxh − Cx) = Ahn
n +Bhn

n + Chn
n , (A7)

where Ahn
n = Dhn

n − EDhn
n , with

Dhn
n (u1, u2) =

√
nhn

n∑
i=1

wni(x;hn)
[
I{Y1i ≤ F−1

1xh(u1), Y2i ≤ F−1
2xh(u2)}

−I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)}
]
, (A8)
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and

Bhn
n (u1, u2) =

√
nhn

[
n∑

i=1

wni(x;hn) I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)} − Cx(u1, u2)

]
(A9)

Chn
n (u1, u2) = EDhn

n (u1, u2) =
√

nhn

n∑
i=1

wni(x;hn)
[
E I{Y1i ≤ F−1

1xh(u1), Y2i ≤ F−1
2xh(u2)}

−E I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)}
]
. (A10)

The proof is divided into two steps. In Step 1, we show that the term Ahn
n is asymptotically

negligible uniformly in (u1, u2). In Step 2 we find the asymptotic representation of the pro-

cesses Chn
n . This asymptotic representation together with Bhn

n gives us the statement of the

theorem.

A1. Step 1 – Asymptotic negligibility of Ahn
n . For (u1, u2) ∈ [0, 1]2 and G1, G2 nonde-

creasing functions from R to [0, 1] define the stochastic processes

Zni(u1, u2, G1, G2) =
√

nhnwni(x, hn) I{Y1i ≤ G−1
1 (u1), Y2i ≤ G−1

2 (u2)}, i = 1, . . . , n,

and Zn =
∑n

i=1 Zni. Equivalently, we can view the process Zn as a process indexed by the

family of functions from R2 to R given by

F =
{
(w1, w2) 7→ I{w1 ≤ G−1

1 (u1), w2 ≤ G−1
2 (u2)};

(u1, u2) ∈ [0, 1]2, G1, G2 : R → [0, 1] nondecreasing
}
. (A11)

Thus each function f ∈ F may be formally identified by a quadruple (u1, u2, G1, G2). The

introduction of the process Zn is motivated by the fact that

Dhn
n (u1, u2) = Zn(fn)−Zn(f), where fn = (u1, u2, F1xh, F2xh), f = (u1, u2, F1x, F2x). (A12)

Finally, let us equip the index set F with a semimetric ρ defined as

ρ2(f, f ′) =
∣∣∣F1x(G

−1
1 (u1))− F1x(G

′−1
1 (u′1))

∣∣∣+ ∣∣∣F2x(G
−1
2 (u2))− F2x(G

′−1
2 (u′2))

∣∣∣
and note that the semimetric space (F , ρ) is totally bounded.

Lemma 2. The process Z̄n = Zn−EZn indexed by (F , ρ) is asymptotically ρ-equicontinuous.
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Proof. It is sufficient to verify the following conditions of Theorem 2.11.1 of van der Vaart &

Wellner (1996):

n∑
i=1

E ‖Zni‖2F I{‖Zni‖F > η} → 0, for every η > 0, (A13)

sup
ρ(f,f ′)<δn

n∑
i=1

E
(
Zni(f)− Zni(f

′)
)2 → 0, for every δn ↓ 0, (A14)

∫ δn

0

√
logN(ε,F , dn) dε

P→ 0, for every δn ↓ 0, (A15)

where ‖.‖F stands for the supremum over the set F and N(ε,F , dn) is the corresponding

covering number of the set F with a random semimetric dn given by

d2n(f, f
′) =

n∑
i=1

[
Zni(f)− Zni(f

′)
]2

.

The first condition (A13) is satisfied as (W1) immediately implies maxi=1,...,n ‖Zni‖F = oP (1).

To verify (A14) we make use of assumption (W5) and the well known inequality

∣∣C(u1, u2)− C(u′1, u
′
2)
∣∣ ≤ |u1 − u′1|+ |u2 − u′2|.

Thus with the help of (R1) and (W6) we can estimate

sup
ρ(f,f ′)<δn

n∑
i=1

E
(
Zni(f)− Zni(f

′)
)2

≤ sup
ρ(f,f ′)<δn

nhn

n∑
i=1

w2
ni(x, hn)

[∣∣∣F1i(G
−1
1 (u1))− F1i(G

′−1
1 (u′1))

∣∣∣
+
∣∣∣F2i(G

−1
2 (u2))− F2i(G

′−1
2 (u′2))

∣∣∣]
≤ O(1) sup

ρ(f,f ′)<δn

max
i∈I(n)

x

[
|F1i(G

−1
1 (u1))− F1x(G

−1
1 (u1))|

+ |F1x(G
−1
1 (u1))− F1x(G

′−1
1 (u′1))|+ |F1x(G

′−1
1 (u′1))− F1i(G

′−1
1 (u′1))|

+ |F2i(G
−1
2 (u2))− F2x(G

−1
2 (u2))|+ |F2x(G

−1
2 (u2))− F2x(G

′−1
2 (u′2))|

+ |F2x(G
′−1
2 (u′2))− F2i(G

′−1
2 (u′2))|

]
= O(1)

(
o(1) + δ2n

)
→ 0, as n → ∞.
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To show (A15) we use Lemma 2.11.6 of van der Vaart & Wellner (1996). We rewrite

(
Zni(f)− Zni(f

′)
)2

=

∫ [
I{w1 ≤ G−1

1 (u1), w2 ≤ G−1
2 (u2)}

− I{w1 ≤ G
′−1
1 (u′1), w2 ≤ G

′−1
2 (u′2)}

]2
dµni(w1, w2),

where µni = nhnw
2
ni(x, hn) δ(Y1i,Y2i) with δ being a Dirac measure. As the set of functions

G =
{
(w1, w2) 7→ I{w1 ≤ a,w2 ≤ b}; (a, b) ∈ R2

}
is a VC-class with envelope F = 1 and F ⊂ G, the set of functions F is a VC-class as well

with the same envelope. Thus it satisfies the uniform entropy condition (2.11.5) of van der

Vaart & Wellner (1996). Moreover,

n∑
i=1

µniF
2 = nhn

n∑
i=1

w2
ni(x, hn) = O(1).

We have just verified all the assumptions of Lemma 2.11.6 of van der Vaart & Wellner (1996).

Applying this lemma verifies condition (A15). �

Lemma 2 implies that for ∀ε, η > 0 ∃δ > 0 such that

lim sup
n→∞

P

(
sup

ρ(f,f ′)<δ
|Z̄n(f)− Z̄n(f

′)| > ε

)
< η. (A16)

Further uniformly in (u1, u2)

ρ2 ((u1, u2, F1xh, F2xh), (u1, u2, F1x, F2x)) (A17)

=
∣∣F1x(F

−1
1xh(u1))− u1

∣∣+ ∣∣F2x(F
−1
2xh(u2))− u2

∣∣
=
∣∣F1x(F

−1
1xh(u1))− F1xh(F

−1
1xh(u1))

∣∣+ ∣∣F2x(F
−1
2xh(u2))− F2xh(F

−1
2xh(u2))

∣∣+O( 1
nhn

)

≤ sup
y

|F1x(y)− F1xh(y)|+ sup
y

|F2x(y)− F2xh(y)|+O( 1
nhn

)
P→ 0.

Combining (A12), asymptotic ρ-equicontinuity (A16) and (A17) yields that

sup
u1,u2

∣∣∣Ah
n(u1, u2)

∣∣∣ = sup
u1,u2

∣∣∣Dh
n(u1, u2)− EDh

n(u1, u2)
∣∣∣ = oP (1), (A18)

which finishes the first step of the proof.
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A2. Step 2 – Asymptotic representation of Chn
n . With the help of (W3), (W4) and

(R1) we calculate

Chn
n (u1, u2)=

√
nhn

n∑
i=1

wni(x, hn)
[
Hxi(F

−1
1xh(u1), F

−1
2xh(u2))−Hxi(F

−1
1x (u1), F

−1
2x (u2))

]
:=
√

nhn (Cn1(u1, u2) + Cn2(u1, u2) + Cn3(u1, u2)) , (A19)

with

Cn1(u1, u2)=

n∑
i=1

wni(x, hn)
[
Hx(F

−1
1xh(u1), F

−1
2xh(u2))−Hx(F

−1
1x (u1), F

−1
2x (u2))

]
,

Cn2(u1, u2)=

n∑
i=1

wni(x, hn) (xi − x)
[
Ḣx(F

−1
1xh(u1), F

−1
2xh(u2))− Ḣx(F

−1
1x (u1), F

−1
2x (u2))

]
,

Cn3(u1, u2)=

n∑
i=1

wni(x, hn) (xi − x)2
[
Ḧzih(F

−1
1xh(u1), F

−1
2xh(u2))− Ḧzi(F

−1
1x (u1), F

−1
2x (u2))

]
,

where zih, zi lie between xi and x. By assumption (R1) and by (A6) we get

max
i∈I(n)

x

sup
u1,u2

∣∣∣Ḧzih(F
−1
1xh(u1), F

−1
2xh(u2))− Ḧzi(F

−1
1x (u1), F

−1
2x (u2))

∣∣∣ = oP (1),

which together with (W4) yields the asymptotic negligibility of the process
√
nhnCn3. Sim-

ilarly we can argue that the process
√
nhnCn2 is asymptotically negligible.

Thus using (A19) together with (W2) we deduce

Chn
n (u1, u2) =

√
nhn

[
Cx

(
F1x(F

−1
1xh(u1)), F2x(F

−1
2xh(u2))

)
− Cx(u1, u2)

]
+ oP (1). (A20)

Substituting 1 for u1 (or u2) in the decomposition (A7) together with asymptotic negligibility

of the process Ahn
n and (A20) yields (uniformly in u for j = 1, 2)√
nhn

[
Fjx(F

−1
jxh(u))− u

]
= −

√
nhn

[
Fjxh(F

−1
jx (u))− u

]
+ oP (1). (A21)

The process Yjn(u) =
√
nhn

[
Fjxh(F

−1
jx (u))− u

]
is asymptotically ρ-equicontinuous with

ρ2(u, v) = |u− v| and the expectation of this process can be made arbitrarily small by taking

u close to either 0 or 1 and n sufficiently large. Thus a straightforward modification of

Lemma 4 of Omelka et al. (2009), (A21) and (A20) implies

Chn
n (u1, u2) = −C(1)

x (u1, u2)Y1n(u1)− C(2)
x (u1, u2)Y2n(u2) + oP (1). (A22)

Now, combining (A7), (A18), (A22) gives us the representation (9).
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Appendix B – Proof of Theorem 2

Put

Gxh(u1, u2) =

n∑
i=1

wni(x, hn) I{U1i ≤ u1, U2i ≤ u2}.

In the following we show that uniformly in (u1, u2)

C̃xh(u1, u2) = Gxh(G
−1
1xh(u1), G

−1
2xh(u2)) + oP (

1√
nhn

), (B1)

where G1xh and G2xh are the corresponding marginals of Gxh. Theorem 2 then follows from

Theorem 1 and (B1).

By a similar argument as was used in the proof of Theorem 1 it is sufficient to consider

only the fixed design.

B1. Auxiliary results

First we investigate how close a pseudo-observation Ũji is to an unobserved Uji. For

j = 1, 2 put

E (n)
jg (z, u) = Fjzgj(F

−1
jz (u))− u, u ∈ [0, 1], (B2)

and note that E (n)
jg (xi, Uji) = Ũji−Uji. It is useful to explore E (n)

jg (z, u) when z is ‘close’

to x. By assumption (W11) (for all sufficiently large n) we can assume that for z ∈ J
(n)
x

the weight wni(z, hn) is positive, only if xi ∈ [z − C hn, z + C hn], where C is a finite

constant.

For j = 1, 2 denote

Z(j)
n (t, u) = Fjztgj(F

−1
jzt

(u)), where zt = x+ t C hn, (t, u) ∈ [−1, 1]× [0, 1], (B3)

and note that for z ∈ [x− C hn, x+ C hn]: E (n)
jg (z, u) = Z

(j)
n ( z−x

C hn
, u)− u.

The following lemma uses the concepts of asymptotic tightness and asymptotic

equicontinuity in probability (see p.21 and 37 of van der Vaart & Wellner (1996)) in

the space of bounded functions `∞([−1, 1]× [0, 1]) that is equipped with the supremum

metric ρ∞.

Lemma 3. Under assumptions (16), (W1), (W9), (W10) and (R̃3) the processes
√
n gjn (Z

(j)
n − EZ

(j)
n ) are asymptotically tight for j = 1, 2.



8 NOËL VERAVERBEKE1, MAREK OMELKA2 AND IRÈNE GIJBELS3

Proof. It is straightforward to verify that for each (t, u) ∈ [−1, 1] × [0, 1] the random

variable
√
n gjn (Z

(j)
n (t, u)−EZ

(j)
n (t, u)) is asymptotically tight. Thus by Theorem 1.5.7

of van der Vaart & Wellner (1996) it is sufficient to show that the process
√
n gjn (Z

(j)
n −

EZ
(j)
n ) is asymptotically uniformlyρ-equicontinuous in probability, where ρ is a metric

such that the metric space ([−1, 1]× [0, 1], ρ) is totally bounded. For our purposes it is

convenient to take the following semimetric

ρ2((t1, u1), (t2, u2)) = |t1 − t2|2 + |u1 − u2|.

To prove the asymptotic equicontinuity we again use Theorem 2.11.1 of van der Vaart

& Wellner (1996). Note that Z
(j)
n =

∑n
i=1 Z

(j)
ni , where

Z
(j)
ni (t, u) = wni(zt, gjn) I{Yji ≤ F−1

jzt
(u)}.

As the first and the third assumption of the theorem may be verified similarly as in the

proof of Lemma 2, it is sufficient to make a closer inspection of the second assumption.

Let δn ↘ 0, f1 = (t1, u1), f2 = (t2, u2). With the help of (16), (W9), (W10) and (R̃3)

we estimate

sup
ρ(f1,f2)<δn

n gjn

n∑
i=1

E
(
Z

(j)
ni (f1)− Z

(j)
ni (f2)

)2
= sup

ρ(f1,f2)<δn

n gjn

n∑
i=1

E
(
wni(zt1 , gjn) I{Yji ≤ F−1

jzt1
(u1)}

−wni(zt2 , gjn) I{Yji ≤ F−1
jzt2

(u2)}
)2

≤ sup
ρ(f1,f2)<δn

2n gjn

(
sup

z∈[x−C hn,x+C hn]

n∑
i=1

[w′
ni(z, gjn)]

2C2 |t1 − t2|2 h2
n

+ sup
z∈[x−C hn,x+C hn]

n∑
i=1

[wni(z, gjn)]
2 (|u1 − u2|+ o(1))

)
= O(1) sup

ρ(f1,f2)<δn

(
|t1 − t2|2 + |u1 − u2|+ o(1)

)
= o(1),

which finishes the proof of the lemma. �
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Remark 3. The asymptotic tightness stated in Lemma 3 implies that for each η ∈ (0, 1)

there exists a compact subset Kη of `∞([−1, 1]× [0, 1]) such that for every ε > 0

lim inf
n→∞

P
[√

n gjn
(
Z(j)

n − EZ(j)
n

)
∈ Kε

η

]
≥ 1− η,

where Kε
η = {(t, u) ∈ [−1, 1] × [0, 1] : ρ((t, u), Kη) < ε} is an ‘ε-enlargement’ around

Kη. Thus there exists a decreasing sequence εn ↘ 0 such that

lim inf
n→∞

P
[√

n gjn
(
Z(j)

n − EZ(j)
n

)
∈ Kεn

η

]
≥ 1− η.

Moreover, as the set Kη is compact, for each j ∈ N the set K
εj
η can be covered with

finitely many balls of radius 2 εj with centres in Kη, which are continuous functions.

This further implies that K
εj
η is uniformly bounded and that there exists δ > 0 such

that

ρ((t1, u1), (t2, u2)) < δ ⇒ sup
f∈K

εj
η

|f(t1, u1)− f(t2, u2)| < 5 εj.

Lemma 4. Under assumption (16) and (W7) we have for each η ∈ (0, 1), uniformly

in u1, u2

sup
f1,f2∈Kεn

η

∣∣∣∣∣√nhn

n∑
i=1

wni(x, hn)

[
E I
{
U1i ≤ u1 +

f1(
xi−x
C hn

,U1i)
√
n g1n

, U2i ≤ u2 +
f2(

xi−x
C hn

,U2i)
√
n g2n

}

−Cxi

(
u1 +

f1(
xi−x
C hn

,u1)
√
n g1n

, u2 +
f2(

xi−x
C hn

,u2)
√
n g2n

)]∣∣∣∣ = o(1) (B4)

Proof. Let ε > 0 be given. Thus we can find n◦ such that

sup
f∈Kεn◦

η

sup
|u−v|<δ

sup
z∈[−1,1]

|f(z, u)− f(z, v)| < ε.

Further as the sequence of sets Kεn
η is decreasing and the set Kε1

η is uniformly bounded,

for all sufficiently large n it holds

sup
f∈Kεn◦

η

sup
z,u

|f(z, u)|√
n min(g1n, g2n)

< δ.
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Thus for all sufficiently large n and with the help of (16) and (W7) we can bound the

left-hand side of (B4) uniformly in u1, u2 by

sup
f1,f2∈K

εn◦
η

∣∣∣∣∣√nhn

n∑
i=1

wni(x, hn)∫∫
|u1−v1|≤δ,|u2−v2|≤δ

[
I
{
v1 ≤ u1 +

f1((xi−x)/(C hn), v1)√
n g1n

, v2 ≤ u2 +
f2((xi−x)/(C hn),v2)√

n g2n

}
− I
{
v1 ≤ u1 +

f1((xi−x)/(C hn),u1)√
n g1n

, v2 ≤ u2 +
f2((xi−x)/(C hn),u2)√

n g2n

}]
dCxi

(v1, v2)
∣∣∣

≤
√
nhn

n∑
i=1

|wni(x, hn)|
(

5 ε√
n g1n

+ 5 ε√
n g2n

)
= εO(1),

which proves the statement of the lemma as the term O(1) does not depend on the

particular choice of u1, u2 and ε can be taken arbitrarily small. �

B2. Main part of the proof of Theorem 2

Notation. In the rest of the Appendix it will be convenient to generalize the nota-

tion already introduced in the proof of Theorem 1. We will often use the expectations

of the form E f(Ui1, Ui2;F1xig1 , F2xig2 ;G1xh, G2xh; G̃1xh, G̃2xh) which have to be under-

stood in a way that the functions F1xig1 , F2xig2 , G1xh, G2xh, G̃1xh, G̃2xh are considered

fixed (nonrandom) and the expectation is computed only with respect to Ui1 and Ui2.

Formally

E f(Ui1, Ui2;F1xig1 , F2xig2 ;G1xh, G2xh; G̃1xh, G̃2xh)

=

∫∫
f(u1, u2;F1xig1 , F2xig2 ;G1xh, G2xh; G̃1xh, G̃2xh) dCxi

(u1, u2),

whenever the integral on the right-hand side exists.

Decomposition. As the quantity η in Remark 3 can be taken arbitrarily small, in the

following we will work conditionally on the event[√
n g1n

(
Z(1)

n − EZ(1)
n

)
∈ Kεn

η ,
√
n g2n

(
Z(2)

n − EZ(2)
n

)
∈ Kεn

η

]
, (B5)

where the processes Z
(1)
n and Z

(2)
n were introduced in (B3).
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With (B5) in mind we make the following decomposition

√
nhn

(
C̃xh(u1, u2)−Gxh(G

−1
1xh(u1), G

−1
2xh(u2))

)
= Ān(u1, u2) + B̄n(u1, u2) + En(u1, u2), (B6)

where

An(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)
[
I{Ũ1i ≤ G̃−1

1xh(u1), Ũ2i ≤ G̃−1
2xh(u2)} (B7)

−I{U1i ≤ G̃−1
1xh(u1), U2i ≤ G̃−1

2xh(u2)}
]
,

Ān(u1, u2) = An(u1, u2)− EAn(u1, u2)

Bn(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)
[
I{U1i ≤ G̃−1

1xh(u1), U2i ≤ G̃−1
2xh(u2)} (B8)

−I{U1i ≤ G−1
1xh(u1), U2i ≤ G−1

2xh(u2)}
]
,

B̄n(u1, u2) = Bn(u1, u2)− EBn(u1, u2),

En(u1, u2) = EAn(u1, u2) + EBn(u1, u2). (B9)

The proof will be divided into three steps in which we subsequently show that Ān, B̄n

and En are asymptotically negligible uniformly in (u1, u2).

Step 1: Treatment of Ān. First note that

sup
u1,u2

|Ān(u1, u2)| ≤ sup
u1,u2

∣∣D̄n(u1, u2)
∣∣ ,

where Dn =
√
nhn(G̃xh −Gxh) and D̄n = Dn − EDn.

Recall the definition of E (n)
jg (xi, Uji) given in (B2) and note that we can rewrite the

process G̃xh as

G̃xh(u1, u2) =
n∑

i=1

wni(x, hn) I
{
U1i ≤ u1 − E (n)

1g (xi, U1i), U2i ≤ u2 − E (n)
2g (xi, U2i)

}
.

By Taylor expansion of E E (n)
jg (z, u), and assumptions (W8), (W12), (W13), (R̃3)

for any C < ∞, we get :

sup
u∈[0,1]

sup
|z−x|≤C hn

∣∣∣E E (n)
jg (z, u)− g2jnR

(j)(u)
∣∣∣ = o(g2jn), (B10)
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where

R(j)(u) = DK Ḟjx(F
−1
jx (u)) + EK

2
F̈jx(F

−1
jx (u)), j = 1, 2. (B11)

Let us define E ′(n)
jg (z, u) = E (n)

jg (z, u)− E E (n)
jg (z, u) + g2jnR

(j)(u) and

G̃′
xh(u1, u2) =

n∑
i=1

wni(x, hn) I
{
U1i ≤ u1 − E ′(n)

1g (xi, U1i), U2i ≤ u2 − E ′(n)
2g (xi, U2i)

}
.

The proof of Step 1 will be divided into two parts. First,we show that D̄′
n = D′

n−ED′
n =

oP (1), where D′
n =

√
nhn(G̃′

xh −Gxh). Then we prove that D̄n − D̄′
n = oP (1).

Part 1. Process D̄′
n. Now we are ready to use the machinery introduced in Ghoudi &

Rémillard (1998). Mimicking the proof of Lemma 5.2 of that paper we can show that

for given f1, f2 ∈ C([−1, 1]× [0, 1])

sup
u1,u2

|γn(u1, u2, f1, f2)− E γn(u1, u2, f1, f2)| = oP (1),

where

γn(u1, u2, f1, f2) =
√
nhn

n∑
i=1

wni(x, hn)[
I
{
U1i ≤ u1 +

f1(
xi−x
C hn

,U1i)
√
n g1n

, U2i ≤ u2 +
f2(

xi−x
C hn

,U2i)
√
n g2n

}
− I {U1i ≤ u1, U2i ≤ u2}

]
.

As E (n)
jg (zt, u) = Z

(j)
n (t, u) − u, where zt = x + t C hn and t ∈ [−1, 1], and by the

properties of the sequence of sets Kεn
η of Remark 3, we know that with probability

arbitrarily close to one and for arbitrarily small ε for all sufficiently large n the processes

{√n gjn(E (n)
jg (zt, u)−E E (n)

jg (zt, u)), (t, u) ∈ [−1, 1]×[0, 1]} take values in a set that can be

covered with finitely many balls of radius ε and whose centres are continuous functions

on [−1, 1] × [0, 1]. Further, as the functions R(1), R(2) given by (B11) are continuous

on [0, 1], the same hold true for the processes {√n gjn E ′(n)
jg (zt, u), (t, u) ∈ [−1, 1]×[0, 1]}.

That enable us to mimic the proof of Lemma 4.1 of Ghoudi & Rémillard (1998) and
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show that

sup
u1,u2

∣∣D̄′
n(u1, u2)

∣∣ = sup
u1,u2

|D′
n(u1, u2)− ED′

n(u1, u2)| (B12)

= sup
u1,u2

∣∣∣γn(u1, u2, E ′(n)
1g , E ′(n)

2g )− E γn(u1, u2, E ′(n)
1g , E ′(n)

2g )
∣∣∣ = oP (1)

Part 2. Process D̄n − D̄′
n. With the help of (B10) for each ε > 0 for all sufficiently

large n we can bound (uniformly in u1, u2)

Dn(u1, u2)− D′
n(u1, u2)

=
√

nhn

[
G̃xh(u1, u2)− G̃′

xh(u1, u2)
]

(B13)

≤
√

nhn

[
G̃′

1xh(u1 + ε g21n)− G̃′
1xh(u1)

]
+
√

nhn

[
G̃′

2xh(u2 + ε g22n)− G̃′
2xh(u2)

]
Now with the help of Lemma 4 we get

sup
u

E
√
nhn

∣∣∣G̃′
1xh(u+ ε g21n)− G̃′

1xh(u)
∣∣∣ = ε

√
nhn g2jn = εO(1). (B14)

Using (B12), (B14) and the asymptotic ρ-equicontinuity of the processes
√
nhn(Gjxh−

EGjxh) with respect to the metric ρ2(u, v) = |u− v| yields that for j = 1, 2 (uniformly

in uj)√
nhn

[
G̃′

jxh(uj + ε g21n)− G̃′
jxh(uj)

]
=

√
nhn

[
Gjxh(uj + ε g21n)−Gjxh(uj)

]
−
√

nhn E
[
Gjxh(uj + ε g2jn)−Gjxh(uj)

]
+
√

nhn E
[
G̃′

jxh(uj + ε g2jn)− G̃′
jxh(uj)

]
+ oP (1) (B15)

= oP (1) + εO(1).

As ε can be chosen arbitrarily small, combining (B13) and (B15) yields that

sup
u1,u2

(Dn(u1, u2)−D′
n(u1, u2)) ≤ oP (1).

Analogously we can prove that

inf
u1,u2

(Dn(u1, u2)−D′
n(u1, u2)) ≥ oP (1),
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as well as

sup
u1,u2

|EDn(u1, u2)− ED′
n(u1, u2)| = o(1), (B16)

which finishes Step 1 of the proof of the theorem.

Step 2: Treatment of B̄n. This part of the proof follows from Step 1 of the proof of

Theorem 1 (for Cxh) provided we prove that for j = 1, 2

sup
u

∣∣∣G̃−1
jxh(u)−G−1

jxh(u)
∣∣∣ = oP (1). (B17)

From the previous step of the proof we know that supu1,u2
|D̄n(u1, u2)| = oP (1). Putting

u1 = 1 (or u2 = 1) then Lemma 4 implies that for j = 1, 2 uniformly in u√
nhn

(
G̃jxh(u)−Gjxh(u)

)
= −

√
nhn

n∑
i=1

wni(x, hn) E (n)
jgj

(xi, u) + oP (1). (B18)

Thus Lemma 3 together with (16), (W2), (B10) and (B18) yield that uniformly in u√
nhn

(
G̃jxh(u)−Gjxh(u)

)
= −

√
nhn

n∑
i=1

wni(x, hn)
[
E (n)
jgj

(xi, u)− E E (n)
jgj

(xi, u) + E E (n)
jgj

(xi, u)
]
+ oP (1).

=
√
nhnOP (

1√
n gjn

) +
√

nhnO(g2jn) = OP (1). (B19)

The convergence in (B17) now follows from (B19), (W1) and the following bound

sup
u

∣∣∣G̃−1
jxh(u)−G−1

jxh(u)
∣∣∣ ≤ sup

u
|G̃−1

jxh(u)− u|+ sup
u

∣∣G−1
jxh(u)− u

∣∣
≤ sup

u
|G̃jxh(u)− u|+ sup

u
|Gjxh(u)− u|+ oP

(
1√
nhn

)
≤ sup

u
|G̃jxh(u)−Gjxh(u)|+ 2 sup

u
|Gjxh(u)− u|+ oP

(
1√
nhn

)
= OP

(
1√
nhn

)
.(B20)

Step 3 : Treatment of En. For simplicity of notation for i = 1, . . . , n and j = 1, 2

put e
(n)
j (xi, u) := E (n)

jg (xi, G̃
−1
jxh(u)). Lemma 4 yields that

En(u1, u2) = EAn(u1, u2) + EBn(u1, u2)

=
√

nhn

n∑
i=1

wni(x, hn)
[
Cxi

(G̃−1
1xh(u1)− e

(n)
1 (xi, u1), G̃

−1
2xh(u2)− e

(n)
2 (xi, u2))

−Cxi
(G−1

1xh(u1), G
−1
2xh(u2))

]
.
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In the following it is useful to note that thanks to (W1)

√
nhn

(
C̃xh(u1, 1)−Gxh(G

−1
1xh(u1), G

−1
2xh(1))

)
=
√

nhn

(
G̃1xh(G̃

−1
1xh(u1))−G1xh(G

−1
1xh(u1))

)
= op(1).

Thus, putting u1 = 1 (or u2 = 1) in (B6) together with assumption (W2) and the

asymptotic negligibility of processes Ān, and B̄n yield that (for j = 1, 2)

sup
u∈[0,1]

∣∣∣∣∣√nhn

n∑
i=1

wni(x, hn)
[
G̃−1

jxh(u)− e
(n)
j (xi, u)−G−1

jxh(u)
]∣∣∣∣∣ = op(1). (B21)

Now, let ε > 0 be given. As we can bound En by

|En(u1, u2)| ≤
√

nhn

n∑
i=1

|wni(x, hn)|
[∣∣∣G̃−1

1xh(u1)− e
(n)
1 (xi, u1)−G−1

1xh(u1)
∣∣∣

+
∣∣∣G̃−1

2xh(u2)− e
(n)
2 (xi, u2)−G−1

2xh(u2)
∣∣∣] ,

with the help of (16), (W7), (B10), (B18), (B20) and Lemma 3 we can find δε > 0

such that for all sufficiently large n

P

[
sup

(u1,u2)∈Aδε

|En(u1, u2)| ≥ ε

]
≤ ε, (B22)

where Aδε is a union of open δε-neighbourhoods of the points {(0, 0), (0, 1), (1, 0), (1, 1)}.

Further making use of Taylor expansion, (B21) and (R̃2) we get that uniformly in

(u1, u2) ∈ [0, 1]2 \ Aδε

En(u1, u2) =
√
nhn

n∑
i=1

wni(x, hn){
C(1)

xi
(G−1

1xh(u1), G
−1
2xh(u2))

[
G̃−1

1xh(u1)− e
(n)
1 (xi, u1)−G−1

1xh(u1)
]

+C(2)
xi

(G̃−1
1xh(u2), G̃

−1
2xh(u2))

[
G̃−1

2xh(u2)− e
(n)
2 (xi, u2)−G−1

2xh(u2)
]

+ oP

(
1√
nhn

)}
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=
√
nhn

n∑
i=1

wni(x, hn){
C(1)

x (G−1
1xh(u1), G

−1
2xh(u2))

[
G̃−1

1xh(u1)− e
(n)
1 (xi, u1)−G−1

1xh(u1)
]

+C(2)
x (G−1

1xh(u2), G
−1
2xh(u2))

[
G̃−1

2xh(u2)− e
(n)
2 (xi, u2)−G−1

2xh(u2)
]

+ oP

(
1√
nhn

)}
+ oP (1)

= oP (1),

which together with (B22) finishes Step 3 of the proof of the theorem.


