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Abstract. This paper is concerned with inference about the dependence or association be-

tween two random variables conditionally upon the given value of a covariate. A way to

describe such a conditional dependence is via a conditional copula function. Nonparamet-

ric estimators for a conditional copula then lead to nonparametric estimates of conditional

association measures such as a conditional Kendall’s tau. The limiting distributions of non-

parametric conditional copula estimators are rather involved. In this paper we propose

a bootstrap procedure for approximating these distributions and their characteristics, and

establish its consistency. We apply the proposed bootstrap procedure for constructing con-

fidence intervals for conditional association measures, such as a conditional Blomqvist beta

and a conditional Kendall’s tau. The performances of the proposed methods are investi-

gated via a simulation study involving a variety of models, ranging from models in which the

dependence (weak or strong) on the covariate is only through the copula and not through

the marginals, to models in which this dependence appears in both the copula and the mar-

ginal distributions. As a conclusion we provide practical recommendations for constructing

bootstrap-based confidence intervals for the discussed conditional association measures.

Keywords and phrases: Asymptotic representation, bootstrap, empirical copula process, fixed

design, random design, smoothing, weak convergence.
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1. Introduction

Let (Y11, Y21, X1)
T, . . . , (Y1n, Y2n, Xn)

T be independent identically distributed three-dimen-

sional vectors from the cumulative distribution function H(y1, y2, x) of the random triple

(Y1, Y2, X)T, where X is a covariate. The contributions in this paper are valid for the case of

random design (X is a random variable) and fixed regular design (X is not random), with the

design density satisfying some assumptions (see Section 2.4). Researchers are often interested

in the dependence structure of the bivariate outcome (Y1, Y2)
T given a value of the covariate

X = x. In an example concerning life expectancies of males and females, Veraverbeke et al.

(2011) analyzed how the relationship between the two life expectancies changes with the

logarithm of the under-five mortality rate of a country, which is often used as a characteristic

for its development status. Another example is provided in Gijbels et al. (2011), where in

a study on soil contamination it was investigated how the association between the amount

of zinc in the soil and the soils microbial activity is influenced by the quantity of organic

material present in the soil. We refer to these two papers and references therein for further

background information on the study of conditional dependencies.

Let us denote the joint and marginal distribution functions of (Y1, Y2)
T, conditionally upon

X = x, as

Hx(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2 |X = x),

F1x(y1) = P (Y1 ≤ y1 |X = x), F2x(y2) = P (Y2 ≤ y2 |X = x).

If F1x(·) and F2x(·) are continuous functions, then according to Sklar’s theorem (see e.g.

Nelsen (2006)) there exists a unique copula Cx which equals

Cx(u1, u2) = Hx(F
−1
1x (u1), F

−1
2x (u2)),

where F−1
1x (u) = inf{y : F1x(y) ≥ u} is the conditional quantile function of Y1 given X = x

and F−1
2x is the conditional quantile function of Y2 given X = x. The conditional copula Cx

fully describes the conditional dependence structure of (Y1, Y2)
T given X = x.

Based on the observed data we have the following empirical estimator for Hx(y1, y2):

(1) Hxh(y1, y2) =
n∑
i=1

wni(x, hn) I{Y1i ≤ y1, Y2i ≤ y2},

where {wni(x, hn)} is a sequence of weights that smooth over the covariate space and h =

hn > 0 is a bandwidth going to zero as the sample size increases. Gijbels et al. (2011)

suggested the following empirical estimator of the copula Cx

(2) Cxh(u1, u2) = Hxh

(
F−1
1xh(u1), F

−1
2xh(u2)) (0 ≤ u1, u2 ≤ 1

)
,

where F1xh and F2xh are corresponding marginal distribution functions of Hxh. Although

this estimator seems to be quite natural Gijbels et al. (2011) illustrated that this estimator

may suffer from severe bias if any of the marginal conditional distributions F1x, F2x change
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with x. In order to reduce that bias they suggested an alternative estimator constructed in

the following way. First, put

(3) (Ũ1i, Ũ2i)
T = (F1xig1(Y1i), F2xig2(Y2i))

T, i = 1, . . . , n,

where g1 = {g1n} ↘ 0 and g2 = {g2n} ↘ 0. Second, use the transformed observations

(Ũ1i, Ũ2i)
T in a similar way as the original observations and construct

(4) C̃xh(u1, u2) = G̃xh

(
G̃−1

1xh(u1), G̃
−1
2xh(u2)

)
,

where

G̃xh(u1, u2) =

n∑
i=1

wni(x, hn) I{Ũ1i ≤ u1, Ũ2i ≤ u2},

and G̃1xh and G̃2xh are its corresponding marginals.

Veraverbeke et al. (2011) studied the asymptotic properties of the estimators Cxh and C̃xh

and showed that provided

(5) hn = O(n−1/5),
√
nhn g

2
jn = O(1), hn

gjn
= O(1), n min(hn, g1n, g2n) → ∞,

and some further regularity conditions are met the copula processes

(6) Cn =
√
nhn(Cxh − Cx), C̃n =

√
nhn(C̃xh − Cx)

converge in distribution in the space of bounded functions on the unit square [0, 1]2, equipped

with the supremum norm, to Gaussian processes with the same covariance structure but pos-

sibly different drift functions that correspond to the asymptotic biases of the estimators Cxh

and C̃xh. As the asymptotic limiting distributions are rather complicated, bootstrap proce-

dures for estimating the sampling distribution of both Cxh and C̃xh are of practical interest.

Our proposal, which is described in the next section, is inspired by the resampling procedure

suggested in Aerts et al. (1994). For the unconditional situation (without a covariate), boot-

strap approximations of the empirical copula process have been discussed in Fermanian et al.

(2004) and Bücher and Dette (2010).

The paper is organised as follows. In Section 2 we describe the suggested resampling

procedures and state the main results on their consistency. Section 3 gives applications of the

bootstrap procedures to construct confidence intervals for conditional Blomqvist’s beta and

Kendall’s tau. The proofs are given in the Appendix.

2. Bootstrap

In the following we will denote the observed values of the covariate X as x1, . . . , xn.
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2.1. Bootstrapping the process Cn. Let gb = {gbn} be a bandwidth sequence that is

asymptotically larger than h = {hn}, more precisely assume that

(7) hn = O(n−1/5), gbn → 0, n1−δ g5bn → +∞, where δ > 0.

Substitute hn with gb in formula (1) and get Hxigb(y1, y2) – the estimate of the conditional

joint distribution of (Y1, Y2)
T given X = xi. We suggest to resample the process Cn as follows.

Algorithm:

Draw (Y ∗
1i, Y

∗
2i)

T from Hxigb(·, ·); do this for i = 1, . . . , n.

Let H∗
xh be the empirical distribution function of the bootstrap sample, C∗

xh be the cor-

responding empirical copula and Cxgb be the estimate of copula given by (2) with the band-

width gb. Denote the bootstrap process as C∗
n =

√
nhn(C

∗
xh − Cxgb).

2.2. Bootstrapping the process C̃n. Although assumption (5) implies that if hn∼ Cn−1/5,

then g1n and g2n used in (3) have to be of order n−1/5 as well, it turns out that for the reason of

bootstrapping we have to take bandwidths g1b = {g1bn}, g2b = {g2bn} that are asymptotically

larger than O(n−1/5). Let us replace g1n and g2n with g1b and g2b in (3) and denote (Ũ b1i, Ũ
b
2i)

the corresponding transformed ‘uniform’ alike observations.

Further, similarly as in the bootstrap algorithm for Cxh, we need to introduce a bandwidth

gb = {gbn}. In the following we will suppose that there exists δ1 > 0 and δ2 > 0 such that

(8)
hn = O(n−1/5), hn log1+δ1 n

gjbn
→ 0, ∀η>0

(
nhn g

4+η
jbn

)
→ 0, for j = 1, 2,

n1/5−δ2 gbn → +∞, gbn → 0.

Finally, let us define

(9) G̃z gb(u1, u2) =

n∑
i=1

wni(z, gbn) I{Ũ b1i ≤ u1, Ũ
b
2i ≤ u2}

and C̃xgb(u1, u2) = G̃xgb

(
G̃−1

1xgb
(u1), G̃

−1
2xgb

(u2)
)

with G̃1xgb and G̃2xgb being the marginals

of G̃xgb .

Algorithm:

Draw (Ũ∗
1i, Ũ

∗
2i)

T from G̃xigb(·, ·); do this for i = 1, . . . , n.

Let C̃∗
xh be a copula estimator given by (2) with the original observations (Y1i, Y2i) replaced

by (Ũ∗
1i, Ũ

∗
2i). The bootstrap process is given by C̃∗

n =
√
nhn(C̃

∗
xh − C̃xgb).

Remark 1. Sampling from Hzgb (or G̃zgb) requires the weights wni(x, gb) to be non-negative

and to sum up to 1. If this is not the case then the most straightforward way is to put

negative weights to zero and then rescale all the weights so that they sum up to 1. Thanks

to assumptions (W3) and (W7) given in Section 2.4 such a modification is ‘asymptotically

negligible’ and the theoretical justification of the resampling procedures can use the original

weights.
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2.3. Theoretical results. Regularity conditions needed in the following theorems are given

in Sections 2.4 and 2.5.

Theorem 1. Assume (7), (W1)–(W7), (W’1)–(W’3), (W”1)–(W”5), (H) and (R2).

Then the bootstrap process C∗
n converges in bootstrap measure P∗ [P]-almost surely to the

same Gaussian process as the empirical process Cn.

Theorem 2. Assume (5), (8), (W1)–(W7), (W’1)–(W’3), (W”1)–(W”6), and (R1)–

(R4). Then the bootstrap process C̃∗
n converges in bootstrap measure P∗ [P]-almost surely to

the same Gaussian process as the empirical process C̃n.

The proofs of both theorems are rather technical and are postponed to the Appendix.

The proofs mimic the proof of the weak convergence of the process Cn given in Veraverbeke

et al. (2011). The difference is that in our situation we need to assure that things which are

happening in the bootstrap probability P∗ hold [P]-almost surely.

For i = 1, . . . , n and j = 1, 2 put Uji = Fjxi(Yji) and let Cn stand either for the copula pro-

cess Cn or C̃n. Veraverbeke et al. (2011) showed the following Bahadur type representations

(uniform in (u1, u2))

(10) Cn(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn) ξi(u1, u2) + oP (1),

where

(11) ξi(u1, u2) = I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)} − Cx(u1, u2)

− C(1)
x (u1, u2)

[
I{Y1i ≤ F−1

1x (u1)} − u1
]
− C(2)

x (u1, u2)
[
I{Y2i ≤ F−1

2x (u2)} − u2
]
,

for Cn = Cn and

(12) ξi(u1, u2) = I{U1i ≤ u1, U2i ≤ u2} − Cx(u1, u2)

− C(1)
x (u1, u2) [I{U1i ≤ u1} − u1]− C(2)

x (u1, u2) [I{U2i ≤ u2} − u2] ,

for Cn = C̃n; with C
(i)
x (u1, u2) =

∂Cx(u1,u2)
∂ui

for i = 1, 2.

In this paper we show analogous Bahadur representations

(13) C∗
n(u1, u2) =

√
nhn

n∑
i=1

wni(x;hn) ξ
∗
i (u1, u2) + oP ∗(1), [P]-a.s.,

where

(14) ξ∗i (u1, u2) = I{Y ∗
1i ≤ F−1

1xgb
(u1), Y

∗
2i ≤ F−1

2xgb
(u2)} − Cxgb(u1, u2)

− C(1)
x (u1, u2)

[
I{Y ∗

1i ≤ F−1
1xgb

(u1)} − u1

]
− C(2)

x (u1, u2)
[
I{Y ∗

2i ≤ F−1
2xgb

(u2)} − u2

]
,
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for C∗
n = C∗

n and

(15) ξ∗i (u1, u2) = I{Ũ∗
1i ≤ u1, Ũ

∗
2i ≤ u2} − C̃xgb(u1, u2)

− C(1)
x (u1, u2)

[
I{Ũ∗

1i ≤ u1} − u1

]
− C(2)

x (u1, u2)
[
I{Ũ∗

2i ≤ u2} − u2

]
,

for C∗
n = C̃∗

n.

The asymptotic tightness of the process C∗
n (C̃∗

n) then follows by Step 1 of the proof in

Appendix A (Appendix B). Further with the help of computations done in Step 2 of Appen-

dix A (Appendix B) we can verify that the bias and covariance structure of process C∗
n (C̃∗

n)

asymptotically coincide with the bias and covariance structure of the process Cn (C̃n).

2.4. Regularity conditions for weights. Let {Zn} be a sequence of random variables and

{an} a sequence of constants. We will use the following notation.

Zn = oa.s.(an) ⇔ Zn/an → 0 a. s. as n→ ∞,

Zn = Oa.s.(an) ⇔ ∃C <∞ : P

[
sup
m≥n

|Zm/am| ≥ C

]
→ 0 as n→ ∞,

Zn = Oe(an) ⇔ ∃C,C ′ <∞∃η > 0 : P [|Zn/an| ≥ C] ≤ C exp
{
−nη

C′

}
.

Note that with the help of the Borel-Cantelli lemma Zn = Oe(an) implies Zn = Oa.s.(an).

Further for a process {Zn(z), z ∈Mn} (the set Mn is allowed to vary with n) we will write

Zn(z) =Oe(an) on Mn ⇔ ∃C,C ′ <∞∃η > 0 : sup
z∈Mn

P [|Zn(z)/an| ≥ C] ≤ C exp
{
−nη

C′

}
.

Next by w′
ni(z, hn) and w

′′
ni(z, hn) we will understand the first and second derivative of the

weight wni(z, hn) with respect to the variable z. Further put I
(n)
x = {i : wni(x, gbn) 6= 0} and

J
(n)
x = [min

i∈I(n)x
Xi,max

i∈I(n)x
Xi].

The following is a listing of assumptions on the system of weights {wni; i = 1, . . . , n} in

random design. The conditions for fixed design may be derived easily by replacing Xi by xi

and the symbols oa.s., Oa.s., Oe by o,O,O. Finally, an is a substitute for any of the sequences

hn, g1n, g2n, gbn, g1bn, g2bn.

(W1) max
1≤i≤n

|wni(x, an)| = oa.s.(
1√
nan

), (W2)

n∑
i=1

w2
ni(z, an) = Oe

(
1

nan

)
on J (n)

x ,

sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an)− 1

∣∣∣∣∣ = oa.s.

(
1√
nhn

)
(W3)

∃DK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an)(Xi − z)− a2nDK

∣∣∣∣∣ = oa.s.
(
a2n
)
,(W4)

∃EK<∞ ∀an sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an)(Xi − z)2 − a2nEK

∣∣∣∣∣ = oa.s
(
a2n
)
,(W5)
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max
i∈I(n)x

Xi − min
i∈I(n)x

Xi

)
= oa.s.(1),(W6)

sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

wni(z, an) I{wni(z, an) < 0}

∣∣∣∣∣ = oa.s.(
1√
nhn

),(W7)

Assumptions on the first derivatives of weights {w′
ni; i = 1, . . . , n}:

(W’1) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

w′
ni(z, gbn)

∣∣∣∣∣ = oa.s.(1), (W’2)

n∑
i=1

[w′
ni(z, gbn)]

2 = Oe
(

1
nδ

)
on J (n)

x ,

(W’3) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

w′
ni(z, gbn)(Xi − z)− 1

∣∣∣∣∣ = oa.s(1)

Assumptions on the the second derivatives of weights {w′′
ni; i = 1, . . . , n}:

(W”1) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

w′′
ni(z, gbn)

∣∣∣∣∣ = oa.s.(1), (W”2)
n∑
i=1

[w′′
ni(z, gbn)]

2 = Oe
(

1
nδ

)
on J (n)

x ,

(W”3) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

w′′
ni(z, gbn)(Xi − z)

∣∣∣∣∣ = oa.s.(1),

(W”4) sup
z∈J(n)

x

∣∣∣∣∣
n∑
i=1

w′′
ni(z, gbn)(Xi − z)2 − 1

∣∣∣∣∣ = oa.s(1),

(W”5) ∃C,L<∞ ∃α>0 ∀
z1,z2∈J(n)

x
: max

i

∣∣w′′
ni(z1, gbn)− w′′

ni(z2, gbn)
∣∣ ≤ C g−Lbn |z1 − z2|α.

(W”6) sup
z∈J(n)

x

n∑
i=1

|w′′
ni(z, gbn)| = Oa.s

(
1
g2bn

)
,

Discussion of the conditions. Although the long list of conditions is rather discouraging, it is

quite informative, because it tells us what properties of the weights are used during our proof.

We believe that in spite of its length this list is preferable over being stuck to a particular

type of weights. And as we will see later, once the system of weights is chosen, we often end

up with a few standard conditions about the distribution of the covariate X.

Assume for concreteness that a kernel density function K has a support on [−1, 1], it is

symmetric and three times continuously differentiable. Further suppose that hn = O(n−1/5)

and gbn = O(n−1/7). First let us consider Nadaraya-Watson weights [NW] (see Nadaraya

(1964) or Watson (1964)), which are defined as

wni(x, hn) =
K(Xi−xhn

)∑n
j=1K(

Xj−x
hn

)
, i = 1, . . . , n.
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While assumptions (W3), (W6) and (W”5) hold immediately and assumption (W1) can

be verified with the help of Bernstein exponential inequality together with the Borel-Cantelli

lemma, the remaining assumptions require a uniform (in z) law of large numbers. After some

calculations we find out that the key to the success of the verification of the conditions in the

last group is in showing that for j = 0, 1, 2, l = 0, 1, 2 there exists a neighbourhood Ux of x

such that

(17) sup
z∈Ux

∣∣∣∣∣ 1

nhn

n∑
i=1

K(l)
(
Xi−z
hn

)(
Xi−z
hn

)j
− E 1

hn
K(l)

(
X1−z
hn

)(
X1−z
hn

)j∣∣∣∣∣ = oa.s.(1).

A very handy tool to verify (17) is e.g. Lemma 22 of Nolan and Pollard (1987). That lemma

tells us that the family of functions

F = {x 7→ K(l)
(
x−z
h

) (
x−z
h

)j
, z ∈ R, h > 0}

is a Vapnik-Chervonenkis class of functions provided the function u 7→ K l(u)uj is of bounded

variation on R+. Then we can start the empirical process machinery (see e.g. van der Vaart

and Wellner (1996), van de Geer (2000) or the proof of Lemma 3 of this paper) to arrive at

an exponential inequality and the Borel-Cantelli lemma finishes the proof of (17).

Some further calculations show that for NWweights we end up with the following conditions

on the distribution function FX of the covariate X:

(F1) fX = F ′
X is continuous and positive at point x,

(F2) f ′X = F ′′
X is continuous in a neighbourhood of x.

Another system of weights, very commonly employed, is local linear [LL] system of weights

(see e.g p. 20 of Fan and Gijbels (1996)), which is given by

(18) wni(x, hn) =

1
nhn

K(Xi−xhn
)
(
Sn,2 − Xi−x

hn
Sn,1

)
Sn,0 Sn,2 − S2

n,1

, i = 1, . . . , n,

where

Sn,j =
1

nhn

n∑
i=1

(
Xi−x
hn

)j
K
(
Xi−x
hn

)
, j = 0, 1, 2.

The verification of the conditions (W1)–(W”6) is completely analogous to NW weights

and the most difficult part is to verify (17). The only difference is that j in (17) may

now take values from zero to four. The nice thing about LL weights is that thanks to∑n
i=1wni(x, hn)(Xi − x) = 0 it is sufficient to assume only (F1).

In a fixed regular design case (see e.g. Müller (1987)), there exists an absolutely continuous

distribution function FX (with associated density fX) such that xi = F−1
X

(
i

n+1

)
. In this case

the design points are ordered, that is x1 ≤ x2 . . . ≤ xn. In this setting Gasser-Müller [GM]
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weights (see Gasser and Müller (1979)) are quite popular. Consider fixed, but arbitrary values

x0 and xn+1 such that x0 < x1 and xn+1 > xn. Then GM weights are defined as weights

(19) wni(x, hn) =
1
hn

∫ si+1

si

K( z−xhn ) dz, where si = (xi + xi−1)/2, i = 1, . . . , n.

To verify (W1)–(W”6) it is sufficient to assume (F1), and that f ′X/f
3
X is continuous in a

neighbourhood of x.

2.5. Regularity conditions for the conditional distribution. Assumptions about the

joint conditional distribution of (Y1, Y2) given X = z, its marginals and the corresponding

conditional copula.

(H) Ḣz(u1, u2) = ∂
∂zHz(F

−1
1x (u1), F

−1
2x (u2)), Ḧz(u1, u2) = ∂2

∂z2
Hz(F

−1
1x (u1), F

−1
2x (u2)) exist

and are continuous as functions of (z, u1, u2), where z takes value in a neighbourhood

of x;

(R1) Ċz(u1, u2) = ∂
∂zCz(u1, u2), C̈z(u1, u2) = ∂2

∂z2
Cz(u1, u2) exist and are continuous as

functions of (z, u1, u2), where z takes value in a neighbourhood of x;

(R2) For j = 1, 2, the j-th first-order partial derivative of Cz exists and is continuous on

the set U(x)× {(u1, u2) ∈ [0, 1]2 : 0 < uj < 1}, where U(x) is a neighbourhood of the

point x;

(R3) For j = 1, 2: Fjz(F
−1
jz (u)), Ḟjz(F

−1
jz (u)), F̈jz(F

−1
jz (u)) are continuous as functions of

(z, u) for z in a neighbourhood of x, where Ḟjz(y) =
∂
∂z Fjz(y), F̈jz(y) =

∂2

∂z2
Fjz(y);

(R4) For each ε > 0 there exists C > 0, η > 0 and a neighbourhood U(x) of the point x

such that

max
j=1,2

sup
z1,z2∈U(x)

sup
u1,u2∈[ε,1−ε]

∣∣∣F̈jz1(F−1
jz2

(u1))− F̈jz1(F
−1
jz2

(u2))
∣∣∣ ≤ C |u1 − u2|η.

Note that the exclusion of the boundary points in Assumption (R2) is important, since

this prevents commonly-used copulas (such as e.g. Clayton, Gumbel, normal and Student-t

copulas) from being excluded. This was pointed out in the context of the (smooth) empirical

copula process in Omelka et al. (2009), where it was shown that it is sufficient to assume the

continuity of the partial derivatives on [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}. Recently, Segers

(2012) further weakened this assumption to the continuity of the j-th first-order partial de-

rivative of the copula on the set {(u1, u2) ∈ [0, 1]2 : 0 < uj < 1}. This weakening of the

assumptions is in particular useful when considering copulas of more than two variables.

3. Applications

In the following we will be interested in a confidence interval for a quantity θ that can be

expressed as a functional of a conditional copula Cx, thus formally we can write θx = T (Cx).

Similarly put θxh = T (Cxh), θ̃xh = T (C̃xh), θxg = T (Cxg), . . . . Further denote θ
∗(1)
xh , . . . , θ

∗(B)
xh
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or θ̃
∗(1)
xh , . . . , θ̃

∗(B)
xh the realizations of the bootstrap algorithm either of Section 2.1 or Sec-

tion 2.2.

Basically, there are three type of confidence intervals we can construct.

as: Neglecting the possible bias we use the asymptotic representation given by (10) and

either (11) or (12) to estimate the variance of the estimator θ̂h by σ̂2 and form a

confidence interval based on a normal approximation as

(20) [θxh − z1−α/2 σ̂, θxh + z1−α/2 σ̂],

where zα is an α-quantile of the standard normal distribution. Note that from (10)

the asymptotic variance of the empirical copula process can be approximated by

nhn
∑n

i=1w
2
ni(x;hn)Var(ξi(u1, u2)), where the variance-covariance structure for the

latter quantities has been established in Veraverbeke et al. (2011) (see Corollary 1

therein).

ab: We estimate the variance from the bootstrap as

σ̂2b =
1

B − 1

B∑
b=1

(θ
∗(b)
xh − θ̄∗xh)

2, where θ̄∗xh =
1

B

B∑
b=1

θ
∗(b)
xh

and use the confidence interval given in (20). (as-boot or abbreviated ab)

bo: We use the bootstrap algorithm of Section 2.1 or 2.2 and construct the basic bootstrap

confidence interval. (boot or abbreviated bo)

Our preliminary simulation experience has shown that estimating the bias of C̃xh, i.e. the

bias coming only from the influence of a covariate on the underlying copula, is rather difficult

even in moderately large samples. In small sample settings it is usually much safer to neglect

a possible bias, which means to estimate the bias by zero. That is why we include also the

following ‘sample-size adaptive’ procedure.

hybrid: Note that b(h) = θ̄∗xh−θxg is the bootstrap estimation of the bias. Use the bandwidth

h2 = h/2 and calculate also b(h2) = θ̄∗xh2−θxg. Based on the asymptotic considerations

one would expect that

(21) 0 < b(h2) < b(h) or 0 > b(h2) > b(h).

But if (21) does not hold then asymptotic estimation of the bias has not probably

kicked in yet. Thus we also include a hybrid procedure, which uses method boot if

(21) holds and as-boot in the other case. (hybrid or abbreviated hy).

For practical implementation we have to specify several bandwidths. For the choice of hn we

used the plug-in bandwidth selection rule proposed in Gijbels et al. (2011). For determining

the bandwidths g1n and g2n used to ‘uniformize’ the marginal distributions we used ‘lokern’

which is a library available for the R computing environment (see R Development Core Team

(2009)) and which implements the ideas of bandwidth choice in nonparametric regression as
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Model mean functions parameter ρ

1 / 2 µ1(z) = 1 µ2(z) = 1 1 / 5

3 / 4 µ1(z) = 1 µ2(z) = sin(z − x0) 1 / 5

5 / 6 µ1(z) = sin(z − x0) µ2(z) = sin(z − x0) 1 / 5

7 / 8 µ1(z) = cos(z − x0) µ2(z) = sin(z − x0) 1 / 5

Table 1. Simulation models.

introduced in Gasser et al. (1991) and Brockmann et al. (1993). Once, the bandwidths hn,

g1n and g2n are specified, the ‘resampling’ bandwidths gbn, g1bn and g2bn are given by the

equations

(22) gbn = 1.5hn n
1/10, g1bn = 0.25 g1n (log n)

1.01, g2bn = 0.25 g2n (log n)
1.01.

While, the choice of gbn was inspired by Section 3 of Härdle and Bowman (1988), the band-

widths g1bn and g2bn were simply chosen to satisfy (8), but to stay ‘close’ to g1n and g2n.

Note that the methods as and as-boot are asymptotically valid only when the asymptotic

bias diminishes, that is generally when hn = o(n−1/5). Thus we will report the results not

only for the value hn given by the plug-in rule (say hp), but also for hn = 0.5hp.

3.1. Blomqvist’s beta. Let Y1 and Y2 be random variables with distribution functions F1

and F2 respectively. Blomqvist (1950) proposed and studied the following measure of concor-

dance

β = P
[(
Y1 − F−1

1 (0.5)
) (
Y2 − F−1

2 (0.5) > 0
)]

− P
[(
Y1 − F−1

1 (0.5)
) (
Y2 − F−1

2 (0.5) < 0
)]
,

which is often also called the medial correlation coefficient. Let C be the copula corresponding

to Y1 and Y2. Then β can be expressed simply as β = 4C(0.5, 0.5) − 1 (see pp.182–183 of

Nelsen (2006)). In the presence of a covariate we can consider Blomqvist’s beta conditionally

on X = x and define it as βx = 4Cx(0.5, 0.5)− 1. The considered estimators are thus

θ̂h = βxh = 4Cxh(0.5, 0.5)− 1 and θ̃h = β̃xh = 4 C̃xh(0.5, 0.5)− 1.

To illustrate our main findings we report results for the following setup: the covariate is

supposed to be standard normal and we are interested in the point X = x0 = 1. The copula

which joins the margins is a Frank copula with the parameter depending on the value of the

covariate X = z as θ(z) = 5 + ρ sin( (z−x0)π6 ). This results in Blomqvist’s beta equal to 0.51

for z = x0. The margins were taken normal with unit variances and mean functions µ1(z)

and µ2(z). The eight models considered are given in Table 1.

Models 1 and 2 represent situations where the covariate does not influence the marginal

distributions; in Models 3 and 4 only one of the marginals is affected; while in Models 5 and 6

both marginals are stochastically increasing with z; finally in Models 7 and 8 the marginals
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are affected in different directions. The two values of ρ represent the situations when there is

a mild (ρ = 1) or strong effect (ρ = 5) of the covariate on the dependence structure.

Further, the nominal level of the confidence interval is 0.9, the considered sample sizes

are n = 200, 500, 1000, the number of bootstrap samples is B = 999 and the number of

generated samples is 1 000. Finally, we use LL weights introduced in Section 2.4 together

with the triweight kernel K(x) = 35
32 (1− x2)3 I{|x| ≤ 1}.

The results on coverage and average lengths of the confidence intervals of the procedures

as, as-boot, boot and hybrid that use either of the estimators Cxh and C̃xh are to be found

in Tables 2 and 3. For the sake of brevity we omit the results for Models 5 and 6 as those are

close to the results of Models 7 and 8. The main findings may be summarized as follows:

• The result for Cxh and C̃xh are completely comparable for Models 1 and 2 in which

the marginal distributions are not influenced by the covariate.

• For Models 3 and 4 the confidence intervals based on Cxh do not work when the

plug-in bandwidth hp is used. The reason is that the bias of the estimator θxh is too

high. But if we use the ‘bias diminishing tactic’ (hp/2) we still get at least reasonable

coverage at the price of an increased length of the confidence interval.

• The asymptotic method (as) suffers from undercoverage for the sample size n = 200.

• In all considered situations as-boot together with the estimator C̃xh work very well.

There seems to be two reasons for that. First, the bootstrap slightly overestimates

the true variance, and hence leads to conservative coverage probabilities. Second, the

estimation of the bias of the estimator C̃xh is such a subtle problem that unless the

sample size is very large (n ≥ 1000), it is better to ignore the possible bias, that is to

estimate it as zero.

• The simulation results not presented here suggest that we should start to worry about

the bias of C̃xh for large sample sizes (say n ≥ 1000) and where there is a danger of

oversmoothing. Then we should switch either to boot or to the suggested hybrid

which seems to work reasonably in all situations we encountered so far.

To get an insight why for small sizes it is better to simply ignore the bias let us consider

the estimator βxh and Model 2. Note that in this model, the covariate influences only the

dependence structure. Figure 1 plots the difference βxh − βx together with the bootstrap

estimate of the bias, that is the Monte Carlo estimate of the quantity

(23) E∗ β∗xh − βxg,

for sample sizes 500 and 1 000. The dotted lines (vertical as well as horizontal) represent the

true finite sample bias of the estimator βxh. The dashed line represents the bootstrap estimate

of bias (23) averaged over 1 000 samples. We see that the ‘averaged’ bootstrap estimate of

bias is in a very close agreement with the true bias. But we also see that in particular for the
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Model 1 Model 2

n 200 500 1000 200 500 1000

bandwidth hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp

C

O

V

E

R

A

G

E

Cxh

bo 0.904 0.889 0.895 0.894 0.902 0.893 0.915 0.903 0.891 0.895 0.917 0.889

hy 0.925 0.920 0.917 0.930 0.926 0.918 0.922 0.923 0.923 0.926 0.929 0.898

ab 0.925 0.931 0.918 0.933 0.930 0.923 0.923 0.928 0.923 0.925 0.927 0.909

as 0.867 0.883 0.898 0.914 0.913 0.913 0.874 0.894 0.897 0.907 0.917 0.907

C̃xh

bo 0.881 0.890 0.897 0.884 0.904 0.897 0.899 0.885 0.892 0.885 0.910 0.893

hy 0.904 0.912 0.916 0.899 0.922 0.916 0.910 0.904 0.906 0.893 0.918 0.904

ab 0.911 0.925 0.919 0.907 0.927 0.924 0.916 0.917 0.912 0.896 0.919 0.896

as 0.843 0.876 0.893 0.885 0.907 0.915 0.870 0.878 0.899 0.885 0.910 0.900

L

E

N

G

T

H

Cxh

bo 0.556 0.420 0.296 0.232 0.192 0.156 0.556 0.420 0.296 0.236 0.196 0.156

hy 0.556 0.420 0.296 0.232 0.192 0.156 0.560 0.420 0.296 0.236 0.196 0.156

ab 0.556 0.420 0.296 0.232 0.192 0.156 0.560 0.420 0.296 0.236 0.196 0.156

as 0.468 0.360 0.268 0.216 0.184 0.148 0.476 0.376 0.276 0.228 0.188 0.156

C̃xh

bo 0.548 0.416 0.292 0.232 0.192 0.156 0.548 0.416 0.296 0.236 0.196 0.160

hy 0.548 0.412 0.292 0.232 0.192 0.156 0.548 0.416 0.296 0.236 0.196 0.156

ab 0.548 0.412 0.292 0.232 0.192 0.156 0.548 0.416 0.296 0.236 0.196 0.156

as 0.468 0.360 0.268 0.216 0.184 0.148 0.476 0.376 0.276 0.228 0.188 0.160

Model 3 Model 4

n 200 500 1000 200 500 1000

bandwidth hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp

C

O

V

E

R

A

G

E

Cxh

bo 0.904 0.885 0.900 0.808 0.885 0.703 0.907 0.872 0.899 0.808 0.878 0.697

hy 0.910 0.864 0.884 0.763 0.864 0.664 0.896 0.846 0.882 0.758 0.864 0.671

ab 0.912 0.864 0.886 0.758 0.863 0.609 0.898 0.846 0.880 0.710 0.860 0.558

as 0.831 0.806 0.862 0.731 0.839 0.587 0.836 0.799 0.850 0.690 0.851 0.550

C̃xh

bo 0.894 0.872 0.891 0.877 0.916 0.896 0.889 0.887 0.898 0.883 0.904 0.905

hy 0.907 0.903 0.902 0.891 0.929 0.913 0.915 0.909 0.908 0.892 0.916 0.902

ab 0.913 0.921 0.907 0.905 0.934 0.923 0.919 0.925 0.911 0.895 0.919 0.895

as 0.855 0.869 0.888 0.882 0.922 0.910 0.856 0.879 0.899 0.893 0.911 0.897

L

E

N

G

T

H

Cxh

bo 0.568 0.432 0.308 0.244 0.208 0.164 0.572 0.436 0.312 0.248 0.212 0.168

hy 0.572 0.432 0.308 0.244 0.208 0.164 0.572 0.436 0.312 0.248 0.212 0.168

ab 0.572 0.432 0.308 0.244 0.208 0.164 0.572 0.436 0.312 0.248 0.212 0.168

as 0.480 0.380 0.284 0.232 0.196 0.160 0.488 0.392 0.288 0.240 0.200 0.168

C̃xh

bo 0.548 0.416 0.296 0.232 0.196 0.156 0.552 0.420 0.296 0.236 0.196 0.160

hy 0.548 0.416 0.292 0.232 0.192 0.156 0.552 0.420 0.296 0.236 0.196 0.160

ab 0.548 0.416 0.292 0.232 0.192 0.156 0.552 0.420 0.296 0.236 0.196 0.160

as 0.468 0.360 0.268 0.216 0.184 0.148 0.476 0.376 0.276 0.228 0.188 0.160

Table 2. Coverage and average lengths of confidence intervals for the quan-

tity βx for Models 1, 2, 3 and 4. The nominal level is 0.90.
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Model 7 Model 8

n 200 500 1000 200 500 1000

bandwidth hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp hp/2 hp

C

O

V

E

R

A

G

E

Cxh

bo 0.901 0.847 0.893 0.787 0.889 0.603 0.904 0.857 0.887 0.755 0.888 0.595

hy 0.901 0.839 0.895 0.738 0.875 0.572 0.897 0.827 0.885 0.697 0.853 0.550

ab 0.905 0.846 0.894 0.748 0.879 0.577 0.898 0.834 0.885 0.698 0.855 0.527

as 0.843 0.777 0.857 0.673 0.844 0.503 0.843 0.775 0.859 0.646 0.830 0.480

C̃xh

bo 0.889 0.886 0.879 0.885 0.910 0.886 0.896 0.896 0.886 0.892 0.896 0.899

hy 0.916 0.911 0.910 0.906 0.913 0.898 0.909 0.910 0.900 0.902 0.909 0.901

ab 0.919 0.925 0.914 0.917 0.919 0.916 0.919 0.922 0.907 0.901 0.912 0.886

as 0.861 0.879 0.881 0.894 0.903 0.898 0.859 0.882 0.887 0.890 0.905 0.884

L

E

N

G

T

H

Cxh

bo 0.568 0.432 0.308 0.244 0.212 0.168 0.572 0.436 0.312 0.248 0.216 0.172

hy 0.568 0.432 0.308 0.244 0.208 0.168 0.572 0.436 0.312 0.248 0.216 0.172

ab 0.568 0.432 0.308 0.244 0.208 0.168 0.572 0.436 0.312 0.248 0.216 0.172

as 0.476 0.364 0.276 0.216 0.196 0.152 0.480 0.376 0.284 0.228 0.204 0.160

C̃xh

bo 0.548 0.416 0.296 0.232 0.192 0.156 0.552 0.420 0.296 0.236 0.196 0.156

hy 0.548 0.416 0.296 0.232 0.192 0.156 0.552 0.420 0.296 0.236 0.196 0.156

ab 0.548 0.416 0.296 0.232 0.192 0.156 0.552 0.420 0.296 0.236 0.196 0.156

as 0.468 0.360 0.268 0.216 0.184 0.148 0.476 0.380 0.276 0.228 0.188 0.160

Table 3. Coverage and average lengths of confidence intervals for the quan-

tity βx for Models 7 and 8. The nominal level is 0.90.

sample size 500 the variance of the bootstrap estimate of bias is still rather high in comparison

to the true bias. Further, the solid line given by the lowess smoother reveals that there seems

to be a negative correlation between the quantities βxh − βx and (23), which also negatively

affects the centering (and thus coverage properties) of the basic bootstrap confidence intervals

boot in not large samples. The same holds true also for the estimator β̃xh and bootstrap

algorithm (2.2). Dealing with bias is even more difficult here because of the transformation of

the marginals (3). Although according to the theoretical results of Veraverbeke et al. (2011)

this transformation makes for instance the estimators βxh of Model 2 and βxh of Models 2,

4, 6 and 8 asymptotically equivalent in terms of asymptotic bias and variance (provided the

same bandwidth hn is used), the effect of the transformation on finite sample properties is

not negligible unless the sample size is not very large.

3.2. Kendall’s tau. While Blomqvist’s beta is a simple functional of an underlying copula,

Kendall’s tau is a more complex one and its conditional version is given by

τx = 4

∫∫
Cx dCx − 1.
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Figure 1. Scatterplot of βxh − βx against the bootstrap estimator of the bias (23)

Gijbels et al. (2011) suggested the following estimator of τx

(24) τxh =
4

1−
∑n

i=1w
2
ni(x, hn)

n∑
i=1

n∑
j=1

wni(x, hn)wnj(x, hn) I{Y1i < Y1j , Y2i < Y2j} − 1.

Further, Veraverbeke et al. (2011) showed that replacing the original observations (Y1i, Y2i)

with the transformed ‘uniform’ alike observations (Ũ1i, Ũ2i) results in an estimator τ̃xh that

usually has better bias properties than the estimator τxh. Here we complement Gijbels et al.

(2011), who compared the estimators τxh and τ̃xh in terms of bias, variance and mean squared

error, with results on the coverage and length of the corresponding confidence intervals.

The simulation design is the same as in Section 3.1, and we use the bandwidth hp. As the

general findings are similar as for Blomqvist’s beta, in Table 4 we give only the results for

Models 2, 4, 6 and 8, in which the covariate has a strong influence on the conditional copula.

4. Appendix – Proof of Theorem 1

As the proof is rather technical, we will present it only for fixed design. This may be

justified in a similar way as in Veraverbeke et al. (2011). The technique of how to switch from

random design to fixed design by conditioning on the values of the covariate is also presented

in the proof of Lemma 5.

Similarly as in Veraverbeke et al. (2011) the expectations E∗ f(Y ∗
i1, Y

∗
i2, F

∗
1xh, F

∗
2xh) with

respect to bootstrap measure P∗ have to be understood in a way that the functions F ∗
1xh,

F ∗
2xh are fixed (nonrandom) and the expectation is computed only with respect to Y ∗

i1 and Y
∗
i2.
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Model 2 Model 4 Model 6 Model 8

bandwidth 200 500 1000 200 500 1000 200 500 1000 200 500 1000

C

O

V

E

R

A

G

E

Cxh

bo 0.905 0.914 0.911 0.881 0.802 0.666 0.820 0.700 0.549 0.859 0.837 0.734

hy 0.904 0.914 0.911 0.880 0.802 0.665 0.827 0.701 0.551 0.855 0.824 0.726

ab 0.919 0.917 0.893 0.848 0.715 0.554 0.864 0.782 0.648 0.857 0.801 0.723

as 0.906 0.902 0.876 0.830 0.695 0.513 0.866 0.763 0.642 0.839 0.786 0.697

C̃xh

bo 0.913 0.911 0.910 0.905 0.907 0.918 0.901 0.913 0.915 0.899 0.934 0.932

hy 0.911 0.911 0.909 0.901 0.907 0.918 0.898 0.912 0.914 0.896 0.934 0.932

ab 0.920 0.907 0.886 0.912 0.903 0.887 0.910 0.895 0.887 0.911 0.917 0.902

as 0.905 0.889 0.872 0.901 0.885 0.874 0.899 0.883 0.875 0.908 0.913 0.887

L

E

N

G

T

H

Cxh

bo 0.230 0.136 0.094 0.246 0.148 0.104 0.214 0.127 0.089 0.259 0.158 0.114

hy 0.230 0.136 0.094 0.246 0.148 0.104 0.214 0.127 0.089 0.259 0.158 0.114

ab 0.230 0.136 0.094 0.245 0.147 0.103 0.214 0.127 0.089 0.259 0.158 0.113

as 0.221 0.129 0.089 0.232 0.139 0.097 0.213 0.125 0.087 0.243 0.148 0.106

C̃xh

bo 0.232 0.137 0.095 0.233 0.137 0.095 0.232 0.138 0.095 0.233 0.137 0.095

hy 0.232 0.137 0.095 0.233 0.137 0.095 0.232 0.138 0.095 0.233 0.137 0.095

ab 0.232 0.137 0.095 0.232 0.137 0.095 0.232 0.137 0.095 0.233 0.137 0.095

as 0.224 0.131 0.090 0.227 0.132 0.090 0.230 0.133 0.091 0.229 0.132 0.091

Table 4. Coverage and average lengths of confidence intervals for conditional

Kendall’s tau for Models 2, 4, 6 and 8. The nominal level is 0.90.

Formally

E∗ f(Y ∗
i1, Y

∗
i2, F

∗
1xh, F

∗
2xh) =

∫∫
f(y1, y2, F

∗
1xh, F

∗
2xh) dHxigb(y1, y2),

whenever the integral on the right-hand side exists. A similar notation will be used for the

expectation E f(Yi1, Yi2, . . .) with respect to the original observed variables. Sometimes it will

be even convenient to use the following convention

E f(Yi1, Yi2, F1xgb , F2xgb , F
∗
1xh, F

∗
2xh) =

∫∫
f(y1, y2, F1xgb , F2xgb , F

∗
1xh, F

∗
2xh) dHxi(y1, y2).

The reason for this notation is to simplify the presentation of the proof. This notation as well

as the following decomposition apply the ideas of van der Vaart and Wellner (2007).

Similarly as in Veraverbeke et al. (2011) we can decompose

(A1)
√
nhn (C

∗
xh − Cxgb) = An +Bn + Cn,

where An = Dn − E∗Dn, with

(A2) Dn(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)
[
I{Y ∗

1i ≤ F ∗−1
1xh (u1), Y

∗
2i ≤ F ∗−1

2xh (u2)}

− I{Y ∗
1i ≤ F−1

1xgb
(u1), Y

∗
2i ≤ F−1

2xgb
(u2)}

]
.
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and

(A3)

Bn(u1, u2) =
√
nhn

[
n∑
i=1

wni(x;hn) I{Y ∗
1i ≤ F−1

1xgb
(u1), Y

∗
2i ≤ F−1

2xgb
(u2)} − Cxgb(u1, u2)

]
,

(A4) Cn(u1, u2) = E∗Dn(u1, u2)

=
√
nhn

n∑
i=1

wni(x;hn)
[
Hxigb

(
F ∗−1
1xh (u1), F

∗−1
2xh (u2)

)
−Hxigb

(
F−1
1xgb

(u1), F
−1
2xgb

(u2)
)]
.

The proof will be divided into two steps. In Step 1, we will show that the term An is asymp-

totically negligible uniformly in (u1, u2). In Step 2 we will find the asymptotic representation

of the process Cn. This asymptotic representation together with Bn will give us the repre-

sentation (13).

A1. Step 1 – Treatment of An. For (u1, u2) ∈ [0, 1]2 and G1, G2 nondecreasing functions

from R to [0, 1] define the stochastic processes

Zni(u1, u2, G1, G2) =
√
nhnwni(x, hn) I{Y ∗

1i ≤ G−1
1 (u1), Y

∗
2i ≤ G−1

2 (u2)}, i = 1, . . . , n,

and Zn =
∑n

i=1 Zni. Equivalently, we can view the process Zn as a process indexed by the

family of functions from R2 to R given by

(A5) F =
{
(w1, w2) 7→ I{w1 ≤ G−1

1 (u1), w2 ≤ G−1
2 (u2)};

(u1, u2) ∈ [0, 1]2, G1, G2 : R → [0, 1] nondecreasing
}
.

Thus each function f ∈ F may be formally identified by a quadruple (u1, u2, G1, G2). The

introduction of the process Zn is motivated by the fact that

(A6) Dn(u1, u2) = Zn(f
∗
n)− Zn(fn),

where f∗n = (u1, u2, F
∗
1xh, F

∗
2xh) and fn = (u1, u2, F1xgb , F2xgb).

Finally, let us equip the index set F with a semimetric ρ defined as

ρ2(f, f ′) =
∣∣∣F1x(G

−1
1 (u1))− F1x(G

′−1
1 (u′1))

∣∣∣+ ∣∣∣F2x(G
−1
2 (u2))− F2x(G

′−1
2 (u′2))

∣∣∣
and note that the semimetric space (F , ρ) is totally bounded.

Lemma 1. Under conditions (W1), (W2), (W6), and (H1) the process Z̄n = Zn − E∗ Zn

indexed by (F , ρ) is asymptotically uniformly ρ-equicontinuous in bootstrap probability P∗ [P]-

almost surely
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Proof. It is sufficient to verify that the following conditions of Theorem 2.11.1 of van der

Vaart and Wellner (1996) hold [P]-almost surely.

n∑
i=1

E∗ ‖Zni‖2F I{‖Zni‖F > η} → 0, for every η > 0,(A7)

sup
ρ(f,f ′)<δn

n∑
i=1

E∗ (Zni(f)− Zni(f
′)
)2 → 0, for every δn ↓ 0,(A8)

∫ δn

0

√
logN(ε,F , dn) dε

P ∗
→ 0, for every δn ↓ 0,(A9)

where ‖.‖F stands for the supremum over the set F and N(ε,F , dn) is the corresponding

covering number of the set F with a random semimetric dn given by

d2n(f, f
′) =

n∑
i=1

[
Zni(f)− Zni(f

′)
]2
.

The first condition (A7) is satisfied as (W1) immediately implies maxi=1,...,n ‖Zni‖F = o(1).

To verify (A8) use (W2) and estimate

sup
ρ(f,f ′)<δn

n∑
i=1

E∗(Zni(f)− Zni(f
′)
)2

≤ sup
ρ(f,f ′)<δn

2nhn

n∑
i=1

w2
ni(x, hn)

[∣∣∣F1igb(G
−1
1 (u1))− F1igb(G

′−1
1 (u′1))

∣∣∣(A10)

+
∣∣∣F2igb(G

−1
2 (u2))− F2igb(G

′−1
2 (u′2))

∣∣∣]
≤ O(1)(Rn1 +Rn2),

where (with the help of (W6) and (H))

Rn1 = sup
ρ(f,f ′)<δn

max
i∈I(n)x

[
|F1i(G

−1
1 (u1))− F1x(G

−1
1 (u1))|+ |F1x(G

−1
1 (u1))− F1x(G

′−1
1 (u′1))|

+ |F1x(G
′−1
1 (u′1))− F1i(G

′−1
1 (u′1))|+ |F2i(G

−1
2 (u2))− F2x(G

−1
2 (u2))|(A11)

+ |F2x(G
−1
2 (u2))− F2x(G

′−1
2 (u′2))|+ |F2x(G

′−1
2 (u′2))− F2i(G

′−1
2 (u′2))|

]
= o(1) + δ2n = o(1)

and

(A12) Rn2 = 2 max
i∈I(n)x

sup
y

|F1igb(y)− F1i(y)|+ 2 max
i∈I(n)x

sup
y

|F2igb(y)− F2i(y)|
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For j = 1, 2 we may bound

(A13) max
i∈I(n)x

sup
y

|Fjigb(y)− Fji(y)|

≤ max
i∈I(n)x

sup
y

|Fjigb(y)− EFjigb(y)|+ max
i∈I(n)x

sup
y

|EFjigb(y)− Fji(y)|.

By assumption (W2) and Remark 2 of Appendix C the first term on the right-hand side of

equation (A13) converges to zero [P]-almost surely. The second term is of order o(1) thanks to

assumptions (W6) and (R3). Combining (A10), (A11), (A12) and (A13) now proves (A8).

Finally, (A9) may be verified in an analogous way as was done in Veraverbeke et al. (2011).

�

Lemma 1 implies that for ∀ε, η > 0 ∃δ > 0 such that [P]-almost surely

(A14) lim sup
n→∞

P∗

[
sup

ρ(f,f ′)<δ
|Z̄n(f)− Z̄n(f

′)| > ε

]
< η.

Further by a triangular inequality, (W1) and (W7) for j = 1, 2∣∣∣Fjx (F ∗−1
jxh (uj)

)
− Fjx

(
F−1
jxgb

(uj)
)∣∣∣ ≤(A15) ∣∣∣Fjx (F ∗−1

jxh (uj)
)
− Fjxgb

(
F ∗−1
jxh (uj)

)∣∣∣+ ∣∣∣Fjxgb (F ∗−1
jxh (uj)

)
− F ∗

jxh

(
F ∗−1
jxh (uj)

)∣∣∣
+
∣∣∣F ∗
jxh

(
F ∗−1
jxh (uj)

)
− Fjxgb

(
F−1
jxgb

(uj)
)∣∣∣+ ∣∣∣Fjxgb (F−1

jxgb
(uj)

)
− Fjx

(
F−1
jxgb

(uj)
)∣∣∣

≤ 2 sup
y

|Fjxgb(y)− Fjx(y)|+ sup
y

∣∣F ∗
jxh(y)− Fjxgb(y)

∣∣+ o(1).

It has been already proved that supy |Fjxgb(y)− Fjx(y)| = oa.s.(1) and in a similar way it

can be proved supy

∣∣∣F ∗
jxh(y)− Fjxgb(y)

∣∣∣ = oP ∗(1) [P]-almost surely.

Thus for j = 1, 2 uniformly in (u1, u2):∣∣∣Fjx (F ∗−1
jxh (uj)

)
− Fjx

(
F−1
jxgb

(uj)
)∣∣∣ = oP ∗(1), [P]-almost surely,

which implies

sup
u1,u2

ρ2 ((u1, u2, F
∗
1xh, F

∗
2xh), (u1, u2, F1xgb , F2xgb))

= sup
u1

∣∣∣F1x

(
F ∗−1
1xh (u1)

)
− F1x

(
F−1
1xgb

(u1)
)∣∣∣+ sup

u2

∣∣∣F2x

(
F ∗−1
2xh (u2)

)
− F2x

(
F−1
2xgb

(u2)
)∣∣∣ ,(A16)

= oP ∗(1), [P]-almost surely.

Combining (A6), asymptotic ρ-equicontinuity (A14) and (A16) yields that

(A17) sup
u1,u2

|An(u1, u2)| = sup
u1,u2

|Dn(u1, u2)− E∗Dn(u1, u2)| = oP ∗(1), [P]-almost surely,

which finishes the first step of the proof.
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A2. Step 2 – Treatment of Cn. To simplify the notation for j = 1, 2 put y∗jh = F ∗−1
jxh (uj)

and yjg = F−1
jxgb

(uj). With the help of (W7) and Taylor expansion (uniformly in (u1, u2))

Cn(u1, u2)=
√
nhn

n∑
i=1

wni(x;hn) [Hxigb(y
∗
1h, y

∗
2h)−Hxigb(y1g, y2g)]

= Cn1(u1, u2) + Cn2(u1, u2) + Cn3(u1, u2),

where

Cn1(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn) [Hxgb(y
∗
1h, y

∗
2h)−Hxgb(y1g, y2g)] ,(A18)

Cn2(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)(xi − x)
[
Ḣxgb(y

∗
1h, y

∗
2h)− Ḣxgb(y1g, y2g)

]
,

Cn3(u1, u2) =
1

2

√
nhn

n∑
i=1

wni(x;hn)(xi − x)2
[
Ḧzhigb(y

∗
1h, y

∗
2h)− Ḧzgigb(y1g, y2g)

]
,(A19)

and zhi, zgi lie between xi and x.

Part 1. Processes Cn2 and Cn3. In the following we will show that the process Cn3 is asymp-

totically negligible (the process Cn2 can be handled in a similar way). To do so, we need to

examine F ∗−1
1xh and F ∗−1

2xh .

Combining (W2), (W3), (W6), (H1) and Remark 2 of Appendix C yields that uniformly

in y

E∗ F ∗
jxh(y) =

n∑
i=1

wni(x, hn)Fjxigb(y) =
n∑
i=1

wni(x, hn)EFjxigb(y) + oa.s.(1)

= Fjx(y) + oa.s.(1), j = 1, 2.(A20)

Thus with the help of (A20), Lemma 3 of Appendix C, (W2) and (W7) we get that for every

ε > 0 there exists a sufficiently large n such that

P ∗
[
sup
u

(
F ∗−1
jxh (u)− F−1

jx (u+ ε)
)
≥ 0

]
= P ∗

[
sup
u

(
u− F ∗

jxh(F
−1
jx (u+ ε))

)
≥ ε

2

]
≤ P ∗

[
sup
u

(
u− E∗ F ∗

jxh(F
−1
jx (u+ ε))

)
+

sup
u

(
E∗ F ∗

jxh(F
−1
jx (u+ ε))− F ∗

jxh(F
−1
jx (u+ ε))

)
≥ ε

2

]
≤ P ∗

[
sup
y

(
E∗ F ∗

jxh(y)− F ∗
jxh(y)

)
≥ ε

4

]
< ε. [P]-a.s.

Similarly we can prove that the same holds true for the inequality F ∗−1
jxh (u) < F−1

jx (u−ε). To
summarize our conclusions, we have proved that for any ε > 0 with bootstrap probability P∗
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going to one

(A21) F−1
jx (u− ε) ≤ F ∗−1

jxh (u) ≤ F−1
jx (u+ ε), u ∈ [0, 1], j = 1, 2, [P]-a.s.

Analogously we can use Lemma 3 of Appendix C to prove that with probability P going to

one

(A22) F−1
jx (u− ε) ≤ F−1

jxgb
(u) ≤ F−1

jx (u+ ε), u ∈ [0, 1], j = 1, 2.

As the probability by which (A22) does not hold is going to zero at an exponential rate, we

can use the Borel-Cantelli lemma to strengthen the result, such that (A22) holds [P]-a.s., as

n tends to infinity.

With the help of (W”2) and (W”5) we can apply Lemma 4 of Appendix C with di,n(z) =

w′′
ni(z, gbn) and I being a sufficiently small closed neighbourhood of the point x, which yields

that uniformly in (y1, y2) ∈ R2 and z ∈ I

(A23) Ḧzgb(y1, y2) = E Ḧzgb(y1, y2) + oa.s.(1) =

n∑
i=1

w′′
ni(z, gbn)Hxi(y1, y2) + oa.s.(1).

Using (W”1), (W”3), (W”4) and (H) we can further calculate (uniformly in (z, y1, y2))

(A24)

n∑
i=1

w′′
ni(z, gbn)Hxi(y1, y2)oa.s.(1). = Ḧz(y1, y2) + o(1).

Definition of Cn3 in (A19) together with (A23), (A24) yields

(A25) Cn3(u1, u2) =
1

2

√
nhn

n∑
i=1

wni(x;hn)(xi − x)2
[
Ḧzhi(y

∗
1h, y

∗
2h)− Ḧzgi(y1g, y2g)

]
+ oa.s.(1).

Combining (A21), (A22), (A25), (W5) and (H) finally gives

sup
u1,u2

|Cn3(u1, u2)| = oP ∗(1), [P]-a.s.

Part 2. Process Cn1. Now, one can concentrate on the process Cn1 given by (A18). First,

note that with the help of (W3)

Cn1(u1, u2) =
√
nhn [Hxgb(y

∗
1h, y

∗
2h)−Hxgb(y1g, y2g)] + o(1).

For j = 1, 2 and u ∈ [0, 1] put

Yjn(u) =
√
nhn

[
u− F ∗

jxh(F
−1
jxgb

(u))
]
.

To finish the proof of Theorem 1 it remains to show that the process

(A26) Zn(u1, u2) := Cn1(u1, u2)− C(1)
x (u1, u2)Y1n(u1)− C(2)

x (u1, u2)Y2n(u2),

defined on (u1, u2) ∈ [0, 1]2 is asymptotically negligible in probability P∗ [P]-almost surely.
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First note that

(A27) Yjn(u) =
√
nhn

[
u− E∗ F ∗

jxh(F
−1
jxgb

(u))
]

+
√
nhn

[
E∗ F ∗

jxh(F
−1
jxgb

(u))− F ∗
jxh(F

−1
jxgb

(u))
]
.

Analogously as in Lemma 1 we can argue that the second term on the right-hand side of (A27)

(viewed as a process in u) is uniformly asymptotic ρ-equicontinuous in probability P∗ [P]-

almost surely with ρ(u, u′) = |u − u′|. For the first term on the right-hand side of (A27) we

can use the similar reasoning as was used above for the treatment of the process Cn3 and

show that uniformly in u

(A28)
√
nhn

[
E∗ F ∗

jxh(F
−1
jxgb

(u))− u
]
=
√
nhn

n∑
i=1

wni(x, hn)(xi−x)2F̈jx(F−1
jx (u))+oa.s.(1).

Thus combining (A27) and (A28) implies

(A29) sup
u

|Yjn(u)| = OP ∗(1) [P] -a.s., j = 1, 2.

Moreover, thanks to (R3), (A28) and the asymptotic ρ-continuity of the second term on the

right-hand side of (A27), for each ε > 0 there exists δε > 0 such that for all sufficiently large n

(A30) P∗

(
max
j=1,2

sup
u∈[0,δε]∪[1−δε,1]

|Ynj(u)| > ε

)
≤ ε [P] -a.s.

In the following different representations of the processes Y1n(u) and Y2n(u) will be useful.

For this reason note that
√
nhn(C

∗
xh(u, 1) − Cxgb(u, 1)) = oa.s.(1) uniformly in u. Applying

the decomposition (A1) and the asymptotic negligibility of the process An we get

Cn(u, 1) = −Bn(u, 1) + oP ∗(1) =
√
nhn

[
u− F ∗

1xh(F
−1
1xgb

(u))
]
+ oP ∗(1),

= Y1n(u) + oP ∗(1), [P]-a.s.(A31)

On the other hand decomposition of Cn given in (A18) and the asymptotic negligibility of

the processes Cn2 and Cn3 yield

(A32) Cn(u, 1) = Cn1(u, 1)+oP ∗(1) =
√
nhn

[
F1xgb(F

∗−1
1xh (u))− u

]
+oP ∗(1)oP ∗(1), [P]-a.s.

Combining (A31) and (A32) gives

(A33) Y1n(u) =
√
nhn [F1xgb(F

∗−1
1xh (u))− u] + oP ∗(1). [P]-a.s.

and in a completely analogous way we get

(A34) Y2n(u) =
√
nhn [F2xgb(F

∗−1
2xh (u))− u] + oP ∗(1), [P]-a.s.

Focusing on the process Zn note that with the help of (7), Lemma 3 in Appendix C,

Condition (W2) and the Borel-Cantelli lemma

(A35)
√
nhnHxgb(y1, y2) =

√
nhn EHxgb(y1, y2) + oa.s.(1), uniformly in (y1, y2) ∈ R2,
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which together with (A33) and (A34) implies

Zn(u1, u2)=
√
nhn

[
EHxgb(y

∗
1h, y

∗
2h)− EHxgb(y1g, y2g)

−C(1)
x (u1, u2) E (F1xgb(y

∗
1h)− F1xgb(y1g))

−C(2)
x (u1, u2) E (F2xgb(y

∗
2h)− F2xgb(y2g))

]
+ oa.s.(1)

=
√
nhn

n∑
i=1

wni(x, gbn)
[
Cxi(F1xi(y

∗
1h), F2xi(y

∗
2h))− Cxi(F1xi(y1g), F2xi(y2g))

−C(1)
x (u1, u2) (F1xi(y

∗
1h)− F1xi(y1g))

−C(2)
x (u1, u2) (F2xi(y

∗
2h)− F2xi(y2g))

]
+ oa.s.(1)

=
√
nhn

n∑
i=1

wni(x, gbn)
[(
C(1)
xi (u1i, u2i)− C(1)

x (u1, u2)
)
(F1xi(y

∗
1h)− F1xi(y1g))(A36)

+
(
C(2)
xi (u1i, u2i)− C(2)

x (u1, u2)
)
(F2xi(y

∗
2h)− F2xi(y2g))

]
+ oa.s.(1),

= Zn1(u1, u2) + Zn2(u1, u2) + +oa.s.(1),(A37)

where (u1i, u2i) lies between F1xi(y
∗
1h) and F1xi(y1g).

Further (A29), (A33), (A34) and (A35) implies that for j = 1, 2

(A38) sup
uj

∣∣∣∣∣√nhn
n∑
i=1

wni(x, gbn)
(
Fjxi(y

∗
jh)− Fjxi(yjg)

)∣∣∣∣∣ = OP ∗(1), [P]-a.s.

Now, for given ε > 0 there exists δ > 0 such that (A30) holds, which together with (A33),

(A34) and (A35) yields that for sufficiently large n

(A39) P∗

(
sup

(u1,u2)∈([0,δε]∪[1−δε,1])×[0,1]
|Zn1(u1, u2)| > 2 ε

)
≤ 2 ε [P] -a.s.

Further combining (W7), (R2), (R3), (A36) and (A38) yields that

(A40) sup
(u1,u2)∈[δε,1−δε]×[0,1]

|Zn1(u1, u2)| = oP∗(1) [P]-almost surely.

Analogously one can treat the process Zn2. Finally (A37), (A39) and (A40) imply that

sup
(u1,u2)∈[0,1]2

|Zn(u1, u2)| = oP∗(1) [P]-almost surely,

which completes the proof.

5. Appendix – Proof of Theorem 2

The proof of Theorem 2 goes along the lines of the proof of Theorem 1 with (Y ∗
1i, Y

∗
2i)

being replaced with (Ũ∗
1i, Ũ

∗
2i), (Y1i, Y2i) with (Ũ1i, Ũ2i), (F̃ ∗

1xih
, F̃ ∗

2xih
) with (G̃∗

1xih
, G̃∗

2xih
),

(F1zgb , F2zgb ,Hzgb), with (G̃1zgb , G̃2zgb , G̃zgb), . . .
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First, let us decompose

(B1)
√
nhn

(
C̃∗
xh − C̃xgb

)
= Ãn + B̃n + C̃n,

where Ãn = D̃n − E∗ D̃n, with

(B2) D̃n(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)
[
I{Ũ∗

1i ≤ G̃∗−1
1xh (u1), U

∗
2i ≤ G̃∗−1

2xh (u2)}

− I{Ũ∗
1i ≤ G̃−1

1xgb
(u1), Ũ

∗
2i ≤ G̃−1

2xgb
(u2)}

]
.

and

B̃n(u1, u2) =
√
nhn

[
n∑
i=1

wni(x;hn) I{Ũ∗
1i ≤ G̃−1

1xgb
(u1), Ũ

∗
2i ≤ G̃−1

2xgb
(u2)} − C̃xgb(u1, u2)

]

(B3) C̃n(u1, u2) = E∗ D̃n(u1, u2)

=
√
nhn

n∑
i=1

wni(x;hn)
[
G̃xigb

(
G̃∗−1

1xh (u1), G̃
∗−1
2xh (u2)

)
− G̃xigb

(
G̃−1

1xgb
(u1), G̃

−1
2xgb

(u2)
)]
.

As in the following we will make often use of Lemma 6, we need to investigate how close a

pseudo-observation Ũ bji is to an unobserved Uji. For j = 1, 2 put

(B4) E(n)
jg (z, u) = Fjzgjb(F

−1
jz (u))− u, u ∈ [0, 1],

and note that E(n)
jg (xi, Uji) = Ũ bji − Uji.

By Taylor expansion of E E(n)
jg (z, u), and assumptions (W3), (W4), (W5) and (R3) there

exist a neighbourhood Ux of x and a constant C such that for all sufficiently large n

(B5) sup
u∈[0,1]

sup
z∈Ux

∣∣∣E E(n)
jg (z, u)

∣∣∣ ≤ C g2jbn

Thanks to the exponential inequality given by Lemma 3 of Appendix C and assump-

tion (W2) there exist constants C1, C2, C3 such for each δ > 0

(B6) P

(
max
i∈I(n)x

sup
u∈[0,1]

∣∣∣E(n)
jg (xi, u)− E E(n)

jg (xi, u)
∣∣∣ > log1/2+δ n√

n gjbn

)
≤
∑
i∈I(n)x

C1 exp
{
− C2 log1+δ n
n gjbn

∑n
k=1 w

2
nk(xi,gjbn)

}
≤ nC2 exp

{
−C3 log

1+δ n
}
= O(n−2).

The Borel-Cantelli lemma together with (B6) now implies that

(B7) max
i∈I(n)x

sup
u∈[0,1]

∣∣∣E(n)
jg (xi, u)− E E(n)

jg (xi, u)
∣∣∣ = Oa.s.

(
log1/2+δ n√

n gjbn

)
.
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Thus if one takes a sufficiently small δ in (B7), the assumption (8) together with (B5) and

(B7) implies that

(B8) max
i∈I(n)x

|Ũ bji − Uji| ≤ Oa.s.
(
g2jbn

)
, j = 1, 2.

B1. Step 1 – Treatment of Ãn. The proof is analogous to Step 1 of Appendix A. Note

that as the marginal distribution functions (G1xi , G2xi), corresponding to (F1xi , F2xi) in the

proof Theorem 1, are uniform, the semimetric ρ is given directly by

ρ2(f, f ′) =
∣∣∣G−1

1 (u1)−G
′−1
1 (u′1)

∣∣∣+ ∣∣∣G−1
2 (u2)−G

′−1
2 (u′2)

∣∣∣ .
The only difference in the proof of Lemma 1 is in (A12). The term Rn2 is now given by

Rn2 = 2 max
i∈I(n)x

sup
u

|G̃1igb(u)− u|+ 2 max
i∈I(n)x

sup
u

|G̃2igb(u)− u|

which converges almost surely to zero by (W2), (B8) and Lemma 6.

Thus, to finish Step 1 of the proof of Theorem 2 it is sufficient to show that for j = 1, 2

sup
u

∣∣∣G̃∗−1
jxh (u)− G̃−1

jxgb
(u)
∣∣∣ = oP ∗(1) [P]-a.s.

In the same way as in (A15) we can bound

(B9)
∣∣∣G̃∗−1

jxh (u)− G̃−1
jxgb

(u)
∣∣∣ ≤ 2 sup

u

∣∣∣G̃jxgb(u)− u
∣∣∣+ sup

u

∣∣∣G̃∗
jxh(u)− G̃jxgb(u)

∣∣∣+ o(1)

We have already argued that with the help of Lemma 6: supu

∣∣∣G̃jxgb(u)− u
∣∣∣ = oa.s.(1).

Further, the second term on the right-hand side of (B9) can be bounded as

(B10) sup
u

∣∣∣G̃∗
jxh(u)− G̃jxgb(u)

∣∣∣ ≤ sup
u

∣∣∣G̃∗
jxh(u)− E∗ G̃∗

jxh(u)
∣∣∣+sup

u

∣∣∣E∗ G̃∗
jxh(u)− G̃jxgb(u)

∣∣∣ .
The first term on the right hand side of (B10) can be handled by Lemma 3 and assump-

tion (W2). For the second term one can use assumption (W3) and Lemma 6 and show

that

sup
u

∣∣∣E∗ G̃∗
jxh(u)− G̃jxgb(u)

∣∣∣ = sup
u

∣∣∣∣∣
n∑
i=1

wni(x, hn) G̃jxigb(u)− G̃jxgb(u)

∣∣∣∣∣(B11)

= sup
u

∣∣∣∣∣
n∑
i=1

wni(x, hn)u− u+ oa.s.(1)

∣∣∣∣∣ = oa.s(1).

B2. Step 2 – Treatment of C̃n. To simplify the notation let us for j = 1, 2 denote

u∗jh = G̃∗−1
jxh (uj) and ujg = G̃−1

jxgb
(uj). With the help of Taylor expansion

C̃n(u1, u2)=
√
nhn

n∑
i=1

wni(x;hn)
[
G̃xigb(u

∗
1h, u

∗
2h)− G̃xigb(u1g, u2g)

]
= C̃n1(u1, u2) + C̃n2(u1, u2) + C̃n3(u1, u2),
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where

C̃n1(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)
[
G̃xgb(u

∗
1h, u

∗
2h)− G̃xgb(u1g, u2g)

]
,(B12)

C̃n2(u1, u2) =
√
nhn

n∑
i=1

wni(x;hn)(xi − x)
[
˙̃Gxgb(u

∗
1h, u

∗
2h)−

˙̃Gxgb(u1g, u2g)
]
,

C̃n3(u1, u2) =
1

2

√
nhn

n∑
i=1

wni(x;hn)(xi − x)2
[
¨̃Gzhigb(u

∗
1h, u

∗
2h)−

¨̃Gzgigb(u1g, u2g)
]
,(B13)

and zhi, zgi lie between xi and x.

Part 1. Processes C̃n2 and C̃n3. To treat the process C̃n3 (the process C̃n2 may be treated

analogously) we will first show that for j = 1, 2 uniformly in u

(B14) G̃∗−1
jxh (u) = u+ oP ∗(1) [P]-a.s.; (B15) G̃−1

jxgb
(u) = u+ oa.s.(1).

To prove equation (B14) let ε > 0 be given. Similarly as in (B11) we can show that

E∗ G̃jxh(u) = u+ oa.s.(1) uniformly in u. Thus for all sufficiently large n with the help of the

inequality (C1), (W1) and (W2)

(B16) P ∗
[
sup
u

(
G̃∗−1
jxh (u)− u

)
> ε

]
≤ P ∗

[
sup
u

(
u− G̃∗

jxh(u)
)
> ε

2

]
≤ P ∗

[
sup
u

(
E∗ G̃∗

jxh(u)− G̃∗
jxh(u)

)
> ε

4

]
→ 0.

In a similar way one can show that P ∗
[
infu

(
G̃∗−1
jxh (u)− u

)
< −ε

]
→ 0, which completes the

proof of (B14).

The proof of (B15) follows from the inequality

sup
u

∣∣∣G̃−1
jxgb

(u)− u
∣∣∣ ≤ sup

u

∣∣∣G̃jxgb(u)− u
∣∣∣+ o(1)

and Lemma 6.

Further, with the help of (W”2), (W”5), (W”6) and (B8) we can apply Lemma 6 with

di,n(z) = w′′
ni(z, gbn) and I being a sufficiently small closed neighbourhood of the point x,

which yields that uniformly in (u1, u2) ∈ [0, 1]2 and z ∈ I

(B17) ¨̃Gzgb(u1, u2) =
n∑
i=1

w′′
ni(z, gbn)Cxi(u1, u2) + oa.s.(1).

Using (W”1), (W”3), (W”4) and (R1) we can further calculate (uniformly in (z, u1, u2))

(B18)
n∑
i=1

w′′
ni(z, gbn)Cxi(y1, y2) = C̈z(y1, y2) + o(1).
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Definition of Cn3 in (A19) together with (B17), (B18) yield

(B19)

C̃n3(u1, u2) =
1

2

√
nhn

n∑
i=1

wni(x;hn)(xi − x)2
[
C̈zhi(u

∗
1h, u

∗
2h)− C̈zgi(u1g, u2g)

]
+ oa.s.(1).

Combining (B14), (B15), (B19) with assumptions (W5) and (R1) finally gives

sup
u1,u2

|Cn3(u1, u2)| = oP ∗(1) [P]-almost surely.

Part 2. Process C̃n1. First, note that with the help of (B12), (W1) and (W3)

C̃n1(u1, u2) =
√
nhn

[
G̃xgb(u

∗
1h, u

∗
2h)− G̃xgb(u1g, u2g)

]
+ o(1)

=
√
nhn

n∑
i=1

wni(x, gbn)
[
I{Ũ b1i ≤ u∗1h, Ũ

b
2i ≤ u∗2h}

−I{Ũ b1i ≤ u1g, Ũ
b
2i ≤ u2g}

]
+ o(1).

For j = 1, 2 and u ∈ [0, 1] put

Yjn(u) =
√
nhn

[
u− G̃∗

jxh(G̃
−1
jxgb

(u))
]
.

To finish the proof of Theorem 2 we need to show that the process

(B20) Zn(u1, u2) := C̃n1(u1, u2)− C(1)
x (u1, u2)Y1n(u1)− C(2)

x (u1, u2)Y2n(u2),

where (u1, u2) ∈ [0, 1]2, is asymptotically negligible in probability P ∗ [P]-almost surely.

Analogously as in Part 2 of the second step of the proof of Theorem 1 we can argue that

(A29) and (A30) hold.

Further, putting either u1 or u2 to 1 in (B1) and the asymptotic negligibility of the pro-

cesses Ãn, C̃n1 and C̃n2 imply

(B21) Yjn(u) =
√
nhn [G̃jxgb(G̃

∗−1
jxh (u))− u] + oP ∗(1), [P]-a.s.

Dealing with C̃n1 is tricky as the transformed ‘uniform’ alike observations (Ũ1i, Ũ2i) are

involved. The following lemma will be useful.

Lemma 2. For j = 1, . . . , n and i = 1, . . . , n put R
(n)
ji (u) = E E(n)

jg (xi, u) and define

Vn(u1, u2) =
√
nhn

n∑
i=1

wni(x, gbn)
[
I{Ũ1i ≤ u1, Ũ2i ≤ u2}

− I{U1i +R
(n)
1i (U1i) ≤ u1, U2i +R

(n)
2i (U2i) ≤ u2}

]
.

Then

(B22) sup
u1,u2

|Vn(u1, u2)| = oa.s.(1).
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Proof. First, note that for j = 1, 2 and i = 1, . . . , n

(B23) Ũji = Uji + Ũji − Uji = Uji + E(n)
jg (xi, Uji)−R

(n)
ji (Uji) +R

(n)
ji (Uji).

By (B7) one knows that for each δ > 0

max
j

max
1≤i≤n

sup
u

∣∣∣E(n)
jg (xi, u)−R

(n)
ji (u)

∣∣∣ = Oa.s.(an), where an =
log1/2+δ n√

n min{g1bn, g2bn}
,

which together with (B23) imply that with n→ ∞ [P]-almost surely

max
j

max
1≤i≤n

∣∣∣Ũji − Uji −R
(n)
ji (Uji)

∣∣∣ ≤ an.

Thus for sufficiently large n with the help of (W7) one can bound

|Vn(u1, u2)| ≤ V1n(u1) + V2n(u2) + o(1)

where

Vjn(uj) =
√
nhn

n∑
i=1

wni(x, gbn)
[
I{Uji +R

(n)
ji (Uji) ≤ uj + an}

− I{Uji +R
(n)
ji (Uji) ≤ uj − an}

]
.

Assumption (W2) and Lemma 4 yield

Vjn(uj) =
√
nhn

n∑
i=1

wni(x, gbn)
[
P
(
Uji +R

(n)
ji (Uji) ≤ uj + an

)
−P

(
Uji +R

(n)
ji (Uji) ≤ uj − an

)]
+ oa.s.(1),

which can be further with the help of (8), (R4) and (B5) bounded as

Vjn(uj) ≤
√
nhn

n∑
i=1

wni(x, gbn)
[
P
(
Uji ≤ uj + an − inf

w∈I(n)uj

R
(n)
ji (w)

)
− P

(
Uji ≤ uj − an − sup

w∈I(n)uj

R
(n)
ji (w)

)]
+ oa.s.(1),

≤ 2
√
nhn

(
an + C1+η g2+2 η

jbn + C aηn g
2
jbn

)
+ oa.s.(1) = oa.s.(1),

where I
(n)
uj =

[
uj − an − C g2jbn, uj + an + C g2jbn

]
. �

Let us denote G
(n)
ji the distribution function of the random variable Uji +R

(n)
ji (Uji). Note

that by (R3)

(B24) max
j=1,2

max
i∈I(n)x

sup
u

∣∣∣G(n)
ji (u)− u

∣∣∣ ≤ o(1).
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With the help of (A29), (B21), Lemma 2 and Lemma 4 we get that uniformly in uj [P]-almost

surely

OP ∗(1) = Ynj(uj) =
√
nhn

[
G̃jxgb(u

∗
jh)− G̃jxgb(ujg)

]
+ oP ∗(1)(B25)

=
√
nhn

n∑
i=1

wni(x, gbn)
[
I{Uji +R

(n)
ji (Uji) ≤ u∗jh}

− I{Uji +R
(n)
ji (Uji) ≤ ujg}

]
+ oP ∗(1)

=
√
nhn

n∑
i=1

wni(x, gbn)
[
G

(n)
ji

(
u∗jh
)
−G

(n)
ji (ujg)

]
+ oP ∗(1).

Similarly with the help of Lemma 2 and Lemma 4 we get

C̃n1(u1, u2) =
√
nhn

n∑
i=1

wni(x, gb)
[
P
(
U1i +R

(n)
1i (U1i) ≤ u∗1h, U2i +R

(n)
2i (Uji) ≤ u∗2h

)
− P

(
U1i +R

(n)
1i (U1i) ≤ u1g, U2i +R

(n)
2i (Uji) ≤ u2g

)]
+ oa.s.(1).

=
√
nhn

n∑
i=1

wni(x, gb)
[
Cxi

(
G

(n)
1i (u

∗
1h), G

(n)
2i (u

∗
2h)
)

(B26)

−Cxi

(
G

(n)
1i (u1g), G

(n)
2i (u2g)

)]
+ oa.s.(1).

Now with the help of (B14), (B15), (B20), (B24), and (B26) one can derive that uniformly

in (u1, u2)

Zn(u1, u2)=
√
nhn

n∑
i=1

wni(x, gbn)
[(
C(1)
xi (u1i, u2i)− C(1)

x (u1, u2)
)(

G
(n)
1i (u

∗
1h)−G

(n)
1i (u1g)

)
+
(
C(2)
xi (u1i, u2i)− C(2)

x (u1, u2)
)(

G
(n)
2i (u

∗
2h)−G

(n)
2i (u2g)

)]
+ oa.s.(1),(B27)

where uji lies between G
(n)
ji (u∗jh) and G

(n)
ji (ujg).

Now, with the help of (W7), (R2) and (B25) one can use an analogous reasoning as at the

end of the proof of Theorem 1 to show the asymptotic negligibility of the process Zn which

finishes the proof.

6. Appendix C – Auxiliary lemmas

The following technical lemmas are formulated for general p, but in this paper we will make

use of them only for p = 1, 2. For brevity in the following we will refer to the book of van der

Vaart and Wellner (1996) as VW (1996).

Lemma 3. Let {di,n, i = 1, . . . , n}∞n=1 be a triangular array of constants and {Yi}∞i=1 a

sequence of p-dimensional independent random vectors with distribution functions {Hi}∞i=1.
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Then there exist finite positive constants C1, C2 (which do not depend on the array {di,n})
such that for all n ∈ N and for all ε > 0

(C1) P

(
sup
y∈Rp

∣∣∣∣∣
n∑
i=1

di,n [I{Y ≤ y} −Hi(y)]

∣∣∣∣∣ > ε

)
≤ C1 exp

{
−C2 ε2

|dn|22

}
,

where |dn|22 =
∑n

i=1 d
2
i,n.

Proof. Let us introduce a family of functions from Rp → R

F = {(z1, . . . , zp) → I{z1 ≤ y1, . . . , zp ≤ yp}, (y1, . . . , yp) ∈ Rp}

For fy = I{· ≤ y1, . . . , · ≤ yp} ∈ F define a process

Xn(fy) =

n∑
i=1

di,n I{Y1i ≤ y1, . . . , Ypi ≤ yp}.

Thus we need to prove the exponential inequality (C1) for supf∈F |Xn(f) − EXn(f)|. To

prevent measurable difficulties notice that

sup
f∈F

|Xn(f)− EXn(f)| = sup
f∈G

|Xn(f)− EXn(f)|,

where

G = {(z1, . . . , zp) → I{z1 ≤ y1, . . . , zp ≤ yp}, (y1, . . . , yp) ∈ Qp}

Thus the switch between F and G can be made whenever necessary to assure measurability

(for details see VW (1996) p. 110).

Further put ψ2(x) = exp{x2} − 1 and define the corresponding Orlicz norm

‖X‖ψ2 = inf
{
C : Eψ2

(
|X|
C

)
≤ 1
}
.

Applying the symmetrization inequality (see Lemma 2.3.1 of VW (1996)) yields

E

∥∥∥∥∥supf∈F
|Xn(f)− EXn(f)|

∥∥∥∥∥
ψ2

= 2E

∥∥∥∥∥supf∈F
|Xs

n(f)|

∥∥∥∥∥
ψ2

,

where Xs
n(f) =

∑n
i=1 σi di,n I{Y1i ≤ y1, Y2i ≤ y2} and σ1, . . . , σn be Rademacher variables,

that is they are independent with P (σi = ±1) = 1
2 .

Further for fy, fz ∈ F define a semimetric

ρ(fy, fz)
2 =

n∑
i=1

d2i,n[fy(Y1i, Y2i)− fz(Y1i, Y2i)]
2.

By Hoeffding inequality

P (|Xs
n(fy)−Xs

n(fz)| > ε) ≤ 2 exp
{
− ε2

2 ρ(fy,fz)2

}
.
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Corollary 2.2.5 of VW (1996) together with the relation of packing and covering numbers

imply the existence of a finite constant K such that

(C2) E

∥∥∥∥∥supf∈F
|Xs

n(f)|

∥∥∥∥∥
ψ2

≤ K

∫ |dn|2

0

√
logN( ε2 , ρ) dε,

where N(ε, ρ) is a covering number of F equipped with a semimetric ρ. Define a measure Q

on R2 by

Q =

n∑
i=1

d2i,n
|dn|22

δ(Y1i,...,Ypi), where δ is a Dirac measure.

Then

ρ(fy, fz)
2 = |dn|22 EQ(fy − fz)

2 = |dn|22 ‖fy − fz‖2L2(Q),

which implies N(ε, ρ) = N
(

ε
|dn|2 ,F , L2(Q)

)
.

As F is a VC-class of functions with envelope F = 1, then by Theorem 2.6.7 of VW (1996)

there exist finite constants C0, C1 (independent of the measure Q) such that

N(ε,F , L2(Q)) ≤ C0

(
1
ε

)C1 , 0 < ε < 1.

Thus for ε < |dn|2 we get

(C3) N( ε2 , ρ) = N
(

ε
2 |dn|2 ,F , L2(Q)

)
≤ C0

(
|dn|2
2 ε

)C1

.

Combining (C2) with (C3) yields

E

∥∥∥∥∥supf∈F
|Xs

n(f)|

∥∥∥∥∥
ψ2

≤ K

∫ |dn|2

0

√
log

(
C0

(
|dn|2
2 ε

)C1
)
dε

= K|dn|2
∫ 1

0

√
log
(
C0

(
1
2 ε

)C1
)
dε = O(|dn|2),

which together with the tail inequality P (|X| > x) ≤ 1
ψ2(x/‖X‖ψ2 )

finishes the proof of the

lemma. �

Lemma 4. Let {di,n(x), i = 1, . . . , n}∞n=1 be a triangular array of functions on a finite inter-

val I and {Yi}∞i=1 be a sequence of p-dimensional independent random vectors with distribu-

tion functions {Hi}∞i=1. Suppose there exist finite positive constants C0, L, α such that for all

x, x′ ∈ I and all n ∈ N

(C4)

n∑
i=1

|di,n(x)− di,n(x
′)| ≤ C0 n

L|x− x′|α.

Further suppose that there exists a finite positive C3 > 0 and δ > 0 such that for all n ∈ N

(C5) sup
x∈I

n∑
i=1

d2i,n(x) ≤ C3

nδ
.
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Then as n→ ∞

(C6) sup
x∈I

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣ = oa.s(1).

Proof. Without loss of generality we may suppose the interval I to be a unit interval [0, 1].

Further for each n define a grid of points Xn = {0 = x0,n < x1,n < .... < xmn,n = 1} such

that

max
i

|xi,n − xi−1,n| ≤ 1
[C0nL+1]1/α

and min
i

|xi,n − xi−1,n| ≥ 1
2 [C0nL+1]1/α

,

where the constants C0, L are taken from assumption (C4).

Let us denote πn the projection from I to Xn which maps x ∈ I to its closest left neighbour

in Xn. Then

(C7) sup
x∈I

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣
≤ sup

x∈Xn

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣+ 2

n
.

Put dn(x) =
∑n

i=1 d
2
i,n(x). Now with the help of Lemma 3 and assumption (C5)

(C8) P

(
sup
x∈Xn

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣ > ε

)

≤ C1

mn∑
i=1

exp
{
− C2 ε2

|dn(xi,n)|22

}
≤ 2C1 [C0 n

L+1]1/α exp
{
−C2 ε2nδ

C3

}
,

which together with Borel-Cantelli lemma implies the almost sure convergence of the first

term on left-hand side of (C7) and finishes the proof of the lemma. �

Remark 2. Let {I(n)} be a sequence of finite subsets of the interval I in Lemma 4. Then from

the proof of Lemma 4 we can deduce that

(C9) max
x∈I(n)

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣ = oa.s(1).

provided that the condition (C4) is replaced with µ(I(n)) ≤ C0 n
L, where µ is a counting

measure.

In random design, the following lemma is useful.

Lemma 5. Let {di,n(x), i = 1, . . . , n}∞n=1 be a triangular array of random functions on a finite

interval I. Then Lemma 4 (as well as Remark 2) still holds provided that the assumption (C5)
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is reformulated in the following way: There exist finite positive constants C3, C4 and δ > 0

such that for all n ∈ N

(C10) sup
x∈I

P

(
n∑
i=1

d2i,n(x) ≥ C3

nδ

)
≤ C4 exp

{
− nδ

C2

}
.

Proof. Let us denote the event An(x) =
[∑n

i=1 d
2
i,n(x) ≤

C3

nδ

]
.

Conditioning on the values of di,n(x), the proof goes along the lines of proof of Lemma 4.

The difference is in (C8). Now, with the help of assumption (C10) we can estimate

P

(
sup
x∈Xn

sup
y1,...,yp

∣∣∣∣∣
n∑
i=1

di,n(x) [I{Y1i ≤ y1, . . . , Ypi ≤ yp} −Hi(y1, . . . , yp)]

∣∣∣∣∣ > ε

)

≤
mn∑
i=1

E
[
C1 exp

{
− C2 ε2

|dn(xi,n)|22

}
∧ 1
]

≤
mn∑
i=1

[
EC1 exp

{
− C2 ε2

|dn(xi,n)|22

}
IAn(x) + P (Acn(x))

]
≤ 2nL+1

[
C0C1 exp

{
−C2 ε2nδ

C3

}
+ C4 exp

{
− nδ

C3

}]
and the proof is finished by applying the Borel-Cantelli lemma. �

The following lemma is useful for proving the bootstrap of the estimator C̃xh. Let {Ui}∞i=1

be a sequence of p-dimensional independent random vectors with cumulative distribution

functions {Ci}∞i=1, whose marginals are uniform. Further consider a triangular array of

p-dimensional random vectors {Ũ(n)
i = (Ũ

(n)
1i , . . . , Ũ

(n)
pi )T, i = 1, . . . , n}∞n=1.

Lemma 6. Suppose there exists a sequence of positive constants going to zero an such that

(C11) max
j=1,...,p

max
i=1,...,n

|Ũ (n)
ji − Uji| ≤ Oa.s.(an).

Then Lemma 4 (Remark (2), Lemma 5) holds true if {Yi} is replaced with the triangular

array {Ũ(n)
i } and {Hi} with {Ci}, provided

an sup
x∈I

n∑
i=1

|di,n(x)| = o(1)

(
an sup

x∈I

n∑
i=1

|di,n(x)| = oa.s.(1)

)
.

Proof. With the assumptions of the lemma and the help of Lemma 4 for nonrandom {di,n(x)}
or Lemma 5 for random {di,n(x)} we get

sup
x∈I

sup
u1,...,up

∣∣∣∣∣
n∑
i=1

di,n(x)
[
I{Ũ1i ≤ u1, . . . , Ũpi ≤ up} − Ci(u1, . . . , up)

]∣∣∣∣∣
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≤ sup
x∈I

sup
u1,...,up

∣∣∣∣∣
n∑
i=1

di,n(x)
[
I{Ũ1i ≤ u1, . . . , Ũpi ≤ up} − I{U1i ≤ u1, . . . , Upi ≤ up}

]∣∣∣∣∣
+ sup

x∈I
sup

u1,...,up

∣∣∣∣∣
n∑
i=1

di,n(x) [I{U1i ≤ u1, . . . , Upi ≤ up} − Ci(u1, . . . , up)]

∣∣∣∣∣
≤ sup

x∈I
sup

u1,...,up

∣∣∣∣∣
n∑
i=1

|di,n(x)| [I{U1i ≤ u1 + an, . . . , Upi ≤ up + an}

− I{U1i ≤ u1 − an, . . . , Upi ≤ up − an}]
∣∣∣+ oa.s(1)

≤ sup
x∈I

sup
u1,...,up

∣∣∣∣∣
n∑
i=1

|di,n(x)| [Ci(u1 + an, . . . , up + an)− Ci(u1 − an, . . . , up − an)]

∣∣∣∣∣+ oa.s.(1)

≤ 2 p an sup
x∈I

n∑
i=1

|di,n(x)|+ oa.s.(1) = oa.s.(1).

�
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