
CONDITIONAL COPULAS, ASSOCIATION MEASURES AND THEIR

APPLICATIONS
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Sokolovská 83, 186 75 Praha 8, Czech Republic.

July 7, 2009

Abstract. Of major interest in statistics is the study of dependencies between variables.

One way to model a dependence structure is through the copula function which is a mean to

capture the dependence structure in the joint distribution of the variables. Association mea-

sures such as Kendall’s tau or Spearman’s rho can be expressed as functionals of the copula.

The dependence structure between two variables can be highly influenced by a covariate,

and it is of real interest to know how this dependence structure changes with the value

taken by the covariate. This motivates the need for introducing conditional copulas, and the

associated conditional Kendall’s tau and Spearman’s rho association measures. After the

introduction and motivation of these concepts in this paper we propose two nonparametric

estimators for a conditional copula and discuss them. We then derive nonparametric esti-

mates for the conditional association measures. A key issue is that these measures are now

looked at as functions in the covariate. We investigate the performances of all estimators via

a simulation study which also includes a data-driven algorithm for choosing the smoothing

parameters. The usefulness of the methods is illustrated on two real data examples.

Keywords and phrases: Asymptotic bias; asymptotic variance; conditional copula; conditional

Kendall’s tau; conditional Spearman’s rho; empirical estimation; global and local bandwidths;

local dependencies; smoothing.

1. Introduction

Suppose we observe a three-dimensional vector (Y1, Y2, X)T and our main interest is in the

relationship of (Y1, Y2)
T. If one ignores the variable X (called the covariate in the sequel),
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then it is quite common to characterize the degree of dependence of (Y1, Y2)
T by just one

number, usually the Pearson correlation coefficient. If one prefers nonparametric measures,

one uses for example Kendall’s tau or Spearman’s rank correlation coefficient. On the other

hand if one wants to capture the whole dependence structure of (Y1, Y2)
T, one uses a copula

function.

But often the variable X is a confounding factor and one has to incorporate it into the

analysis, otherwise the true relationship of (Y1, Y2)
T is distorted. To adjust for the influence of

the variable X, the most straightforward way is to use a partial correlation coefficient (either

Pearson’s or a rank based one) of (Y1, Y2)
T given X. But this adjustment may not answer

all scientific questions. For instance it seems to be natural to ask whether the relationship

of (Y1, Y2)
T is the same for ‘small’ as well as ‘large’ values of X.

Let us illustrate this with an example. Suppose we have data on life expectancies at birth

(‘average lengths of lives’) at different countries and the interest is in the relationship of the

life expectancies of males (Y1) and females (Y2). Then a natural question is whether this

relationship is different in poor and rich countries. Let us take e.g. gross domestic product

(GDP) per capita (X) as a proxy for the economic welfare of a country. Then, mathematically

speaking, the question is about the relationship of (Y1, Y2)
T conditionally upon the given value

of the covariate X = x and whether this relationship changes with the values of x. As will be

seen later the dependence structure of (Y1, Y2)
T given X = x is fully described by a function

which we will call a conditional copula. In the following we are interested in estimating that

function.

Denote the joint and marginal distribution functions of (Y1, Y2)
T, conditionally upon X =

x, as

Hx(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2 |X = x),

F1x(y1) = P (Y1 ≤ y1 |X = x), F2x(y2) = P (Y2 ≤ y2 |X = x).

If F1x and F2x are continuous, then according to Sklar’s theorem (see e.g. Nelsen (2006))

there exists a unique copula Cx such that

(1) Hx(y1, y2) = Cx(F1x(y1), F2x(y2)).

From equation (1) we see that the conditional copula Cx fully describes the conditional

dependence structure of (Y1, Y2)
T given X = x and it depends in a general way on the

covariate value x.

To the best of our knowledge, the area of conditional copula estimation is up to this moment

almost completely unexplored. Our research extends the work on conditional distribution es-

timation (see. e.g. Stute (1986), Yu and Jones (1998) and Hall et al. (1999)). Moreover, as

conditional copulas can be used to construct conditional measures of dependence (e.g. condi-

tional Kendall’s tau), our work also complements the methodology of partial rank correlation

coefficients introduced in Kendall (1942).
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The paper is organised as follows. In Section 2 we suggest two nonparametric estimators

of Cx, which will be used to analyze two real data sets in Section 3. The suggested estimators

will be further investigated and compared in a simulation study in Section 4.

2. Estimating the conditional copula

To estimate the conditional copula Cx it is convenient to invert Sklar’s theorem in (1)

which enables to express Cx as

(2) Cx(u1, u2) = Hx(F−1
1x (u1), F

−1
2x (u2)), (u1, u2) ∈ [0, 1]2,

where F−1
1x (u) = inf{y : F1x(y) ≥ u} is the conditional quantile function of Y1 given X = x

and F−1
2x is the conditional quantile function of Y2 given X = x.

Now suppose that we observe independent identically distributed three-dimensional vectors

(Y11, Y21, X1)
T, . . . , (Y1n, Y2n, Xn)T from the cumulative distribution function H(y1, y2, x).

Based on the sample of observations we have the following empirical estimator for Hx(y1, y2):

(3) Hxh(y1, y2) =
n

∑

i=1

wni(x, hn) I{Y1i ≤ y1, Y2i ≤ y2},

where {wni(x, hn)} is a sequence of weights that smooth over the covariate space (see Sec-

tion 2.2) and hn > 0 is a bandwidth going to zero as the sample size increases. Here I{A}

denotes the indicator of an event A. In view of (2) a straightforward estimator of the copula

function Cx(u1, u2) (0 ≤ u1, u2 ≤ 1) is given by

Cxh(u1, u2) = Hxh

(

F−1
1xh(u1), F

−1
2xh(u2)

)

=
n

∑

i=1

wni(x, hn) I{Y1i ≤ F−1
1xh(u1), Y2i ≤ F−1

2xh(u2)},(4)

where F1xh and F2xh are corresponding marginal distribution functions of Hxh.

Although the copula estimator Cxh given by (4) seems very natural, since it mimics the

structure of the true copula Cx given in (2), a closer inspection of the estimator points to some

potential pitfalls of it. For instance suppose that Y1 and Y2 are conditionally independent

given X = z, but that their conditional distributions are stochastically increasing with z.

Then, intuitively speaking, larger values of Y1 will occur together with larger values of Y2

purely because of the same trend in the covariate z creating an artificial dependence.

This intuition was also confirmed by Monte Carlo experiments in which we observed that

the estimator Cxh may be severely biased, if any of the conditional marginal distributions

changes with the value of the covariate X = x. We also observed that this bias can be reduced

to a great extent, if we are able to remove the effect of the covariates on the marginals.

Further recall that the copula function is invariant to increasing transformations. Thus if
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one knew F1X , F2X it would be advisable to base the estimator Cxh on the observations

{(U1i, U2i)
T, i = 1, . . . , n} where

(5) (U1i, U2i)
T = (F1Xi

(Y1i), F2Xi
(Y2i))

T,

whose marginal distributions are uniform (for each i = 1, . . . , n).

Unfortunately, we usually do not know the theoretical conditional marginal distribution

functions (F1Xi
, F2Xi

), but we can estimate them in the same way as we estimate F1x and

F2x, that is

F1Xig1
(y) =

n
∑

j=1

wnj(Xi, g1n) I{Y1j ≤ y},

F2Xig2
(y) =

n
∑

j=1

wnj(Xi, g2n) I{Y2j ≤ y},

where g1 = {g1n} ց 0 and g2 = {g2n} ց 0.

This leads to the following procedure. First, transform the original observations to reduce

the effect of the covariate by

(6) (Ũ1i, Ũ2i)
T = (F1Xig1

(Y1i), F2Xig2
(Y2i))

T, i = 1, . . . , n.

Second, use the transformed observations (Ũ1i, Ũ2i)
T in a similar way as the original observa-

tions, and construct

(7) C̃xh(u1, u2) = G̃xh

(

G̃−1
1xh(u1), G̃

−1
2xh(u2)

)

,

where

G̃xh(u1, u2) =
n

∑

i=1

wni(x, hn) I{Ũ1i ≤ u1, Ũ2i ≤ u2},

and G̃1xh and G̃2xh are its corresponding marginals.

The asymptotic properties of the estimators Cxh and C̃xh are studied in Veraverbeke et al.

(2009). The main result states that provided the bandwidths hn, gn1, gn2 satisfy (for j = 1, 2)

(8) hn = O(n−1/5),
√

n hn g2
jn = O(1), hn

gjn
= O(1), n min(hn, g1n, g2n) → ∞,

and some other regularity conditions hold, then there is no price in terms of asymptotic bias or

variance that we pay for substituting the unknown (U1i, U2i)
T with the estimates (Ũ1i, Ũ2i)

T.

Moreover, comparing the estimators Cxh and C̃xh we see that (for the same bandwidth hn)

both estimators have the same asymptotic variance. But the asymptotic bias of the estimator

C̃xh consists only of those terms of the asymptotic bias of Cxh that do not include the partial

derivatives of the conditional marginal distribution functions F1x and F2x with respect to x.
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Remark 1. The aim of the transformation (6) is to remove the effect of the covariate X on the

marginal distributions. For this reason we use the nonparametric estimators of the conditional

distribution functions. Of course, if we can assume a parametric model for the influence of

the covariate on the marginals, then it is advisable to use this model. Although it does not

change asymptotic properties of the estimator, it may stabilize the finite sample properties.

For example, in many practical situations it may be simply sufficient to replace the original

observations (Y1i, Y2i)
T with the estimated residuals from simple linear regressions, where Y1

and respectively Y2 are regressed on the covariate X.

2.1. Conditional measures of association. In many situations we would like to quan-

tify the degree of dependence by only one number. In nonparametric settings Kendall’s tau

and Spearman’s rho are probably the most widely used. In the following we use the condi-

tional copula methodology to express and estimate conditional versions of those measures of

dependence.

2.1.1. Kendall’s tau. For random variables (Y1, Y2)
T Kendall’s tau is defined as

τ = 2P
(

(Y1 − Y ′

1)(Y2 − Y ′

2) > 0
)

− 1,

where (Y ′

1 , Y
′

2)
T is an independent copy of the random vector (Y1, Y2)

T. It is well known (see

e.g. Nelsen (2006)) that if C is the copula for the vector (Y1, Y2)
T, then τ may be expressed

as

τ = 4

∫∫

C(u1, u2) dC(u1, u2) − 1.

This leads immediately to an expression for the population version of the conditional Kendall’s

tau of (Y1, Y2)
T given X = x

(9) τ(x) = 4

∫∫

Cx(u1, u2) dCx(u1, u2) − 1,

where Cx is the appropriate conditional copula. The interpretation of the conditional Kendall’s

tau is

τ(x) = 2P
(

(Y1 − Y ′

1)(Y2 − Y ′

2) > 0 |X = X ′ = x
)

− 1,

where (Y ′

1 , Y
′

2 , X
′)T is an independent copy of the random vector (Y1, Y2, X)T.

The most straightforward way to estimate the conditional Kendall’s tau is to replace the

unknown quantity Cx in (9) with the estimate Cxh to get

(10) τ̂ I
n(x) = 4

∫∫

Cxh(u1, u2) dCxh(u1, u2) − 1.

Although expression (10) is convenient for exploring asymptotic properties of the estimator,

in finite samples we have a slightly better experience with the formula

(11) τ̂n(x) =
4

1 −
∑n

i=1 w2
ni(x, hn)

n
∑

i=1

n
∑

j=1

wni(x, hn)wnj(x, hn) I{Y1i < Y1j , Y2i < Y2j} − 1,
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which mimics the formula for (unconditional) Kendall’s tau estimation

τ̂n =
4

n(n − 1)

n
∑

i=1

n
∑

j=1

I{Y1i < Y1j , Y2i < Y2j} − 1.

Further it may be shown that τ̂n(x) is asymptotically equivalent to τ̂ I
n(x) up to order OP ( 1

n hn
)

(see Veraverbeke et al. (2009)).

2.1.2. Spearman’s rho. As the unconditional version of Spearman’s rho may be expressed as

ρ = 12
∫∫

C(u1, u2) du1 du2 − 3, the population conditional version is thus given by ρ(x) =

12
∫∫

Cx(u1, u2) du1 du2 − 3, which may be estimated as

ρ̂n(x) = 12

∫∫

Cxh(u1, u2) du1 du2 − 3 = 12
n

∑

i=1

wni(x, hn)(1 − Û1i)(1 − Û2i) − 3.

For interpretations of Spearman’s rho see Nelsen (2006).

2.2. Some common choices of weights. For the weights many common choices are pro-

vided such as these listed below (where Xi may be taken fixed or random). Assuming that

the support of X is a bounded interval (without loss of generality we take it to be [0, 1]), let

X1:n ≤ . . . ≤ Xn:n be the ordered sample of X1, . . . , Xn, and put X0:n = 0 and Xn+1:n = 1.

With slight abuse of notation Ri will denote the rank of Xi among X1, . . . , Xn.

• Nadaraya-Watson (see Nadaraya (1964) or Watson (1964))

wni(x, hn) =
K(Xi−x

hn
)

∑n
j=1 K(

Xj−x
hn

)
.

• Local linear [LL] (see e.g p. 20 of Fan and Gijbels (1996))

wni(x, hn) =

1
n hn

K(Xi−x
hn

)
(

Sn,2 −
Xi−x

hn
Sn,1

)

Sn,0 Sn,2 − S2
n,1

,

where

Sn,j =
1

n hn

n
∑

i=1

(

Xi−x
hn

)j
K

(

Xi−x
hn

)

, j = 0, 1, 2.

• Priestley-Chao (see Priestley and Chao (1972))

wni(x, hn) =
XRi:n

−XRi−1:n

hn
K

(

XRi−1:n−x

hn

)

.

• Gasser-Müller (see Gasser and Müller (1979))

wni(x, hn) = 1
hn

∫ Ti

Si

K( z−x
hn

) dz,

where Ti = (1 − β)XRi:n + β XRi+1:n, Si = (1 − β)XRi−1:n + β XRi:n, and β ∈ [0, 1].
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• hn-nearest-neighbourhood (see Yang (1981))

wni(x, hn) = 1
n hn

K
(

Fn(Xi)−Fn(x)
hn

)

, where Fn(z) =
1

n

n
∑

i=1

I{Xi ≤ z}.

2.3. Bandwidth selection. A crucial point of smoothing methods is the bandwidth selec-

tion. The proposed estimator C̃xh requires to choose three bandwidths – g1n, g2n and hn.

To the best of our knowledge the problem of bandwidth choice in our context has not been

investigated yet. In this paper we adopted the idea of Gasser et al. (1991), which was further

extended in Brockmann et al. (1993).

The main idea of the bandwidth selection rule may be summarized as follows. From the

results of Veraverbeke et al. (2009) we can deduce that the asymptotic mean squared errors

of the estimators Cxh and C̃xh are given by

AMSE(Cxh(u1, u2)) =
Vx(u1, u2)

n hn
+ h4

n b2
x(u1, u2),(12)

AMSE(C̃xh(u1, u2)) =
Vx(u1, u2)

n hn
+ h4

n b̃2
x(u1, u2),(13)

where Vx is an asymptotic variance function (common for both Cxh and C̃xh) and bx, b̃x are

asymptotic bias functions. Provided we know these functions, we can theoretically compute

a bandwidth that minimizes the asymptotic mean squared error of the estimator Cxh (C̃xh)

for a given (x, u1, u2). Let us denote hB and hV pilot bandwidths that are used to estimate

the functions bx(u1, u2) (b̃x(u1, u2)) and Vx(u1, u2) respectively.

The algorithm for selecting the bandwidth may be summarized as follows (details are

available from the authors upon request).

0. Let hV be an initial value for the bandwidth;

1. Put hB = 2 σ̂ hV n1/10, where σ̂ stands for the interquantile range of the observad

values of the covariate X;

2. Using hB estimate the function bx(u1, u2) (b̃x(u1, u2)) and using hV estimate Vx(u1, u2);

3. Find h∗ that minimizes the estimated asymptotic mean squared error given by (12)

(or (13)) with respect to hn;

4. Put hV = h∗ and go to 1, unless a convergence or a maximum number of iteration

steps is reached. Otherwise, go to 5.

5. Return the current value hV as the chosen bandwidth.

The above general procedure describes how to obtain a local bandwidth for a given (u1, u2)

at a given value of the covariate X = x. If one is interested in estimating the whole copula

function, it makes sense to integrate the expression (12) (or (13)) with respect to (u1, u2) and

then the suggested procedure gives a bandwidth that is minimizing an estimated asymptotic

mean integrated squared error. Further, a global in x bandwidth is obtained by integrating

the expression given in (12) (or (13)) over the covariate space.
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The algorithm described above can be used directly to find a bandwidth for the estima-

tor Cxh. For the suggested estimator C̃xh we need to run the algorithm three times. First, we

use its univariate adaptation on the problem of estimating F1x and F2x to find g1 and g2. Then

with the help of g1 and g2 and equation (6) we calculate (Ũ1i, Ũ2i) that are subsequently used

in finding the bandwidth h for the copula estimation. In the sequel we refer to this method

as the plug-in bandwidth choice.

Remark 2. It is quite common that the main effect of the covariate X is on the mean functions

of the conditional distributions. In that case we can try to find the appropriate g1 and g2

by employing bandwidth selection rules suggested for nonparametric regression. Similarly as

in Yu and Jones (1998) we can argue that it seems reasonable to multiply the bandwidth

suggested for nonparametric regression by two.

3. Real data examples

In the following we use LL weights introduced in Section 2.2 together with the triweight

kernel K(x) = 35
32 (1 − x2)3 I{|x| ≤ 1}.

3.1. Life expectancies at birth. Recall the example analyzing the relationship of the life

expectancies at birth of males (Y1) and females (Y2). From the World Factbook of the Central

Intelligence Agency (CIA) we retrieved a data set consisting of life expectancies and the gross

domestic product (GDP) in USD per capita (X) for 222 countries. Scatterplots of this data

set are in Figure 1. We see that life expectancies of males and females are strongly correlated

30 40 50 60 70 80

40
50

60
70

80

Life expectancies at birth − Males vs. Females

Males 
 (a)

Fe
m

al
es

Kendall’s tau = 0.86

2.5 3.0 3.5 4.0 4.5 5.0

40
50

60
70

80

Life expectancies at birth

log10(GDP) 
 (b)

Li
fe

 e
xp

ec
ta

nc
y 

at
 b

irt
h

males
females

Figure 1. Life expectancy data

giving (unconditional) Kendall’s tau equal to 0.86.
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Further in Figure 1 (b) it is observed that the life expectancies seem to be increasing with

GDP per capita - using log10 transformation of GDP which is quite common in this context.

There are several ways to incorporate the information about GDP into the analysis. For

instance we may be interested in the relationship of life expectancies when the effect of GDP

is removed. In nonparametric settings this may be answered by Kendall’s partial correlation

coefficient, suggested in Kendall (1942), which equals 0.78 here.

A different scientific question is whether the strength of the relationship of the life ex-

pectancy of males and females is the same for poor and rich countries. We will report results

for four different methods of estimation. The estimator computed through (11) (which is tied

to the estimator Cxh) will be denoted as tau1. If we replace (Y1i, Y2i)
T with (Ũ1i, Ũ2i)

T we

get the estimator tied to C̃xh and we will refer to it as tau2. Further as the scatterplot in Fig-

ure 1(b) suggests a quadratic relationship of life expectancy to log10(GPD), we try to replace

the original observations (Y1i, Y2i)
T with residuals coming from fitting a linear model with

polynomial of order two of log10(GDP) to life expectancies through least squares regression.

The estimators resulting from this adjustment will be called tau1-lm and tau2-lm.

The estimates of Kendall’s tau are plotted for different values of GDP in Figure 2.

Plots (a)–(c) correspond to a fixed bandwidth, while in (d) the (local) plug-in bandwidth

rule (see Section 2.3) is used. For the estimators based on C̃xh we need to specify also the

bandwidths g1n and g2n. For simplicity of implementation we used ‘lokern’ which is a library

available for the R computing environment (see R Development Core Team (2008)) and which

implements the ideas of bandwidth choice in nonparametric regression as introduced in Gasser

et al. (1991) and Brockmann et al. (1993). If the interest is in the conditional Kendall’s tau

just at a few points, then we may use locally adaptive bandwidths g1n and g2n for each of

the points of interest. But if the interest is in the overall curve, we decided to use a global

bandwidth for all of the points to avoid the resulting curve to be too wiggly.

Comparing the curves of the estimates several points may be noticed.

• The main message is that the conditional Kendall’s tau decreases from about 0.85 (for

countries with about 103 = 1000 USD of GDP per capita) to 0.70 (for countries with

about 104.5 .
= 31 628 USD of GDP per capita).

• Adjusting for the obvious trend in the covariate makes the estimates less wiggly, which

is in particular true for the estimators based on Cxh. For the estimators tied to C̃xh

the effect of adjusting is minor and it makes a noticeable difference only when the

effective sample size (n hn) is small (and near borders).

• The estimator tau1 consistently produces bigger estimates of the conditional Kendall’s

tau for higher values of bandwidths. Comparing tau1 with tau1-lm we see that this

is partially corrected by removing the trend of life expectancy when regressed on

log10(GPD).
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Figure 2. Estimated conditional Kendall’s tau for life expectancy data.

Note also that unless we know the model generating the data, it is extremely difficult to judge

what is a too wiggly curve for given data. In contrast to nonparametric regression (with one

variable) we cannot make a scatterplot and try to judge by eye what is a reasonable fit for

our data.

3.2. Soil contamination. The following data set gives several soil characteristics from 119 lo-

cations in the vicinity of a former lead smelter in the city of Př́ıbram (Czech Republic).

Industrial activity has contaminated soil with metals like As (arsenic), Cd (cadmium), Pb

(lead), Zn (zinc) and others. Researchers were interested to find out the relationship between

the amount of metals present in the soil and microbial characteristics of the soil such as

biomass, dehydrogenase and soil respiration which could serve as indicators of soil quality. In

the following we will concentrate on the amount of Zn and the microbial activity dehydro.

It is quite natural to expect that the more amount of metal in the soil the lower level of

microbial activity. Contrary to that intuition the (unconditional) Kendall’s tau is slightly



CONDITIONAL COPULAS, ASSOCIATION MEASURES AND THEIR APPLICATIONS 11

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Zn vs. dehydro

Zn 
 (a)

de
hy

dr
o

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Corg vs. Zn

Corg  
 (b)

Z
n

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

Corg vs. dehydro

Corg  
 (c)

de
hy

dr
o

Figure 3. Př́ıbram data

above zero (0.09). A partial explanation for this may be deduced from the scatterplots of Zn,

dehydro and the quantity of organic material Corg that can be found in Figure 3. It may

be surprising to see a strong positive correlation of Zn and Corg. The researchers explain

this by the fact that areas closer to that former factory have not been used for agriculture

or any other economical activity. That is why the bigger amount of the organic material

Corg together with higher contamination are observed. Thus it is sensible to estimate the

relationship of Zn and dehydro for the soils with the same value of Corg. Kendall’s partial

tau of Zn and dehydro adjusted for Corg equals −0.13 and seems to be more in agreement

with our intuition.

Another option to incorporate the variable Corg in the analysis is to apply the methodology

of Section 2. The same estimators as in the previous example are employed. The only

difference is that the adjustment for the covariate made before computation of the estimator

tau1-lm and tau2-lm is through a simple linear (and not quadratic) relationship. One again

may notice that the estimator tau1, which is the only one not trying to remove in any way

the effect of the covariate on the marginals, produces rather different results than the other

estimators. It seems likely that this estimator overestimates the true conditional Kendall’s

tau of Zn and dehydro because of the same trend these variables follow with Corg.

Note that the association between Zn and dehydro seems to be changing with the value of

Corg and ranges from slightly positive to negative values. This may be a very useful infor-

mation when dehydro is considered as a response variable and the interest is in building a

parametric model with the help of covariates Zn and Corg.

These two examples clearly motivate the interest in studying concepts such as conditional

copulas and conditional association measures.
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Figure 4. Conditional Kendall’s tau for Př́ıbram data.

4. Simulation study

To complement the real data examples of the previous section as well as the theoretical

comparison of C̃xh and Cxh done in Veraverbeke et al. (2009), we provide here a simulation

study to illustrate the finite sample performance of both estimators.

In the following we compare the estimators C̃xh and Cxh in two ways. First, we compare

the behaviour of these estimators when the bandwidth h is held fixed and putting g1 = g2 = h.

Second, we compare the performance of the estimators when the plug-in bandwidth selection

rule of Section 2.3 is used.

4.1. Copula estimation. In this application we are interested in estimation of a copula as

a function on [0, 1]2. The performance of the estimators is evaluated using the average (over

all simulations) of the integrated squared error

∫ 1

0

∫ 1

0

[

Ĉxh(u1, u2) − Cx(u1, u2)
]2

du1 du2 ,
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Figure 5. Copula estimation; Model 1, µ1(z) = 1, µ2(z) = 1, ρ = 1.

where Ĉxh stands either for Cxh or C̃xh.

To illustrate our main findings we report results for the following setup: the covariate is

supposed to be standard normal and we are interested in the point X = 1. The copula

which joins the margins is a Frank copula with the parameter depending on the value of the

covariate X = z as θ(z) = 5 + ρ sin( (z−1) π
6 ). This results into Kendall’s tau equal to 0.46

for z = 1. The margins are taken normal with unit variances and mean functions µ1(z) and

µ2(z). The considered models are given in Table 1.

Model mean functions parameter ρ

1 / 2 µ1(z) = 1 µ2(z) = 1 1 / 5

3 / 4 µ1(z) = 1 µ2(z) = sin(z − 1) 1 / 5

5 / 6 µ1(z) = sin(z − 1) µ2(z) = sin(z − 1) 1 / 5

7 / 8 µ1(z) = cos(z − 1) µ2(z) = sin(z − 1) 1 / 5

Table 1. Simulation models.

Models 1 and 2 represent situations where the covariate does not influence conditional

marginal distributions; in Models 3 and 4 only one of the marginals is affected; while in

Models 5 and 6 both marginals are stochastically increasing with z; finally in Models 7 and 8

the marginals are affected in different directions. The two values of ρ represent the situations

when there is a mild (ρ = 1) or strong effect (ρ = 5) of the covariate on the conditional

dependence structure.

Further, the sample size is n = 200 and the number of generated samples is 1 000.

The results are to be found in Figures 5–12, where the average of the integrated squared

bias (AISB), the average of the integrated variance (AIV) and the average of the integrated

squared error (AISE) are plotted as functions of the bandwidth h. The solid curve shows

the result for the estimator C̃xh (~C-fixed) with g1 = g2 = h and the dotted curve for the

estimator Cxh (C-fixed). The dashed and dotdashed horizontal lines represent the values

of AISB, AIV and AISE when the plug-in bandwidth choice is used for the estimator C̃xh
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Figure 6. Copula estimation; Model 2, µ1(z) = 1, µ2(z) = 1, ρ = 5.
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Figure 7. Copula estimation; Model 3, µ1(z) = 1, µ2(z) = sin(z − 1), ρ = 1.
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Figure 8. Copula estimation; Model 4, µ1(z) = 1, µ2(z) = sin(z − 1), ρ = 5.

(~C-plugin) and Cxh (C-plugin) respectively. Finally, the vertical dashed lines indicate the

asymptotically optimal values of bandwidths: hopt for Cxh and hu
opt for C̃xh.

Models 1 and 2 represent situations when the distributions of the marginals are independent

of the covariate. From Figures 1 and 2 we see that the performance of the estimators Cxh and

C̃xh is effectively the same for both mild or strong effect of the covariate on the dependence

structure.
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Figure 9. Copula estimation; Model 5, µ1(z) = sin(z−1), µ2(z) = sin(z−1),

ρ = 1.
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Figure 10. Copula estimation; Model 6, µ1(z) = sin(z−1), µ2(z) = sin(z−1),

ρ = 5.

On the other hand Models 3–8 stand for situations when the dependence of the marginal

distributions on the covariate may introduce a substantial bias in the estimation of the condi-

tional copula. We see that both estimators are comparable for bandwidths which are smaller

than the bandwidth minimizing the asymptotic mean integrated squared error of Cxh (in-

dicated by the vertical line hopt) but for larger bandwidths C̃xh usually has a substantially

better performance. Also with plug-in choice for the bandwidth C̃xh works better.

The conclusion of the above paragraph does not hold completely in Model 5 and 6 where

the estimators Cxh and C̃xh are very comparable for fixed as well as plug-in bandwidths,

although the conditional marginal distributions change with the value of the covariate. While

for the sample size n = 500 the estimator C̃xh becomes clearly preferable to the estimator Cxh

for Model 5 (results not shown here), there is only a very slight preference for C̃xh in Model 6.

Further, comparing the results of Model 6 with the results of Model 5 (either for n = 200

or n = 500, the latter not presented here) we see that the increase of the influence of the

covariate on the conditional dependence structure in Model 6 has almost no influence on the

bias function, which is in contrast to the bias functions seen in other pairs of Models (1 ↔ 2;
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Figure 11. Copula estimation; Model 7, µ1(z) = cos(z−1), µ2(z) = sin(z−1),

ρ = 1.
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Figure 12. Copula estimation; Model 8, µ1(z) = cos(z−1), µ2(z) = sin(z−1),

ρ = 5.

3 ↔ 4; 7 ↔ 8) differing only by the parameter ρ. This indicates that the biases coming from

the effects of the covariate on the dependence structure and on the marginals cancel out to

some extent.

As the presented results are confirmed with the results for sample size n = 500 we can

summarize as follows:

• C̃xh is (in comparison to Cxh) quite safe to use and it mostly improves substantially

upon Cxh if the effect of the covariate on the marginals is not negligible;

• Cxh might be slightly preferable if the covariate does not influence marginals distri-

butions or if (by a lucky coincidence) the effect of the covariate on the conditional

marginal distributions helps to suppress the effects of the covariate on the conditional

dependence structure. For details see Veraverbeke et al. (2009).

4.2. Kendall’s tau. Although we found that the results on estimation of the entire copula

function Cx strongly speak in favor of C̃xh, we are interested whether these findings carry
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Figure 13. Kendall’s tau estimation; Model 1, µ1(z) = 1, µ2(z) = 1, ρ = 1.
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Figure 14. Kendall’s tau estimation; Model 2, µ1(z) = 1, µ2(z) = 1, ρ = 5.

over to functionals of Cx. In this application we investigate Kendall’s tau, which was already

introduced in Section 2.1.1.

In a small simulation study we compared the performance of the estimator of Kendall’s

tau given by (11) when applied to

[A] the original observations (Y1i, Y2i)
T, i = 1, . . . , n; (τ-fixed and τ-plugin);

[B] the transformed ‘uniform’ alike observations (Ũ1i, Ũ2i), i = 1, . . . , n. (τ̃-fixed and

τ̃-plugin);

Note that the estimator resulting from [A] is up to some finite sample corrections equivalent to

4
∫∫

Cxh dCxh−1 and the one resulting from [B] is first order equivalent to 4
∫∫

C̃xh dC̃xh−1.

We here use the same setting as in Section 4.1. As the findings are analogous to the

results of that section we report them only for Models 1, 2, 4, 6 and 8. These can be found

in Figures 13–17 that use the same conventions as Figures 5–12. The only difference is that

instead of AISB, AIV and AISE we simply plot bias squared, variance and mean squared

error of the estimators.

The findings here are in a close agreement with these for copula estimation. Comparing

the results of copula and Kendall’s tau estimation it can be noted that Kendall’s tau is a
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Figure 15. Kendall’s tau estimation; Model 4, µ1(z) = 1, µ2(z) = sin(z− 1),

ρ = 1.
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Figure 16. Kendall’s tau estimation; Model 6, µ1(z) = sin(z − 1), µ2(z) =

sin(z − 1), ρ = 5.
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Figure 17. Kendall’s tau estimation; Model 8, µ1(z) = cos(z − 1), µ2(z) =

sin(z − 1), ρ = 5.

functional of a copula, whose estimation is very sensitive to bias properties of an underlying

copula estimator.
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