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Second-order asymptotic representation

of M-estimators in a linear model

Marek Omelka1,∗

Charles University in Prague

Abstract: The asymptotic properties of fixed-scale as well as studentized
M -estimators in linear models with fixed carriers are studied. A two term
von Mises expansion (second order asymptotic representation) is derived and
verified. Possible applications of this result are shortly discussed.

1. Introduction

Suppose that observations Y = (Y1, . . . , Yn)
T follow a linear model

(1.1) Yi = β1 xi1 + . . .+ βp xip + ei = βTxi + ei, i = 1, . . . , n,

where β = (β1, . . . , βp)
T is a vector of unknown parameters, xi = (xi1, . . . , xip)

T

(i = 1, . . . , n) are rows of a known matrix Xn, and e1, . . . , en are independent,
identically distributed random variables with an unknown cumulative distribution
function (cdf) F .

Given an absolutely continuous loss function ρ, a fixed scale (studentized) M -

estimator β̂n of the parameter β is defined as a solution of the minimisation

n∑
i=1

ρ
(
Yi − tTxi

)
:= min,

(
or

n∑
i=1

ρ
(

Yi−tTxi

Sn

)
:= min

)
,

where Sn is an estimator of scale.

If the function ρ is differentiable with ψ = ρ′ being continuous, then the estima-
tor β̂n may be found as a solution of the system of equations

(1.2)

n∑
i=1

xi ψ(Yi − bTxi) = 0

(
or

n∑
i=1

xi ψ(
Yi−bTxi

Sn
) = 0

)
.

As the defining equation (1.2) gives more flexibility to tune properties of M -

estimators by a choice of a function ψ, β̂n is usually defined as a carefully chosen
root of (1.2).
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It is well known (see e. g. Jurečková and Sen [14]) that provided some standard

regularity assumptions are met, then the M -estimator β̂n admits the following
representation

(1.3)
√
n(β̂n − β) =

V−1
n

γ1
√
n

n∑
i=1

xi ψ(ei) +Rn, (or (3.4)) ,

with γ1 = Eψ′(e1) and Vn = 1
n

∑n
i=1 xix

T
i , where the remainder term Rn is of

order op(1). The equation (1.3) is sometimes called the first order asymptotic rep-

resentation of the estimator β̂n or asymptotic linearity of β̂n or a Bahadur-Kiefer
representation. Let us recall that the interest in the behaviour of the remainder
term Rn goes back to the work of Bahadur [6] and Kiefer [15], where a similar
expansion for a sample quantile was considered. Provided that the function ψ and
the distribution of the errors F are sufficiently smooth, in Jurečková and Sen [12]
it was proved that Rn = Op(

1√
n
). The asymptotic distribution of the random vari-

able
√
nRn was studied by Boos [7] for the special case of a location model and by

Jurečková and Sen [13] for an M -estimator of a general scalar parameter. The case
of a discontinuous (score) function ψ = ρ′ was treated in Jurečková and Sen [11].

Many interesting results about the distributional as well as almost sure behavior
of the reminder term Rn can be found in the work of Arcones. Among others let us
mention results for U -quantiles in Arcones [1], multivariate location M -estimators
in Arcones and Mason [5], and the two dimensional spatial medians in Arcones [3].

Important contributions to the study of the behavior of the reminder term Rn

in the context of a linear model (1.1) are the results of Jurečková and Sen [12] from
which the OP -rate for a general M -estimator of β can be deduced. Arcones [2]
considered Lp-regression estimators (i. e. ρ(x) = |x|p, p ≥ 1) and found the almost
sure behavior of Rn. Further, Arcones [4] and Knight [16] focused on the least
absolute deviation regression estimator (i. e. ρ(x) = |x|) and derived the limiting
distribution of n1/4 Rn.

Our paper extends the results of Boos [7], and Jurečková and Sen [13] in the
following way. We derive a two term von Mises expansion (a second order asymptotic
representation ) of the M -estimator in the linear model (1.1) and we rigorously

verify that the second term of the von Mises expansion T
(2)
n satisfies

|T(2)
n −Rn|2 = op(

1√
n
),

where | · |2 stands for the Euclidean norm. That yields not only the asymptotic
distribution of

√
nRn, but it also enables a finer comparison of an M -estimator

with another estimator (e. g. an R-estimator) that is asymptotically equivalent.
Moreover, our approach can be easily modified to verify higher order von Mises

expansions of one-stepM -estimators that were derived in Welsh and Ronchetti [19]
in a heuristic way.

In Section 2, we state some auxiliary results on asymptotic behaviour of M -
processes, which may be of independent interest. In Section 3, we derive a two
term von Mises expansions of an M -estimator. We finish with a short discussion of
possible applications of our results. The proofs are to be found in Omelka [18].

2. Auxiliary results

In this section some auxiliary results concerning the asymptotic behaviour of certain
processes associated with M -estimation in the model (1.1) are stated. It is useful
to distinguish whether an M -estimator is studentized or not.



196 M. Omelka

2.1. Fixed scale

Let {cin, i = 1, . . . , n} and {xin, i = 1, . . . , n} be triangular arrays of scalars and
vectors in Rp respectively, and t = (t1, . . . , tp)

T. Our interest is in the (fixed scale)
M -process

(2.1) Mn(t) =

n∑
i=1

cin

[
ψ(ei − tTxin√

n
)− ψ(ei) +

tTxin√
n
ψ′(ei)

]
,

where t ∈ T = {s ∈ Rp : |s|2 ≤M} andM is an arbitrarily large but fixed constant.
We will make the following assumptions:

X.1
1

n

n∑
i=1

c2in = O(1), lim
n→∞

max1≤i≤n |cin|√
n

= 0,

X.2
1

n

n∑
i=1

|xin|22 = O(1), lim
n→∞

max1≤i≤n |xin|2√
n

= 0,

X.3

lim
n→∞

max
1≤i≤n

|cin| |xin|2√
n

= 0,

X.4

B2
n =

1

n

n∑
i=1

c2in |xin|22 = O(1), as n→ ∞.

While assumptionsX.1 – 3 are analogous to the assumptions used in Jurečková [9]
to deal with Wilcoxon rank process, the last assumption X.4 is purely for conve-
nience. If B2

n = O(1) were not satisfied, we would work with the process M ′
n(t) =

Mn(t)
Bn

and derive analogous results.
In Section 3 we will substitute xij (j = 1, . . . , p) for cin to find the second

order asymptotic distributions of the regression M -estimator β̂n. For cin = |xin|2,
assumptions X.1 – 4 may be summarised as

XX.1

(2.2)
1

n

n∑
i=1

|xin|42 = O(1), lim
n→∞

max1≤i≤n |xin|22√
n

= 0.

For notational simplicity, in the following we will write simply ci and xi instead of
cin and xin.

The distribution function F of the errors in the model (1.1) and the function ψ
used to construct anM -estimator through (1.2) are assumed to satisfy the following
regularity conditions.

Fix. 1 ψ is absolutely continuous with a derivative ψ′ such that

E[ψ′(e1)]
2 <∞.

Fix. 2 The (random) function p(t) = ψ′(e1+t) is continuous in the quadratic mean
at the point zero, that is

lim
t→0

E [p(t)− p(0)]
2
= lim

t→0
E [ψ′(e1 + t)− ψ′(e1)]

2
= 0.
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Fix. 3 The second derivative of the function λ(t) = Eψ(e1 + t) is finite and con-
tinuous at the point 0.

Inspecting Fix. 1 – 3 one sees that the more is assumed about the function ψ,
the less is needed to be assumed about F and the other way around. In robust
statistics it is quite common to put restrictive conditions on the function ψ, as the
distribution F of the errors is generally unknown. For instance if the function ψ
is twice differentiable, then it is not difficult to verify that assumptions Fix. 1 – 3
are met if both ψ′ and ψ′′ are bounded and ψ′′ is continuous F -almost everywhere.
This includes e. g. Tukey’s biweight function

ψ(x) = x(1− x2

k2 )
2 I{|x| ≤ k}.

An important class of ψ functions which do not posses a second derivative every-
where are piecewise linear functions. This class includes e. g. Huber’s function

ψ(x) = max{min{x, k},−k}.

Assumptions Fix. 1 – 3 are satisfied provided that:

A.1 ψ is a continuous piecewise linear function with the derivative

ψ′(x) = αj , for rj < x ≤ rj+1, j = 0, . . . , k,

where α0, α1, . . . , αk are real numbers, α0 = αk = 0 and −∞ = r0 < r1 <
. . . < rk < rk+1 = ∞.

A.2 The cdf F is absolutely continuous with a derivative which is continuous at
the points r1, . . . , rk.

Note that assumption A.1 trivially implies Fix. 1 and A.2 ensures both Fix. 2
and Fix.3.

Many of the following results (in particular for studentized M -estimators) sim-
plify significantly if the distribution of the errors is symmetric. For the sake of later
reference let us state this assumption explicitly.

Sym The distribution of the errors is symmetric and the ψ-function is antisym-
metric, that is F (x) = 1− F (−x) and ψ(x) = −ψ(−x) for all x ∈ R.

Put γ2 for the second derivative of the function λ(t) = Eψ(e1+ t) at the point 0.

That is γ2 =
∑k

j=1 αj [f(rj+1) − f(rj)] in the case of a piecewise linear ψ and
γ2 = Eψ′′(e1) for a sufficiently smooth and integrable ψ. Note that if Sym holds
then γ2 = 0.

Theorem 1. Put Wc,n = 1
n

∑n
i=1 ci xix

T
i . If X.1 – 4 and Fix. 1 – 3 hold, then

(2.3) E sup
t∈T

∣∣∣Mn(t)− γ2

2 tTWc,nt
∣∣∣ = o(1).

Later it will be useful to rewrite the statement of Theorem 1 (with the help of
Chebychev’s inequality) as

(2.4)

n∑
i=1

ci ψ(ei − tTxi√
n
)−

n∑
i=1

ci ψ(ei) +
γ1 tT√

n

n∑
i=1

ci xi

= − tT√
n

n∑
i=1

ci xi [ψ
′(ei)− γ1] +

γ2

2 tTWc,nt+ op(1)

uniformly in t ∈ T .
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2.2. Studentized M-processes

As the M -estimator is not in general scale invariant, in practice it is usually stu-
dentized. To investigate properties of the studentized M -estimators, it is useful to
study the asymptotic properties of the ‘studentized’ M -process

Mn(t, u) =
n∑

i=1

ci

[
ψ
(
e−un−1/2

(ei − tTxi√
n
)/S
)
− ψ(ei/S)

+ tTxi

S
√
n
ψ′(ei/S) +

u√
n

ei
S ψ

′(ei/S)
]
,

where (t, u) ∈ T = {(s, v) : |s|2 ≤ M, |v| ≤ M} (⊂ Rp+1) with M being an
arbitrarily large but fixed constant.

As the studentization brings in perturbations in scale, more restrictive assump-
tions on the function ψ and the distribution of the errors than in the fixed scale
case are needed.

St.1 ψ is absolutely continuous with a derivative ψ′ such that

E
[
ψ′ ( e1

S

)]2
<∞.

St.2 The (random) function p(t, v) = ψ′( e1+t
Sev ) is continuous in the quadratic mean

at the point (0, 0), that is

lim
(t,v)→(0,0)

E [p(t, v)− p(0, 0)]
2
= lim

(t,v)→(0,0)
E
[
ψ′ ( e1+t

Sev

)
− ψ′ ( e1

S

)]2
= 0.

St.3 The function λ(t, v) = Eψ( e1+t
Sev ) is twice differentiable and the second partial

derivatives are continuous and bounded in a neighbourhood of the point (0, 0).

If the function ψ is twice differentiable almost everywhere then it is not difficult to
show that assumptions St. 1 – 3 are met if the following functions ψ′(x), xψ′(x),
ψ′′(x), xψ′′(x) and x2 ψ′′(x) are bounded and continuous F -almost everywhere.

If ψ is a piecewise linear function, then the assumptions St.1-3 are met provided
A.1-2 hold with the only modification that the points r1, . . . , rk in A.2 are replaced
by the points S r1, . . . , S rk.

Before we proceed, it will be useful to introduce the following notation. Let the
partial derivatives of the functions λ(t, v) = Eψ( e1+t

Sev ) and δ(t, v) = E e1
S ψ′( e1+t

Sev )
be indicated by subscripts. Put

(2.5) γ1 = λt(0, 0)
(
= 1

S Eψ′ ( e1
S

))
, γ1e = −λv(0, 0)

(
= E e1

S ψ′ ( e1
S

))
,

γ2 = λtt(0, 0)
(
= 1

S2 Eψ
′′ ( e1

S

))
, γ2e = δt(0, 0)

(
= E e1

S2 ψ
′′ ( e1

S

))
,

γ2ee = −δv(0, 0)
(
= E

(
e1
S

)2
ψ′′ ( e1

S

))
.

The formulas in the brackets are for the case of ψ sufficiently smooth and appropri-
ately integrable. We do not give formulas for the case of a piecewise linear ψ as they
are rather complicated in general case. According to the assumptions St. 1 – 3 all
these quantities are finite. Note that λtv(0, 0) = γ1+γ2e and λvv(0, 0) = γ1e+γ2ee.
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Theorem 2. If X.1-4 and St. 1 – 3 hold, then

(2.6) E sup
(t,u)∈T

∣∣∣Mn(t, u)− γ2

2 tTWc,nt

− (γ2e+γ1)u tT

n

n∑
i=1

ci xi − (γ2ee+γ1e)u
2

2n

n∑
i=1

ci

∣∣∣ = o(1),

where Wc,n was defined in Theorem 1.

Remark 1. Note that if
∑n

i=1 ci = 0, the last term (corresponding to small per-
turbations in scale) on the left-hand side of (2.6) vanishes. If assumption Sym (of
symmetry) is satisfied, then γ2 = γ1e = γ2ee = 0 and even the second term on the
left-hand side of (2.6) disappears. Thus under assumption Sym Theorem 2 implies
that

(2.7)
n∑

i=1

ci ψ
(
e−un−1/2

(ei − tTxi√
n
)/S
)
−

n∑
i=1

ci ψ(ei/S) +
γ1 tT√

n

n∑
i=1

ci xi

= − tT√
n

n∑
i=1

ci xi

[
1
S ψ

′(ei/S)− γ1
]
− u√

n

n∑
i=1

ci
[
ei
S ψ

′(ei/S)
]

+ (γ2e+γ1)u tT

n

n∑
i=1

ci xi + op(1),

uniformly in (t, u) ∈ T .

3. Second order asymptotic representation of M-estimators

In Section 2 technical results on approximation of linear processes associated with
M -estimation in linear models were presented. One of the possible applications of
these results is deriving a two term von Mises expansion of M -estimators defined
in (1.2).

3.1. First order asymptotic representation (FOAR)

Deriving the second order asymptotic representation of a fixed scale M -estimator
is very straightforward provided one is allowed to substitute the parameter t in
the asymptotic expansion (2.4) with

√
n(β̂n − β). To justify this substitution the

estimator β̂n has to be
√
n-root consistent, that is

√
n(β̂n − β) = Op(1). That is

guaranteed by the following two assumptions:

Fix. 4 (St.4) The function h(t) = E ρ(e1 − t) (or h(t) = E ρ( e1−t
S )) has a unique

minimum at t = 0, that is for every δ > 0: inf |t|>δ h(t) > h(0).

XX.2 V = limn→∞ Vn, where Vn = 1
n

∑n
i=1 xi x

T
i and V is a positive definite

p× p matrix.

With the help of Fix. 4, XX.2 and Theorem 1 which implies

(3.1) sup
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

xi [ψ(ei − tTxi√
n
)− ψ(ei)] + γ1Vnt

∣∣∣∣∣ = op(1),
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one can use the technique of the proof of Theorem 5.5.1 of Jurečková and Sen [14]

to show that there exists a root β̂n of system of equations (1.2) such that

(3.2)
√
n(β̂n − β) = Op(1).

Now inserting
√
n(β̂n −β) for the parameter t in (3.1) gives the first order asymp-

totic representation (1.3).

3.1.1. FOAR for a studentized M-estimator

To be able to be as explicit as possible we will concentrate on models (1.1) that
include an intercept, that is xi1 = 1 for i = 1, . . . , n. Let us also assume the scale
estimator Sn to be

√
n-consistent, that is there exists a finite positive constant S

such that

(3.3)
√
n(Sn

S − 1) = Op(1).

Similarly as for a fixed scale M -estimator one can derive the first order asymptotic
representation

(3.4)
√
n(β̂n − β) =

V−1
n

γ1
√
n

n∑
i=1

xi ψ
(
ei
S

)
− γ1e

γ1

√
n(Sn

S − 1)u1 + op(1),

where u1 = (1, 0, . . . , 0)T ∈ Rp and γ1, γ1e are defined in (2.5) of Section 2.2.

Note that the FOAR of the slope part of β̂n does not depend on the asymptotic
distribution of the scale estimator Sn. This holds true also for the intercept provided
the assumption of symmetry Sym is satisfied, which implies γ1e = 0.

3.2. Second order asymptotic representation (SOAR)

3.2.1. SOAR for a fixed-scale M-estimator

For our convenience let us restate expansion (2.4) for the vector case. For l = 1, . . . , p
put Wnl = 1

n

∑n
i=1 xli xix

T
i and let Wn be a bilinear form from Rp × Rp to Rp

given by

Wn(t, s) = (tTWn1 s, . . . , t
TWnp s)

T.

Corollary 1. Assume XX.1 and Fix. 1 – 3, then it holds uniformly in t ∈ T

(3.5)
n∑

i=1

xi ψ(ei − tTxi√
n
)−

n∑
i=1

xi ψ(ei) + γ1
√
nVn t

= − tT√
n

n∑
i=1

xi x
T
i [ψ

′(ei)− γ1] +
γ2

2 Wn(t, t) + op(1).

The proof follows by applying Theorem 1 to each of the coordinate separately.

As the estimator β̂n satisfies (3.2),
√
n(β̂n−β) can be substituted for t in (3.5).

The first order asymptotic representation (1.3) and some algebraic manipulations
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yield

(3.6)
√
n(β̂n − β)− V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei)

= − 1√
n

{
V−1

n

γ1
√
n

n∑
i=1

xi x
T
i [ψ

′(ei)− γ1]

}{
V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei)

}

+
γ2 V−1

n

2 γ1
√
n
Wn

(
V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei),
V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei)

)
+ op(

1√
n
).

If the symmetry assumption Sym is satisfied, then the second term on the right-
hand side vanishes and both factors in the first term are asymptotically normal
as well as asymptotically independent. This is in agreement with the results of
Jurečková and Sen [13] where the asymptotic distribution of the second term in the
von Mises expansion is shown to be a product of two normal distributions.

3.2.2. SOAR for a studentized M-estimator

If
√
n-consistency of Sn as expressed by (3.3) holds and assumptions St.1-4 and

XX.1-2 are satisfied, one can proceed very similarly as for the fixed scale M -
estimators. Informally speaking, the second order asymptotic representation for stu-
dentizedM -estimators may be found by substituting

√
n(β̂n−β) for t,

√
n log(Sn

S )
for u and xi for ci in (2.7). But as the resulting expression is rather long, we
will write it down only when the assumption of symmetry Sym holds. After some
algebra we get

(3.7)
√
n(β̂n − β)− V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei/S)

= − 1√
n

{
V−1

n

γ1
√
n

n∑
i=1

xi x
T
i [ψ

′(ei/S)− γ1]

}{
V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei/S)

}

− 1√
n

{
√
n(Sn

S − 1)
V−1

n

γ1
√
n

n∑
i=1

xi

[
ei
S ψ

′(ei/S)
]}

+ γ2e+γ1

γ1
√
n

√
n(Sn

S − 1)

{
V−1

n

γ1
√
n

n∑
i=1

xi ψ(ei/S)

}
+ op(

1√
n
).

Inspecting (3.7) it may be of interest to note that although the first order asymp-
totic distribution of a studentized M -estimator of the slope parameters does not
depend on the asymptotic distribution of Sn, the second order distribution does,
even if the assumption Sym is satisfied. Thus when excluding artificial or patho-
logical examples, the studentizedM -estimator cannot be asymptotically equivalent
of second order with an R-estimator or a fixed scale M -estimator.

4. Conclusions

We have presented a way how to derive a second order asymptotic representation
of anM -estimator in a linear model with fixed carriers. This representation may be
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used e. g. to compare the M -estimator β̂n with another estimator that is asymp-

totically equivalent to β̂n. This may be for example a one-step M -estimator (see
e. g. Welsh and Ronchetti [19]) or an appropriate R-estimator (see Hušková and
Jurečková [8] and Jurečková [10]). For instance, it is well known that if ψ(x) is pro-
portional to (F (x)− 1

2 ), then the fixed-scale M -estimator is asymptotically equiv-
alent to an R-estimator based on the Wilcoxon scores. Our results can be used for
a finer comparison of those estimators. The second order asymptotic results also
proved to be useful when investigating ‘Rao Score type’ confidence interval, see
Omelka [17].
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