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Preface

The development of the theory of probability metrics – a branch of probability
theory – began with the study of problems related to limit theorems in probability
theory. In general, the applicability of limit theorems stems from the fact that they
can be viewed as an approximation to a given stochastic model and, consequently,
can be accepted as an approximate substitute. The key question that arises in
adopting the approximate model is the magnitude of the error that must be accepted.
Because the theory of probability metrics studies the problem of measuring dis-
tances between random quantities or stochastic processes, it can be used to address
the key question of how good the approximate substitute is for the stochastic model
under consideration. Moreover, it provides the fundamental principles for building
probability metrics – the means of measuring such distances.

The theory of probability metrics has been applied and has become an important
tool for studying a wide range of fields outside of probability theory such as
statistics, queueing theory, engineering, physics, chemistry, information theory,
economics, and finance. The principal reason is that because distances are not
influenced by the particular stochastic model under consideration, the theory of
probability metrics provides some universal principles that can be used to deal with
certain kinds of large-scale stochastic models found in these fields.

The first driving force behind the development of the theory of probability
metrics was Andrei N. Kolmogorov and his group. It was Kolmogorov who stated
that every approximation problem has its own distance measure in which the
problem can be solved in a most natural way. Kolmogorov also contended that
without estimates of the rate of convergence in the central limit theorem (CLT) (and
similar limit theorems such as the functional limit theorem and the max-stable limit
theorem), limit theorems provide very limited information. An example worked
out by Y.V. Prokhorov and his students is as follows. Regardless of how slowly
a function f .n/ > 0, n D 1; : : :, decays to zero, there exists a corresponding
distribution function F.x/ with finite variance and mean zero, for which the CLT is
valid at a rate slower than f .n/. In other words, without estimates for convergence
in the CLT, such a theorem is meaningless because the convergence to the normal
law of the normalized sum of independent, identically distributed random variables
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viii Preface

with distribution function F.x/ can be slower than any given rate f .n/ ! 0. The
problems associated with finding the appropriate rate of convergence invoked a
variety of probability distances in which the speed of convergence (i.e., convergence
rate) was estimated. This included the works of Yurii V. Prokhorov, Vladimir V.
Sazonov, Vladimir M. Zolotarev, Vygantas Paulauskas, Vladimir V. Senatov, and
others.

The second driving force in the development of the theory of probability metrics
was mass-transportation problems and duality theorems. This started with the work
of Gaspard Monge in the eighteenth century and Leonid V. Kantorovich in the 1940s
– for which he was awarded the Nobel Prize in Economics in 1975 – on optimal mass
transportation, leading to the birth of linear programming. In mathematical terms,
Kantorovich’s result on mass transportation can be formulated in the following
metric way. Given the marginal distributions of two probability measures P and Q
on a general (separable) metric space .U; d/, what is the minimal expected value –
referred to as �.P;Q/ or the Kantorovich metric – of a distance d.X; Y / over
the set of all probability measures on the product space U � U with marginal
distributions PX D P and PY D Q? If the measures P and Q are discrete,
then this is the classic transportation problem in linear programming. If U is
the real line, then �.P;Q/ is known as the Gini statistical index of dissimilarity
formulated by Corrado Gini. The Kantorovich problem has been used in many
fields of science – most notably statistical physics, information theory, statistics,
and probability theory. The fundamental work in this field was done by Leonid V.
Kantorovich, Johannes H. B. Kemperman, Hans G. Kellerer, Richard M. Dudley,
Ludger Rüschendorf, Volker Strassen, Vladimir L. Levin, and others. Kantorovich-
type duality theorems established the main relationships between metrics in the
space of random variables and metrics in the space of probability laws/distributions.
The unifying work on those two directions was done by V. M. Zolotarev and his
students.

In this book, we concentrate on four specialized research directions in the theory
of probability metrics, as well as applications to different problems of probability
theory. These include:

• Description of the basic structure of probability metrics,
• Analysis of the topologies in the space of probability measures generated by

different types of probability metrics,
• Characterization of the ideal metrics for a given problem, and
• Investigation of the main relationships between different types of probability

metrics.

Our presentation in this book is provided in a general form, although specific
cases are considered as they arise in the process of finding supplementary bounds or
in applications to important special cases.

The target audience for this book is graduate students in the areas of functional
analysis, geometry, mathematical programming, probability, statistics, stochastic
analysis, and measure theory. It may be partially used as a source of material for
lectures for students in probability and statistics. As noted earlier in this preface,
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the theory of probability metrics has been applied to fields outside of probability
theory such as engineering, physics, chemistry, information theory, economics, and
finance. Specialists in these areas will find the book to be a useful reference to gain
a greater understanding of this specialized area and its potential application.

New York, USA Svetlozar T. Rachev
Prague, Czech Republic Lev B. Klebanov
Singapore Stoyan V. Stoyanov
Nice, France Frank J. Fabozzi
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Chapter 1
Main Directions in the Theory of Probability
Metrics

1.1 Introduction

Increasingly, the demands of various real-world applications in the sciences,
engineering, and business have resulted in the creation of new, more complicated
probability models. In the construction and evaluation of these models, model
builders have drawn on well-developed limit theorems in probability theory and
the theory of random processes. The study of limit theorems in general spaces and
a number of other questions in probability theory make it necessary to introduce
functionals – defined on either classes of probability distributions or classes of
random elements – and to evaluate their nearness in one or another probabilistic
sense. Thus various metrics have appeared including the well-known Kolmogorov
(uniform) metric, Lp metrics, the Prokhorov metric, and the metric of convergence
in probability (Ky Fan metric). We discuss these measures and others in the chapters
that follow.

1.2 Method of Metric Distances and Theory of Probability
Metrics

The use of metrics in many problems in probability theory is connected with the
following fundamental question: is the proposed stochastic model a satisfactory
approximation to the real model, and if so, within what limits? To answer this
question, an investigation of the qualitative and quantitative stability of a proposed
stochastic model is required. Analysis of quantitative stability assumes the use of
metrics as measures of distances or deviations. The main idea of the method of
metric distances (MMD) – developed by Vladmir M. Zolotarev and his students to
solve stability problems – is reduced to the following two problems.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
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2 1 Main Directions in the Theory of Probability Metrics

Problem 1.2.1 (Choice of ideal metrics). Find the most appropriate (i.e., ideal)
metrics for the stability problem under consideration and then solve the problem in
terms of these ideal metrics.

Problem 1.2.2 (Comparisons of metrics). If the solution of the stability problem
must be written in terms of other metrics, then solve the problem of comparing these
metrics with the chosen (i.e., ideal) metrics.

Unlike Problem 1.2.1, Problem 1.2.2 does not depend on the specific stochastic
model under consideration. Thus, the independent solution of Problem 1.2.2 allows
its application in any particular situation. Moreover, by addressing the two foregoing
problems, a clear understanding of the specific regularities that form the stability
effect emerges.

Questions concerning the bounds within which stochastic models can be applied
(as in all probabilistic limit theorems) can only be answered by investigation of
qualitative and quantitative stability. It is often convenient to express such stability
in terms of a metric. The theory of probability metrics (TPM) was developed to
address this. That is, TPM was developed to address Problems 1.2.1 and 1.2.2,
thus providing a framework for the MMD. Figure 1.1 summarizes the problems
concerning MMD and TPM.

1.3 Probability Metrics Defined

The term probability metric, or p. metric, means simply a semimetric in a space
of random variables (taking values in some separable metric space). In probability
theory, sample spaces are usually not fixed, and one is interested in those metrics
whose values depend on the joint distributions of the pairs of random variables. Each
such metric can be viewed as a function defined on the set of probability measures
on the product of two copies of a probability space. Complications connected with
the question of the existence of pairs of random variables on a given space with
given probability laws can be easily avoided. Fixing the marginal distributions of
the probability measure on the product space, one can find the infimum of the
values of our function on the class of all measures with the given marginals. Under
some regularity conditions, such an infimum is a metric on the class of probability
distributions, and in some concrete cases (e.g., for the L1 distance in the space
of random variables – Kantorovich’s theorem; for the Ky Fan metric – Strassen–
Dudley’s theorem; for the indicator metric – Dobrushin’s theorem) were found
earlier [giving, respectively, the Kantorovich (or Wasserstein) metric, the Prokhorov
metric, and the total variation distance].
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Theory of probability metrics (TPM)

Ideal metrics problem

Characterizations of
the “ideal” (suitable,
natural) metrics w.r.t.
the specific character
of the given approxi-
mating problem.

Classification of p.
metrics

Description of the ba-
sic metric and topo-
logical structures of p.
metrics.

Comparison of metrics

Analysis of the met-
ric and topological
relationships between
different classes of p.
metrics.

First stage of MMD

Solution of the stabil-
ity problem in terms
of approximate met-
rics.

Second stage of MMD

Transition from the
initial appropriate
metrics to the met-
ric required (w.r.t. the
final solution).

Methods of metric distances (MMD)

Fig. 1.1 Theory of probability metrics as a necessary tool to investigate the method of metric
distances

1.4 Main Directions in the Theory of Probability Metrics

The necessary classification of the set of p. metrics is naturally carried out from
the point of view of a metric structure and generating topologies. That is why the
following two research directions arise:

Direction 1. Description of basic structures of p. metrics.

Direction 2. Analysis of topologies in space of probability measures generated by
different types of p. metrics; such an analysis can be carried out with the help of
convergence criteria for different metrics.

At the same time, more specialized research directions arise. Namely:

Direction 3. Characterization of ideal metrics for a given problem.

Direction 4. Investigations of main relationships between different types of p.
metrics.
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In this book, all four directions are covered as well as applications to different
problems in probability theory. Much attention is paid to the possibility of giving
equivalent definitions of p. metrics (e.g., in direct and dual terms and in terms of the
Hausdorff metric for sets). Indeed, in concrete applications of p. metrics, the use of
different equivalent variants of the definitions in different steps of the proof is often
a decisive factor.

One of the main classes of metrics considered in this book is the class of minimal
metrics, an idea that goes back to the work of Kantorovich in the 1940s dealing
with transportation problems in linear programming. Such metrics have been found
independently by many authors in several fields of probability theory (e.g., Markov
processes, statistical physics).

Another useful class of metrics studied in this book is the class of ideal metrics
that satisfy the following properties:

1. �.Pc;Qc/ � jcjr�.P;Q/ for all c 2 Œ�C;C �; c 6D 0,
2. �.P1 �Q;P2 �Q/ � �.P1; P2/,

where Pc.A/ WD P..1=c/A/ for any Borel set A on a Banach space U and where �
denotes convolution. This class is convenient for the study of functionals of sums
of independent random variables, giving nearest bounds of the distance to limit
distributions.

The presentation we provide in this book is given in a general form, although
specific cases are considered as they arise in the process of finding supplementary
bounds or in applications to important special cases.

1.5 Overview of the Book

The book is divided into five parts. In Part I, we set forth general topics in the TPM.
Following the definition of a probability metric in Chap. 2, different examples of
probability metrics are provided and the application of the Kolmogorov metric in
mathematical statistics is discussed. Then the axiomatic construction of probability
metrics is defined. There is also a discussion of an interesting property about the
Kolmogorov metric, a property that is used to prove biasedness in the classic
Kolmogorov test. More definitions and examples are provided in Chap. 3, where
primary, simple, and compound distances and minimal and maximal distances
and norms are provided and motivated. The introduction and motivation of three
classifications of probability metrics according to their metric structure, as well
as examples of probability metrics belonging to a particular structural group, are
explained in Chap. 4. The generic properties of the structural groups and the links
between them are also covered in the chapter.

In Part II, we concern ourselves with the study of the dual and explicit represen-
tations of minimal distances and norms, as well as the topologies that these metric
structures induce in the space of probability measures. We do so by examining
further the concepts of primary, simple, and compound distances, in particular
focusing on their relationship to each other. The Kantorovich and the Kantorovich–
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Rubinstein problems are introduced and illustrated in a one-dimensional and
multidimensional setting in Chap. 5. These problems – more commonly referred
to as the mass transportation and mass transshipment problems, respectively –
are abstract formulations of optimization problems. Although the applications
are important in areas such as job assignments, classification problems, and best
allocation policy, our purpose for covering them in this book is due to their link to
the TPM. In particular, an application leading to an explicit representation for a class
of minimal norms is provided. Continuing with our coverage of Kantorovich and
the Kantorovich–Rubinstein functionals in Chap. 6, we look at the conditions under
which there is equality and inequalities between these two functionals. Because
these two functionals generate minimal distances (Kantorovich functional) and
minimal norms (Kantorovich–Rubinstein functional), the relationship between the
two can be quantified, allowing us to provide criteria for convergence, compactness,
and completeness of probability measures in probability spaces, as well as to
analyze the problem of uniformity between these two functionals. The discussions in
Chaps. 5 and 6 demonstrate that the notion of minimal distance represents the main
relationship between compound and simple distances. Our focus in Chap. 7 is on the
notion of K-minimal metrics, and we describe their general properties and provide
representations with respect to several particular metrics such as the Lévy metric
and the Kolmogorov metric. The relationship between the multidimensional Kan-
torovich theorem and the work by Strassen on minimal probabilistic functionals is
also covered. In Chap. 8, we discuss the relationship between minimal and maximal
distances, comparing them to the corresponding dual representations of the minimal
metric and minimal norm, providing closed-form solutions for some special cases
and studying the topographical structures of minimal distances and minimal norms.
The general relations between compound and primary probability distances, which
are similar to the relations between compound and simple probability distances, are
the subject of Chap. 9.

The application of minimal probability distances is the subject of the five chapters
in Part III. Chapter 10 contains definitions, properties, and some applications of
moment distances. These distances are connected to the property of definiteness
of the classic problem of moments, and one of them satisfies an inequality that is
stronger than the triangle inequality. In Chap. 11, we begin with a discussion of the
convergence criteria in terms of a simple metric between characteristic functions,
assuming they are analytic. We then turn to providing estimates of a simple metric
between characteristic functions of two distributions in terms of moment-based
primary metrics and discussing the inverse problem of estimating moment-based
primary metrics in terms of a simple metric between characteristic functions.
In Chaps. 11 through 14, we then use our understanding of minimal distances
explained in Chap. 7 to demonstrate how the minimal structure is especially useful
in problems of approximations and stability of stochastic models. We explain
how to apply the topological structure of the space of laws generated by minimal
distance and minimal norm functionals in limit-type theorems, which provide weak
convergence together with convergence of moments. We study vague convergence in
Chap. 11, the Glivenko–Cantelli theorem in Chap. 12, queueing systems in Chap. 13,
and optimal quality in Chap. 14.
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Any concrete stochastic approximation problem requires an appropriate or
natural metric (e.g., topology, convergence, uniformities) having properties that
are helpful in solving the problem. If one needs to develop the solution to the
approximation problem in terms of other metrics (e.g., topology), then the transition
is carried out using general relationships between metrics (e.g., topologies). This
two-stage approach, described in Sect. 1.2 (selection of the appropriate metric,
which we labeled Problem 1.2.1, and comparison of metrics, labeled Problem 1.2.2)
is the basis of the TPM. In Part IV – Chaps. 15 through 20 – we determine the
structure of appropriate or, as we label it in this book, ideal probability distances
for various probabilistic problems. The fact that a certain metric is (or is not)
appropriate depends on the concrete approximation (or stability) problem we are
dealing with; that is, any particular approximation problem has its own “ideal”
probability distance (or distances) on which terms we can solve the problem in the
most “natural” way. In the opening chapter to this part of the book, Chap. 15, we
describe the notion of ideal probability metrics for summation of independent and
identically distributed random variables and provide examples of ideal probability
metrics. We then study the structure of such “ideal” metrics in various stochastic
approximation problems such as the convergence of random motions in Chap. 16,
the stability of characterizations of probability distributions in Chaps. 17 and 20,
stability in risk theory in Chap. 18, and the rate of convergence for the sums and
maxima of random variables in Chap. 19.

Part V is devoted to a class of distances – Euclidean-type distances. In this part
of the book, we provide definitions, properties, and applications of such distances.
The space of measures for these distances is isometric to a subset of a Hilbert space.
We give a description of all such metrics. Some of the distances appear to be ideal
with respect to additive operations on random vectors. Subclasses of the distances
are very useful to obtain a characterization of distributions and especially to recover
a distribution from its potential. All Euclidean-type distances are very useful for
constructing nonparametric, two-sample multidimensional tests. As background
material for the discussion in this part of the book, in Chap. 21 we introduce
the mathematical concepts of positive and negative definite kernels, describe their
properties, and provide theoretical results that characterize coarse embeddings in
a Hilbert space. Because kernel functions are central to the notion of potential
of probability measures, in Chap. 22 we introduce special classes of probability
metrics through negative definite kernel functions and show how, for strongly
negative definite kernels, a probability measure can be uniquely determined by its
potential. Moreover, the distance between probability measures can be bounded by
the distance between their potentials; that is, under some technical conditions, a
sequence of probability measures converges to a limit if and only if the sequence
of their potentials converges to the potential of the limiting probability measure.
Also as explained in Chap. 22, the problem of characterizing classes of probability
distributions can be reduced to the problem of recovering a measure from potential.
The problem of parameter estimation by the method of minimal distances and the
study of the properties of these estimators are the subject of Chap. 23. In Chap. 24,
we construct multidimensional statistical tests based on the theory of distances
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generated by negative definite kernels in the set of probability measures described in
Chap. 23. The connection between distances generated by negative definite kernels
and zonoids is the subject of Chap. 25. In Chap. 26, we discuss multidimensional
statistical tests of uniformity based on the theory of distances generated by negative
definite kernels and calculate the asymptotic distribution of these test statistics.



Part I
General Topics in the Theory of

Probability Metrics



Chapter 2
Probability Distances and Probability Metrics:
Definitions

The goals of this chapter are to:

• Provide examples of metrics in probability theory;
• Introduce formally the notions of a probability metric and a probability distance;
• Consider the general setting of random variables (RVs) defined on a given

probability space .�;A;Pr/ that can take values in a separable metric space U
in order to allow for a unified treatment of problems involving random elements
of a general nature;

• Consider the alternative setting of probability distances on the space of proba-
bility measures P2 defined on the �-algebras of Borel subsets of U 2 D U � U ,
where U is a separable metric space;

• Examine the equivalence of the notion of a probability distance on the space of
probability measures P2 and on the space of joint distributions LX2 generated by
pairs of RVs .X; Y / taking values in a separable metric space U .

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 2, © Springer Science+Business Media, LLC 2013

11



12 2 Probability Distances and Probability Metrics: Definitions

Notation introduced in this chapter:

Notation Description

EN Engineer’s metric
Xp Space of real-valued random variables with EjX jp < 1
� Uniform (Kolmogorov) metric
X D X.R/ Space of real-valued random variables
L Lévy metric
� Kantorovich metric
�p Lp -metric between distribution functions
K, K� Ky Fan metrics
Lp Lp -metric between random variables
MOMp Metric between pth moments
.S; �/ Metric space with metric �
R
n n-dimensional vector space

r.C1; C2/ Hausdorff metric (semimetric between sets)
s.F;G/ Skorokhod metric
K D K� Parameter of a distance space
H Class of Orlicz’s functions
�H Birnbaum–Orlicz distance
Kr Kruglov distance
.U; d/ Separable metric space with metric d
s.m.s. Separable metric space
Uk k-fold Cartesian product of U
Bk D Bk.U / Borel � -algebra on Uk

Pk D Pk.U / Space of probability laws on Bk
T˛;ˇ;:::;�P Marginal of P 2 Pk on coordinates ˛, ˇ, : : :, �
PrX Distribution of X
� Probability semidistance
X WD X.U / Set of U -valued RVs
LX2 WD LX2.U / Space of PrX;Y , X; Y 2 X.U /

u.m. Universally measurable
u.m.s.m.s. Universally measurable separable metric space

2.1 Introduction

Generally speaking, a functional that measures the distance between random
quantities is called a probability metric.1 In this chapter, we provide different
examples of probability metrics and discuss an application of the Kolmogorov

1Mostafaei and Kordnourie (2011) is a more recent general publication on probability metrics and
their applications.
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metric in mathematical statistics. Then we proceed with the axiomatic construction
of probability metrics on the space of probability measures defined on the twofold
Cartesian product of a separable metric space U . This definition induces by
restriction a probability metric on the space of joint distributions of random elements
defined on a probability space .�;A;Pr/ and taking values in the space U . Finally,
we demonstrate that under some fairly general conditions, the two constructions are
essentially the same.

2.2 Examples of Metrics in Probability Theory

Below is a list of various metrics commonly found in probability and statistics.

1. Engineer’s metric:

EN.X; Y / WD jE.X/� E.Y /j; X; Y 2 X1; (2.2.1)

where Xp is the space of all real-valued RVs) with EjX jp <1.
2. Uniform (or Kolmogorov) metric:

�.X; Y / WD supfjFX.x/ � FY .x/j W x 2 Rg; X; Y 2 X D X.R/; (2.2.2)

where FX is the distribution function (DF) of X , R D .�1;C1/, and X is the
space of all real-valued RVs.

3. Lévy metric:

L.X; Y / WD inff" > 0 W FX.x � "/� " � FY .x/ � FX.x C "/C "; 8x 2 Rg:
(2.2.3)

Remark 2.2.1. We see that � and L may actually be considered metrics on the
space of all distribution functions. However, this cannot be done for EN simply
because EN.X; Y / D 0 does not imply the coincidence of FX and FY , while
�.X; Y / D 0 ” L.X; Y / D 0 ” FX D FY . The Lévy metric metrizes
weak convergence (convergence in distribution) in the space F , whereas � is often
applied in the central limit theorem (CLT).2

4. Kantorovich metric:

�.X; Y / D
Z

R

jFX.x/ � FY .x/jdx; X; Y 2 X1:

2See Hennequin and Tortrat (1965).
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5. Lp-metrics between distribution functions:

�p.X; Y / WD
�Z 1

�1
jFX.t/ � FY .t/jpdt

�1=p

; p � 1; X; Y 2 X1: (2.2.4)

Remark 2.2.2. Clearly, � D �1. Moreover, we can extend the definition of �p when
p D 1 by setting �1 D �. One reason for this extension is the following dual
representation for 1 � p � 1:

�p.X; Y / D sup
f 2Fp

jEf .X/ �Ef .Y /j; X; Y 2 X1;

where Fp is the class of all measurable functions f with kf kq < 1. Here,
kf kq.1=p C 1=q D 1/ is defined, as usual, by3

kf kq WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�Z

jf jq
�1=q

; 1 � q <1;

ess sup
R

jf j; q D 1:

6. Ky Fan metrics:

K.X; Y / WD inff" > 0 W Pr.jX � Y j > "/ < "g; X; Y 2 X; (2.2.5)

and

K�.X; Y / WD E jX � Y j
1C jX � Y j : (2.2.6)

Both metrics metrize convergence in probability on X D X.R/, the space of
real RVs.4

7. Lp-metric:

Lp.X; Y / WD fEjX � Y jpg1=p; p � 1; X; Y 2 Xp: (2.2.7)

Remark 2.2.3. Define

mp.X/ WD fEjX jpg1=p; p > 1; X 2 Xp: (2.2.8)

and

MOMp.X; Y / WD jmp.X/�mp.Y /j; p � 1; X; Y 2 Xp: (2.2.9)

3The proof of this representation is given by (Dudley, 2002, p. 333) for the case p D 1.
4See Lukacs (1968, Chap. 3) and Dudley (1976, Theorem 3.5).
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Then we have, for X0;X1; : : : 2 Xp,

Lp.Xn;X0/! 0 ”
�

K.Xn;X0/! 0;

MOMp.Xn;X0/! 0
(2.2.10)

[see, e.g., Lukacs (1968, Chap. 3)].

Other probability metrics in common use include the discrepancy metric,
the Hellinger distance, the relative entropy metric, the separation distance metric, the
�2-distance, and the f -divergence metric. These probability metrics are summa-
rized in Gibbs and Su (2002).

All of the aforementioned (semi-)metrics on subsets of X may be divided into
three main groups: primary, simple, and compound (semi-)metrics. A metric � is
primary if �.X; Y / D 0 implies that certain moment characteristics of X and Y
agree. As examples, we have EN (2.2.1) and MOMp (2.2.9). For these metrics

EN.X; Y / D 0 ” EX D EY;
MOMp.X; Y / D 0 ” mp.X/ D mp.Y /: (2.2.11)

A metric � is simple if

�.X; Y / D 0 ” FX D FY : (2.2.12)

Examples are � (2.2.2), L (2.2.3), and �p (2.2.4). The third group, the compound
(semi-)metrics, has the property

�.X; Y / D 0 ” Pr.X D Y / D 1: (2.2.13)

Some examples are K (2.2.5), K� (2.2.6), and Lp (2.2.7).
Later on, precise definitions of these classes will be given as well as a study of

the relationships between them. Now we will begin with a common definition of
probability metric that will include the types mentioned previously.

2.3 Kolmogorov Metric: A Property and an Application

In this section, we consider a paradoxical property of the Kolmogorov metric and
an application in the area of mathematical statistics.

Consider the metric space F of all one-dimensional distributions metrized by the
Kolmogorov distance

�.F;G/ D sup
x2R
jF.x/ �G.x/j; (2.3.1)

which we define now in terms of the elements of F rather than in terms of RVs as
in the definition in (2.2.2). Denote by B.F; r/ an open ball of radius r > 0 centered
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1.2Fig. 2.1 The ball B.Fo; ı˛/.
The solid line is the center of
the ball and the dashed line
represents the boundary of
the ball

at F in the metric space F with �-distance and let Fo be a continuous distribution
function (DF). The following result holds.

Theorem 2.3.1. For any r > 0 there exists a continuous DF Fr such that

B.Fr ; r/ � B.Fo; r/ (2.3.2)

and

B.Fr ; r/ ¤ B.Fo; r/:

Proof. Let us show that there are Fo and Fa such that (2.3.2) holds. Without loss of
generality we may choose

Fo.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x < 0;

x; 0 � x < 1;
1; x � 1:

For a given (but fixed) n define ı˛ such that (2.3.1) is true.
Figure 2.1 provides an illustration of the ballB.Fo; ı˛/. The boundary of the ball

is shown by means of a dashed line, the center of the ball is the solid line, and the
radius ı˛ equals 0.2.

Consider now Fa defined in the following way:

Fa.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; x < ı˛=2;

2x � ı˛; ı˛=2 � x < ı˛;
x; ı˛ � x < 1 � ı˛;
2x � .1 � ı˛/; 1 � ı˛ � x < 1 � ı˛=2;
1; x � 1 � ı˛=2:



2.3 Kolmogorov Metric: A Property and an Application 17

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2Fig. 2.2 The ball B.Fa; ı˛/.
The solid line is the center of
the ball and the dashed line
represents the boundary of
the ball

An illustration is given in Fig. 2.2. Comparing Figs. 2.1 and 2.2, we can see that

B.Fa; ı˛/ � B.Fo; ı˛/

and
B.Fa; ı˛/ ¤ B.Fo; ı˛/: ut

We demonstrate that this property leads to biasedness of the Kolmogorov
goodness-of-fit tests. Suppose that X1; : : : ; Xn are independent and identically
distributed (i.i.d.) RVs (observations) with (unknown) DF F . Based on the observa-
tions, one needs to test the hypothesis

Ho W F D Fo;
where Fo is a fixed DF.

Definition 2.3.1. For a specific alternative hypothesis, a test is said to be unbiased
if the probability of rejecting the null hypothesis

(a) Is greater than or equal to the significance level ˛ when the alternative is true
and

(b) Is less than or equal to the significance level when the null hypothesis is true.

A test is said to be biased for an alternative hypothesis if it is not unbiased for this
alternative.

Let d be a distance in the space of all probability distributions on the real line.
Below we consider a test with the following properties:

1. We reject the null hypothesisHo if

d.Gn; Fo/ > ı˛;
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where Gn is an empirical DF constructed on the basis of the observations
X1; : : : ; Xn and ı˛ satisfies

Prfd.Gn; Fo/ > ı˛g � ˛: (2.3.3)

2. The test is distribution free, i.e.,

PrF fd.Gn; Fo/ > ı˛g

does not depend on continuous DF F .

We refer to such tests as distance-based tests.

Theorem 2.3.2. Suppose that for some ˛ > 0 there exists a continuous DF Fa such
that

B.Fa; ı˛/ � B.Fo; ı˛/ (2.3.4)

and
PrFofGn 2 B.Fo; ı˛/ n B.Fa; ı˛/g > 0: (2.3.5)

Then the distance-based test is biased for the alternative Fa.

Proof. Let X1; : : : ; Xn be a sample from Fa and Gn be the corresponding empirical
DF. Then

PrFofGn 2 B.Fo; ı˛/g � 1� ˛:
In view of (2.3.4) and (2.3.5), we have

PrFofGn 2 B.Fo; ı˛/g > 1 � ˛;

that is,
PrFofd.Gn; Fo/ > ı˛g < ˛: ut

Now let us consider the Kolmogorov goodness-of-fit test. Clearly, it is a distance-
based test for the distance

d.F;G/ D �.F;G/:

From Theorem 2.3.1 it follows that (2.3.4) holds. The relation (2.3.5) is almost
obvious. From Theorem 2.3.2 it follows that the Kolmogorov goodness-of-fit test is
biased.

Remark 2.3.1. The biasedness of the Kolmogorov goodness-of-fit test is a known
fact.5 The same property holds for the Cramér–von Mises goodness-of-fit test.6

5See Massey (1950) and Thompson (1979).
6See Thompson (1966).
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2.4 Metric and Semimetric Spaces, Distance,
and Semidistance Spaces

Let us begin by recalling the notions of metric and semimetric spaces. Generaliza-
tions of these notions will be needed in the theory of probability metrics (TPM).

Definition 2.4.1. A set S WD .S; �/ is said to be a metric space with the metric �
if � is a mapping from the product S � S to Œ0;1/ having the following properties
for each x; y; z 2 S :

(1) Identity property: �.x; y/ D 0 ” x D y;
(2) Symmetry: �.x; y/ D �.y; x/;
(3) Triangle inequality: �.x; y/ � �.x; z/C �.z; y/.

Here are some well-known examples of metric spaces:

(a) The n-dimensional vector space R
n endowed with the metric �.x; y/ WD kx �

ykp , where

kxkp WD
 

n
X

iD1
jxi jp

!min.1;1=p/

; x D .x1; : : : ; xn/ 2 R
n; 0 < � <1;

kxk1 WD sup
1�i�n

jxi j:

(b) The Hausdorff metric between closed sets

r.C1; C2/ D max

(

sup
x12C1

inf
x22C2

�.x1; x2/; sup
x22C2

inf
x12C1

�.x1; x2/

)

;

where the Ci are closed sets in a bounded metric space .S; �/.7

(c) The H -metric. Let D.R/ be the space of all bounded functions f W R ! R,
continuous from the right and having limits from the left, f .x�/ D limt"x f .t/.
For any f 2 D.R/ define the graph 	f as the union of the sets f.x; y/ W x 2
R; y D f .x/g and f.x; y/ W x 2 R; y D f .x�/g. The H -metric H.f; g/ in
D.R/ is defined by the Hausdorff distance between the corresponding graphs,
H.f; g/ WD r.	f ; 	g/. Note that in the space F.R/ of distribution functions,
H metrizes the same convergence as the Skorokhod metric:

7See Hausdorff (1949).
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s.F;G/ D inf

(

" > 0 W there exists a strictly increasing continuous

function 
 W R! R such that 
.R/ D R; sup
t2R
j
.t/ � t j < ";

and sup
t2R
jF.
.t// �G.t/j < "

)

:

Moreover,H -convergence in F implies convergence in distributions (the weak
convergence). Clearly, �-convergence [see (2.2.2)] impliesH -convergence.8

If the identity property in Definition 2.4.1 is weakened by changing prop-
erty (1) to

x D y ) �.x; y/ D 0; .1�/

then S is said to be a semimetric space (or pseudometric space) and � a semimetric
(or pseudometric) in S . For example, the Hausdorff metric r is only semimetric in
the space of all Borel subsets of a bounded metric space .S; �/.

Obviously, in the space of real numbers, EN [see (2.2.1)] is the usual uniform
metric on the real line R [i.e., EN.a; b/ WD ja � bj; a; b 2 R]. For p � 0,
define Fp as the space of all distribution functionsF with

R 0

�1 F.x/pdxCR1
0
.1�

F.x//pdx < 1. The distribution function space F D F0 can be considered a
metric space with metrics � and L, while �p.1 � p < 1/ is a metric in Fp . The
Ky Fan metrics [see (2.2.5), (2.2.6)], resp. Lp-metric [see (2.2.7)], may be viewed
as semimetrics in X (resp. X1) as well as metrics in the space of all Pr-equivalence
classes

eX WD fY 2 X W Pr.Y D X/ D 1g; 8X 2 X Œresp. Xp�: (2.4.1)

EN, MOMp , �p , and Lp can take infinite values in X, so we will assume, in the
next generalization of the notion of metric, that � may take infinite values; at the
same time, we will also extend the notion of triangle inequality.

Definition 2.4.2. The set S is called a distance space with distance � and parameter
K D K� if � is a function from S � S to Œ0;1�, K � 1, and for each x; y; z 2 S
the identity property (1) and the symmetry property (2) hold, as does the following
version of the triangle inequality: .3�/ (Triangle inequality with parameter K)

�.x; y/ � KŒ�.x; z/C �.z; y/�: (2.4.2)

If, in addition, the identity property (1) is changed to .1�/, then S is called a
semidistance space and � is called a semidistance (with parameter K�).

Here and in what follows we will distinguish the notions metric and distance,
using metric only in the case of distance with parameter K D 1, taking finite or
infinite values.

8A more detailed analysis of the metric H will be given in Sect. 4.2.
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Remark 2.4.1. It is not difficult to check that each distance � generates a topology
in S with a basis of open sets B.a; r/ WD fx 2 S I �.x; a/ < rg, 2 S , r > 0. We
know, of course, that every metric space is normal and that every separable metric
space has a countable basis. In much the same way, it is easily shown that the same is
true for distance space. Hence, by Urysohn’s metrization theorem,9 every separable
distance space is metrizable.

Actually, distance spaces have been used in functional analysis for a long time,
as shown by the following examples.

Example 2.4.1. Let H be the class of all nondecreasing continuous functions H
from Œ0;1/ onto Œ0;1/, which vanish at the origin and satisfy Orlicz’s condition

KH WD sup
t>0

H.2t/

H.t/
<1: (2.4.3)

Thene� WD H.�/ is a distance in S for each metric � in S and K
e� D KH .

Example 2.4.2. The Birnbaum–Orlicz space LH.H 2 H/ consists of all integrable
functions on Œ0; 1� endowed with the Birnbaum–Orlicz distance10

�H .f1; f2/ WD
Z 1

0

H.jf1.x/ � f2.x/j/dx: (2.4.4)

Obviously, K�H D KH .

Example 2.4.3. Similarly to (2.4.4), Kruglov (1973) introduced the following
distance in the space of distribution functions:

Kr.F;G/ D
Z

�.F.x/ �G.x//dx; (2.4.5)

where the function � satisfies the following conditions:

(a) � is even and strictly increasing on Œ0;1/, �.0/ D 0;
(b) For any x and y and some fixed A � 1

�.x C y/ � A.�.x/C �.y//: (2.4.6)

Obviously, KKr D A.

9See Dunford and Schwartz (1988, Theorem 1.6.19).
10Birnbaum and Orliz (1931) and Dunford and Schwartz (1988, p. 400)
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2.5 Definitions of Probability Distance and Probability
Metric

Let U be a separable metric space (s.m.s.) with metric d , U k D U � � � � �
k times

U the

k-fold Cartesian product of U , and Pk D Pk.U / the space of all probability
measures defined on the �-algebra Bk D Bk.U / of Borel subsets of U k . We will use
the terms probability measure and law interchangeably. For any set f˛; ˇ; : : : ; �g �
f1; 2; : : : ; kg and for any P 2 Pk let us define the marginal of P on the coordinates
˛; ˇ; : : : ; � by T˛;ˇ;:::;�P . For example, for any Borel subsets A and B of U ,
T1P.A/ D P.A � U � � � � � U /, T1;3P.A � B/ D P.A � U � B � � � � � U /.
Let B be the operator in U 2 defined by B.x; y/ WD .y; x/ (x; y 2 U ). All metrics
�.X; Y / cited in Sect. 2.2 [see (2.2.1)–(2.2.9)] are completely determined by the
joint distributions PrX;Y (PrX;Y 2 P2.R/) of the RVs X; Y 2 X.R/.

In the next definition we will introduce the notion of probability distance, and
thus we will describe the primary, simple, and compound metrics in a uniform way.
Moreover, the space where the RVs X and Y take values will be extended to U , an
arbitrary s.m.s.

Definition 2.5.1. A mapping � defined on P2 and taking values in the extended
interval Œ0;1� is said to be a probability semidistance with parameter K WD K� � 1
(or p. semidistance for short) in P2 if it possesses the following three properties:

(1) (Identity property (ID)). If P 2 P2 and P.[x2U f.x; x/g/ D 1, then �.P / D 0;
(2) (Symmetry (SYM)). If P 2 P2, then �.P ı B�1/ D �.P /;
(3) (Triangle inequality (TI)). If P13; P1 2; P2 3 2 P2 and there exists a lawQ 2 P3

such that the following “consistency” condition holds:

T13Q D P13; T1 2Q D P12; T2 3Q D P23; (2.5.1)

then
�.P13/ � KŒ�.P12/C �.P23/�:

If K D 1, then � is said to be a p. semimetric. If we strengthen the condition
ID to
eIeD: if P 2 P2, then

P.[f.x; x/ W x 2 U g/ D 1 ” �.P / D 0;

then we say that � is a probability distance with parameter K D K� � 1 (or
p. distance for short).

Definition 2.5.1 acquires a visual form in terms of RVs, namely: let X WD X.U /
be the set of all RVs on a given probability space .�;A;Pr/ taking values in
.U;B1/. By LX2 WD LX2.U / WD LX2.U I�;A;Pr/ we denote the space of all
joint distributions PrX;Y generated by the pairs X; Y 2 X. Since LX2 � P2, the
notion of a p. (semi-)distance is naturally defined on LX2. Considering � on the
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subset LX2, we will put

�.X; Y / WD �.PrX;Y /

and call � a p. semidistance on X. If � is a p. distance, then we use the phrase
p. distance on X. Each p. semidistance � on X is a semidistance on X in the sense
of Definition 2.4.2.11 Then the relationships ID,eIeD, SYM, and TI have simple
“metrical” interpretations:

ID.�/ Pr.X D Y / D 1) �.X; Y / D 0;
eIeD.�/ Pr.X D Y / D 1 ” �.X; Y / D 0;
SYM.�/ �.X; Y / D �.Y;X/;
TI.�/ �.X;Z/ < KŒ�.X;Z/C �.Z; Y /�:

Definition 2.5.2. A mapping � W LX2 ! Œ0;1� is said to be a p. semidistance on
X (resp. distance) with parameter K WD K� � 1 if �.X; Y / D �.PrX;Y / satisfies
the properties ID.�/ [resp.eIeD.�/], SYM.�/, and TI.�/ for all RVs X; Y;Z 2 X.U /.

Example 2.5.1. Let H 2 H (Example 2.4.1) and .U; d/ be an s.m.s. Then
LH.X; Y / D EH.d.Z; V // is a p. distance in X.U /. Clearly, LH is finite in the
subspace of all X with finite moment EH.d.X; a// for some a 2 U . Kruglov’s
distance Kr.X; Y / WD Kr.FX ; FY / is a p. semidistance in X.R/.

Examples of p. metrics in X.U / are the Ky Fan metric

K.X; Y / WD inff" > 0 W Pr.d.X; Y / > "/ < "g; X; Y 2 X.U /; (2.5.2)

and the Lp-metrics (0 � p � 1)

Lp.X; Y / WD fEdp.X; Y /gmin.1;1=p/; 0 < p <1; (2.5.3)

L1.X; Y / WD ess supd.X; Y / WD inff" > 0 W Pr.d.X; Y / > "/ D 0g; (2.5.4)

L0.X; Y / WD EI fX; Y g WD Pr.X; Y /: (2.5.5)

The engineer’s metric EN, Kolmogorov metric �, Kantorovitch metric �, and the
Lévy metric L (Sect. 2.2) are p. semimetrics in X.R/.

Remark 2.5.1. Unlike Definition 2.5.2, Definition 2.5.1 is free of the choice of the
initial probability space and depends solely on the structure of the metric space U .
The main reason for considering not arbitrary but separable metric spaces .U; d/ is
that we need the measurability of the metric d to connect the metric structure of U
with that of X.U /. In particular, the measurability of d enables us to handle, in a
well-defined way, probability metrics such as the Ky Fan metric K and Lp-metrics.

11If we replace “semidistance” with “distance,” then the statement continues to hold.
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Note that L0 does not depend on the metric d , so one can define L0 on X.U /, where
U is an arbitrary measurable space, while in (2.5.2)–(2.5.4) we need d.X; Y / to be
an RV. Thus the natural class of spaces appropriate for our investigation is the class
of s.m.s.

2.6 Universally Measurable Separable Metric Spaces

What follows is an exposition of some basic results regarding universally measur-
able separable metric spaces (u.m.s.m.s.). As we will see, the notion of u.m.s.m.s.
plays an important role in TPM.

Definition 2.6.1. Let P be a Borel probability measure on a metric space .U; d/.
We say that P is tight if for each " > 0 there is a compact K � U with P.K/ �
1 � ".12

Definition 2.6.2. An s.m.s. .U; d/ is universally measurable (u.m.) if every Borel
probability measure on U is tight.

Definition 2.6.3. An s.m.s. .U; d/ is Polish if it is topologically complete [i.e.,
there is a topologically equivalent metric e such that .U; e/ is complete]. Here the
topological equivalence of d and e simply means that for any x; x1; x2; : : : in U

d.xn; x/! 0 ” e.xn; x/! 0:

Theorem 2.6.1. Every Borel subset of a Polish space is u.m.

Proof. See Billingsley (1968, Theorem 1.4), Cohn (1980, Proposition 8.1.10), and
Dudley (2002, p. 391). ut
Remark 2.6.1. Theorem 2.6.1 provides us with many examples of u.m. spaces but
does not exhaust this class. The topological characterization of u.m.s.m.s. is a well-
known open problem.13

In his famous paper on measure theory, Lebesgue (1905) claimed that the
projection of any Borel subset of R2 onto R is a Borel set. As noted by Souslin
and his teacher Lusin (1930), this is in fact not true. As a result of the investigations
surrounding this discovery, a theory of such projections (the so-called analytic or
Souslin sets) was developed. Although not a Borel set, such a projection was shown
to be Lebesgue-measurable; in fact it is u.m. This train of thought leads to the
following definition.

12See (Dudley, 2002, Sect. 11.5).
13See Billingsley (1968, Appendix III, p. 234)
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Definition 2.6.4. Let S be a Polish space, and suppose that f is a measurable
function mapping S onto an s.m.s. U . In this case, we say that U is analytic.

Theorem 2.6.2. Every analytic s.m.s. is u.m.

Proof. See Cohn (1980, Theorem 8.6.13, p. 294) and Dudley (2002, Theorem
13.2.6). ut
Example 2.6.1. Let Q be the set of rational numbers with the usual topology. Since
Q is a Borel subset of the Polish space R, then Q is u.m.; however, Q is not itself a
Polish space.

Example 2.6.2. In any uncountable Polish space, there are analytic (hence u.m.)
non-Borel sets.14

Example 2.6.3. Let C Œ0; 1� be the space of continuous functions f W Œ0; 1� ! R

under the uniform norm. LetE � C Œ0; 1� be the set of f that fail to be differentiable
at some t 2 Œ0; 1�. Then a theorem of Mazukiewicz (1936) says thatE is an analytic,
non-Borel subset of C Œ0; 1�. In particular,E is u.m.

Recall again the notion of Hausdorff metric r WD r� in the space of all subsets of
a given metric space .S; �/

r.A;B/ D max

(

sup
x2A

inf
y2B �.x; y/; sup

y2B
inf
x2A �.x; y/

)

D inff" > 0 W A" 	 B;B" 	 Ag; (2.6.1)

where A" is the open "-neighborhood of A, A" D fx W d.x:A/ < "g.
As we noticed in the space 2S of all subsets A ¤ ; of S, the Hausdorff distance

r is actually only a semidistance. However, in the space C D C.S/ of all closed
nonempty subsets, r is a metric (Definition 2.4.1) and takes on both finite and infinite
values, and if S is a bounded set, then r is a finite metric on C.

Theorem 2.6.3. Let .S; �/ be a metric space, and let .C.S/; r/ be the space
described previously. If .S; �/ is separable (or complete, or totally bounded), then
.C.S/; r/ is separable (or complete, or totally bounded).

Proof. See Hausdorff (1949, Sect. 29) and Kuratowski (1969, Sects. 21 and 23). ut
Example 2.6.4. Let S D Œ0; 1�, and let � be the usual metric on S . Let R be the set
of all finite complex-valued Borel measures m on S such that the Fourier transform

bm.t/ D
Z 1

0

exp.iut/m.du/

14See Cohn (1980, Corollary 8.2.17) and Dudley (2002, Proposition 13.2.5).
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vanishes at t D ˙1. Let M be the class of sets E 2 C.S/ such that there is some
m 2 R concentrated onE . Then M is an analytic, non-Borel subset of .C.S/; r�/.15

We seek a characterization of u.m.s.m.s. in terms of their Borel structure.

Definition 2.6.5. A measurable spaceM with �-algebra M is standard if there is a
topology  onM such that .M; / is a compact metric space and the Borel �-algebra
generated by  coincides with M.

An s.m.s. is standard if it is a Borel subset of its completion.16 Obviously, every
Borel subset of a Polish space is standard.

Definition 2.6.6. Say that two s.m.s. U and V are called Borel-isomorphic if there
is a one-to-one correspondence f of U onto V such that B 2 B.U / if and only if
f .B/ 2 B.V /.

Theorem 2.6.4. Two standard s.m.s. are Borel-isomorphic if and only if they have
the same cardinality.

Proof. See Cohn (1980, Theorem 8.3.6) and Dudley (2002, Theorem 13.1.1). ut
Theorem 2.6.5. Let U be an s.m.s. The following are equivalent:

(1) U is u.m.
(2) For each Borel probability m on U there is a standard set S 2 B.U / such that

m.S/ D 1.

Proof. 1) 2: Let m be a law on U . Choose compactKn � U with m.Kn/ � 1 �
1=n. Put S D [n�1Kn. ThenS is �-compact and, hence, standard. Thus,m.S/ D 1,
as desired.
2( 1: Let m be a law on U . Choose a standard set S 2 B.U / with m.S/ D 1.

Let U be the completion of U . Then S is Borel in its completion S , which is closed
in U . Thus, S is Borel in U . It follows from Theorem 2.6.1 that

1 D m.S/ D supfm.K/ W K compactg:

Thus, every law m on U is tight, so that U is u.m. ut
Corollary 2.6.1. Let .U; d/ and .V; e/ be Borel-isomorphic separable metric
spaces. If .U; d/ is u.m., then so is .V; e/.

Proof. Suppose that m is a law on V . Define a law n on U by n.A/ D m.f .A//,
where f W U ! V is a Borel isomorphism. Since U is u.m., there is a standard
set � U with n.S/ D 1. Then f .S/ is a standard subset of V with m.f .S// D 1.
Thus, by Theorem 2.6.5, V is u.m. ut

15See Kaufman (1984).
16See Dudley (2002, p. 347).
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The following result, which is in essence due to Blackwell (1956), will be used
in an important way later on.17

Theorem 2.6.6. Let U be a u.m. separable metric space, and suppose that Pr is a
probability measure on U . If A is a countably generated sub-�-algebra of B.U /,
then there is a real-valued function P.Bjx/, B 2 B.U /, x 2 U , such that

(1) For each fixed B 2 B.U / the mapping x ! P.Bjx/ is an A-measurable
function on U ;

(2) For each fixed x 2 U the set function B ! P.Bjx/ is a law on U ;
(3) For each A 2 A and B 2 B.U / we have

R

A P.Bjx/ Pr.dx/ D Pr.A\ B/;
(4) There is a set N 2 A with Pr.N / D 0 such that P.Bjx/ D 1 whenever

x 2 U �N .

Proof. Choose a sequence F1; F2; : : : of sets in B.U / that generates B.U / and is
such that a subsequence generates A. We will prove that there exists a metric e on U
such that .U; d/ and .U; e/ are Borel-isomorphic and for which the sets F1; F2; : : :
are clopen, i.e., open and closed. ut
Claim. If .U; d/ is an s.m.s. and A1;A2; : : : is a sequence of Borel subsets of U ,
then there is some metric e on U such that

(i) .U; e/ is an s.m.s. isometric with a closed subset of R;
(ii) A1;A2; : : : are clopen subsets of .U; e/;

(iii) .U; d/ and .U; e/ are Borel-isomorphic (Definition 2.6.6).

Proof of claim. Let B1;B2; : : : be a countable base for the topology of .U; d/.
Define sets C1; C2; : : : by C2n�1 D An and C2n D Bn (n D 1; 2; : : : ) and f W U !
R by f .x/ D P1

nD1 2ICn.x/=3n. Then f is a Borel isomorphism of .U; d/ onto
f .U / � K , whereK is the Cantor set

K WD
( 1
X

nD1
˛n=3

n W ˛n take value 0 or 2

)

:

Define the metric e by e.x; y/ D jf .x/ � f .y/j, so that .U; e/ is isometric with
f .U / � K . Then An D f �1fx 2 KI x.n/ D 2g, where x.n/ is the nth digit in the
ternary expansion of x 2 K . Thus, An is clopen in .U; e/, as required.

Now .U; e/ is (Corollary 2.6.1) u.m., so there are compact sets K1 � K2 �
� � � with Pr.Kn/ ! 1. Let G1 and G2 be the (countable) algebras generated by
the sequences F1; F2; : : : and F1; F2; : : : , K1;K2; : : : , respectively. Then define
P1.Bjx/ so that (1) and (3) are satisfied for B 2 G2. Since G2 is countable, there is
some set N 2 A with Pr.N / D 0 and such that for x 2 N ,

(a) P1.�jx/ is a finitely additive probability on G2,
(b) P1.Ajx/ D 1 for A 2 A \ G2 and x 2 A,
(c) P1.Knjx/! 1 as n!1.

17See Theorem 3.3.1 in Sect. 3.3.
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Claim. For x 2 N the set function B ! P1.Bjx/ is countably additive on G1.

Proof of claim. Suppose that H1;H2; : : : are disjoint sets in G1 whose union is U .
Since theHn are clopen and theKn are compact in .U; e/, there is, for each n, some
M D M.n/ such thatKn � H1[H2[� � �[HM . Finite additivity of P1.x; �/ on G2
yields, for x … N , P1.Knjx/ � PM

iD1 P1.Hi jx/ � P1
iD1 P1.Hi jx/. Let n ! 1,

and apply (c) to obtain
P1

iD1.P1.Hi jx/ D 1, as required.
In view of the claim, for each x 2 N we define B ! P.Bjx/ as the unique

countably additive extension of P1 from G1 to B.U /. For x 2 N put P.Bjx/ D
Pr.B/. Clearly, (2) holds. Now the class of sets in B.U / for which (1) and (3) hold
is a monotone class containing G1, and so coincides with B.U /.

Claim. Condition (4) holds.

Proof of claim. Suppose that A 2 A and x 2 A � N . Let A0 be the A-atom
containing x. Then A0 � A, and there is a sequence A1;A2; : : : in G1 such that
A0 D A1 \ A2 \ � � � . From (b), P.Anjx/ D 1 for n � 1, so that P.A0jx/ D 1, as
desired. ut
Corollary 2.6.2. Let U and V be u.m.s.m.s., and let Pr be a law on U � V . Then
there is a function P W B.V / � U ! R such that

(1) For each fixed B 2 B.V / the mapping x ! P.Bjx/ is measurable on U ;
(2) For each fixed x 2 U the set function B ! P.Bjx/ is a law on V ;
(3) For each A 2 B.U / and B 2 B.V / we have

Z

A
P.Bjx/P1.dx/ D Pr.A \ B/;

where P1 is the marginal of Pr on U .

Proof. Apply the preceding theorem with A the �-algebra of rectangles A � U for
A 2 B.U /. ut

2.7 Equivalence of the Notions of Probability (Semi-)
distance on P2 and on X

As we saw in Sect. 2.5, every p. (semi-)distance on P2 induces (by restriction) a
p. (semi-)distance on X. It remains to be seen whether every p. (semi-)distance on
X arises in this way. This will certainly be the case whenever

LX2.U; .�;A;Pr// D P2.U /: (2.7.1)

Note that the left member depends not only on the structure of .U; d/ but also on
the underlying probability space.
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In this section we will prove the following facts.

1. There is some probability space .�;A;Pr/ such that (2.7.1) holds for every
separable metric space U .

2. If U is a separable metric space, then (2.7.1) holds for every nonatomic
probability space .�;A;Pr/ if and only if U is u.m.

We need a few preliminaries.

Definition 2.7.1. 18 If .�;A;Pr/ is a probability space, then we say that A 2 A
is an atom if Pr.A/ > 0 and Pr.B/ D 0 or Pr.A/ for each measurable B � A. A
probability space is nonatomic if it has no atoms.

Lemma 2.7.1. 19 Let v be a law on a complete s.m.s. .U; d/ and suppose that
.�;A;Pr/ is a nonatomic probability space. Then there is a U -valued RV X with
distribution L.X/ D v.

Proof. Denote by d� the following metric onU 2: d�.x; y/ WD d.x1; x2/Cd.y1; y2/
for x D .x1; y1/ and y D .x2; y2/. For each k there is a partition of U 2 comprising
nonempty Borel sets fAik W i D 1; 2; : : : g with diam.Aik/ < 1=k and such that Aik
is a subset of some Aj;k�1.

Since .�;A;Pr/ is nonatomic, we see that for each C 2 A and for each sequence
pi of nonnegative numbers such that p1Cp2C� � � D Pr.C/ there exists a partitioning
C1; C2; : : : of C such that Pr.Ci / D pi , i D 1; 2; : : : 20

Therefore, there exist partitions fBik W i D 1; 2; : : : g � A, k D 1; 2; : : : , such
that Bik � Bjk�1 for some j D j.i/ and Pr.Bik/ D v.Aik/ for all i; k. For each
pair .i; j / let us pick a point xik 2 Aik and define U 2-valued Xk.!/ D xik for
! 2 Bik . Then d�.XkCm.!/;Xk.!// < 1=k, m D 1; 2; : : : , and since .U 2; d�/ is
a complete space, there exists the limit X.!/ D limk!1Xk.!/. Thus

d�.X.!/;Xk.!// � lim
m!1Œd

�.XkCm.!/;X.!//C d�.XkCm.!/;Xk.!//� � 1

k
:

Let Pk WD PrXk and P � WD PrX . Further, our aim is to show that P � D v. For each
closed subset A � U

Pk.A/ D Pr.Xk 2 A/ � Pr.X 2 A1=k/ D P �.A1=k/ � Pk.A2=k/; (2.7.2)

where A1=k is the open 1=k-neighborhood of A. On the other hand,

Pk.A/ D
X

fPk.xik/ W xik 2 Ag D
X

fPr.Bik/ W xik 2 Ag

18See Loeve (1963, p. 99) and Dudley (2002, p. 82).
19See Berkes and Phillip (1979).
20See, for example, Loeve (1963, p. 99).
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D
X

fv.Aik/ W xik 2 Ag �
X

fv.Aik \A1=k/ W xik 2 Ag

� v.A1=k/ �
X

fv.Aik/ W xik 2 A2=kg � Pk.A2=k/: (2.7.3)

Further, we can estimate the value Pk.A2=k/ in the same way as in (2.7.2) and
(2.7.3), and thus we get the inequalities

P �.A1=k/ � Pk.A2=k/ � P �.A2=k/; (2.7.4)

v.A1=k/ � Pk.A2=k/ � v.A3=k/: (2.7.5)

Since v.A1=k/ tends to v.A/ with k !1 for each closed set A and, analogously,
P �.A1=k/! P �.A/ as k !1, then by (2.7.4) and (2.7.5) we obtain the equalities

P �.A/ D lim
k!1Pk.A

2=k/ D v.A/

for each closed A, and hence P � D v. ut
Theorem 2.7.1. There is a probability space .�;A;Pr/ such that for every s.m.s.
U and every Borel probability � on U there is an RV X W �! U with L.X/ D �.

Proof. Define .�;A;Pr/ as the measure-theoretic (von Neumann) product21 of the
probability spaces .C;B.C /; v/, where C is some nonempty subset of R with Borel
�-algebra B.C / and v is some Borel probability on .C;B.C //.

Now, given an s.m.s. U , there is some set C � R Borel-isomorphic with U
(Claim 2.6 in Theorem 2.6.6). Let f W C ! U supply the isomorphism. If � is a
Borel probability on U , then let v be a probability on C such that f .v/ WD vf �1 D
�. Define X W � ! U as X D f ı � , where � W � ! C is a projection onto the
factor .C;B.C /; v/. Then L.X/ D �, as desired. ut
Remark 2.7.1. The preceding result establishes claim (i) made at the beginning of
the section. It provides one way of ensuring (2.7.1): simply insist that all RVs be
defined on a “superprobability space” as in Theorem 2.7.1. We make this assumption
throughout the sequel.

The next theorem extends the Berkes and Phillips’s lemma 2.7.1 to the case of
u.m.s.m.s. U .

Theorem 2.7.2. Let U be an s.m.s. The following statements are equivalent.

(1) U is u.m.
(2) If .�;A;Pr/ is a nonatomic probability space, then for every Borel probability

P on U there is an RV X W �! U with law L.X/ D P .

21See Hewitt and Stromberg (1965, Theorems 22.7 and 22.8, p. 432–133).
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Proof. 1) 2: Since U is u.m., there is some standard set S 2 B.U / with P.S/ D
1 (Theorem 2.6.5). Now there is a Borel isomorphism f mapping S onto a Borel
subset B of R (Theorem 2.6.4). Then f .P / WD P ıf �1 is a Borel probability on R.
Thus, there is an RV g W �! R with L.g/ D f .P / and g.�/ � B (Lemma 2.7.1
with .U; d/ D .R; j � j//. We may assume that g.�/ � B since Pr.g�1.B// D 1.
Define x W �! U by x.!/ D f �1.g.!//. Then L.X/ D v, as claimed.
2) 1: Now suppose that v is a Borel probability on U . Consider an RV X W

�!U on the (nonatomic) probability space ..0; 1/;B.0; 1/; 
/ with L.X/ D v.
Then range.X/ is an analytic subset of U with v�.range.X// D 1. Since range.X/
is u.m. (Theorem 2.6.2), there is some standard set S � range.X/ with P.S/ D 1.
This follows from Theorem 2.6.5. The same theorem shows that U is u.m. ut
Remark 2.7.2. If U is a u.m.s.m.s., we operate under the assumption that all U -
valued RVs are defined on a nonatomic probability space. Then (2.7.1) will be valid.
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Chapter 3
Primary, Simple, and Compound Probability
Distances and Minimal and Maximal Distances
and Norms

The goals of this chapter are to:

• Formally introduce primary, simple, and compound probability distances;
• Provide examples of and study the relationship between primary, simple, and

compound distances;
• Introduce the notions of minimal probability distance, minimal norms, comini-

mal functionals, and moment functions, which are needed in the study of primary,
simple, and compound probability distances.

Notation introduced in this chapter:

Notation Description

�h Primary distance generated by a probability semidistance � and mapping h
Q�h Primary h-minimal distance

miP D m
.p/
i P Marginal moment of order p

MH;p.g/ Primary distance generated by g;H; p
M.g/ Primary metric generated by g
� Discrete primary metric
EN.X; Y IH/ Engineer’s distance
EN.X; Y Ip/ Lp -engineer’s metric
w! Weak convergence of laws
b� Minimal distance w.r.t. �
`H Minimal distance w.r.t. LH (Kantorovich distance)
`p Minimal metric w.r.t. Lp
� Total variation metric
F�1 Generalized inverse of distribution function F
� Prokhorov metric
�� Parametric version of Prokhorov metric
�H Prokhorov distance
�H Birnbaum–Orlicz distance
�H Birnbaum–Orlicz uniform distance
��.P1; P2; ˛/ Cominimal metric functional w.r.t. the probability distances � and �

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 3, © Springer Science+Business Media, LLC 2013
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Notation Description

��.P1; P2; ˛/ Simple semidistance with K�� D 2K�K�

�c.m/ Total cost of transportation of masses under plan m
ı

�
c Minimal norm w.r.t. �c
�F Zolotarev semimetric
M.X; Y / Moment metric
LH H-average compound distance
KFH Ky Fan distance
K� Parametric family of Ky Fan metrics
‚H Birnbaum–Orlicz compound distance
‚p Birnbaum–Orlicz compound metric
RH Birnbaum–Orlicz compound average distance
M� Maximal distance w.r.t. �
.s/
� �-upper bound with marginal sum fixed
.m;p/
� �-upper bound with fixed pth marginal moments
�

.m;p/
�-lower bound with fixed pth marginal moments

� �-upper bound with fixed sum of pth marginal moments
� �-lower bound with fixed sum of pth marginal moments

3.1 Introduction

The goal of Chap. 2 was to introduce the concept of measuring distances between
random quantities and to provide examples of probability metrics. While we treated
the general theory of probability metrics in detail, we did not provide much theoret-
ical background on the distinction between different classes of probability metrics.
We only noted that three classes of probability (semi-)metrics are distinguished –
primary, simple, and compound. The goal of this chapter is to revisit these ideas but
at a more advanced level.

When delving into the details of primary, simple, and compound probability
metrics, we also consider a few related objects. They include cominimal functionals,
minimal norms, minimal metrics, and moment functions. In the theory, these
related functionals are used to establish upper and lower bounds to given families
of probability metrics. They also help specify under what conditions a given
probability metric is finite.

3.2 Primary Distances and Primary Metrics

Let h W P1 ! R
J be a mapping, where P1 D P1.U /1 is the set of Borel probability

measures (laws) for some s.m.s. .U; d/ and J is some index set. This function h

1At times, when no confusion can arise, we suppress the subscript in P1 and use P instead.
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induces a partition of P2 D P2.U / (the set of laws on U 2) into equivalence classes
for the relation

P
h� Q ” h.P1/ D h.Q1/ and h.P2/ D h.Q2/;

where Pi W D TiP; Qi WD TiQ; (3.2.1)

in which Pi and Qi (i D 1; 2) are the i th marginals of P and Q, respectively. Let
� be a probability semidistance (which we denote hereafter as p. semidistance) on
P2 with parameter K� (Definition 2.5.1 in Chap. 2), such that � is constant on the
equivalence classes of �; that is,

P
h� Q ” �.P / D �.Q/: (3.2.2)

Definition 3.2.1. If the p. semidistance � D �h satisfies relation (3.2.2), then we
call � a primary distance (with parameter K�), which we abbreviate as p. distance.
If K� D 1 and � assumes only finite values, we say that � is a primary metric.

Obviously, by relation (3.2.2), any primary distance is completely determined by
the pair of marginal characteristics .hP1; hP2/. In the case of primary distance �,
we will write �.hP1; hP2/ WD �.P /, and hence � may be viewed as a distance in
the image space h.P1/ � R

J , i.e., the following metric properties hold:

ID.1/ hP1 D hP2 ” �.hP1; hP2/ D 0I
SYM.1/ �.hP1; hP2/ D �.hP2; hP1/I
TI.1/ if the following marginal conditions are fulfilled W

a D h.T1P .1// D h.T1P .2//;

b D h.T2P .2// D h.T1P .3//; and

c D h.T2P .1// D h.T2P .3// for some law P .1/; P .2/; P .3/ 2 P2;

then �.a; c/ � K�Œ�.a; b/C �.b; c/�:

The notion of primary semidistance �h becomes easier to interpret assuming that
a probability space .�;A;Pr/ with property (2.7.1) is fixed (Remark 2.7.1). In this
case �h is a usual distance (Definition 2.4.1) in the space

h.X/ WD fhX WD h Prx; where X 2 X.U /g; (3.2.3)

and thus the metric properties of � D �h take the simplest form (Definition 2.4.2):
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ID.1�/ hX D hY ” �.hX; hY / D 0;
SYM.2�/ �.hX; hY / D �.hY; hX/;

TI.3�/ �.hX; hZ/ � K�Œ�.hX; hY /C �.hY; hZ/�:

Further, we will consider several examples of primary distances and metrics.

Example 3.2.1 (Primary minimal distances). Each p. semidistance � and each
mapping h W P1 ! R

J determine a functional e�h W h.P1/ � h.P1/ ! Œ0;1�
defined by the following equality:

e�h.a1; a2/ WD inff�.P / W hPi � ai ; i D 1; 2g (3.2.4)

(where Pi are the marginals of P ) for any pair .a1; a2/ 2 h.P1/ � h.P1/.
Subsequently, we will prove (Chap. 5) that e�h is a primary distance for different

special functions h and spaces U .

Definition 3.2.2. The functional e�h is called a primary h-minimal distance with
respect to the p. semidistance �.

Open Problem 3.2.1. In general it is not true that the metric properties of a p.
distance � imply that e�h is a distance. The following two examples illustrate this
fact (see further Chap. 9).

(a) Let U D R, d.x; y/ D jx � yj. Consider the p. metric

�.X; Y / D X0.X; Y / D Pr.X ¤ Y / X; Y 2 X.R/

and the mapping h W X.R/ ! Œ0;1� given by hX D EjX j. Then (see further
Sect. 9.2 in Chap. 9)

e�h.a; b/ D inffPr.X ¤ Y / W EjX j D a; EjY j D bg D 0

for all a � 0 and b � 0. Hence in this case the metric properties of � imply
only semimetric properties fore�h.

(b) Now let � be defined as in (a) but h W X.R/ ! Œ0;1� � Œ0;1� be defined by
hX D .EjX j; EX2/. Then

�h..a1; a2/; .b1; b2// D inffPr.X ¤ Y / W EjX j D a1;
EX2 D a2;EjY j D b1; EY 2 D b2g; (3.2.5)

where e�h is not even a p. semidistance since the triangle inequality TI .3�/ is
not valid.
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With respect to this, the following open problem arises: under which condition
on the space U , p. distance � on X.U /, and transformation h W X.U /! RJ is the
primary h-minimal distancee�h a primary p. distance in h.X/?

As we will see subsequently (Sect. 9.2), Examples 3.2.2–3.2.5 below of primary
distances are special cases of primary h-minimal distances.

Example 3.2.2. Let H 2 H (Example 2.4.1), and let 0 be a fixed point of an s.m.s.
.U; d/. For each P 2 P2 with marginals Pi D TiP , let m1P and m2P denote the
marginal moments of order p > 0,

miP WD m.p/
i P WD

�Z

U

dp.x; 0/Pi .dx/

�p0

p > 0 p0 WD min.1; 1=p/:

Then

MH;p.P / WDMH;p.m1P;m2P / WD H.jm1P �m2P j/ (3.2.6)

is a primary distance. One can also consider MH;p as a distance in the space

m.p/.P1/ WD
(

m.p/ WD
�Z

U

dp.x; a/P.dx/

�p0

<1; P 2 P.U /
)

(3.2.7)

of momentsm.p/P of order p > 0. If H.t/ D t , then

M.P / WDMH;1.P / D
ˇ

ˇ

ˇ

ˇ

Z

U

d.x; 0/.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

is a primary metric in m.p/.P1/.

Example 3.2.3. Let g W Œ0;1�! R and H 2 H. Then

M.g/H;p.m1P;m2P / WD H.jg.m1P / � g.m2P /j/ (3.2.8)

is a primary distance in g ım.P1/ and

M.g/.m1P;m2P / WD jg.m1P / � g.m2P /j (3.2.9)

is a primary metric.
If U is a Banach space with norm k 	 k, then we define the primary distance

MH;p.g/ as follows:

MH;p.g/.m
.p/X;m.p/Y / WD H.jm.p/P �m.p/Y j/; (3.2.10)

where [see (2.2.8)] m.p/X is the p-th moment (norm) of X
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m.p/X WD fEkXkpgp0

:

By (3.2.9), MH;p.g/ may be viewed as a distance (Definition 2.4.2) in the space

g ım.X/ WD fg ım.X/ WDg.fEkXkpgp0

/; X2Xg p0Dmin.1; p�1/; X D X.U /

(3.2.11)

of moments g ı m.X/. If U is the real line R and g.t/ D H.t/ D t , where t �
0, then MH;p.m

.p/X;m.p/Y / is the usual deviation between moments m.p/X and
m.p/Y [see (2.2.9)].

Example 3.2.4. Let J be an index set (with arbitrary cardinality) and gi (i 2 J )
real functions on Œ0;1�, and for each P 2 P.U / define the set

hP WD fgi .mP /; i 2 J g: (3.2.12)

Further, for each P 2 P2.U / let us consider hP1 and hP2, where the Pi are the
marginals of P . Then

�.hP1; hP2/ D
�

0 if hP1 � hP2
1 otherwise

(3.2.13)

is a primary metric.

Example 3.2.5. Let U be the n-dimensional Euclidean space R
n, H 2 H. Define

the engineer’s distance

EN.X; Y IH/ WD H
 ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1
.EXi �EYi/

ˇ

ˇ

ˇ

ˇ

ˇ

!

; (3.2.14)

where X D .X1; : : : ; Xn/ and Y D .Y1; : : : ; Yn/ belong to the subset eX.Rn/ �
X.Rn/ of all n-dimensional random vectors that have integrable components. Then
EN.	; 	IH/ is a p. semidistance in eX.Rn/. Analogously, the Lp-engineer metric

EN.X; Y; p/ WD
"

n
X

iD1
jEX � EY jp

#min.1;1=p/

; p > 0; (3.2.15)

is a primary metric in eX.Rn/. In the case p D 1 and n D 1, the metric EN.	; 	Ip/
coincides with the engineer metric in X.R/ [see (2.2.1)].
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3.3 Simple Distances and Metrics: Cominimal Functionals
and Minimal Norms

Clearly, any primary distance �.P / .P 2 P2/ is completely determined by the pair
of marginal distributions Pi D TiP , where i D 1; 2, since the equality P1 D P2
implies hP1 D hP2 [see relations (3.2.1), (3.2.2), and Definition 3.2.1]. On the other
hand, if the mapping h is “rich enough,” then the opposite implication

hP1 D hP2 ) P1 D P2
takes place. The simplest example of such “rich” h W P.U / ! R

J is given by the
equalities

h.P / WD fP.C /; C 2 C; P 2 P.U /g; (3.3.1)

where J � C is the family of all closed nonempty subsets C � U . Another
example is

h.P / D
�

Pf WD
Z

U

f dP ; f 2 Cb.U /

�

; P 2 P.U /;

where Cb.U / is the set of all bounded continuous functions on U . Keeping in mind
these two examples we will define the notion of “simple” distance as a particular
case of primary distance with h given by equality (3.3.1).

Definition 3.3.1. The p. semidistance � is said to be a simple semidistance in P D
P.U / if for each P 2 P2

�.P / D 0( T1P D T2P:

If, in addition, � is a p. semimetric, then � will be called a simple semimetric. If the
converse implication .)/ also holds, then we say that � is simple distance. If, in
addition, � is a p. semimetric, then � will be called a simple metric.

Since the values of the simple distance �.P / depend only on the pair marginals
P1, P2, we will consider � as a functional on P1 � P1 and use the notation

�.P1; P2/ WD �.P1 � P2/ .P1; P2 2 P1/;

whereP1�P2 means the measure product of lawsP1 and P2. In this case, the metric
properties of � take the form (Definition 2.5.1) (for each P1, P2, P3 2 P)

ID.2/P1 D P2 ” �.P1; P2/ D 0;
SYM.2/�.P1; P2/ D �.P2; P1/;

TI.2/�.P1; P2/ � K�.�.P1; P2/C �.P2; P3//:
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Hence, the space P of laws P with a simple distance � is a distance space
(Definition 2.4.2). Clearly, each primary distance is a simple semidistance in P .
The Kolmogorov metric � (2.2.2), the Lévy metric L (2.2.3), and the �p-metrics
(2.2.4) are simple metrics in P.R/.

Let us consider a few more examples of simple metrics, which we will use
later on.

Example 3.3.1. Minimal distances

Definition 3.3.2. For a given p. semidistance � on P2 the functionalb� on P1 � P1
defined by the equality

b�.P1; P2/ WD inff�.P / W TiP D Pi ; i D 1; 2g; P1; P2 2 P1 (3.3.2)

is said to be a (simple) minimal (w.r.t. �) distance.

As we showed in Sect. 2.7 that, for a “rich enough” probability space, the space
P2 of all laws on U 2 coincides with the set of joint distributions PrX;Y of U -valued
random variables. For this reason,�.P / D �.PrX;Y / always holds for someX; Y 2
X.U /, and therefore (3.3.2) can be rewritten as follows:

b�.P1; P2/ D inff�.X; Y / W PrX D P1; PrY D P2g:

In this form, the equation is the definition of minimal metrics introduced by
Zolotarev (1976).

In the next theorem, we will consider the conditions on U that guaranteeb� to be

a simple metric. We use the notation
w�! to mean “weak convergence of laws.”2

Theorem 3.3.1. Let U be a u.m.s.m.s. (Definition 2.6.2) and let � be a p. semidis-
tance with parameter K�. Then b� is a simple semidistance with parameter K

b�
D

K�. Moreover, if � is a p. distance satisfying the “continuity” condition

P .n/ 2 P2; P .n/ w�! P 2 P2
�.P .n//! 0

)

) �.P / D 0;

thenb� is a simple distance with parameter K
b�
D K�.

Remark 3.3.1. The continuity condition is not restrictive; in fact, all p. distances we
will use satisfy this condition.

Remark 3.3.2. Clearly, if� is a p. semimetric, then, by Theorem 3.3.1,b� is a simple
semimetric.

Proof. ID.2/: If P1 2 P1, then we let X 2 X.U / have the distribution P1. Then, by
ID.�/ (Definition 2.5.2),

2See Billingsley (1999).
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b�.P1; P1/ � �.Pr.X;X// D 0:
Suppose now that � is a p. distance and the continuity condition holds.
If b�.P1; P2/ D 0, then there exists a sequence of laws P .n/ 2 P2 with fixed
marginals TiP .n/ D Pi .i D 1; 2/ such that �.P .n//! 0 as n!1. Since Pi is a
tight measure, then the sequence fP .n/; n � 1g is uniformly tight, i.e., for any " > 0
there exists a compact K" � U 2 such that P .n/.K"/ � 1 � " for all n � 1,3 Using
Prokhorov compactness criteria4 we choose a subsequence P .n0/ that weakly tends
to a law P 2 P2; hence, TiP D Pi and �.P / D 0. Since � is a p. distance, P is
concentrated on the diagonal x D y, and thus P1 D P2 as desired.

SYM.2/: Obvious.
TI.2/: Let P1, P2, P3 2 P1. For any " > 0 define a law P12 2 P2 with marginals
TiP12 D Pi (i D 1; 2) and a law P23 2 P2 with TiP23 D PiC1 (i D 1; 2)
such that b�.P1; P2/ � �.P12/ � " and b�.P2; P3/ � �.P23/ � ". Since U is
a u.m.s.m.s., there exist Markov kernels P 0.Ajz/ and P 00.Ajz/ defined by the
equalities

P12.A1 �A2/ WD
Z

A2

P 0.A1jz/P2.dz/; (3.3.3)

P23.A2 �A3/ WD
Z

A2

P 00.A3jz/P2.dz/ (3.3.4)

for all A1, A2, A3 2 B1 (Corollary 2.6.2). Then define a set function Q on the
algebra A of finite unions of Borel rectangles A1 � A2 �A3 by the equation

Q.A1 � A2 �A3/ WD
Z

A2

P 0.A1jz/P 00.A3jz/P2.dz/: (3.3.5)

It is easily checked that Q is countably additive on A and therefore extends to
a law on U 3. We use “Q” to represent this extension as well. The law Q has
the projections T12Q D P12, T23Q D P23. Since � is a p. semidistance with
parameter K D K�, we have

�.P1; P3/ � �.T13Q/ � KŒ�.P12/C �.P13/�
� KŒb�.P1; P2/Cb�.P2; P3/�C 2K":

Letting "! 0 we complete the proof of TI.2/. ut
As will be shown in Part II, all simple distances in the next examples are actually

simple minimal b� distances w.r.t. p. distances � that will be introduced in Sect. 3.4
(see further Examples 3.4.1–3.4.3).

3See Dudley (2002, Sect. 11.5).
4See, for instance, Billingsley (1999, Sect. 5).
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Example 3.3.2 (Kantorovich metric and Kantorovich distance). In Sect. 2.2, we
introduced the Kantorovich metric � and its “dual” representation

�.P1; P2/ D
Z C1

�1
jF1.x/ � F2.x/jdx

D sup

�ˇ

ˇ

ˇ

ˇ

Z

R

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

Wf WR! R; f 0 exists a.e. and jf 0j < 1 a.e.

�

;

where the Pi are laws on R with distribution functions (DFs) Fi and a finite first
absolute moment. From the preceding representation it also follows that

�.P1; P2/ D sup

(

ˇ

ˇ

ˇ

ˇ

Z

R

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f W R! R; f is (1, 1)-Lipschitz;

i.e.; jf .x/ � f .y/j � jx � yj8x; y 2 R

)

:

In this example, we will extend the definition of the foregoing simple p. metric of
the set P.U / of all laws on an s.m.s. .U; d/. For any ˛ 2 .0;1/ and ˇ 2 Œ0; 1�
define the Lipschitz function class

Lip˛ˇ WD ff W U ! R W jf .x/ � f .y/j � ˛dˇ.x; y/ 8x; y 2 U g (3.3.6)

with the convention

d0.x; y/ WD
�

1 if x ¤ y;
0 if x D y: (3.3.7)

Denote the set of all bounded functions f 2 Lip˛ˇ.U / by Lipb˛ˇ.U /. Let GH .U /
be the class of all pairs .f; g/ of functions that belong to the set

Lipb.U / WD
[

˛>0

Lip˛;1.U / (3.3.8)

and satisfy the inequality

f .x/C g.y/ � H.d.x; y//; 8x; y 2 U; (3.3.9)

where H is a convex function from H. Recall that H 2 H if H is a nondecreasing
continuous function from Œ0;1/ onto Œ0;1/ and vanishes at the origin and KH WD
supt>0 H.2t/=H.t/ <1. For any two laws P1 and P2 on an s.m.s. .U; d/ define

`H.P1; P2/ WD sup

�Z

U

f dP1 C
Z

U

gdP2 W .f; g/ 2 GH.U /
�

: (3.3.10)
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We will prove further that `H is a simple distance with K`H D KH in the space
of all lawsP with finite “H-moment,”

R

H.d.x; a//P.dx/ <1. The proof is based

on the representation of `H as a minimal distance `H D bLH (Corollary 5.3.2) w.r.t.
a p. distance (with KLH D KH ) LH.P / D

R

U2 H.d.x; y//P.dx; dy/ and then
an appeal to Theorem 3.3.1 proves that `H is a simple p. distance if .U; d/ is a
universally measurable s.m.s. In the case H.t/ D tp (1 < p <1), define

`p.P1; P2/ WD `H .P1; P2/1=p; 1 < p <1: (3.3.11)

In addition, for p 2 Œ0; 1� and p D 1 denote

`p.P1; P2/ WD sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f 2 Lipb1;p.U /

�

;

p 2 .0; 1�; P1; P2 2 P.U /; (3.3.12)

`0.P1 � P2/ WD
�ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f 2 Lip1;0.U /

�

D � .P1; P2/ WD sup
A2B1
jP1.A/� P2.A/j; (3.3.13)

`1.P1; P2/ WD inff" > 0 W P1.A/ � P2.A"/ 8A 2 B1g; (3.3.14)

where, as above, B1 D B.U / is the Borel �-algebra on an s.m.s. .U; d/, and A" WD
fx W d.x;A/ < "g.

For any 0 � p � 1, p D 1, `p is a simple metric in P.U /, which follows
immediately from the definition. To prove that `p is a p. metric (taking possibly
infinite values), one can use the equality

sup
A2B1

ŒP1.A/ � P2.A"/� D sup
A2B1

ŒP2.A/� P1.A"/�:

The equality `0 D � in (3.3.13) follows from the fact that both metrics are minimal
w.r.t. one and the same probability distanceL0.P / D P..x; y/ W x ¤ y/ (see further
Corollaries 6.2.1 and 7.5.2). We will prove also (Corollary 7.4.2) that `H D bLH ,
as a minimal distance w.r.t. LH defined previously, admits the Birnbaum–Orlicz
representation (Example 2.4.2)

`H .P1; P2/ D `H .F1; F2/ WD
Z 1

0

H.jF�1
1 .t/ � F�1

2 .t/j/dt (3.3.15)

in the case of U D R and d.x; y/ D jx � yj. In (3.3.15),

F�1
i .t/ WD supfx W Fi .x/ � tg (3.3.16)



44 3 Primary, Simple, and Compound Probability Distances: : :

is the (generalized) inverse of the DF Fi determined by Pi (i D 1; 2). Letting
H.t/ D t we claim that

`1.P1; P2/ D
Z 1

0

jF�1
1 .t/ � F�1

2 .t/jdt

D �.P1; P2/ WD
Z 1

�1
jF1.x/ � F2.x/jdx Pi 2 P.R/; i D 1; 2:

(3.3.17)

Remark 3.3.3. Here and in the rest of the book, for any simple semidistance � on
P.Rn/ we will use the following notations interchangeably:

� D �.P1; P2/; 8P1; P2 2 P.Rn/I
� D �.X1;X2/ WD �.PrX1;PrX2/; 8X1;X2 2 X.Rn/I
� D �.F1; F2/ WD �.P1; P2/; 8F1; F2 2 F.Rn/;

where PrXi is the distribution ofXi , Fi is the distribution function of Pi , and F.Rn/
stands for the class of distribution functions on R

n.

The `1-metric (3.3.17) is known as the average metric in F.R/ as well as the
first difference pseudomoment, and it is also denoted by �.5 A great contribution
in the investigation of `1-metric properties was made by Kantorovich (1942, 1948)
and Kantorovich and Akilov (1984, Chap. VIII). That is why the metric `1 is called
the Kantorovich metric. Considering `H as a generalization `1, we will call `H the
Kantorovich distance.

Example 3.3.3 (Prokhorov metric and Prokhorov distance). Prokhorov (1956)
introduced his famous metric

�.P1; P2/ WD inff" > 0 W P1.C / � P2.C "/C ";
P2.C / � P1.C "/C "; 8C 2 Cg; (3.3.18)

where C WD C.U / is the set of all nonempty closed subsets of a Polish space U and

C" WD fx W d.x; C / < "g: (3.3.19)

The metric � admits the following representations: for any laws P1 and P2 on an
s.m.s. .U; d/

�.P1; P2/ D inff" > 0 W P1.C / � P2.C "/C "; for any C 2 Cg

5See Zolotarev (1976).
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D inff" > 0 W P1.C / � P2.C "�/C "; for any C 2 Cg
D inff" > 0 W P1.A/ � P2.A"/C "; for any A 2 B1g; (3.3.20)

where
C"� D fx W d.x; C / < "g (3.3.21)

is the "-closed neighborhood of C .6

Let us introduce a parametric version of the Prokhorov metric:

��.P1; P2/ WD inff" > 0 W P1.C / � P2.C �"/C " for any C 2 Cg: (3.3.22)

The next lemma gives the main relationship between Prokhorov-type metrics and
the metrics `0 and `1 defined by equalities (3.3.13) and (3.3.14).

Lemma 3.3.1. For any P1, P2 2 P.U /

lim
�!0

��.P1; P2/ D � .P1; P2/ D `0.P1; P2/; (3.3.23)

lim
�!0

���.P1; P2/ D `1.P1; P2/:

Proof. For any fixed " > 0 the function A".�/ WD supfP1.C /� P2.C �"/ W C 2 Cg,
� � 0, is nonincreasing on " > 0, hence

��.P1; P2/ D inff" > 0 W A".�/ � "g D max
">0

min."; A".�//:

For any fixed " > 0, A".	/ is nonincreasing and

lim
�#0

A".�/ D A".0/ D sup
C2C

.P1.C / � P2.C // D sup
A2B.U /

.P1.A/ � P2.A//

D sup
A2B.U /

jP1.A/� P2.A/j DW � .P1; P2/:

Thus

lim
�!0

��.P1; P2/ D max
">0

min

�

"; lim
�!0

A".�/

�

D max
">0

min."; � .P1; P2// D � .P1; P2/:

Analogously, as �!1,

���.P1; P2/ D inff�" > 0 W A".�/ � "g

6See, for example, Dudley (1976, Theorem 8.1).
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D inff" > 0 W A".1/ � "=�g ! inff" > 0 W A".1/ � 0g
D `1.P1; P2/: ut

As a generalization of �� we define the Prokhorov distance

�H.P1; P2/ WD inffH."/ > 0 W P1.A"/ � P2.A/CH."/; 8A 2 B1g (3.3.24)

for any strictly increasing functionH 2 H. From (3.3.24),

�.P1; P2/ D inffı > 0 W P1.A/ � P2.AH�1.ı//C ı for any A 2 B1g; (3.3.25)

and it is easy to check that �H is a simple distance with K	H D KH [condition
(2.4.3)]. The metric �� is a special case of �H with H.t/ D t=�.

Example 3.3.4 (Birnbaum–Orlicz distance (�H ) and �p-metric in P.R/). Let
U D R, d.x; y/ D jx � yj. Following Example 2.4.2, we define the Birnbaum–
Orlicz average distance

�H.F1; F2/ WD
Z C1

�1
H.jF1.t/ � F2.t/j/dt H 2 H Fi 2 F.R/; i D 1; 2;

(3.3.26)
and the Birnbaum–Orlicz uniform distance

�H.F1; F2/ WD H.�.F1; F2// D sup
x2R

H.jF1.x/ � F2.x/j/: (3.3.27)

The �p-metric (p > 0)

�p.F1; F2/ WD
�Z 1

�1
jF1.t/ � F2.t/jpdt

�p0

; p0 WD min.1; 1=p/; (3.3.28)

is a special case of �H with appropriate normalization that makes �p a p. metric
taking finite and infinite values in the DF space F WD F.R/. In the case p D 1,
we denote �1 to be the Kolmogorov metric

�1.F1; F2/ WD �.F1; F2/ WD sup
x2R
jF1.x/ � F2.x/j: (3.3.29)

In the case p D 0, we set

�0.F1; F2/ WD
Z 1

�1
I ft W F1.t/ ¤ F2.t/gdt D Leb.F1 ¤ F2/:

Here, as in what follows, I.A/ is the indicator of the set A.
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Example 3.3.5 (Cominimal metrics). As we saw in Sect. 3.2, each primary distance
�.P / D �.h.T1P /; h.T2P // (P 2 P2) determines a semidistance (Defini-
tion 2.4.2) in the space of equivalence classes

fP 2 P2 W h.T1P / D a; h.T2P / D bg; a; b 2 R
J : (3.3.30)

Analogously, the minimal distance

b�.P / WD b�.T1P; T2P /
WD inff�.eP/ W eP 2 P2.U /;eP and P have one and the same marginals;

TieP D TiP; i D 1; 2g; P 2 P2.U /;

may be viewed as a semidistance in the space of classes of equivalence

fP 2 P2 W T1P D P1; T2P D P2g; P1; P2 2 P1: (3.3.31)

Obviously, the partitioning (3.3.31) is more refined than (3.3.30), and hence each
primary semidistance is a simple semidistance. Thus

fthe class of primary distances (Definition 3.2.1)g

 fthe class of simple semidistances (Definition 3.3.1)g

 fthe class of all p. semidistances (Definition 2.5.1)g:

Open Problem 3.3.1. A basic open problem in the theory of probability metrics
is to find a good classification of the set of all p. semidistances. Does there exist a
“Mendeleyev periodic table” of p. semidistances?

One can get a classification of p. semidistances considering more and more
refined partitions of P2. For instance, one can use a partition finer than (3.3.31),
generated by

fP 2 P2 W T1P D P1; T2P D P2; P 2 PCt g; t 2 T; (3.3.32)

where P1 and P2 are laws in P1 and PCt (t 2 T ) are subsets of P2 whose union
covers P2. As an example of the set PCt one could consider

PCt D
�

P 2 P2 W
Z

U2
fidP � bi ; i 2 J

�

; t D .J; b; f /; (3.3.33)

where J is an index set, b WD .bi ; i 2 J ) is a set of reals, and f D ffi ; i 2 J g is a
family of bounded continuous functions on U 2.7

Another useful example of a set PCt is constructed using a given probability
metric �.P / (P 2 P2) and has the form

7See Kemperman (1983) and Levin and Rachev (1990).
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α

µv
(P

1,
P

2,
α)

µv(P1,P2,∞) = µ̂(P1,P2)

µv(P1,P2)

α = µv(P1,P2,α)

Fig. 3.1 Cominimal distance
��.P1; P2/

PCt D fP 2 P2 W �.P / � tg; (3.3.34)

where t 2 Œ0;1� is a fixed number.

Open Problem 3.3.2. Under what conditions is the functional

�.P1; P2IPC t / WD inff�.P / W P 2 P2; TiP D Pi.i D 1; 2/; P 2 PCt g
.P1; P2 2 P1/

a simple semidistance (resp. semimetric) w.r.t. the given p. distance (resp. metric)�?
Further, we will examine this problem in the special case of (3.3.34) (Theo-

rem 3.3.2). Analogously, one can investigate the case of PCt D lfP 2 P2 W
�i .P / � ˛i ; i D 1; 2 : : : g [t D .˛1; ˛2; : : : /] for fixed p. metrics �i , and ˛i 2
Œ0;1�.

Following the main idea of obtaining primary and simple distances by means
of minimization procedures of certain types (Definitions 3.2.2 and 3.3.2), we will
present the notion of cominimal distance.

For given compound semidistances � and � with parameters K� and K� ,
respectively, and for each ˛ > 0 denote

��.P1; P2; ˛/ D inff�.P / W P 2 P2; T1P D P1; T2P D P2; �.P / � ˛g;
P1; P2 2 P1 (3.3.35)

[see (3.3.32) and (3.3.34)].

Definition 3.3.3. The functional��.P1; P2; ˛/ (P1; P2 2 P1, ˛ > 0) will be called
the cominimal (metric) functional w.r.t. the p. distances � and � (Fig. 3.1)



3.3 Simple Distances and Metrics: Cominimal Functionals and Minimal Norms 49

As we will see in the next theorem, the functional ��.	; 	; ˛/ has some metric
properties, but nevertheless it is not a p. distance; however, ��.	; 	; ˛/ induces
p. semidistances as follows.

Let �� be the so-called cominimal distance

��.P1; P2/ D inff˛ > 0I��.P1; P2; ˛/ < ˛g (3.3.36)

(Fig. 3.1), and let

��.P1; P2/ D lim
˛!0

sup ˛��.P1; P2; ˛/:

Then the following theorem is true.

Theorem 3.3.2. Let U be a u.m.s.m.s. and � be a p. distance satisfying the
“continuity” condition in Theorem 3.3.1. Then, for any p. distance �,

(a) ��.	; 	; ˛/ satisfies the following metric properties:

ID.3/ W ��.P1; P2; ˛/ D 0 ” P1 D P2;
SYM.3/ W ��.P1; P2; ˛/ D ��.P2; P1; ˛/;
TI.3/ W ��.P1; P3;K�.˛ C ˇ// � K�.��.P1; P2; ˛/C ��.P2; P3; ˇ//

for any P1; P2; P3 2 P1; ˛ � 0; ˇ � 0I

(b) �� is a simple distance with parameter K�� D maxŒK�;K��. In particular, if �
and � are p. metrics, then �� is a simple metric;

(c) �� is a simple semidistance with parameter K�� D 2K�K� .

Proof. (a) By Theorem 3.3.1 and Fig. 3.1, ��.P1; P2; ˛/ D 0 ) b�.P1; P2/ D
0 ! P1 D P2, and if P1 2 P1 and X is an RV with distribution P1, then
��.P1; P2; ˛/ � �.PrX;X/ D 0. Thus, ID.3/ is valid. Let us prove TI.3/. For
each P1, P2, P3 2 P1 ˛ � 0, ˇ � 0, and " � 0 define laws P12 2 P2 and
P23 2 P2 such that TiP12 D Pi , TiP23 D PiC1 (i D 1; 2), �.P12/ � ˛,
�.P23/ � ˇ, and ��.P1; P2; ˛/ � �.P12/ � ", ��.P2; P3; ˛/ � �.P23/ � ".
Define a law Q 2 P3 by (3.3.5). Then Q has bivariate marginals T12Q D P12
and T23Q D P23; hence, �.T13Q/ � K�Œ�.P12/C �.P23/� � K�.˛ C ˇ/ and

��.P1; P3;K�.˛ C ˇ// � �.T13Q/ � KŒ�.P12/C �.P23/�
� K�Œ��.P1; P2; ˛/C ��.P2; P3; ˇ/C 2"�:

Letting "! 0, we get TI.3/.
(b) If ��.P1; P2/ < ˛ and ��.P2; P3/ < ˇ, then there exists P12 (resp. P23) with

marginals P1 and P2 (resp. P2 and P3) such that �.P12/ < ˛, �.P12/ < ˛,
�.P23/ < ˇ. In a similar way, as in (a), we conclude that ��.P1; P3;K�.˛ C
ˇ// < K�.˛ C ˇ/; thus, ��.P1; P2/ < max.K�;K�/.˛ C ˇ/.

(c) Follows from (a) with ˛ D ˇ.
ut
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Example 3.3.6 (Minimal norms). Each cominimal distance �� is greater than the

minimal distance b� (Fig. 3.3). We now consider examples of simple metrics
ı
�

corresponding to given p. distances b� that have (like ��) a “minimal” structure

but
ı
� � b�.

Let Mk be the set of all finite nonnegative measures on the Borel �-algebra
Bk D B.U k/ (U is an s.m.s.). Let M0 denote the space of all finite signed measures
� on B1 with total mass m.U / D 0. Denote by CS.U 2/ the set of all continuous,
symmetric, and nonnegative functions on U 2. Define the functionals

�c.m/ WD
Z

U2
c.x; y/m.dx; dy/; m 2M2; c 2 CS.U 2/; (3.3.37)

and ı
�c.�/ WD inff�c.m/ W T1m � T2m D �g; � 2M0; (3.3.38)

where Tim denotes the i th marginal measure of m.

Lemma 3.3.2. For any c 2 CS.U 2/ the functional
ı
�c is a seminorm in the space

M0.

Proof. Obviously,
ı
�c � 0. For any positive constant a we have

ı
�c.a�/ D inff�c.m/ W T1.1=a/m� T2.1=a/m D �g

D a inff�c..1=a/m/ W T1.1=a/m� T2.1=a/m D �g
D a ı

�c.�/:

If a � 0 and em.A � B/ WD m.B � A/, where A;B 2 B1, then by the symmetry of
c we get

�c.a�/ D inff�c.m/ W T2.�1=a/m� T1.�1=a/m D �g
D inff�c.em/ W T1.�1=a/em� T2.�1=a/em D �g
D jaj ı�c.�/:

Let us prove now that
ı
�c is a subadditive function. Let �1, �2 2 M0. For m1,

m2 2 M2 with T1mi � T2mi D �i (i D 1; 2), let m D m1 C m2. Then we have

�c.m/ D �c.m1/ C �c.m2/ and T1m � T2m D �1 C �2; hence,
ı
�c.�1 C �2/ �ı

�c.�1/C
ı
�c.�2/. ut

In the next theorem, we give a sufficient condition for

ı
�c.P1; P2/ WD

ı
�c.P1 � P2/; P1; P2 2 P1; (3.3.39)

to be a simple metric in P1. In the proof we will make use of Zolotarev’s semimetric
�F . That is, for a given class F of the bounded continuous function f W U ! R we
define
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�F.P1; P2/ D sup
f 2F

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

; Pi 2 P.U /:

Clearly, �F is a simple semimetric. Moreover, if the class F is “rich enough” to
preserve the implication �F .P1; P2/ D 0 ” P1 D P2, then we have that �F is a
simple metric.

Theorem 3.3.3. The following statements hold:

(i) For any c 2 CS.U 2/,
ı
�c.P1; P2/, defined by equality (3.3.39), is a semimetric

in P1.
(ii) Further, if the class Fc WD ff W U ! R; jf .x/ � f .y/j � c.x; y/; 8x; y 2

U g contains the class G of all functions

f .x/ WD fk;C .x/ WD maxf0; 1=k � d.x; C /g; x 2 U
(k is an integer greater than some fixed k0, C is a closed nonempty set), then
ı
�c is a simple metric in P1.

Proof. (i) The proof follows immediately from Lemma 3.3.2 and the definition of
semimetric (Definition 2.4.1).

(ii) For anym 2M2 such that T1m�T2m D P1�P2 and for any f 2 Fc we have

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

U2
f .x/ � f .y/m.dx; dy/

ˇ

ˇ

ˇ

ˇ

�
Z

U2
jf .x/ � f .y/jm.dx; dy/ � �c.m/I

hence, the Zolatarev metric �Fc .P1; P2/ is a lower bound for
ı
�c.P1; P2/. On

the other hand, by assumption, �Fc � �G . Thus, assuming
ı
�c.P1; P2/ D 0, we

get 0 � �G.P1; P2/ � �Fc .P1; P2/ �
ı
�c.P1; P2/ D 0. Next, for any closed

nonempty set C we have

P1.C / < k

Z

U

fk;CdP1 � k�G.P1; P2/C k
Z

U

fk;C dP2 � P2.C 1=k/:

Letting k ! 1 we get P1.C / � P2.C /, and hence, by symmetry,
P1 D P2. ut

Remark 3.3.4. Obviously,Fd � G, and hence
ı
�d is a simple metric in P1; however,

if p > 1, then
ı
�dp is not a metric in P1, as shown in the following example. Let

U D Œ0; 1�, d.x; y/ D jx � yj. Let P1 be a law concentrated on the origin and P2
a law concentrated on 1. For any n D 1; 2; : : : consider a measure m.n/ 2M2 with
total mass m.n/.U 2/ D 2nC 1 and
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0 1/n 2/n ... (n−1)/n 1
0

1/n

2/n

...

(n−1)/n

1Fig. 3.2 Support of measure
m.n/ with marginals P1
and P2

m.n/

��

i

n
;
i

n

��

D 1; i D 0; : : : ; n;

m.n/

��

i

n
;
.i C 1/
n

��

D 1; i D 0; : : : ; n � 1

(Fig. 3.2). Then, obviously, T1m.n/ � T2m.n/ D P1 � P2 and

Z

U�U
jx � yjpm.n/.dx; dy/ D

n�1
X

iD0

�

1

n

�p

D n1�pI

hence, if p > 1, then

ı
�d.P1; P2/ � inf

n>0

Z

U2
jx � yjpm.n/.dx; dy/ D 0;

and thus
ı
�dp .P1; P2/ D 0.

Definition 3.3.4. The simple semimetric
ı
�c [see equality (3.3.39)] is said to be the

minimal norm w.r.t. the functional �c .

Obviously, for any c 2 CS,

ı
�c.P1; P2/ � b�c.P1; P2/ WD inff�c.P / W P 2 P2; TiP D Pi ; i D 1; 2g;
P1; P2 2 P1I (3.3.40)
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hence, for each minimal metric of the type b�c we can construct an estimate from

below by means of
ı
�c , but what is more important,

ı
�c is a simple semimetric,

even though �c is not a probability semidistance. For instance, let ch.x; y/ WD
d.x; y/h.max.d.x; a/; d.y; a///, where h is a nondecreasing nonnegative contin-
uous function on Œ˛;1/ for some ˛ > 0. Then, as in Theorem 3.3.3, we conclude

that �ch �
ı
�ch and �ch.P1; P2/ D 0) P1 D P2. Thus,

ı
�ch is a simple metric, while

if h.t/ D tp (p > 1), then �ch is not a p. distance. Further (Sect. 5.4 in Chap. 5), we

will prove that
ı
� admits a dual formula: for any laws P1 and P2 on an s.m.s. .U; d/,

with finite
R

d.x; a/h.d.x; a//.P1 C P2/.dx/,
ı
�ch.P1; P2/ D sup

n

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f W U ! R;

jf .x/ � f .y/j � ch.x; y/ 8x; y 2 U
o

: (3.3.41)

From equality (3.3.41) it follows that if U D R and d.x; y/ D jx � yj, then
ı
�c

may be represented explicitly as an average metric with weight h.	�a/ between DFs

ı
�ch.P1; P2/ D

ı
�ch.F1; F2/ WD

Z 1

�1
jF1.x/ � F2.x/jh.jx � aj/dx; (3.3.42)

where Fi is the DF of Pi (Sect. 5.5).

3.4 Compound Distances and Moment Functions

We continue the classification of probability distances. Recall some basic examples
of p. metrics on an s.m.s. .U; d/:

(a) The moment metric (Example 3.2.2):

M.X; Y / D jEd.X; a/� Ed.Y; a/j; X; Y 2 X.U /

[M is a primary metric in the space X.U / of U -valued RVs].
(b) The Kantorovich metric (Example 3.3.2):

�.X; Y / D supfjEf .X/� Ef .Y /j W f W U ! R bounded;

jf .x/ � f .y/j � d.x; y/ 8x and y 2 U g

[� is a simple metric in X.U /].
(c) The L1-metric [see (2.5.3)]:
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L1.X; Y / D Ed.X; Y /; X; Y 2 X.U /:

The L1-metric is a p. metric in X.U / (Definition 2.5.2). Since the value of
L1.X; Y / depends on the joint distribution of the pair .X; Y /, we will call L1 a
compound metric.

Definition 3.4.1. A compound distance (resp. metric) is any probability distance �
(resp. metric). See Definitions 2.5.1 and 2.5.2.

Remark 3.4.1. In many papers on probability metrics, compound metric stands for
a metric that is not simple; however, all nonsimple metrics used in these papers are
in fact compound in the sense of Definition 3.4.1. The problem of classification of
p. metrics that are neither compound (in the sense of Definition 3.4.1) nor simple is
open (see Open Problems 3.3.1 and 3.3.2).

Let us consider some examples of compound distances and metrics.

Example 3.4.1 (Average compound distances). Let .U; d/ be an s.m.s. andH 2 H
(Example 2.4.1). Then

LH.P / WD
Z

U2
H.d.x; y//P.dx; dy/; P 2 P2; (3.4.1)

is a compound distance with parameter KH [see (2.4.3)] and will be called an
H -average compound distance. If H.t/ D tp , p > 0, and p0 D min.1; 1=p/,
then

Lp.P / WD ŒLH.P /�p0

; P 2 P2; (3.4.2)

is a compound metric in

P .p/
2 WD

�

P 2 P2 W
Z

U2
dp.x; a/ŒP.dx; dy/C P.dy; dx/� <1

�

:

In the space
X.p/.U / WD fX 2 X.U / W Edp.X; a/ <1g;

the metric Lp is the usual p-average metric

Lp.X; Y / WD ŒEdp.X; Y /�p0

; 0 < p <1: (3.4.3)

In the limit cases p D 0, p D 1, we will define the compound metrics

L0.P / WD P
0

@

[

x¤y
.x; y/

1

A ; P 2 P2; (3.4.4)

and
L1.P / WD inff" > 0 W P.d.x; y/ > "/ D 0g; P 2 P2; (3.4.5)
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that on X have the forms

L0.X; Y / WD EI fX ¤ Y g D Pr.X ¤ Y /; X; Y 2 X; (3.4.6)

and

L1.X; Y / WD ess supd.X; Y / WD inff" > 0 W Pr.d.X; Y / > "/ D 0g: (3.4.7)

Example 3.4.2 (Ky Fan distance and Ky Fan metric). The Ky Fan metric K in
X.R/ was defined by equality (2.2.5) in Chap. 2, and we will extend that definition
considering the space P2.U / for an s.m.s. .U; d/. We define the Ky Fan metric in
P2.U / as follows:

K.P/ WD inff" > 0 W P.d.x; y/ > "/ < "g; P 2 P2

and on X.U / by K.X; Y / D K.PrX;Y /. In this way, K takes the form of the distance
in probability in X D X.U /:

K.X; Y / WD inff" > 0 W Pr.d.X; Y / > "/ < "g; X; Y 2 X: (3.4.8)

A possible extension of the metric structure of K is the Ky Fan distance:

KFH.P / WD inff" > 0 W P.H.d.x; y// > "/ < "g (3.4.9)

for each H 2 H. It is easy to verify that KFH is a compound distance with
parameter KKF WD KH [see (2.4.3)]. A particular case of the Ky Fan distance is
the parametric family of Ky Fan metrics given by

K�.P / WD inff" > 0 W P.d.x; y/ > �"/ < "g: (3.4.10)

For each � > 0

K�.X; Y / WD inff" > 0 W Pr.d.X; Y / > �"/ < "g; X; Y 2 X;

metrizes the convergence “in probability” in X.U /, i.e.,

K�.Xn; Y /! 0 ” Pr.d.Xn; Y / > "/! 0 for any " > 0:

In the limit cases,

lim
�!0

K� D L0; lim
�!1�K� D L1; (3.4.11)

we get, however, average compound metrics [see equalities (3.4.4)–(3.4.7)] that
induce convergence, stronger than convergence in probability, i.e.,
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L0.Xn; Y /! 0)
6(Xn ! Y “in probability”

and
L1.Xn; Y /! 0)

6(Xn ! Y “in probability.”

Example 3.4.3 (Birnbaum–Orlicz compound distances). Let U D R, d.x; y/ D
jx � yj. For each p 2 Œ0;1� consider the following compound metrics in X.R/:

‚p.X1;X2/ WD
�Z 1

�1

p.t IX1;X2/dt

�p0

; 0 < p <1 p0 WD min.1; 1=p/;

(3.4.12)

‚1.X1;X2/ WD sup
t2R


.t IX1;X2/; (3.4.13)

‚0.X12;X2/ WD
Z 1

�1
I ft W 
.t IX1;X2/ ¤ 0gdt;

where


.t IX1;X2/ WD Pr.X1 � t < X2/C Pr.X2 � t < X1/: (3.4.14)

If H 2 H, then

‚H.X1;X2/ WD
Z 1

�1
H.
.t IX1;X2//dt (3.4.15)

is a compound distance with K‚H D KH . The functional ‚H will be called a
Birnbaum–Orlicz compound average distance, and

RH.X1;X2/ WD H.‚1.X1;X2// D sup
t2R

H.
.t IX1;X2// (3.4.16)

will be called a Birnbaum–Orlicz compound uniform distance.

Each example 3.3.i . is closely related to the corresponding example 3.2.i . In
fact, we will prove (Corollary 5.3.2) that `H [see (3.3.10)] is a minimal distance
(Definition 3.3.2) w.r.t. LH for any convexH 2 H, i.e.,

`H D bLH : (3.4.17)

Analogously, the simple metrics `p [see (3.3.11)–(3.3.14)], the Prokhorov metric
�� [see (3.3.22)], and the Prokhorov distance �H [see (3.3.24)] are minimal w.r.t.
the Lp-metric, Ky Fan metric K�, and Ky Fan distance KFH , i.e.,

`p D bLp .p 2 Œ0;1�/; �� D bK� .� > 0/; �H D cKFH : (3.4.18)

Finally, the Birnbaum–Orlicz metric and distance �p and �H [see (3.3.28)
and (3.3.26)] and the Birnbaum–Orlicz uniform distance �H [see (3.3.27)] are
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minimal w.r.t. their “compound versions” ‚p , ‚H , and RH , i.e.,

�p D b‚p .p 2 Œ0;1�/; �H D b‚H ; �H D bRH : (3.4.19)

Equalities (3.4.17)–(3.4.19) represent the main relationships between simple and
compound distances (resp. metrics) and serve as a framework for the theory of
probability metrics (Fig. 1.1, comparison of metrics).

Analogous relationships exist between primary and compound distances. For
example, we will prove (Chap. 9) that the primary distance

MH;1.˛; ˇ/ WD H.j˛ � ˇj/ (3.4.20)

[see (3.2.6)] is a primary minimal distance (Definition 3.2.2) w.r.t. the p. distance
H.L1/ (H 2 H), i.e.,

MH;1.˛; ˇ/ WD inf

�

H.L1.P // W
Z

U2
d.x; a/P.dx; dy/ D ˛;

Z

U2
d.a; y/P.dx; dy/ D ˇ

�

: (3.4.21)

Since a compound metric � may take infinite values, we have to determine a
concept of �-boundedness. With that aim in view, we introduce the notion of a
moment function, which differs from the notion of simple distance in the identity
property only [Definition 3.3.1 and ID.2/, TI.2/].

Definition 3.4.2. A mapping M W P1�P1 ! Œ0;1� is said to be a moment function
(with parameter KM � 1) if it possesses the following properties for all P1, P2,
P3 2 P1:

SYM.4/ WM.P1; P2/ DM.P2; P1/;

TI.4/ WM.P1; P3/ � KMŒM.P1; P2/CM.P2; P3/�:

We will use moment functions as upper bounds for p. distances �. As an
example, we will now consider� to be the p. average distance [see equalities (3.4.2)
and (3.4.3)]

Lp.P / WD
�Z

U�U
dp.x; y/P.dx; dy/

�p0

; p > 0; p0 WD min.1; 1=p/; P 2 P2:
(3.4.22)

For any p > 0 and a 2 U define the moment function

ƒp;a.P1; P2/ WD
�Z

U

dp.x; a/P1.dx/

�p0

C
�Z

U

dp.x; a/P2.dx/

�p0

: (3.4.23)



58 3 Primary, Simple, and Compound Probability Distances: : :

By the Minkowski inequality, we get our first (rough) upper bound for the value
Lp.P / under the convention that the marginals TiP D Pi (i D 1; 2) are known:

Lp.P / � ƒp;a.P1; P2/: (3.4.24)

Obviously, by inequality (3.4.24), we can get a more refined estimate

Lp.P / � ƒp.P1; P2/; (3.4.25)

where
ƒp.P1; P2/ WD inf

a2U ƒp;a.P1; P2/: (3.4.26)

Further, we will consider the following question.

Problem 3.4.1. What is the best possible inequality of the type

Lp.P / � MLp.P1; P2/; (3.4.27)

where MLp is a functional that depends on the marginals Pi D TiP (i D 1; 2) only?

Remark 3.4.2. Suppose .X; Y / is a pair of dependent random variables taking on
values in the s.m.s. .U; d/. Knowing only the marginal distributions P1 D PrX and
P2 D PrY , what is the best possible improvement of the triangle inequality bound

L1.X; Y / WD Ed.X; Y / � Ed.X; a/C Ed.Y; a/: (3.4.28)

The answer is simple: the best possible upper bound for Ed.X; Y / is given by

ML1.P1; P2/ WD supfL1.X1;X2/ W PrXi D Pi ; i D 1; 2g: (3.4.29)

More difficult is to determine dual and explicit representations for ML1 similar to
those of the minimal metric ML1 (Kantorovich metric). We will discuss this problem
in Sect. 8.2 in Chap. 8.

More generally, for any compound semidistance �.P / (P 2 P2) let us define the
functional

M�.P1; P2/ WD supf�.P / W TiP D Pi ; i D 1; 2g; P1; P2 2 P1: (3.4.30)

Definition 3.4.3. The functional M� W P1 � P1 ! Œ0;1� will be called the maximal
distance w.r.t. the given compound semidistance �.

Note that, by definition, a maximal distance need not be a distance. We prove the
following theorem.

Theorem 3.4.1. If .U; d/ is a u.m.s.m.s. and � is a compound distance with
parameter K�, then M� is a moment function and K M� D K�. Moreover, the following
stronger version of the TI.4/ is valid:
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M�.P1; P3/ � K�Œb�.P1; P2/C M�.P2; P3/�; P1; P2; P3 2 P1; (3.4.31)

whereb� is the minimal metric w.r.t. �.

Proof. We will prove inequality (3.4.31) only. For each " > 0 define laws P12,
P13 2 P2 such that

T1P12 D P1; T2P12 D P2; T1P13 D P1; T2P13 D P3
and

b�.P1; P2/ � �.P12/� "; M�.P1; P3/ � �.P13/C ":
As in Theorem 3.3.1, let us define a law Q 2 P3 [see (3.3.5)] having marginals
T12Q D P12, T13Q D P13. By Definitions 2.5.1, 3.3.2, and 3.4.3, we have

M�.P1; P3/ � �.T13Q/C " � K�Œ�.P12/C �.P23/�C "
� K�Œb�.P1; P2/C "C M�.P2; P3/�C ":

Letting "! 0 we get (3.4.31). ut
Definition 3.4.4. The moment functions M� will be called a maximal distance with
parameter K M� D K�, and if K� D 1, then M� will be called a maximal metric.

As before, we note that a maximal distance (resp. metric) may fail to be a distance
(resp. metric). (The ID property may fail.)

Corollary 3.4.1. If .U; d/ is a u.m.s.m.s. and � is a compound metric on P2, then

j M�.P1; P3/ � M�.P2; P3/j � M�.P1; P2/ (3.4.32)

for all P1, P2, P3 2 P1.

Remark 3.4.3. By the triangle inequality TI.4/ we have

j M�.P1; P3/� M�.P2; P3/j � M�.P1; P2/: (3.4.33)

Inequality (3.4.32) thus gives us refinement of the triangle inequality for maximal
metrics.

We will further investigate the following problem, which is related to a descrip-
tion of the minimal and maximal distances.

Problem 3.4.2. If c is a nonnegative continuous function on U 2 and

�c.P / WD
Z

U2
c.x; y/P.dx; dx/; P 2 P2; (3.4.34)

then what are the best possible inequalities of the type
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�.P1; P2/ � �c.P / �  .P1; P2/ (3.4.35)

when the marginals TiP D Pi , i D 1; 2, are fixed?

If c.x; y/ D H.d.x; y//, H 2 H, then �c D LH [see (3.4.1)] and the best
possible lower and upper bounds for LH.P / [with fixed Pi D TiP (i D 1; 2)] are
given by the minimal distance �.P1; P2/ D bL.P1; P2/ and the maximal distance
 .P1; P2/ D MLH.P1; P2/. For more general functions c the dual and explicit
representations ofb�c and b�c will be discussed later (Chap. 8).

Remark 3.4.4. In particular, for any convex nonnegative function  on R and
c.x; y/ D  .x � y/ (x; y 2 R), the functionals of bLH and MLH have the following
explicit forms:

bLH.P1; P2/ WD
Z 1

0

H.F�1
1 .t/ � F�1

2 .t//dt;

MLH.P1; P2/ WD
Z 1

0

H.F�1
1 .t/ � F�1

2 .1 � t//dt;

where F �1
i is the generalized inverse function (3.3.16) w.r.t. the DF Fi (Sect. 8.2).

Another example of a moment function that is an upper bound for LH (H 2 H/
is given by

ƒH;0.P1; P2/ WD KH

Z

U

H.d.x; 0//.P1 C P2/.dx/; (3.4.36)

where 0 is a fixed point of U . In fact, since H 2 H, then H.d.x; y// �
KHŒH.d.x; 0//CH.d.y; 0//� for all x; y 2 U , and hence

LH.P / � ƒH;0.P1; P2/: (3.4.37)

One can easily improve inequality (3.4.37) by the following inequality:

LH.P / � ƒH.P1; P2/ WD inf
a2U �H;a.P1; P2/: (3.4.38)

The upper boundsƒH;a, ƒH of LH depend on the sum P1 C P2 only; hence, if
P is an unknown law in P2 and we know only the sum of marginals P1 C P2 D
T1P C T2P , then the best improvement of inequality (3.4.38) is given by

LH.P / � L.s/H .P1 C P2/; (3.4.39)

where

L.s/H .P1 C P2/ WD supfLH.P / W T1P C T2P D P1 C P2g: (3.4.40)
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Remark 3.4.5. Following Remark 3.4.2, we have that if .X; Y / is a pair of
dependent U -valued RVs, and we know only the sum of distributions PrX CPrY ,
then L.s/1 .PrX CPrY / is the best possible improvement of the triangle inequality
(3.4.28). Further (Sect. 8.2), we will prove that in the particular case U D R,
d.x; y/ D jx � yj, and p � 1,

L.s/p .P1 C P2/ D
�Z 1

0

jV �1.t/ � V �1.1 � t/jpdt

�1=p

;

where V �1 is the generalized inverse [see (3.3.16)] of V.t/ D
1
2
.F1.t/C F2.t//, t 2 R, and Fi is the DF of Pi (i D 1; 2).

For more general cases we will use the following definition.

Definition 3.4.5. For any compound distance � the functional

.s/
�.P1; P2/ WD supf�.P / W T1P C T2P D P1 C P2g

will be called the �-upper bound with marginal sum fixed.

Let us consider another possible improvement of Minkowski’s inequality
(3.4.24). Suppose we need to estimate from above (in the best possible way)
the value L.X; Y / (p > 0) having available only the moments

mp.X/ WD ŒEdp.X; 0/�p0

; p0 WD min.1; 1=p/ (3.4.41)

andmp.Y /. Then the problem consists in evaluating the quantity

 p.a1; a2/ WD sup

(

Lp.P / W P 2 P2.U /;
�Z

U

dp.x; 0/TiP.dx/
�p0

D ai ; iD1; 2
)

;

p0 D min.1; 1=p/;

for each ai � 0 and a2 � 0.
Obviously,  p is a moment function. Subsequently (Sect. 9.2), we will obtain an

explicit representation of  p.a1; a2/.

Definition 3.4.6. For any p. distance � the function

.m;p/
� .a1; a2/WD sup

(

�.P / W P 2 P2.U /;
�Z

U

dp.x; 0/TiP.dx/
�p0

D ai ; iD1; 2
)

;

where a1 � 0, a2 � 0, p > 0, is said to be the �-upper bound with fixed pth
marginal moments a1 and a2.

Hence,
.m;1/

L .a1; a2/ is the best possible improvement of the triangle inequality
(3.4.28) when we know only the “marginal” moments



62 3 Primary, Simple, and Compound Probability Distances: : :

a1 D Ed.X; 0/; a2 D Ed.Y; 0/:

We will investigate improvements of inequalities of the type

Ed.X; 0/�Ed.Y; 0/ � Ed.X; Y / � Ed.X; 0/C Ed.Y; 0/

for dependent RVs X and Y . We set down the following definition.

Definition 3.4.7. For any p. distance �

(i) The functional

�
.m;p/

.a1; a2/ WD inf

(

�.P / W P 2 P2.U /;
�Z

U

dp.x; 0/TiP.dx/
�p0

D ai ; iD1; 2
)

;

where a1 � 0, a2 � 0, p > 0, is said to be the �-lower bound with fixed
marginal pth moments a1 and a2;

(ii) The functional

�.a1 C a2Im;p/ WD sup

(

�.P / W P 2 P2.U /;
�Z

U

dp.x; 0/T1P.dx/
�p0

C
�Z

U

dp.x; 0/T2P.dx/
�p0

D a1 C a2
)

;

where a1 � 0, a2 � 0, p > 0, is said to be the �-upper bound with fixed sum
of marginal pth moments a1 C a2;

(iii) The functional

�.a1 � a2Im;p/ WD inf

(

�.P / W P 2 P2.U /;
�Z

U

dp.x; 0/T1P.dx/
�p0

�
�Z

U

dp.x; 0/T2P.dx/
�p0

D a1 � a2
)

;

where a1 � 0, a2 � 0, p > 0, is said to be the �-lower bound with fixed
difference of marginal p. moments a1 � a2.

Knowing explicit formulae for
.m;p/
� and �

.m;p/
(Sect. 9.2), we can easily determine

�.a1 C a2Im;p/ and �.a1 � a2Im;p/ using the representations
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�.aIm;p/ D sup

�

.m;p/
� .a1; a2/ W a1 � 0; a2 � 0; a1 C a2 D a

�

and

�.aIm;p/ D inf

�

�
.m;p/

.a1; a2/ W a1 � 0; a2 � 0; a1 � a2 D a
�

:

Let us summarize the bounds for � we have obtained up to now. For any
compound distance � (Fig. 3.3) the maximal distance M� (Definition 3.4.4) is not
greater than the moment distance

.m;p/
� .a1; a2/ WD sup

(

�.P1; P2/ W
�Z

U

dp.x; 0/Pi .dx/
�p0

D ai ; i D 1; 2
)

:

(3.4.42)

As we have seen, all compound distances � can be estimated from above by

means of M�,
.s/
� ,

.m;p/
� , and �.	Im;p/; in addition, the following inequality holds:

� � M� � .s/
� � �.	Im;p/; M� � .m;p/

� : (3.4.43)

The p. distance � can be estimated from below by means of the minimal metric
b� (Definition 3.3.2), the cominimal metric �� (Definition 3.3.3), and the primary
minimal distance e�h (Definition 3.2.2), as well as for such � as � D �c [see

(3.3.40)] by means of minimal norms
ı
� (Definition 3.3.4).

Thus
�.	Im;p/ � e�h � b� � �� � �;

ı
�c � �c; (3.4.44)

and, moreover, we can compute the values of e�h using the values of the minimal
distances � since

e�h.a1; a2/ D .eb�/h.a1; a2/ WD inffb�.P1; P2/ W hPi D ai ; i D 1; 2g: (3.4.45)

Also, if c.x; y/ D H.d.x; y//, H 2 H, then �c is a p. distance and

ı
�c � b�c � �: (3.4.46)

Inequalities (3.4.42)–(3.4.46) are represented in the scheme in Fig. 3.3.

The functionals �.	Im;p/, .s/�, M�, �, ��,b�,
ı
�, and �.	Im;p/, are listed in order

of numerical size in Fig. 3.3. The double arrows are interpreted in the following way.

The functional
.s/
� dominates M�, but

.s/
� and

.m;p/
� are not generally comparable.

As an example illustrating the list of bounds in Fig. 3.3, let us consider the case
p D 1 and �.X; Y / D Ed.X; Y /. Then, for a fixed point 0 2 U ,
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Fig. 3.3 Lower and upper bounds for �.P / (P 2 P2) of a compound distance � when different
kinds of marginal characteristics of P are fixed. The arrow ! indicates an inequality of the type �

(a)

�.a1 C a2Im; 1/ D supfEd.X; Y / W Ed.X; 0/C Ed.Y; 0/ D a1 C a2g;
a1 C a2 � 0I (3.4.47)

(b)

.m;1/
� .a1; a2/ D supfEd.X; Y / W Ed.X; 0/ D a1;Ed.Y; 0/ D a2g;

a1 � 0; a2 � 0I (3.4.48)

(c)

.s/
�.P1 C P2/ D supfEd.X; Y / W PrX CPrY D P1 C P2g;

P1; P2 2 P1I (3.4.49)

(d)

M�.P1; P2/ D supfEd.X; Y / W PrX D P1;PrY D P2g;
P1; P2 2 P1I (3.4.50)

and each of these functionals gives the best possible refinement of the inequality

Ed.X; Y / � Ed.X; 0/C Ed.Y; 0/

under the respective conditions

(a)
Ed.X; 0/C Ed.Y; 0/ D a1 C a2;

(b)
Ed.X; 0/ D a1; Ed.Y; 0/ D a2;

(c)
PrX CPrY D P1 C P2;



3.4 Compound Distances and Moment Functions 65

(d)
PrX D P1; P rY D P2:

Analogously, the functionals

1.

�.a1 � a2Im; 1/ D inffEd.X; Y / W Ed.X; 0/�Ed.Y; 0/ D a1 � a2g;
a1; a2 2 R; (3.4.51)

2.

�
.m;1/

.a1; a2/ D inffEd.X; Y / W Ed.X; 0/ D a1;Ed.Y; 0/ D a2g;

a1 � 0; a2 � 0; (3.4.52)

3.

ı
�.P1; P2/ D inff˛Ed.X; Y / W for some ˛ > 0;X 2 X; Y 2 X

such that ˛.PrX � PrY / D P1 � P2; P1; P2 2 P1;

(3.4.53)

4.

b�.P1; P2/ D inffEd.X; Y / W PrX D P1;PrY D P2g;
P1; P2 2 P1; (3.4.54)

5.

��.P1; P2/ D inffEd.X; Y / W PrX D P1;PrY D P2; �.X; Y / < ˛g;
ŒP1; P2 2 P1; � is a p. distance in X.U /� (3.4.55)

describe the best possible refinement of the inequality

Ed.X; Y / � Ed.X; 0/� Ed.Y; 0/

under the respective conditions

1. Ed.X; 0/� Ed.Y; 0/ D a1 � a2,
2. Ed.X; 0/ D a1 Ed.Y; 0/ D a2,
3. ˛.P rX � PrY / D P1 � P2 for some ˛ > 0,
4. PrX D P1 PrY D P2,
5. PrX D P1 PrY D P2 �.X; Y / < ˛.
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Remark 3.4.6. If �.X; Y / D Ed.X; Y /, then
ı
� D b� (Theorem 6.2.1); hence, in

this case,

ı
�.P1; P2/ D inffEd.X; Y / W PrX � PrY D P1 � P2g: (3.4.56)
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Chapter 4
A Structural Classification of Probability
Distances

The goals of this chapter are to:

• Introduce and motivate three classifications of probability metrics according to
their metric structure,

• Provide examples of probability metrics belonging to a particular structural
group,

• Discuss the generic properties of the structural groups and the links between
them.

Notation introduced in this chapter:

Notation Description

L� Parametric version of Lévy metric
W Uniform metric between generalized inverse functions
r� Hausdorff metric with parameter �
er� Hausdorff semimetric between functions
h�;�;B0 Hausdorff representation of a probability semidistance
Fn D F.Rn/ Space of distribution functions on R

n

e Unit vector .1; 1; : : : ; 1/ in R
n

L�;H Lévy probability distance
H� Hausdorff metric in F.Rn/
eW Limit of �H� as � ! 1
�1

top� �2 �2-convergence implies �1-convergence

�1
top
< �2 �1

top� �2 but not �2
top� �1

�1
top� �2 �1

top� �2 and �2
top� �1

SB Skorokhod–Billingsley metric
!0

F ; !
00

F Moduli of continuity in the space of distribution functions
�H� Metric with a Hausdorff structure satisfying the property �� � �H� � �

ƒ�;� ƒ-structure of a probability semidistance
Cb.U / Set of bounded continuous functions on U

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 4, © Springer Science+Business Media, LLC 2013
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Notation Description

�.�; �IGp/ Fortet–Mourier metric
ˇ Dudley metric
�Q Q-difference pseudomoment
�Q Compound Q-difference pseudomoment
ASp Szulga metric

4.1 Introduction

Chapter 3 was devoted to a classification of probability [semidistances �.P / (P 2
P2)] with respect to various partitionings of the set P2 into classes PC such that
�.P / takes a constant value on each PC. For instance, if PC WD PC.P1; P2/ WD
fP 2 P2 W T1P D P1; T2P D P2g, P1; P2 2 P1, and �.P 0/ D �.P 00/ for each P 0,
P 00 2 PC, then � was said to be a simple semidistance. Analogously, if

PC WD PC.a1; a2/ WD fP 2 P2 W h.T1P / D a1; h.T2P / D a2g

[see (3.2.2) and Definition 3.2.1 in Chap. 3] and �.P 0/ D �.P 00/ as P 0, P 00 2
PC.a1; a2/, then � was said to be a primary distance.

In the present chapter, we classify the probability semidistances (p. semidis-
tances) on the basis of their metric structure. For example, a p. metric that admits a
representation as a Hausdorff metric [see (2.6.1) of Chap. 2] will be called a metric
with a Hausdorff structure. See, for instance, the H -metric introduced in Sect. 2.4.

Some probability metrics are more naturally defined in the following form:

ƒ�;�.X; Y / WD inff" > 0 W �.X; Y I�"/ < "g;
where the functional �.X; Y I t/ has a particular axiomatic structure. Examples
include the Lévy metric L (2.2.3), the Prokhorov metric � (3.3.18), and the Ky
Fan metric K� (2.2.5).

Finally, some simple probability distances can be represented as �F -metrics,
namely,

�.P1; P2/ D �F .P1; P2/ WD sup
f 2F

ˇ

ˇ

ˇ

ˇ

Z

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

; Pi 2 P � P.U /;

where F is a class of functions on an s.m.s. U that are P -integrable for any P 2 P .
In this case, � is said to be a probability metric with a �-structure. Examples of such
� are the Kantorovich metric `1 (3.3.12), the total variation metric � (3.3.13), the
Kolmogorov metric � (2.2.2), and the �-metric (Remark 2.2.2).

From a general perspective, a single probability metric can enjoy all three
representations. In this case, the representation chosen depends on the particular
problem at hand. Three sections are devoted to these three structural classifications.
We begin with the Hausdorff structure, then we continue with the ƒ-structure, and
finally we discuss the �-structure.
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4.2 Hausdorff Structure of Probability Semidistances

The definition of a Hausdorff p. semidistance structure (henceforth simply h-
structure) is based on the notion of a Hausdorff semimetric in the space of all subsets
of a given metric space .S; �/:

r.A;B/ D inff" > 0 W A" � B;B" � Ag
D maxfinff" > 0 W A" � Bg; inff" > 0 W B" � Agg; (4.2.1)

where A" is the open "-neighborhood of A.
From definition (4.2.1) the second Hausdorff semidistance representation follows

immediately:

r.A;B/ WD max.r 0; r 00/; (4.2.2)

where

r 0 WD sup
x2A

inf
y2B �.x; y/

and

r 00 WD sup
y2B

inf
x2A �.x; y/:

As an example of a probability metric with a representation close to that of
equality (4.2.2), let us consider the following parametric version of the Lévy metric
for � > 0, X; Y 2 X.R/ (Fig. 4.1):

L�.X; Y / WD L�.FX ; FY / WD inff" > 0 W FX.x � �"/� " � FY .x/

� FX.x C �"/C " 8x 2 Rg: (4.2.3)

F
X
(x)

St(F
X
, h)

2h

2λh

Fig. 4.1 St.FX ; h/ is the
strip in which the graph of FY
must be positioned in order
for the inequality
L�.X; Y / � h to hold
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Obviously, L� is a simple metric in X.R/ for any � > 0, and L WD L1 is the usual
Lévy metric [see (2.2.3)]. Moreover, it is not difficult to verify that L�.F;G/ is
a metric in the space F of all distribution functions (DFs). Considering L� as a
function of �, we see that L� is nonincreasing on .0;1/, and the following limit
relations hold:

lim
�!0

L�.F;G/ D �.F;G/; F;G 2 F ; (4.2.4)

and

lim
�!0

�L�.F;G/ D W.F;G/: (4.2.5)

In equality (4.2.4), � is the Kolmogorov metric [see (2.2.2)] in F

�.F;G/ WD sup
x2R

jF.x/ �G.x/j: (4.2.6)

In equality (4.2.5), W.F;G/ is the uniform metric between the inverse functions
F�1, G�1

W.F;G/ WD sup
0<t<1

jF�1.t/ �G�1.t/j; (4.2.7)

where F �1 is the generalized inverse of F

F �1.t/ WD supfx W F.x/ < tg: (4.2.8)

Equality (4.2.4) follows from (4.2.3) (Fig. 4.1). Likewise, (4.2.5) is handled by the
equalities

lim
�!1�L�.F;G/ D inffı > 0 W F.x/ � G.x C ı/; G.x/ � F.x C ı/ 8x 2 Rg

D W.F;G/:

Another way to prove (4.2.5) is to use the representation of L�.F;G/ in terms of
the inverse functions F�1 and G�1:

L�.F;G/ D inff" > 0 W F�1
X .t � "/� �" � F �1

Y .t/;

F�1
Y .t � "/� �" � F�1

X .t/8" � t � 1g

D 1

�
inf

�

ı > 0 W F�1
X

�

t � 1

�
ı

�

� ı � F �1
Y .t/;

F�1
Y

�

t � 1

�
ı

�

� ı � F �1
X .t/8 1

�
ı � t � 1

�

:

We will prove subsequently [Corollaries 7.4.1 and (7.5.15)] that W coincides
with the `1-metric

`1.F1; F2/ WD `1.P1; P2/ WD inff" > 0 W P1.A/ � P2.A
"/; 8A � Rg;
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where Pi is the law determined by Fi . The equality W D `1 illustrates – together
with equality (4.2.5) – the main relationship between the Lévy metric and `1.

Let us define the Hausdorff metric between two bounded functions on the real
line R. Let dm� (� > 0) be the Minkowski metric on the plane R2; that is, for each
A D .x1; y1/ and B D .x2; y2/ we have dm�.A;B/ WD maxf.1=�/jx1 � x2j; jy1 �
y2jg. The Hausdorff metric r� (� > 0) in the set C.R2/ (of all closed nonempty sets
G � R

2) is defined as follows: for G1 � R
2 and G2 � R

2

r�.G1;G2/ WD max

(

sup
A2G1

inf
B2G2

dm�.A;B/; sup
B2G2

inf
A2G1

dm�.A;B/

)

: (4.2.9)

We will say that r� is generated by the metric dm� just as the Hausdorff distance
r was generated by � in equality (4.2.2). Let f 2 D.R/ be the set of all bounded
right-continuous functions on R having limits f .x�/ from the left. The set

f D f.x; y/ W x 2 R and either f .x�/ � y � f .x/ or f .x/ � y � f .x�/g

is called the completed graph of the function f .

Remark 4.2.1. Obviously, the completed graph F of a DF F 2 F is given by

F WD f.x; y/ W x 2 R; F .x�/ � y � F.x/g: (4.2.10)

Using equality (4.2.9), we define the Hausdorff metric r� D r�.f ; g/ in the space
of completed graphs of bounded, right-continuous functions.

Definition 4.2.1. The metric

r�.f; g/ WD r�.f ; g/; f; g 2 D.R/; (4.2.11)

is said to be the Hausdorff metric in D.R/.

Lemma 4.2.1 (Sendov 1969). For any f; g 2 D.R/

r�.f; g/ D max

�

sup
x2R

inf
.x2;y2/2g

dm�..x; f .x//; .x2; y2//;

sup
x2R

inf
.x1;y1/2f

dm�..x1; y1/; .x; g.x//

)

:

Proof. It is sufficient to prove that if for each x0 2 R there exist points .x1; y1/ 2 f ,
.x2; y2/ 2 g such that maxf.1=�/jx0 � x1j; jg.x0/ � y1jg � ı, maxf.1=�/jx0 �
x2	; jf .x0/ � y2jg � ı, then r�.f; g/ � ı. Suppose the contrary is true. Then there
exists a point .x0; y0/ in the completed graph of one of the two functions, say f .x/,
such that in the rectangle jx � x0j � �ı, jy � y0j � ı, there is no point of the
completed graph g. Writing
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y0
0 D min

.x0;y/2f
y; y00

0 D max
.x0;y/2f

y;

we then have y0
0 � y0 < y00

0 . From the definition of .x0; y0
0/ and .x0; y00

0 / it follows
that there exist two sequences fx0

ng and fx00
n g in R, converging to x0, such that

limn!1 f .x0
n/ D y0

0, limn!1 f .x00
n / D y00

0 . Then from the hypothesis and the fact
that g is a closed set it follows that there exist two points .x1; y1/, .x2; y2/ 2 g

for which x1; x2 2 Œx0 � �ı; x0 C �ı	, y1 � y0
0, y2 � y00

0 . This contradicts
our assumptions since by the definition of the completed graph g, there exists
ex0 2 Œx0 � �ı; x0 C �ı	 such that .ex0; y0/ 2 g. ut
Remark 4.2.2. Before proceeding to the proof of the fact that the Lévy metric is a
special case of the Hausdorff metric (Theorem 4.2.1), we will mention the following
two properties of the metric r�.f; g/ that can be considered as generalizations of
well-known properties of the Lévy metric.

Property 4.2.1. Let � be the uniform distance in D.R/, i.e., �.f; g/ WD
supu2R jf .u/ � g.u/j, and let !f .ı/ WD supfjf .u/ � f .u0/j W ju � u0j < ıg,
f 2 Cb.R/, ı > 0, be the modulus of f -continuity. Then

r�.f; g/ � �.f; g/ � r�.f; g/C min.!f .�r�.f; g//; !g.�r�.f; g///: (4.2.12)

Proof. If r�.f; g/ D supa2f infb2g dm�.a; b/, then following the proof of Lemma
4.2.1 we have

r�.f; g/ D sup
x2R

inf
.x2;y2/2g

dm�.x; f .x//; .x2; y2//

� sup
x2R

inf
y2R max

�

1

�
jx � yj; jf .x/ � g.y/j

�

� �.f; g/:

For any x 2 R there exists .y0; z0/ 2 g such that

r�.f; g/ � inf
.y;z/2g dm�..x; f .x//; .y; z// D max

�

1

�
jx � y0j; jf .x/ � z0j

�

:

Hence

jf .x/ � g.x/j � jf .x/ � z0j C jg.x/ � z0j
� r.f; g/C max.jg.x/ � g.y0�/j; jg.x/ � g.y0/j/
� r.f; g/C !g.�r�.f; g//: ut

As a consequence of inequalities (4.2.12), we obtain the following property.

Property 4.2.2. Let ffn.x/; n D 1; 2; : : : g be a sequence in D.R/, and let f .x/ be
a continuous-bounded function on the line. The sequence ffng converges uniformly
on R to f .x/ if and only if limn!1 r�.fn; f / D 0.
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Theorem 4.2.1. For all F;G 2 F and � > 0

L�.F;G/ D r�.F;G/: (4.2.13)

Proof. Consider the completed graphs F and G of the DFs F and G and denote by
P and Q the points where they intersect the line .1=�/x C y D u, where u can be
any real number. Then

L�.F;G/ D max
u2R jPQj.1C �2/�1=2; (4.2.14)

where jPQj is the length of the segment joining the points P andQ.1 We will show
that r�.F;G/ � L�.F;G/ by applying Lemma 4.2.1.

Choose a point x0 2 R. The line .1=�/x C y D .1=�/x0y C F.x0/ intersects
F and G at the points P.x0; F.xo// and Q.x1; y1/. It follows from (4.2.14) that
jF.x0/� y1j � L�.F;G/ and .1=�/jx0 � x1j � L�.F;G/. Permuting F andG, we
find that for some .x2; y2/ 2 F

max

�

1

�
jx0 � x2j; jG.x0/ � y2j

�

� L�.F;G/:

By Lemma 4.2.1, this means that r�.F;G/ � L�.F;G/.
Now let us show the reverse inequality. Assume otherwise, i.e., assume

L�.F;G/ > r�.F;G/. Let P0.x0; y0/ and Q0.x
00; y00/ be points such that

L�.F;G/ D jP0Q0j
.1C �2/1=2

> r�.F;G/:

Suppose that x0 < x00. Since the points P0 and Q0 lie on some .1=�/x C y D u0,
and, say, u0 > 0, we have y0 > y00. By the definition of the metric r�.F;G/ and our
assumptions, it follows that

jP0Q0j
.1C �2/1=2

> max
A2F

min
B2G

dm�.A;B/

[see (4.2.9)]. Since P0 2 F , there exists a point B0.x�; y�/ 2 G such that

jP0Q0j
.1C �2/1=2

> min
B2G

dm�.P0; B/ D dm�.P0; B0/:

Thus,

dm�.P0; B0/ D max

�

1

�
jx0 � x�j; jy0 � y�j

�

< jP0Q0j.1C �2/�1=2: (4.2.15)

1The proof of (4.2.14) is quite analogous to that given in Hennequin and Tortrat (1965, Chap. 19),
for the case � D 1.
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Suppose that x0 � x�. Then x� � x0 < x00. The function G is nondecreasing, so
y� � y0, i.e.,

y0 � y� � y0 � y00 D jP0Q0j
.1C �2/1=2

;

which is impossible by virtue of (4.2.15). If x0 < x�, then

0 <
1

�
.x� � x0/ <

jP0Q0j
.1C �2/1=2

D 1

�
.x00 � x0/:

Then x� < x00 and y� � y00, which, as we have proved, is impossible. Thus,
L�.F;G/ � r�.F;G/. ut

To cover other probability metrics by means of the Hausdorff metric structure,
the following generalization of the notion of Hausdorff metric r is needed. Let FS
be the space of all real-valued functions FA W A ! R, where A is a subset of the
metric space .S; �/.

Definition 4.2.2. Let f D fA and g D gB be elements of FS. The quantity

er�.f; g/ WD max.er 0
�.f; g/;er

0
�.g; f //; (4.2.16)

where

er 0
�.f; g/ WD sup

x2A
inf
y2B max

�

1

�
�.x; y/; f .x/ � g.y/

�

;

is called the Hausdorff semimetric between the functions fA and gB .
Obviously, if f .x/ D g.y/ D constant for all x 2 A, y 2 B , then

er�.f; g/ D r.A;B/ [see (4.2.2)]. Note thater� is a metric in the space of all upper
semicontinuous functions with closed domains.

The next two theorems are straightforward consequences of the more general
Theorem 4.3.1.

Theorem 4.2.2. The Lévy metric L� (4.2.3) admits the following representation in
terms of metricer [(4.2.16)]:

L�.X; Y / Der�.fA; gB/; (4.2.17)

where fA D FX , gB D FY , A 	 B 	 R, �.x; y/ D jx � yj.
Thus, the Lévy metric L� has two representations in terms of r� and in terms of

er�. Concerning the Prokhorov metric �� (3.3.22), only a representation in terms of
er� is known. That is, let S D C..U; d// be the space of all closed nonempty subsets
of a metric space .U; d/, and let r be the Hausdorff distance (4.2.1) in S. Any law
P 2 P1.U / can be considered as a function on the metric space .S; r/ because P is
determined uniquely on S, that is,

P.A/ WD supfP.C / W C 2 S; C � Ag for any A 2 B1:
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Define a metricer�.P1; P2/ (P1; P2 2 P1.U /) by setting A D B D S and � D r in
equality (4.2.16).

Theorem 4.2.3. For any � > 0 the Prokhorov metric �� takes the form

��.P1; P2/ Der�.P1; P2/ .P1; P2 2 P1.U //;

where U D .U; d/ is assumed to be an arbitrary metric space.

Remark 4.2.3. By Theorem 4.2.3, for all P1; P2 2 P1 we have the following
Hausdorff representation of the Prokhorov metric ��, � > 0:

��.P1; P2/ WD max

(

sup
A2B1

inf
B2B1

max

�

1

�
r.A;B/; P1.A/� P2.B/

�

;

sup
B2B1

inf
A2B1

max

�

1

�
r.A;B/; P2.B/� P1.A/

�

)

: (4.2.18)

Problem 4.2.1. Is it possible to represent the Prokhorov metric �� by means of r�
or to find a probability metric with a r�-structure that metrizes the weak convergence
in P.U / for an s.m.s. U ?

Remark 4.2.4. We can use the Hausdorff representation (4.2.18) of � D �1 to
extend the definition of the Prokhorov metric over the setˆ.U / that strictly contains
the set P.U / of all probability laws on an arbitrary metric space .U; d/. Specifically,
let ˆ.U / be the family of all set functions � W .S; r/ ! Œ0; 1	 that are continuous
from above, i.e., for any sequence fCngn�0 of closed subsets of U

r.CnC0/ ! 0 ) lim
n!1�.Cn/ � �.C0/:

Clearly, each lawP 2 ˆ.U /. We extend the Prokhorov metric overˆ.U / by simply
setting

�.�1; �2/ D max

(

sup
C12S

inf
C22S

maxŒr.C1; C2/; �1.C1/� �2.C2/	;

sup
C22S

inf
C12S

maxŒr.C1; C2/; �2.C2/� �1.C1/	

)

:

For �i D Pi 2 P.U / the preceding formula gives

�.P1; P2/ D inff" > 0 W P1.C / < P2.C "/C "; P2.C / � P1.C
"/C "; 8C 2 Sg;

i.e., the usual Prokhorov metric (see Theorem 4.3.1 for details).
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The next step is to extend the notion of weak convergence. We will use the analog
of the Hausdorff topological convergence of sequences of sets. For a sequence
f�ng � ˆ.U /, define the upper topological limit � D `t�n by

�.C / WD sup
n

lim
n!1�n.Cn/ W Cn 2 S; r.Cn; C / ! 0

o

:

Analogously, define the lower topological limit � D `t�n by

�.C / WD sup

�

lim
n!1

�n.Cn/ W Cn 2 S; r.Cn; C / ! 0

�

:

If `t�n D `t�n, then f�ng is said to be topologically convergent and � WD `t�n WD
`t�n is said to be the topological limit of f�ng. One can see that � D `t�n 2 ˆ.U /.

For any metric space .U; d/ the following conditions hold:

(a) Suppose Pn and P are laws on U . If P D `tPn, then Pn
w�! P . Conversely, if

.U; d/ is an s.m.s., then the weak convergencePn
w�! P yields the topological

convergenceP D `tPn.
(b) If �.�n; �/ ! 0 for f�ng � ˆ.U /, then � D `t�n.
(c) If f�ng is fundamental (Cauchy) with respect to �, then �n is topologically

convergent.
(d) If .U; d/ is a compact set, then the �-convergence and the topological conver-

gence coincide in ˆ.U /.
(e) If .U; d/ is a complete metric space, then the metric space .�.U /;�/ is also

complete.
(f) If .U; d/ is totally bounded, then .ˆ.U /;�/ is also totally bounded.
(g) If .U; d/ is a compact metric space, then .ˆ.U /;�/ is also a compact metric

space.

The extension ˆ.U / of the set of laws P.U / seems to enjoy properties that are
basic in the application of the notions of weak convergence and Prokhorov metric.
Note also that in an s.m.s. .U; d/, if fPng � P.U / is �-fundamental, then clearly
fPng may not be weakly convergent; however, by (c), fPng has a topological limit,
� D `tPn 2 ˆ.U /.

Next, taking into account Definition 4.2.2, we will define the Hausdorff structure
of p. semidistances.

Without loss of generality (Sect. 2.7), we assume that any p. semidistance �.P /,
P 2 P2.U /, has a representation in terms of pairs of U -valued random variables
X; Y 2 X WD X.U /:

�.P / D �.PrX;Y / D �.X; Y /:

Let B0 � B.U / and let the function � W X2 
 B20 ! Œ0;1	 satisfy the following
relations:

(a) If Pr.X D Y / D 1, then �.X; Y IA;B/ D 0 for all A;B 2 B0.
(b) There exists a constant K� � 1 such that for all A;B;C 2 B0 and RV X , Y , Z

�.X;ZIA;B/ � K�Œ�.X; Y IA;C /C �.Y;Z;C;B/	:
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Definition 4.2.3. Let � be a p. semidistance. The representation of � in the form

�.X; Y / D h�;�;B0 .X; Y / WD maxfh0
�;�;B0 .X; Y /; h

0
�;�;B0 .Y;X/g; (4.2.19)

where

h0
�;�;B0 .X; Y / D sup

A2B0
inf
B2B0

max

�

1

�
r.A;B/; �.X; Y IA;B/

�

; (4.2.20)

is called the Hausdorff structure of �, or simply h-structure.
In (4.2.20), r.A;B/ is the Hausdorff semimetric in the Borel 
-algebraB..U; d//

[see (4.2.1) with � 	 d ], � is a positive number. B0 � B.U /, and � satisfies the
foregoing conditions (a) and (b).

Using conditions (a) and (b) we easily obtain the following lemma.

Lemma 4.2.2. Each � in the form (4.2.19) is a p. semidistance in X with a
parameter K� D K� .

In the limit cases � ! 0, � ! 1, the Hausdorff structure turns into a “uniform”
structure. More precisely, the following limit relations hold.

Lemma 4.2.3. Let � have Hausdorff structure (4.2.19); then, as � ! 0,
�.X; Y / D h�;�;B0 .X; Y / has a limit defined to be

h0;�;B0 .X; Y / D max

(

sup
A2B0

inf
B2B0

�.X; Y IA;B/; sup
A2B0

inf
B2B0

�.Y;X IA;B/
)

:

As � ! 1, the limit

lim
�!1�h�;�;B0 .X; Y / D h1;�;B0 .X; Y / (4.2.21)

exists and is defined to be

max

(

sup
A2B0

inf
B2B0;�.X;Y IA;B/D0 r.A;B/; sup

A2B0
inf

B2B0;�.Y;X IA;B/D0 r.A;B/
)

:

Remark 4.2.5. Since lim�!1 h�;�;B0 .X; Y / D 0, we normalized the quantity
h�;�;B0 .X; Y /, multiplying it by �, so that � ! 1 yields a nontrivial limit
h1;�;B0 .X; Y /.

Proof. We will prove equality (4.2.21) only. That is, for each X; Y 2 X

lim
�!1�h0

�;�;B0 .X; Y /

D lim
�!0

sup
A2B0

inf
B2B0

max

�

r.A; b/
1

�
�.X; Y IA;B/

�

D lim
�!0

inf

�

" > 0 W inf
B2B0;r.A;B/<"

1

�
�.X; Y IA;B/ < " for all A 2 B0

�
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D inf

�

" > 0 W inf
B2B0;r.A;B/<"

�.X; Y IA;B/ D 0 for all A 2 B0
�

D sup
A2B0

inf
B2B0;�.X;Y IA;B/D0 r.A;B/:

Now, by equality (4.2.19), we claim equality (4.2.21). ut
Let us consider some examples of probability semidistances with a Hausdorff

structure.

Example 4.2.1 (Universal Hausdorff representation). Each p. semidistance � has
the trivial form h�;�;B0 D �, where the set B0 is a singleton, say, B0 	 fA0g, and
�.X; Y IA0;A0/ D �.X; Y /.

Example 4.2.2 (Hausdorff structure of Prokhorov metric ��). The Prokhorov
metric (3.3.22) admits a Hausdorff structure representation h�;�;B0 D � [see
representations (4.2.18) and (4.2.19)], where B0 is either the class C of all nonempty
closed subsets of U or B0 	 B.U / and �.X; Y IA;B/ D Pr.X 2 A/� Pr.Y 2 B/,
A;B 2 B.U /. As � ! 0 and � ! 1 (Lemma 3.3.1), we obtain the limits

h0;�;B0 D � (distance in variation)

and
h1;�;B0 D `1:

Example 4.2.3 (Lévy metric L�, � > 0, in the space P.Rn/). Let F.Rn/ be the
space of all right-continuous DFs F on R

n. We extend the definition of the Lévy
metric .L�; � > 0/ in F.R1/ [see definition (4.2.3)] considering the multivariate
case L� in F.Rn/:

L�.P1; P2/ WD L�.F1; F2/ WD inff" > 0 W F1.x � �"e/� " � F2.x/

� F1.x C �"e/C " 8x 2 R
ng; (4.2.22)

where Fi is the DF of Pi (i D 1; 2) and e D .1; 1; : : : ; 1/ is the unit vector in R
n.

The Hausdorff representation of L� is handled by representation (4.2.19), where
B0 is the set of all multivariate intervals .�1; x	 (x 2 R

n) and

�.X; Y I .�1; x	; .�1; y	/ WD F1.x/ � F2.y/;

i.e., for RVs X and Y with DFs F1 and F2, respectively,

L�.X; Y /DL�.F1; F2/ WD max

�

sup
x2Rn

inf
y2Rn max

�

1

�
kx � yk1; F1.x/ � F2.y/

�

;

sup
y2Rn

inf
x2Rn max

�

1

�
kx � yk1; F2.y/ � F1.x/

�

)

(4.2.23)
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for all F1; F2 2 F.Rn/, where k � k stands for the Minkowski norm in R
n,

k.x1; : : : ; xn/k1 WD max1�i�n jxi j. Letting � ! 0 in Definition (4.2.23) we get
the Kolmogorov distance in F.Rn/:

lim
�!0

L�.F1; F2/ D �.F1; F2/ WD sup
x2Rn

jF1.x/ � F2.x/j: (4.2.24)

The limit of �L� as � ! 1 is given by (4.2.21), that is,

lim
�!1��.F1; F2/ D inff" > 0 W infŒF1.x/ � F2.y/ W y 2 R

n; kx � yk1 � "	 D 0;

infŒF2.x/ � F1.y/ W x 2 R
n; kx � yk1 � "	 D 0 8x 2 R

ng
D W.F1; F2/ WD inff" > 0 W F1.x/ � F2.x C "e/; F2.x/ � F1.x C "e/

8x 2 R
ng: (4.2.25)

Problem 4.2.2. If n D 1, then

lim
�!1�L�.P1; P2/ D `1.P1; P2/; P1; P2 2 P.Rn/; (4.2.26)

where `1.P1; P2/ WD inff" > 0 W P1.A/ � P2.A
"/ for all Borel subsets of Rng.2

Let us see if it is true that equality (4.2.26) is valid for any integer n.

Example 4.2.4 (Lévy p. distance L�;H , � > 0, H 2 H). The Lévy metric L�
(4.2.22) can be rewritten in the form

L�.F1; F2/ WD inff" > 0 W .F1.x/ � F2.x � �"e//C < ";

.F2.x/ � F1.x � �"e//C < " 8x 2 R
ng; .�/C WD max.�; 0/;

which can be viewed as a special case [H.t/ D t] of the Lev́y p. distance L�;H .� >
0;H 2 H/ defined as

L�;H .F1; F2/ WD inff" > 0 W eH.F1.x/ � F2.x C �"e// < ";

eH.F2.x/ � F1.x C �"e// < "; 8x 2 R
ng; (4.2.27)

where

eH.t/ WD
�

H.t/; t � 0;

0; t � 0:

2See (4.2.5) and subsequently Corollary 7.4.2 and (7.5.15) in Chap. 7.
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sL�;H admits a Hausdorff representation of the following type:

L�;H .F1; F2/ D max

�

sup
x2Rn

inf
y2Rn max

�

1

�
kx � yk; eH.F1.x/ � F2.y//

�

;

sup
y2Rn

inf
x2Rn max

�

1

�
kx � yk; eH.F2.y/ � F1.x//

�

)

: (4.2.28)

The last representation of L�;H shows that L�;H is a simple distance with parameter
KL�;H WD KH [see (2.4.3)]. Also, from (4.2.28) as � ! 0 we get the Kolmogorov p.
distance

lim
�!0

L�;H .F1; F2/ D H.�.F1; F2// D �H.F1; F2/ WD sup
x2Rn

H.jF1.x/ � F2.x/j/:

(4.2.29)

Analogously, letting � ! 1 in (4.2.28), we have

lim
�!1�L�;H .F1; F2/ D W.F1; F2/: (4.2.30)

We prove equality (4.2.30) by arguments provided in the limit relation (4.2.25).

Example 4.2.5 (Hausdorff metric on F.R/ and P.U /). The Lévy metric in F WD
F.R/ (4.2.22) has a Hausdorff structure [see (4.2.23)]; however, the function

eD..x; F1.x//; .y; F2.y/// WD max

�

1

�
jx � yj; F1.x/ � F2.y/

�

is not a metric in the space R 
 Œ0; 1	, and hence (4.2.23) is not a “pure” Hausdorff
metric [see (4.2.2)]. In the next definition we will replace the semimetric eD with the
Minkowski metric dm� in R 
 Œ0; 1	:

dm�..x; F1.x//; .y; F2.y/// WD max

�

1

�
jx � yj; jF1.x/ � F2.y/j

�

: (4.2.31)

By means of equality (4.2.31), we define the Hausdorff metric in F.Rn/ as follows.

Definition 4.2.4. The metric

H�.F;G/ WD max

�

sup
x2Rn

inf
y2Rn dm�..x; F.x//; .y;G.y/// ;

sup
y2Rn

inf
x2Rn dm�..x; F.x//; .y;G.y///

)

; F;G 2 Fn; (4.2.32)

is said to be a Hausdorff metric with parameter � (or simply H�-metric) in DF
space F .

Lemma 4.2.4. (a) For any � > 0, H� is a metric in F .
(b) H� is a nonincreasing function of �, and the following relation hold:
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lim
�!0

H�.F;G/ D �.F;G/ (4.2.33)

and

lim
�!1�H�.F;G/ D eW.F;G/

WD inff" > 0 W .F1.x/ � F2.x C "//C D 0;

.F2.x � "/� F1.x//C D 0 8x 2 Rg: (4.2.34)

(c) If F and G are continuous DFs, then H�.F;G/ D L�.F;G/.

Proof. (a) By means of the Minkowski metric

dm�..x1; y1/; .x2; y2// WD max

�

1

�
jx1 � x2j; jy1 � y2j

�

in the space D WD R 
 Œ0; 1	, define the Hausdorff semimetric in the space 2D

of all subsets B � D:

h�.B1; B2/ WD max

(

sup
b12B1

inf
b22B2

dm�.b1; b2/; sup
b22B2

inf
b12B1

dm�.b1; b2/

)

:

In the Hausdorff representation (4.2.11) of the Lévy metric, the main role
was played by the notion of the completed graph F of a DF F . Here, we need
the notion of the closed graph �F of a DF F defined as follows:

�F WD
 

[

x2R
.x; F.x//

!

[
 

[

x2R
.x; F.x � 0//

!

; (4.2.35)

i.e., the closed graph �F is handled by adding the points .x; F.x�// to the
graph of F , where x denotes points of F -discontinuity (Figs. 4.1 and 4.2).

Obviously, H�.F;G/ D h�.�F ; �G/. Moreover, if the closed graphs of F
and G coincide, then F.x/ D G.x/ for all continuity points x of F and G.
Since F and G are right-continuous, then �F 	 �G ” F 	 G.

(b) The limit relation (4.2.33) is a consequence of (4.2.24) and

L�.F1; F2/ � H�.F1; F2/ � �.F1; F2/; F1; F2 2 F : (4.2.36)

Analogously to (4.2.25), we claim that

lim
�!0

�H�.F;G/ D inff" > 0 W inffjF1.x/ � F2.y/j W y 2 R; jx � yj � "g D 0

inffjF2.x/ � F1.x/j W y 2 R; jx � yj � "g D 0 8x 2 Rg
D eW.F;G/:
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u

F
X
(u

)

F
X
(u)

St(F
X
, h)

2h

2λh

Fig. 4.2 St.F; h/ is the strip into which the graph of the DF G has to be located so that
H�.F;G/ � h for F;G 2 F 0

(c) See Figs. 4.1 and 4.2. ut
Remark 4.2.6. Further, we need the following notations. For two metrics �1 and �2

on a set S , �1
top� �2 means that �2-convergence implies �1-convergence, and �1

top
<

�2 means �1
top� �2 but not �2

top� �1. Finally, �1
top� �2 means that �1

top� �2 and

�2
top� �1. By (4.2.36) it follows that

L�
top� H�

top� �: (4.2.37)

Moreover, the following simple examples show that

L�
top
< H�

top
< �:

Example 4.2.6. Let

Fn.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x <
1

n
;

1; x � 1

n
;

F0.x/ D
�

0; x < 0;

1; x � 1:

Then �.Fn; F / D 1, H�.Fn; F / D 1=�n ! 0 as n ! 1.

Example 4.2.7. Let
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�n.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; x < 0;

1

2
; 0 � x <

1

n
;

1; x � 1

n
:

Then

L�.�n; F0/ D min

�

1;
1

�

�

n�1 ! 0 as n ! 1;

but

H�.�n; F0/ � inf
y2R max

�

1

�

ˇ

ˇ

ˇ

ˇ

1

2n
� y

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

�n

�

1

2n

�

� F0.y/

ˇ

ˇ

ˇ

ˇ

�

� 1

2

for any n D 1; 2; : : : .

Remark 4.2.7. For any 0 < � < 1, H� metrizes one and the same topology. We
characterize the H-topology (H WD H1) by the following compactness criterion.
Recall that a subset A of a metric space .S; �/ is said to be �-relatively compact
if any sequence in A has a �-convergent subsequence. Define the Skorokhod–
Billingsley metric in the space F of distribution functions on R

SB.F;G/ D inf
�2ƒmax

(

sup
s¤t

ˇ

ˇ

ˇ

ˇ

log
�.s/ � �.t/
s � t

ˇ

ˇ

ˇ

ˇ

;

sup
t2R

j�.t/ � t j; sup
t2R

jF.t/ �G.�.t//j
�

;

where ƒ is the class of all strictly increasing continuous functions � from R onto
R. The metrics H and SB generate the same exact topology in F ; the metric
space .F ;H/ is not complete, whereas .F ;SB/ is complete. To show that H
is not a complete metric, observe that �n, introduced in Example 4.2.7, is H-
fundamental but not H-convergent. The proof that .F ;SB/ is complete is the same
as the proof that DŒ0; 1	 is complete with the Skorokhod–Billingsley metric d0.3

The equivalence of H and SB topologies is a consequence of the compactness
criterion given below. Consider the following moduli of H-continuity:

1.
!0
F .ı/ WD inf

ft0;:::;tr g
max
0�i�rŒF .ti�/ � F.ti�1/	; F 2 F ; ı 2 .0; 1/;

where the infimum is taken over all ft0; t1; : : : ; tr g satisfying the conditions:
�1 D t0 < t1 < � � � < tr D 1, ti � ti�1 > ı, i D 1; : : : ; r .

3See Billingsley (1999, Theorem 14.2).
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2.

!00
F WD sup

x2R
minfF.xC ı=2/�F.x/; F.x/�F.x� ı=2/g; F 2 F ; ı 2 .0; 1/:

For any f 2 F , limı!1 !0
F .ı/ D 0 and !00

F .ı/ � !0
F .2ı/.

4 Let A � F . Then the
following are equivalent5:

(a) A is H-relatively compact.
(b) A is SB-relatively compact.
(c) lim

ı!1 sup
F2A

!0
F .ı/ D 0.

(d) A is weakly compact (i.e., L-relatively compact) and lim
ı!1 sup

F2A
!00
F .ı/ D 0.

Moreover, for F , G 2 F , and ı > 0 the following relations hold:

H.F;G/ � SB.F;G/;

!0
G.ı/ � !0

F .ı C 2H.F;G//C 4H.F;G/;

H.F;G/ � maxf!00
F .4L.F;G//; !00

G.4L.G;G//gL.F;G/:

Next, let .U; d/ be a metric space and define the following analog of H-metrics:

�H�.P1; P2/ WD max

(

sup
A2B1

inf
B2B1

max

�

1

�
r.A;B/; jP1.A/� P2.B/j

�

sup
B2B1

inf
A2B1

max

�

1

�
r.A;B/; jP1.A/� P2.B/j

�

)

(4.2.38)

for any laws P1; P2 2 P.U /.

Lemma 4.2.5. The following statements hold:

(a) For any � > 0 the functional �H� on P1 
 P1 is a metric in P1 D P.U /.
(b) �H� is a nonincreasing function of �, and the following relation holds:

lim
�!0

�H�.P1; P2/ D � .P1; P2/ WD sup
A2B1

jP1.A/ � P2.A/j; P1; P2 2 P1;

(4.2.39)

lim
�!1��H�.P1; P2/ D �H1.P1; P2/

WD inff" > 0 W infŒjP1.A/ � P2.B/j W B 2 B1; r.A;B/ < "	 D 0;

infŒjP2.A/� P1.B/j W B 2 B1; r.A;B/ < "	 D 0 8A 2 B1g: (4.2.40)

4See Billingsley (1999, Sect. 12).
5See Rachev (1984) and Kakosyan et al. (1988, Sect. 2.5).
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(c) �H� is “between” the Prokhorov metric �� (4.2.18) and the total variation
metric � , i.e.,

�� � �H� � � (4.2.41)

and

��

top
< �H�

top
< � : (4.2.42)

Proof. Let us prove only (4.2.40). We have

�H�.P1; P2/ D inff" > 0 W infŒjP1.A/ � P2.B/j W B 2 B1; r.A;B/ < �"	 < ";

infŒjP2.A/� P1.B/j W B 2 B1; r.A;B/ < �"	 < " 8A 2 B1g:
(4.2.43)

Further multiplying the two sides of (4.2.43) by �, and letting � ! 1, we get
(4.2.40). ut

4.3 ƒ-Structure of Probability Semidistances

The p. semidistance structureƒ in X D X .U / is defined by means of a nonnegative
function � on X 
 X 
 Œ0;1/ that satisfies the following relationships for all
X; Y;Z 2 X:

(a) If Pr.X D Y / D 1, then �.X; Y I t/ D 08t � 0.
(b) �.X; Y I t/ D �.Y;X I t/.
(c) If t 0 < t 00, then �.X; Y I t 0/ � �.X; Y I t 00/.
(d) For some K� > 1, �.X;ZI t 0 C t 00/ � K�Œ�.X; Y I t 0/C �.Y;Z; t 00/	.

If �.X; Y I t/ is completely determined by the marginals P1 D PrX , P2 D PrY ,
then we will use the notation �.P1; P2I t/ instead of �.X; Y I t/. For the caseK� D 1,
the following definition is due to Zolotarev (1976).

Definition 4.3.1. The p. semidistance � has a ƒ-structure if it admits a ƒ-
representation, i.e.,

�.X; Y / D ƒ�;�.X; Y / WD inff" > 0 W �.X; Y I�"/ < "g (4.3.1)

for some � > 0 and � satisfying (a)–(d).
Obviously, if � has a ƒ-representation (4.3.1), then � is a p. semidistance with

K� D K� . In Example 4.2.1 it was shown that each p. semidistance has a Hausdorff
representation h�;�;B0 . In the next theorem we will prove that each p. semidistance
� with a Hausdorff structure (Definition 4.2.3) also has a ƒ-representation. Hence,
in particular, each p. semidistance has aƒ-structure as well as a Hausdorff structure.



86 4 A Structural Classification of Probability Distances

Theorem 4.3.1. Suppose a p. semidistance � admits the Hausdorff representation
� D h�;�;B0 [see (4.2.19)]. Then � enjoys also a ƒ-representation

h�;�;B0 .X; Y / D ƒ�;�.X; Y /; (4.3.2)

where

�.X; Y I t/ WD max

(

sup
A2B0

inf
B2A.t/ �.X; Y IA;B/; sup

A2B0
inf

B2A.t/ �.Y;X IA;B/
)

;

andA.t/ is the collection of all elementsB of B0 such that the Hausdorff semimetric
r.A;B/ is not greater than t .

Proof. Let ƒ�;�.X; Y / < ". Then for each A 2 B0 there exists a set B 2 A.�"/

such that �.X; Y IA;B/ < ", i.e.,

sup
A2B0

inf
B2B0

max

�

1

�
r.A;B/; �.X; Y IA;B/

�

< ":

By symmetry, it follows that h�;�;B0 .X; Y / < ". If, conversely, h�;�;B0 .X; Y / < ",
then for each A 2 B0 there exists B 2 B0 such that r.A;B/ < �" and
�.X; Y IA;B/ < ". Thus

sup
A2B0

inf
B2A.�"/ �.X; Y IA;B/ < ": ut

Example 4.3.1 (ƒ-structure of the Lévy metric and the Lévy distance). Recall the
definition of the Lévy metric in P.Rn/ [see (4.2.22)]:

L�.P1; P2/ WD inf

�

" > 0 W sup
x2Rn

.F1.x/ � F2.x C �"e// � "

and sup
x2Rn

.F2.x/� F1.x C �"e// � "

�

;

where obviously Fi is the DF of Pi . By Definition 4.3.1, L� has a ƒ-representation

L�.P1; P2/ D ƒ�;�.P1; P2/; � > 0;

where

�.P1; P2I t/ WD sup
x2Rn

maxf.F1.x/ � F2.x C �te//; .F2.x/ � F1.x C �te//g

and Fi is the DF of Pi . With an appeal to Theorem 4.3.1, for any F1, F2 2 F.Rn/,
we have that the metric h defined below admits a ƒ-representation:
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h.F1; F2/ WD max

�

sup
x2Rn

inf
y2Rn max

�

1

�
kx � yk1; F1.x/ � F2.y/

�

;

sup
x2Rn

inf
y2Rn max

�

1

�
kx � yk1; F2.x/ � F1.y/

��

D ƒ�;�.P1; P2/;

where

�.P1; P2I t/ D max

�

sup
x2Rn

inf
yWkx�yk1�t

.F1.x/ � F2.y//;

sup
x2Rn

inf
yWkx�yk1�t

.F2.x/� F1.y//

�

:

By virtue of the ƒ-representation of the L�, we conclude that h.F1; F2/ D
L�.F1; F2/, which proves (4.2.23) and Theorem 4.2.2.

Analogously, consider the Lévy distance L�;H (4.2.27) and apply Theorem 4.3.1
with

�.X; Y I�t/ D �.P1; P2I�t/

WD H

�

sup
x2Rn

maxfF1.x/ � F2.x C �te/; fF2.x/ � F1.x C �te/
�

to prove the Hausdorff representation of L�;H (4.2.28).

Example 4.3.2 (ƒ-structure of the Prokhorov metric ��). 6 Let

�.P1; P2I "/ WD sup
A2B.U /

maxfP1.A/� P2.A
"/; P2.A/ � P1.A"/g

D sup
A2B.U /

fP1.A/� P2.A
"/g:

Then ƒ�;� is the ƒ-representation of the Prokhorov metric ��.P1; P2/ [see
(3.3.22)]. In this way, Theorem 4.2.3 and equality (4.2.18) are corollaries of
Theorem 4.3.1.

For each � > 0 the Prokhorov metric �� induces a weak convergence in P1;
thus,

��.Pn; P / ! 0 ” Pn
w�! P:

Remark 4.3.1. As is well known, the weak convergencePn
w�! P means that

Z

U

f dPn !
Z

U

f dP (4.3.3)

6See Dudley (1976, Theorem 8.1).
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for each continuous and bounded function f on .U; d/. The Prokhorov metric �
(3.3.20) metrizes the weak convergence in P.U /, where U is an s.m.s.7 The next
definition was essentially used by Dudley (1966), Ranga (1962), and Bhattacharya
and Ranga Rao (1976).

Definition 4.3.2. Let G be a nonnegative continuous function on U and PG be the
set of laws P such that

R

U
GdP < 1. The joint convergence

Pn
w�! P

Z

U

�GdPn !
Z

U

GdP .Pn; P 2 PG/ (4.3.4)

will be called a G-weak convergence in PG .

As in Prokhorov (1956), one can show that the G-weighted Prokhorov metric

��;G.P1; P2/ WD inff" > 0 W �1.A/ � �2.A
�"/C "; �2.A/ � �1.A

�"/

C "8A 2 B.U /g; (4.3.5)

where �i.A/ WD R

A
.1 C G.x//Pi .dx/, metrizes the G-weak convergence in PG ,

where U is an s.m.s. (see Theorem 11.2.2 subsequently for details).
The metric ��;G admits a ƒ-representation with

�.P1; P2I "/ WD sup
A2B.U /

maxf�1.A/� �2.A
"/; �2.A/� �1.A

"/g:

Example 4.3.3 (ƒ-structure of the Ky Fan metric and Ky Fan distance). The
ƒ-structure of the Ky Fan metric K� [see (3.4.10)] and the Ky Fan distance KFH
[see (3.4.9)] is handled by assuming that in (4.3.1), �.X; Y I�t/ WD Pr.d.X; Y / >
�t/ and �.X; Y I t/ WD Pr.H.d.X; Y // > t/, respectively.

4.4 �-Structure of Probability Semidistances

In Example 3.3.6 we considered the notion of a minimal norm
ı
�c

ı
�c.P1; P2/ WD inf

�Z

U2
cdm W m 2 M2; T1m � T2m D P1 � P2

�

; (4.4.1)

where U D .U; d/ is an s.m.s. and c is a nonnegative, continuous symmetric
function on U 2.

Let Fc;1 be the space of all bounded .c; 1/-Lipschitz functions f W U ! R, i.e.,

kf kcL WD sup
c.x;y/¤0

jf .x/ � f .y/j
c.x; y/

� 1: (4.4.2)

Remark 4.4.1. If c is a metric in U , then Fc;1 is the space of all functions with
Lipschitz constant � 1, w.r.t. c. Note that, if c is not a metric, then the set Fc;1

7See Prokhorov (1956) and Dudley (2002, Theorem 11.3.3).
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might be a very “poor” one. For instance, if U D R, c.x; y/ D jx � yjp (p > 1),
then Fc;1 contains only constant functions.

By (4.4.2), we have that for each nonnegative measurem on U 2 whose marginals
Tim, i D 1; 2, satisfy T1m � T2m D P1 � P2, and for each f 2 Fc;1 the following
inequalities hold:

ˇ

ˇ

ˇ

ˇ

Z

U

f .x/.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

U2
.f .x/ � f .y//m.dx; dy/

ˇ

ˇ

ˇ

ˇ

� kf kcL
Z

U2
c.x; y/m.dx; dy/

�
Z

U2
c.x; y/m.dx; dy/:

The minimal norm
ı
�c then has the following estimate from below:

�.P1; P2IFc/ � ı
�c.P1; P2/; (4.4.3)

where

�.P1; P2IFc;1/ WD sup

� ˇ

ˇ

ˇ

ˇ

Z

U2
f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f 2 Fc;1
�

: (4.4.4)

Further, in Sect. 5.4 in Chap. 5 and Sect. 6.2 in Chap. 6, we will prove that for some
c (as, for example, c D d ) we have equality (4.4.3).

Let Cb.U / be the set of all bounded continuous functions on U . Then for each
subset F of Cb.U / the functional

�F.P1; P2/ WD �.P1; P2IF/ WD sup
f 2F

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

(4.4.5)

on P1 
 P1 defines a simple p. semimetric in P1. The metric �F was introduced by
Zolotarev (1976) and is called the Zolotarev �F-metric (or simply �F-metric).

Definition 4.4.1. A simple semimetric � having the �F-representation

�.P1; P2/ D �F.P1; P2/ (4.4.6)

for some F � Cb.U / is called semimetric with a �-structure.

Remark 4.4.2. In the space X D X.U / of all U -valued RVs, the �F-metric (F �
Cb.U /) is defined by

�F.X; Y / WD �F.P rX ; P rY / WD sup
f 2F

jEf .X/� Ef .Y /j: (4.4.7)

Simple metrics with a �-structure are well known in probability theory. Let us
consider some examples of such metrics.

Example 4.4.1 (Engineer metric). Let U D R and X.1/ be the set of all real-valued
RVs X with finite first absolute moment, i.e., EjX j < 1. In the set X.1/, the
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engineer metric EN.X; Y / WD jEX � EY j admits a �-representation, where F
is a collection of functions

fN .x/ D
8

<

:

�N; x < N;
x; jxj � N;

N; x > N;N D 1; 2; : : : :

(4.4.8)

Example 4.4.2 (Kolmogorov metric and Lp-metric in distribution function space).
Let F D F.R/ be the space of all DFs on R. The Kolmogorov metric �.F1; F2/ WD
supx2R jF1.x/ � F2.x/j in F has �F-structure. In fact

�.F1; F2/ D kf1 � f2k1 D sup

�ˇ

ˇ

ˇ

ˇ

Z 1

�1
u.x/.F1.x/ � F2.x//dx

ˇ

ˇ

ˇ

ˇ

W kuk1 � 1

�

:

(4.4.9)

Here and subsequently k � kp (1 � p < 1) stands for the Lp-norm

kukp WD
�Z 1

�1
ju.x/jpdx

� 1=p

; 1 � p < 1;

kuk1 WD ess sup
x2R

ju.x/j:

Further, let us denote by F.p/ the space of all (Lebesgue) almost everywhere (a.e.)
differentiable functions f such that f 0 has Lp-norm kf 0kp � 1. Hence, integrating
by parts the right-hand side of (4.4.9) we obtain a �-representation of the uniform
metric �:

�.F1; F2/ WD sup
f 2F.1/

ˇ

ˇ

ˇ

ˇ

Z 1

�1
f .x/d.F1.x/ � F2.x//

ˇ

ˇ

ˇ

ˇ

D �.F1; F2IF.1//: (4.4.10)

Analogously, we have a �F.q/-representation for �p-metric (p � 1) [see
(3.3.28)]:

�p.F1; F2/ WD kF1 � F2kp

D sup

�ˇ

ˇ

ˇ

ˇ

Z 1

�1
u.x/.F1.x/ � F2.x//dx

ˇ

ˇ

ˇ

ˇ

W kukq � 1

�

D �.F1; F2IF.q//: (4.4.11)

Next, we will examine some n-dimensional analogs of (4.4.9) and (4.4.10) by
investigating the �-structure of (weighted) mean and uniform metrics in the space
Fn D F.Rn/ of all DFs F.x/, x 2 R

n.
Let g.x/ be a positive continuous function on R

n and let p 2 Œ1;1	. Define the
distances

�p.F;GIg/ D
�Z

Rn

jF.x/ �G.x/jpg.x/pdx

�1=p

; p 2 Œ1;1	; (4.4.12)
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�1.F;GIg/ D supfg.x/jF.x/ �G.x/j W x 2 R
ng: (4.4.13)

Remark 4.4.3. In (4.4.12), for n � 2, the weight function g.x/ must vanish for all
x with kxk1 D max1�i�n jxi j D 1 in order to provide finite values of �p .

Let An;p be the class of real functions f on R
n having a.e. the derivatives Dnf ,

where

.Dkf /.x/ WD dkf

dx1 � � � dxk
; x D .x1; : : : ; xn/ 2 R

n; k D 1; 2; : : : ; n; (4.4.14)

and
Z

Rn

ˇ

ˇ

ˇ

ˇ

Dnf .x/

g.x/

ˇ

ˇ

ˇ

ˇ

q

dx � 1;
1

p
C 1

q
D 1 if p > 1; (4.4.15)

and

jDnf .x/j � g.x/ a.e. if p D 1:

Denote by g�.x/ a continuous function on R
n such that for some point a D

.a1; : : : ; an/ the function g�.x/ is nondecreasing (resp. nonincreasing) in the
variables xi if xi � ai (resp. xi � ai ), i D 1; : : : ; n, and g� � g.

Theorem 4.4.1. Suppose that p 2 Œ1;1	 and the functions F;G 2 Fn satisfy the
following conditions:

(1) �p.F;GIg/ < 1.
(2) The derivative Dn�1.F � G/ exists a.e., and for any k D 1; : : : ; n the limit

relation

lim
xk!˙1 jxkj1=pg�.x/jDk�1.F �G/.x/j D 0; x D .x1; : : : ; xn/ (4.4.16)

holds a.e. for xj 2 R
1, j ¤ k; j D 1; : : : ; n. Then

�p.F;GIg/ D �.F;GIAn;p/: (4.4.17)

Proof. As in equalities (4.4.9)–(4.4.11) we use the duality between Lp and Lq
spaces. Integrating by parts and using the tail condition (4.4.16) we get (4.4.17).

ut
In the case n D 1, we get the following �-representation for the mean and

uniform metrics with a weight.

Corollary 4.4.1. If p 2 Œ1;1	, F;G 2 F1, and

lim
x!˙1 jxj1=pg�.x/jF.x/ �G.x/j D 0; (4.4.18)

then

�p.F;GIg/ D �.F;GIA1;p/: (4.4.19)
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As a consequence of Theorem 4.4.1, we will subsequently investigate estimates
of some classes of �-metrics with the help of metrics of type �p.�; �Ig/. This
is connected with the problem of characterizing uniform classes with respect to
�p.�; �Ig/-convergence.

Definition 4.4.2. If � is a metric on Fn, then a class A of measurable functions on
R
n is called a uniform class with respect to �-convergence (or simply a �-u.c.) if

for any Fn (n D 1; 2; : : : ) and F 2 Fn the condition �.Fn; F / ! 0 (n ! 1)
implies that �A.Fn; F / ! 0 (n ! 1).

Bhattacharya and Ranga Rao (1976), Kantorovich and Rubinshtein (1958),
Billingsley (1999), and Dudley (1976) have studied uniform classes w.r.t. weak
convergence. It is clear thatAn;p is a �.�; �Ig/-u.c. in the set of distribution functions
satisfying (1) and (2) of Theorem 4.4.1.

Let Gn;p be the class of all functions in An;p such that for any tuple I D
.1; : : : ; k/, 1 � k � n� 1, we have

Dk
I f .x

I / D 0 a.e. xI 2 R
n; xIi D

�

xi ; if i 2 I;
C1; if i … I:

Any function in An;p constant outside a compact set obviously belongs to the class
Gn;p . Now we can omit the restriction (4.4.16) to get

Corollary 4.4.2. For any F;G 2 Fn

�.F;GIGn;p/ � �p.F;GIg/; p 2 Œ1;1	: (4.4.20)

In the case of the uniform metric

�n.F;G/ WD sup
x2Rn

jF.x/ �G.x/j D �1.F;GI 1/; (4.4.21)

we get the following refinement of Corollary 4.4.2. Denote by Bn the set of all real
functions on R

n having a.e. the derivatives Dnf such that for any I D .i1; : : : ; ik/,
1 � k � n, 1 � i1 < � � � < ik � n,

Z

Rk

jDk
I f .x

I /jdxi1 : : : dxik � 1:

Denote by FI .x1; : : : ; xi / D F.xI / the marginal distribution of F 2 Fn on the first
k coordinates.

Corollary 4.4.3. For any F;G 2 Fn

�.F;GIBn/ �
X

ID.i;:::;k/
1�k�n

�k.FI ;GI /: (4.4.22)
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The obvious inequality [see (4.4.22)]

�.F;GIBn/ � n�n.F;G/ (4.4.23)

implies that Bn is �n-u.c.

Open Problem 4.4.1. Investigating the uniform estimates of the rate of conver-
gence in the multidimensional central limit theorem, several authors8 consider the
following metric:

�.P;QI CB/ D supfjP.A/�Q.A/j W A 2 CB; P;Q 2 P.Rn/g; (4.4.24)

where CB denotes the set of all convex Borel subsets of Rn. The metric �.�; �I CB/
may be viewed as a generalization of the notion of uniform metric � on P.R1/;
that is why �.�; �I CB/ is called the uniform metric in P.Rn/. However, using the
�-representation (4.4.10) of the Kolmogorov metric � on P.R1/, it is possible to
extend the notion of uniform metric in a way that is different from (4.4.24). That is,
define the uniform ��-metric in P.Rn/ as follows:

��.P;Q/ WD �.P;QIAn;1.1//; (4.4.25)

where An;1.1/ is the class of real functions f on R
n having a.e. the derivatives Dnf

and
Z

Rn

jDnf .x/jdx � 1: (4.4.26)

What kind of quantitative relationships exist between the metrics �n, �.�; �I CB/,
and �� [see (4.4.21), (4.4.24), and (4.4.25)]? Such relationships would yield the rate
of convergence for the central limit theorem in terms of ��.

Example 4.4.3 (�-metrics that metrize G-weak convergence). In Example 4.3.2 we
considered a ƒ-metric that metrizes G-weak convergence in PG � P.U / [see
Definition 4.3.2 and (4.3.5)]. Now we will be interested in �-metrics generating
G-weak convergence in PG . Let F D F.G/ be the class of real-valued functions f
on an s.m.s. U such that the following conditions hold:

(i) F is an equicontinuous class, i.e.,

lim
d.x;y/!0

sup
f 2F

jf .x/ � f .y/j D 0I

(ii)

sup
f 2F

jf .x/j � G.x/ 8x 2 U I

(iii) ˛G 2 F for some constant ˛ ¤ 0;

8See, for instance, Sazonov (1981) and Senatov (1980).



94 4 A Structural Classification of Probability Distances

(iv) For each nonempty closed set C � U and for each integer k, the function

fk;C .x/ WD maxf0; 1=k � d.x; C /g

belongs to F.

Note that if F satisfies (i) and (ii) only, then F is ��;G-u.c. [see Definition 4.4.2
and (4.3.5)], i.e., G-weak convergence implies �F-convergence.9 The next theorem
determines the cases in which �F-convergence is equivalent toG-weak convergence.

Theorem 4.4.2. If F D F.G/ satisfies (i)–(iv), then �F metrizes the G-weak
convergence in PG .

In fact, we will prove a more general result (see further Sect. 11.2, Theo-
rem 11.2.2 in Chap. 11).

Let us consider some particular cases of the classes F.G/.

Case A. Let c be a fixed point ofU , a and b be positive constants, and h W Œ0;1	 !
Œ0;1	 be a nondecreasing function, h.0/ D 0, h.1/ � 1. Define the class S D
S.a; b; h/ of all functions f W U ! R such that

kf k1 WD sup
x2U

jf .x/j � a (4.4.27)

and

Liph.f / WD sup
x¤y; x;y2U

jf .x/ � f .y/j
d.x; y/maxf1; h.d.x; c//; h.d.y; c//g � b: (4.4.28)

Corollary 4.4.4. (a) If 0 < a < 1, 0 < b < 1, then �S.a;b;h/ metrizes the weak
convergence in P.U /.

(b) If a D 1, b < 1 and

sup
t¤s

jt maxf1; h.t/g � smaxf1; h.s/gj
jt � sj maxf1; h.t/; h.s/g < 1; (4.4.29)

then �S.a;b;h/ metrizes the G-weak convergence with

G.x/ D d.x; c/maxf1; h.d.x; c//g:

Case B. Fortet and Mourier (1953) investigated the following two �F-metrics.

(a) �.�; �IGp/ (p � 1), where the class Gp is defined as follows. For each function
f W U ! R let

9See Bhattacharya and Ranga Rao (1976) and Ranga (1962).
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L.f; t/ WD sup

�

f .x/ � f .y/
d.x; y/

W x ¤ y; d.x; c/ � t; d.y; c/ � t

�

(4.4.30)

and

M.f / WD sup
L.f; t/

max.1; tp�1/
: (4.4.31)

Then

Gp WD ff W U ! R; M.f / � 1g: (4.4.32)

(b) �.�; �IGp/, where

Gp WD ff 2 Gp; kf k1 � 1g: (4.4.33)

Lemma 4.4.1. Let hp.t/ D tp�1 (p > 1, t � 0). Then

�.P;QIGp/ D �.P;QIS.1; 1; hp// (4.4.34)

and

�.P;QIGp/ D �.P;QIS.1; 1; hp//: (4.4.35)

Proof. It is enough to check that Liphp .f / D M.f /. Actually, let x ¤ y and
t0 WD maxfd.x; c/; d.y; c/g. Then t0 > 0 and jf .x/ � f .y/j � L.f; t0/ d.x; y/ �
M.f /max.1; tp�1

0 /d.x; y/; hence, Liphp .f / < M.f /. Conversely, for each t >

0 L.f; t/ � Liphp .f /max.1; tp�1/, and thusM.f / � Liphp .f /. ut
Corollary 4.4.4 and Lemma 4.4.1 imply the following corollary.

Corollary 4.4.5. Let .U; d/ be an s.m.s. Then,

(i) �.�; �IGp/ metrizes the weak convergence in P.U /;
(ii) In the set

P .p/.U / WD
�

P 2 P.U /;
Z

U

dp.x; c/P.dx/ < 1
�

; (4.4.36)

the �.�; �IGp/-convergence is equivalent to the G-weak convergence with
G.x/ D dp.x; c/.

Case C. Dudley (1966, 1976) considered ˇ-metric in P.U /, which is defined as
�F-metric with

F WD
(

f W U ! R; kf k1 C sup
x;y2U;x¤y

jf .x/ � f .y/j
d.x; y/

� 1

)

: (4.4.37)
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Corollary 4.4.6. The Dudley metric ˇ WD �F defined by (4.4.7) and (4.4.37)
metrizes the weak convergence in P.U /.10

Proof. Using Corollary 4.4.5(i) with p D 1 and the inequality

1

2
�.P;QIG1/ � ˇ.P;Q/ � �.P;QIG1/; P;Q 2 P.U /; (4.4.38)

we claim that ˇ induces weak convergence in P.U /. ut
Case D. The Kantorovich metric `1 [see (3.3.12) and (3.3.17)] admits the �-
representation �.�; �IG1/, and `p (0 < p � 1) [see (3.3.12)] has the form

`p.P1; P2/ D �.P1; P2IG1/; P1; P2 2 P.U /; U D .U; dp/: (4.4.39)

On the right-hand side of (4.4.39), U is an s.m.s. with the metric dp , i.e., in the
definition of �.�; �IG1/ [see (4.4.30), (4.4.33)], we replace the metric d with dp .

Now let us touch on some special cases of (4.4.39).

(a) Let U be a separable normed space with norm k � k and Q W U ! U be a
function on U such that the metric dQ.x; y/ D kQ.x/ � Q.y/k metrizes the
space U as an s.m.s. For instance, if Q is a homeomorphism of U , i.e., Q is
a one-to-one function and both Q and Q�1 are continuous, then .U; dQ/ is an
s.m.s. Further, let p D 1 and d D dQ in (4.4.39). Then

�Q.P1; P2/ WD `1.P1; P2/ D sup

(

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f W U ! R;

jf .x/ � f .y/j � dQ.x; y/ 8x; y 2 U
)

(4.4.40)

is called a Q-difference pseudomoment in P.U /.

If U is a separable normed space and Q is a homeomorphism of U , then (noting
our earlier discussions in Theorem 2.7.1 and Example 3.3.2), in the space X.U /
of U -valued RVs, Q.X; Y / WD Q.PrX ;PrY / is the minimal metric w.r.t. the
compound Q-difference pseudomoment

�Q.X; Y / WD EdQ.X; Y / (4.4.41)

and

�Q.X; Y / Db�Q.X; Y / D supfjEŒf .Q.X//� f .Q.Y //	j W f W U ! R;

jf .x/ � f .y/j � kx � yk 8x; y 2 U g: (4.4.42)

10See Dudley (1966).
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In the particular case U D R, kxk D jxj,

Q.x/ WD
Z x

0

q.u/du q.u/ � 0; u 2 R; x 2 R;

the metric Q has the following explicit representation:

�Q.P1; P2/ WD �Q.F1; F2/ WD
Z 1

�1
q.x/jF1.x/ � F2.x/jdx: (4.4.43)

If, in (4.4.40), Q.x/ D xkxks�1 for some s > 0, then xs WD xQ is called an
s-difference pseudomoment.11

(b) By (4.4.39), we have that

`p.P1; P2/ WD sup

(

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f W U ! R;

jf .x/ � f .y/j � dp.x; y/; x; y 2 U
)

(4.4.44)

for any p 2 .0; 1/. Hence, letting p ! 0 and defining the indicator metric

i.x; y/ D
�

1; x ¤ y;

0; x D y;

we get

lim
p!0

`p.P1; P2/

D sup

� ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f W U ! R; jf .x/ � f .y/j

� i.x; y/8x; y 2 U
�

D � .P1; P2/ D `0.P1; P2/; (4.4.45)

where � (resp. `0) is the total variation metric [see (3.3.13)].

Examples 4.4.1–4.4.3 show that the �-structure encompasses the simple metrics
`p that are minimal with respect to the compound metric Lp fsee (3.4.18) for p 2
Œ0; 1	g. If, however, p > 1, then `p D bLp [see equalities (3.4.18), (3.4.3), and
(3.3.11)] has a form different from the �-representation, namely,

11See Zolotarev (1976, 1977, 1978) and Hall (1981).
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`p.P1; P2/ D sup

(

�Z

U

f dP1 C
Z

U

gdP2

�1=p

W .f; g/ 2 Gp

)

; (4.4.46)

where Gp is the class of all pairs .f; g/ of Lipschitz bounded functions f; g 2
Lipb.U / [see (3.3.8)] that satisfy the inequality

f .x/C g.y/ � dp.x; y/; x; y 2 U: (4.4.47)

The following lemma shows that `p D bLp (p > 1) has no �-representation.

Lemma 4.4.2. If an s.m.s. .U; d/ has more than one point and the minimal metric
bLp (p > 1) has a �-representation (4.4.5), then p D 1.12

Proof. Assuming that bLp has a �F-representation for a certain class F � Cb.U /,
then

sup
f 2F

� ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

�

D bLp.P1; P2/; 8P1; P2 2 P1.U /: (4.4.48)

If in (4.4.48) the law P1 is concentrated at the point x and P2 is concentrated at y,
then supfjf .x/ � f .y/j W f 2 Fg � d.x; y/. Thus, F is contained in the Lipschitz
class

Lipb1;1 D Lipb1;1.U /

WD ff W U ! R; f bounded; jf .x/ � f .y/j � d.x; y/ 8x; y 2 U g:
(4.4.49)

For each law P 2 P2 with marginals P1 and P2

bLp.P1; P2/ � sup
f 2Lipb1;1

ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

� sup
f 2Lipb1;1

Z

U2
jf .x/ � f .y/jP.dx; dy/ � L1.P /:

Next, we can pass to the minimal metric bL1 on the right-hand side of the
preceding inequality and then claim bLp D bL1. In particular, by the Minkowski
inequality we have
�Z

U

dp.x; a/P1.dx/

� 1=p

�
�Z

U

dp.x; a/P1.dx/

� 1=p

� bLp.P1; P2/ D bL1.P1; P2/:

(4.4.50)

12See Neveu and Dudley (1980).
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Assuming that there exists b 2 U such that d.a; b/ > 0, let us consider the laws
P1, P2 with P1.fag/ D r 2 .0; 1/, P1.fbg/ D 1 � r , P2.fag/ D 1; then the �-
representation ofbL1 D `1 [see (3.3.12), (3.4.18)],

bL1.P1; P2/ D sup
f 2Lipb1;1

jrf .a/C .1 � r/f .b/ � f .a/j

D .1 � r/ sup
f 2Lipb1;1

jf .a/� f .b/j � .1 � r/d.a; b/

and hence

.1 � r/d.a; b/ � bL1.P1; P2/ � fdp.b; a/.1 � r/g1=p D .1 � r/1=pd.a; b/;

i.e., p D 1. ut
Remark 4.4.4. Szulga (1982) made a conjecture that bLp (p > 1) has a dual form
close to that of the �-metric, namely,

bLp.P1; P2/ D ASp.P1; P2/; P1; P2 2 P .p/.U /: (4.4.51)

In (4.4.49), the class P .p/.U / consists of all laws P with finite “pth moment,”
R

dp.x; a/P.dx/ < 1 and

ASp.P1; P2/ WD sup
f 2Lipb1;1

ˇ

ˇ

ˇ

ˇ

ˇ

�Z

U

jf jpdP1

� 1=p

�
�Z

U

jf jpdP2

� 1=p
ˇ

ˇ

ˇ

ˇ

ˇ

: (4.4.52)

By the Minkowski inequality it follows easily that

ASp � bLp: (4.4.53)

Rachev and Schief (1992) construct an example illustrating that the conjecture is
wrong. However, the following lemma shows that Szulga’s conjecture is partially

true in the sense thatbLp
top� ASp.

Lemma 4.4.3. In the space P .p/.U /, the metrics ASp and bLp generate the same
exact topology.

Proof. It is known that (see further Sect. 8.3, Corollary 8.3.1) bLp metrizes Gp-
weak convergence in P .p/.U / (Definition 4.3.2), where Gp.x/ D dp.x; a/.
Hence, by (4.4.51) it is sufficient to prove that ASp-convergence implies Gp-weak
convergence. In fact, since G1 2 Lip1;1, then

ASp.Pn; P / ! 0 )
Z

U

dp.x; a/Pn.dx/ !
Z

U

dp.x; a/P.dx/: (4.4.54)
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Further, for each closed nonempty set C and " > 0 let

fC WD max

�

0; 1� 1

"
d.x; C /

�

:

Then fC 2 Lip1=";1.U / [see (3.3.6)] and

P1=p
n .C / �

�Z

U

f
p
C dPn

� 1=p

�
�Z

U

f
p
C dP

� 1=p

C 1

"
ASp.Pn; P /

� fP.C "/g1=p C 1

"
ASp.Pn; P /;

which implies

ASp.Pn; P / ! 0 ) Pn
w�! P; (4.4.55)

as desired. ut
By Lemma 4.4.2 it follows, in particular, that there exist simple metrics that have

no �F-representation. In the case of a bLp-metric, however, we can find a �F-metric
that is topologically equivalent tobLp , i.e.,

bLp
top� �

p
G (4.4.56)

[see (4.4.6), (4.4.34), and Corollary 4.4.5(ii)]. Also, it is not difficult to see that the
Prokhorov metric � [see (3.3.20)] has no �F-representation, even in the case where
U D R, d.x; y/ D jx � yj. In fact, assume that

�.P;Q/ D �F.P;Q/; 8P;Q 2 P.R/: (4.4.57)

Denoting the measure concentrated at the point x by Px we have

�.Px; Py/ D min.1; jx � yj/ � jx � yj: (4.4.58)

Hence, by (4.4.56),

jx � yj � �.Px; Py/ D sup
f 2F

jf .x/ � f .y/jI

hence,

�.P;Q/ � sup

(

ˇ

ˇ

ˇ

ˇ

Z

f d.F �G/
ˇ

ˇ

ˇ

ˇ

W f W U ! R; f � bounded;

jf .x/ � f .y/j � jx � yj; x; y 2 R

)

�
Z 1

�1
jF.x/ �G.x/jdx DW �.F;G/;
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where F is the DF of P and G is the DF of Q. Obviously, �.P;Q/ � L.F;G/,
where L is the Lévy metric in the distribution function space F [see (4.2.3)]. Hence,
the equality (4.4.57) implies

L.F;G/ � �.F;G/; 8F;G 2 F : (4.4.59)

Let 1 > " > 0 and

F".x/ D
8

<

:

0; x � 0;

1 � "; 0 < x � ";

1; x > ";

G" D
�

0; x � 0;

1; x > 0:

Then the equalities

�.F;G/ D "2 D L2.F;G/

contradict (4.4.59); hence, � does not admit a �-representation.
Although there is no �-representation for the Prokhorov metric � , nevertheless

� is topologically equivalent to various �-metrics. To see this, simply note that both
� and certain �-metrics metrize weak convergence [Corollary 4.4.4(a)]. Therefore,
the following question arises: is there a simple metric � such that

�
top� �F

fails for any set F � Cb.U /? The following lemma gives an affirmative answer to
this question, where � D �H [see (4.2.38) and (4.2.43)], and if U D R, d.x; y/ D
jx � yj, then one can take � D H [see (4.2.33) and Fig. 4.2].

Lemma 4.4.4. Let � > 0 and let .U; d/ be a metric space containing a nonconstant
sequence a1; a2; : : : ! a 2 U .

(i) If .U; d/ is an s.m.s., then there is no set F � Cb.U / such that �H�
top� �F.

(ii) If U D R, d.x; y/ D jx � yj, then there is no set F � Cb.U / such that

H�
top� �F.

Proof. We will consider only case (i) with � D 1. Choose the laws Pn and P as
follows: P.fag/ D 1, Pn.fag/ D Pn.fang/ D 1

2
. Then for each B 2 B1 the measure

P takes a value 0 or 1, and thus

�H1.Pn; P / � inf
B2B1

maxfd.an; B/; jPn.an/� P.B/jg � 1

2
: (4.4.60)

Assuming that �H1
top� �F we have, by (4.4.60), that

0 < lim
n!1 sup �F.Pn; P /
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D lim
n!1 sup

ˇ

ˇ

ˇ

ˇ

1

2
f .a/C 1

2
f .an/ � f .a/

ˇ

ˇ

ˇ

ˇ

D 1

2
lim
n!1 sup jf .a/ � f .an/j: (4.4.61)

Further, let Qn.fang/ D 1. Then �H1.Qn; P / ! 0, and hence

0 D lim
n!1 sup �F.Qn; P /

D lim
n!1 sup jf .a/ � f .an/j: (4.4.62)

Relationships (4.4.61) and (4.4.62) give the necessary contradiction. ut
Lemma 4.4.4 claims that the �-structure of simple metrics does not describe all

possible topologies arising from simple metrics. Next, we will extend the notion
of �-structure to encompass all simple p. semidistances as well as all compound
p. semidistances. To this end, note first that for the compound metric Lp.X; Y /
[p � 1, X; Y 2 X.R/] [see (3.4.3) with d.x; y/ D jx � yj, U D R] we have the
following dual representation as shown by Neveu and Dudley (1980):

Lp.X; Y / D supfjE.XZ � YZ/j W Z 2 X.R/;Lq.Z; 0/ � 1g;
1 � p � 1 1=p C 1=q D 1: (4.4.63)

The next definition generalizes the notion of the �-structure as well as the metric
structure ofbLH -distances [see (3.3.10) and (3.4.17)] and Lp-metrics [see (3.4.3)].

Definition 4.4.3. We say that a p. semidistance � admits a �-structure if � can be
written in the following way:

�.X; Y / D �.X; Y IF.X; Y // D sup
f 2F.X;Y /

Ef; (4.4.64)

where F.X; Y / is a class of integrable functions f W � ! .R;B.R// given on a
probability space .�;A;Pr/.

In general, � is not a p. semidistance, but each p. semidistance has a
�-representation. Actually, for each p. semidistance � equality (4.4.64) is valid
where F.X; Y / contains only a constant function �.X; Y /.

Let us consider some examples of �-structures of p. semidistances.

Example 4.4.4 (see (3.4.1)). LH has a trivial �-representation, where
F.X; Y / contains only the functionH.d.X; Y //.

Example 4.4.5. Lp on X.R/ [see (4.4.63)] enjoys a nontrivial �-representation,
where

F.X; Y / D ffZ.X; Y / D XZ � YZ W Lq.Z; 0/ � 1g:
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Example 4.4.6. The simple distance `H [see (3.3.10)] has a �-representation, where

F.X; Y / D ff .X; Y / D f1.X/C f2.Y /; .f1; f2/ 2 GH.U /g

for each X; Y 2 X.

Example 4.4.7. A �F-structure of simple metrics is a particular case of a �-structure
with

F.Z; Y / D ff .X; Y / D f .X/ � f .Y / W f 2 Fg
[ ff .X; Y / D f .Y /� f .X/ W f 2 Fg:

Additional examples and applications of metrics with �-structures are discussed
in Sriperumbudur et al. (2010). A variety of �-representations with applications in
various central limit theorems are discussed in Boutsikas and Vaggelatou (2002).
Kantorovich-type metrics are applied by Koeppl et al. (2010) in the area of
stochastic chemical kinetics and by Rachev and Römisch (2002) to the problem
of the stability of stochastic programming and convergence of empirical processes.
Other applications in the area of stochastic programming are provided by Rachev
and Römisch (2002), Dupacová et al. (2003), and Stockbridge and Güzin (2012). An
extension of the Prokhorov metric to fuzzy sets is provided by Repovš et al. (2011),
and other applications are provided in Graf and Luschgy (2009). A metric with a
�-structure based on the Trotter operator is applied to the convergence rate problem
in moment central limit theorems by Hung (2007). Other applications of probability
metrics include Rüschendorf et al. (1996), Toscani and Villani (1999), Greven et al.
(2009), Sriperumbudur et al. (2009), Bouchitté et al. (2011), and Hutchinson and
Rüschendorf (2000).

We have completed the investigation of the three universal metric structures
(h, ƒ, and �). The reason we call them universal is that each p. semidistance � has
h-,ƒ-, and �-representations simultaneously. Thus, depending on the specific prob-
lem under consideration, one can use one or another p. semidistance representation.
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Chapter 5
Monge–Kantorovich Mass Transference
Problem, Minimal Distances and Minimal
Norms

The goals of this chapter are to:

• Introduce the Kantorovich and Kantorovich–Rubinstein problems in one-
dimensional and multidimensional settings;

• Provide examples illustrating applications of the abstract problems;
• Discuss the multivariate Kantorovich and Kantorovich–Rubinstein theorems,

which provide dual representations of certain types of minimal distances and
norms;

• Discuss a particular application leading to an explicit representation for a class
of minimal norms.

Notation introduced in this chapter:

5.1 Introduction

The Kantorovich and Kantorovich–Rubinstein problems, also known respectively
as the mass transportation and mass transshipment problems, represent abstract
formulations of optimization problems of high practical importance. They can be
regarded as infinite-dimensional versions of the well-known transportation and
transshipment problems in mathematical programming. An extensive treatment of
both the theory and application of mass-transportation problems is provided by
Rachev and Rüschendorf (1998, 1999). More recent discussions of applications
of mass-transportation problems include Talagrand (1996), Levin (1997, 1999),
Evans and Gangbo (1999), Ambrosio (2002, 2003) Feldman and McCann (2002),
Carlier (2003), Angenent et al. (2003), Villani (2003), Brenier (2003), Feyel and
Üstünel (2004), Barrett and Prigozhin (2009), Chartrand et al. (2009), Zhang (2011),
Gabriel et al. (2010), Igbida et al. (2011), and Léonard (2012). More recently,
an international conference on the Monge–Kantorovich optimal transportation
problem, transport metrics, and their applications organized by the St. Petersburg

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 5, © Springer Science+Business Media, LLC 2013

109



110 5 Monge–Kantorovich Mass Transference Problem, Minimal Distances: : :

Notation Description

Ac Kantorovich functional
P .P1;P2/ Space of all laws on U � U with marginals P1 and P2 or, alternatively,

the space of all translocations of masses without transits permitted
P � Optimal transference plan
c.x; y/ Cost of transferring mass from x to y
Q.P1;P2/ Space of all translocations of masses with transits permitted
Dn;˛ Ornstein-type metric
eP Vector of probability measures P1; : : : ; PN
P.eP / Space of laws on UN with fixed one-dimensional marginals
Ac.eP/ Multidimensional version of Kantorovich functional Ac .P1; P2/

H� All convex functions in H
P D PU D P.U / Space of all laws on U
PH Space of all laws on .U; d/ with a finiteH.d.�; a//-moment
D.x/ jj.d.x1; x2/; d.x1; x3//; : : : ; d.xN�1; xN //jj
D.x/ H.D.x//
K.eP IA/ Dual form of Ac.eP /
KH Multivariate analog of Kantorovich distance `H
ı

�
c Kantorovich–Rubinstein functional (minimal norm w.r.t. �c)
m D mC Cm� Jordan decomposition of signed measure m
k � kw Kantorovich–Rubinstein or Wasserstein norm
m1 �m2 Product measure

branch of the V. A. Steklov Mathematics Institute and the Euler Institute was held
in St. Petersburg, Russia in June 2012 marking 100 years since the birth of L. V.
Kantorovich.1

Despite the theoretical and practical significance of a direct application of the
Kantorovich and the Kantorovich-Rubinstein problems, this chapter is devoted
to them because of their link to the theory of probability metrics.2 In fact, the
Kantorovich problem and the dual theory behind it provide insights into the structure
of some minimal probability distances such as the Kantorovich distance `H and
the `p metric, respectively [see (3.3.11)]. Likewise, the Kantorovich–Rubinstein
functional has normlike properties and can be regarded as a minimal norm (see
discussion in Example 3.3.6).

We begin with an introduction to the Kantorovich and Kantorovich–Rubinstein
problems and provide examples illustrating their application in different areas such
as job assignments, classification problems, and best allocation policy. Then we
continue with the dual theory, which leads to alternative representations of some
minimal probability distances. Finally, we discuss an explicit representation of a
class of minimal norms that define probability semimetrics.

1The program of the conference and related materials are available online at http://www.mccme.
ru/�ansobol/otarie/MK2012conf.html.
2See Rachev (1991), Rachev and Taksar (1992), Rachev and Hanin (1995a,b), Cuesta et al. (1996),
and Rachev and Rüschendorf (1999).

http://www.mccme.ru/~ansobol/otarie/MK2012conf.html
http://www.mccme.ru/~ansobol/otarie/MK2012conf.html
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5.2 Statement of Monge–Kantorovich Problem

This section should be viewed as an introduction to the Monge–Kantorovich
problem (MKP) and its related probability semidistances. There are six known
versions of the MKP.

1. Monge transportation problem. In 1781, the French mathematician and engineer
Gaspard Monge formulated the following problem in studying the most efficient
way of transporting soil:

Split two equally large volumes into infinitely small particles and then associate them
with each other so that the sum of products of these paths of the particles to a volume
is least. Along what paths must the particles be transported and what is the lowest
transportation cost?

In other words, two sets S1 and S2 are the supports of two masses �1 and �2
with equal total weight�1.S1/ D �2.S2/. The initial mass�1 is to be transported
from S1 to S2 so that the result is the final mass �2. The transportation should be
realized in such a way as to minimize the total labor involved.

2. Kantorovich’s mass transference problem. In the Monge problem, let A and B
be initial and final volumes. For any set a � A and b � B , let P.a; b/ be the
fraction of volume of A that was transferred from a to b. Note that P.a;B/ is
equal to the ratio of volumes of a and A and P.A; b/ is equal to the ratio of
volumes of b and B , respectively.

In general we need not assume thatA andB are of equal volumes; rather, they
are bodies with equal masses though not necessarily uniform densities. Let P1.�/
and P2.�/ be the probability measures on a space U , respectively describing the
masses of A and B . Then a shipping plan would be a probability measure P on
U � U such that its projections on the first and second coordinates are P1 and
P2, respectively. The amount of mass shipped from a neighborhood dx of x into
the neighborhood dy of y is then proportional to P.dx; dy/. If the unit cost of
shipment from x to y is c.x; y/, then the total cost is

Z

U�U
c.x; y/P.dx; dy/: (5.2.1)

Thus we see that minimization of transportation costs can be formulated in terms
of finding a distribution of U � U whose marginals are fixed and such that the
double integral of the cost function is minimal. This is the so-called Kantorovich
formulation of the Monge problem, which in abstract form is as follows:

Suppose that P1 and P2 are two Borel probability measures given on a separable metric
space (s.m.s.) .U; d/, and P .P1;P2/ is the space of all Borel probability measures P on
U � U with fixed marginals P1.�/ D P.� � U/ and P2.�/ D P2.U � �/. Evaluate the
functional

Ac.P1; P2/ D inf

�Z

U�U
c.x; y/P.dx; dy/ W P 2 P .P1;P2/

�

; (5.2.2)

where c.x; y/ is a given continuous nonnegative function on U � U .



112 5 Monge–Kantorovich Mass Transference Problem, Minimal Distances: : :

We will call the functional (5.2.2) the Kantorovich functional (Kantorovich
metric) if c D d [see Example 3.3.2, (3.4.18), and (3.4.54)].

The measures P1 and P2 may be viewed as the initial and final distributions of
mass and P .P1;P2/ as the space of admissible transference plans. If the infimum
in (5.2.2) is realized for some measure P � 2 P .P1;P2/, then P � is said to be the
optimal transference plan. The function c.x; y/ can be interpreted as the cost of
transferring the mass from x to y.

Remark 5.2.1. Kantorovich’s formulation differs from the Monge problem in
that the class P .P1;P2/ is broader than the class of one-to-one transference plans
in Monge’s sense. Sudakov (1976) showed that if measures P1 and P2 are given
on a bounded subset of a finite-dimensional Banach space and are absolutely
continuous with respect to the Lebesgue measure, then there exists an optimal
one-to-one transference plan.

Remark 5.2.2. Another example of the MKP is assigning army recruits to jobs
to be filled. The flock of recruits has a certain distribution of parameters such
as education, previous training, and physical conditions. The distribution of
parameters that are necessary to fill all the jobs might not necessarily coincide
with one of the contingents. There is a certain cost involved in training an
individual for a specific job depending on the job requirements and individual
parameters; thus the problem of assigning recruits to the job and training them
so that the total cost is minimal can be viewed as a particular case of the MKP.

Comparing the definition of Ac.P1; P1/ with Definition 3.3.2 [see (3.3.2)] of
minimal distanceb� we see that

Ac D b� (5.2.3)

for any compound distance � of the form

�.P / D �c.P / D
Z

U�U
c.x; y/P.dx; dy/; P 2 P2: (5.2.4)

(Recall that Pk is the set of all Borel probability measures on the Cartesian
product U k .) If �.P / D LH WD

R

H.d.x; y//P.dx; dy/, H 2 H, P 2 P2,
is theH -average compound distance [see (3.4.1)], then Ac D bLH . This example
seems to be the most important one from the point of view of the theory of
probability metrics. For this reason we will devote special attention to the mass
transportation problem with cost function c.x; y/ D H.d.x; y//.

3. Kantorovich–Rubinstein–Kemperman problem of multistaged shipping. In 1957,
Kantorovich and Rubinstein studied the problem of transferring masses in cases
where transits are permitted. Rather than shipping a mass from a certain subset
of U to another subset of U in one step, the shipment is made in n stages.
That is, we ship A D A1 to volume A2, then A2 to A3; : : : ; An�1 to An D B .
Let �n.a1; a2; a3; : : : ; an/ be a measure equal to the total mass that was removed
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from the set a1 and on its way to an passed the sets a2; a3; : : : ; an�1. If c.x; y/
is the unit cost of transportation from x to y, then the total cost under such a
transportation plan is

Z

U�U
c.x; y/�n.dx � dy � Un�2/

C
n�2
X

iD2

Z

U�U
c.x; y/�n.U

i�1 � dx � dy � Un�i�1/

C
Z

U�U
c.x; y/�n.U

n�2 � dx � dy/

DW
Z

U�U
c.x; y/�n.dx � dy/: (5.2.5)

A more sophisticated plan consists of a sequence of transportation subplans
�n, n D 2; 3; : : : , due to Kemperman (1983). Each subplan �n need not transfer
the whole mass from A to B , rather only a certain part of it. However, combined
the subplans complete the transshipment of mass, that is,

P1.A/ D
1
X

nD2
�n.A � Un�1/ (5.2.6)

and

P2.B/ D
1
X

nD2
�n.U

n�1 � B/: (5.2.7)

The total cost of transshipment under this sequential transportation plan will be
the sum of costs of each subplan and is equal to

Z

U�U
c.x; y/Q.dx; dy/; (5.2.8)

where

Q.A � B/ D
1
X

nD2
�n.A � B/ (5.2.9)

and �n is defined by (5.2.5):

�n.A;B/ WD �n.A � B � Un�2/

C
n�2
X

iD2
�n.U

i�1 C A � B � Un�i�1/C �n.U n�2 �A �B/:
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Note that now Q is not necessarily a probability measure. The marginals of Q
are equal to

Q1.A/ D
1
X

nD2

 

�n.A � Un�1/C
n�2
X

iD1
�n.U

i � A � Un�i�1/
!

(5.2.10)

and

Q2.B/ D
1
X

nD2

 

�n.U
n�1 �B/C

n�2
X

iD1
�n.U

i �B � Un�i�1/
!

; (5.2.11)

respectively. Combining equalities (5.2.6), (5.2.7) and (5.2.10), (5.2.11), we
obtain

Q1.A/� P1.A/ D Q2.A/ � P2.A/ D
1
X

nD3

n�2
X

iD1
�n.U

i �A � Un�1�i / (5.2.12)

for any A 2 B.U /. Denote the space of all translocations of masses (without
transits permitted) by P .P1;P2/ [see (5.2.2)]. Under the translocations of masses
with transits permitted we will understand the finite Borel measureQ on B.U �
U / such that

Q.A � U / �Q.U � A/ D P1.A/� P2.A/ (5.2.13)

for any A 2 B.U /. Denote the space of all Q satisfying (5.2.13) by Q.P1;P2/.
Let a continuous nonnegative function c.x; y/ be given that represents the cost
of transferring a unit mass from x to y. The total cost of transferring the given
mass distributions P1 and P2 is given by

�c.P / WD
Z

U�U
c.x; y/P.dx; dy/; if P 2 P .P1;P2/ (5.2.14)

[see (5.2.2)] or

�c.Q/ WD
Z

U�U
c.x; y/Q.dx; dy/; if Q 2 Q.P1;P2/: (5.2.15)

Hence, if �c is a probability distance, then the minimal distance

b�c.P1; P2/ D inf
˚

�c.P / W P 2 P .P1;P2/
�

(5.2.16)

may be viewed as the minimal translocation cost, while the minimal norm
(Definition 3.3.4)

ı
�c.P1; P2/ D inf

˚

�c.Q/ W Q 2 Q.P1;P2/
�

(5.2.17)

may be viewed as the minimal translocation cost in the case of transits permitted.
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The problem of calculating the exact value of b�c (for general c) is known
as the Kantorovich problem, and b� is called the Kantorovich functional [see

equality (5.2.2)]. Similarly, the problem of evaluating
ı
�c is known as the

Kantorovich–Rubinstein problem, and
ı
�c is said to be the Kantorovich–Rubin-

stein functional. Some authors refer to
ı
�c as the Wasserstein norm if c D d . In

Example 3.3.6 in Chap. 3 we defined
ı
�c as the minimal norm.

The functional
ı
�c is frequently used in mathematical-economical models but

is not applied in probability theory.3 Observe, however, the following relationship
between the Fortet–Mourier metric

�.P;QIGp/ D sup

(

Z

U

f d.P �Q/ W f W U ! R; andjf .x/ � f .y/j

� d.x; y/maxŒ1; d.x; a/p�1; d.y; a/p�1� 8x; y 2 U
)

[see Lemma 4.4.1, (4.4.35)] and the minimal norm
ı
�c :

�.P;QIGp/ D ı
�c.P;Q/;

where the cost function is given by c.x; y/Dd.x; y/maxŒ1; d.x; a/; dp�1.y; a/�,
p � 1 (see further Theorem 5.4.3).

Open Problem 5.2.1. The last equality provides a representation of the Fortet–

Mourier metric in terms of the minimal norm
ı
�c . It is interesting to find a similar

representation but in terms of a minimal metric b�. On the real line (U D R,
d.x; y/ D jx � yj) one can solve this problem as follows:

�.P;QIGp/ D
Z

R

max.1; jx � ajp�1/.P �Q/.�1; x�jdx

D inf

(

Z

R

.Pr.X�t<Y /CPr.Y�t<X/max.1; jt � ajp�1/dt;

X; Y 2 X.R/ W PrX D P;PrY D Q
)

(see further Theorems 5.5.1 and 6.6.1). Thus, in this particular case,
�.P;QIGp/ D b�c.P;Q/, where the cost function c is given by

3See, for example, Bazaraa and Jarvis (2005).
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c.x; y/ D
Z

.I fx � t < yg C I fy � t < xg/max.1; jt � ajp�1/dt:

However, if U is an s.m.s., then the problem of determining a minimal metric
b� such that �.�; �IGp/ D b� is still open. Note that we can define a minimal
metric, namely,bLp D .b�dp /1=p [see (4.4.54) in Chap. 4], that metrizes the same
topology as �.�; �IGp/.
Example 5.2.1. Kantorovich functionals and the problem of classification.
In multivariate statistical analysis, the problem of classification is well known
[see, for example, Anderson (2003)]. Let us give one popular example of an
alternative problem of classification.

Army recruits are given a battery of tests to determine their fitness for different
jobs: the scores are a set of measurements x 2 U , where .U; d/ is an s.m.s., for
example, U D R

k , d.x; y/ D ky �xk. The distribution of scores is given by the
measure P1,

P1.A/ D number of recruits with scores in A

Total number of recruits
:

On the other hand, the army’s needs can be expressed by a probability measure
P2 on U that represents the desired distribution of scores for the jobs needed to
be filled. The problem is to choose an optimal classification (or assignment) of
recruits to jobs. A classification can be specified by choosing a bounded measure
Q on B.U � U /. If a classification satisfies the balancing conditions

Q.A � U / D P1.A/; Q.U � B/ D P2.B/; (5.2.18)

then we view the quantity of recruits with scores x 2 A that are classified as
satisfying (after retraining) the requirements of jobs that call for scores y 2 B .
If we think that the training procedure might be a multistaged one, in which
the same individual gradually changes his scores (and fitness for different jobs
respectively) in a sequence of n retraining stages, then the measure Q satisfies
the balancing conditions

Q.A � U /�Q.U � A/ D P1.A/� P2.A/: (5.2.19)

The interpretation of Q.A � B/ is the combined number of GIs at all stages
who had scores x in A and who were trained to fit the jobs that require scores
y in B . Let c0.x; y/ be the cost of training a person with a score x to fit
a job that requires score y. Consider the joint cost c.x; y/ D c0.x; y/ C
c0.y; x/. (Nonsymmetric cost functions will be considered in Sect. 7.4; see
Theorem 7.4.2.) The obvious assumption on c is that

c.x; x/ D 0: (5.2.20)
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Moreover, we can assume that

d.x0; y0/ � d.x00; y00/) c.x0; y0/ � c.x00; y00/; (5.2.21)

i.e., the cost c.x; y/ increases with d.x; y/. In particular, (5.2.21) implies

d.x0; a/ < d.x00; a/) c.x0; a/ < c.x00; a/; (5.2.22)

d.a; y0/ < d.a; y00/) c.a; y0/ < c.a; y00/; (5.2.23)

for a fixed point a 2 U , which one can consider as the “center” of recruitment
possibilities and the army’s needs. Implications (5.2.21)–(5.2.23) suggest that
one reasonable form of c is given by

c.x; y/ D d.x; y/max.h.d.x; a//; h.d.y; a///; (5.2.24)

where h is a continuous nondecreasing function on Œ0;1/, h.0/ � 0, h.x/ > 0,
for x > 0. Another natural choice of c might be

c.x; y/ D H.d.x; y//; (5.2.25)

where H 2 H (Examples 2.4.1 and 3.4.1). Fixing the cost function c we
conclude that the total cost involved in using the classification Q is calculated
by the integral

TC.Q/ D
Z

U�U
c.x; y/Q.dx; dy/: (5.2.26)

The following problems therefore arise.

Problem 5.2.1. Considering the set of classifications P .P1;P2/ we seek to char-
acterize the optimal P � 2 P .P1;P2/ (if P � exists) for which

TC.P �/ D inffTC.P / W P 2 P .P1;P2/g (5.2.27)

and to evaluate the bound

b�c.P1; P2/ D inffTC.P / W P 2 P .P1;P2/g: (5.2.28)

Problem 5.2.2. Considering the set of classifications Q.P1;P2/ we seek to char-
acterize the optimalQ� 2 Q.P1;P2/ (if Q� exists) for which

TC.Q�/ D inffTC.Q/ W Q 2 Q.P1;P2/g (5.2.29)

and to evaluate the bound

ı
�c.P1; P2/ D inffTC.Q2/ W Q 2 Q.P1;P2/g:

Problem 5.2.3. What kind of quantitative relationships exist between b�c

and
ı
�c?
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In the next three sections, we will attempt to provide some answers to
Problems 5.2.1–5.2.3.

Example 5.2.2. Kantorovich functionals and the problem of the best allocation
policy. Karatzas (1984) considers d medical treatments (or projects or investiga-
tions) with the state of the j th of them (at time t � 0) denoted by xj .t/.4 At each
instant of time t , it is allowed to use only one medical treatment, denoted by i.t/,
which then evolves according to some Markovian rule; meanwhile, the states of
all other projects remain frozen.

Now we will consider the situation where one is allowed to use a combination
of different medical treatments (say, for brevity, medicines) denoted by
M1; : : : ;Md . Let d D 2 and .U; d/ be an s.m.s. The space U may be viewed
as the space of a patient’s parameters. Assume that for i D 1; 2 and for any
Borel set A 2 B.U / the exact quantity P1.A/ of medicine M (which should
be prescribed to the patient with parameters A) is known. Normalizing the total
quantity Pi .U / that can be prescribed by 1, we can consider Pi as a probability
measure on B.U /. Our aim is to handle an optimal policy of treatments with
medicines M1, M2. Such a treatment should be a combination of medicines M1

and M2 varying on different sets A � U .
A policy can be specified by choosing a bounded measure Q on B.U � U /

and the quantity of medicineMi in the case of patient with parameters, i D 1; 2,
by following policyQ. The policy may satisfy the balancing condition

Q.A � U / D P1.A/; Q.U � A/ D P2.A/; A 2 B.U /; (5.2.30)

i.e., Q 2 P .P1;P2/ or (in the case of a multistage treatment)

Q.A � U / �Q.U � A/ D P1.A/� P2.A/; A 2 BS.U /; (5.2.31)

i.e., Q 2 Q.P1;P2/. Let c.x1; x2/ be the cost of treating the patient with instant

parameters xi with medicines Mi , i D 1; 2. The b� and
ı
� [see (5.2.16)

and (5.2.17)] represent the minimal total costs under the balancing conditions
(5.2.30) and (5.2.31), respectively. In this context, Problems 5.2.1–5.2.3 are
of interest.

4. Gini’s index of dissimilarity. Already at the beginning of this century, the
following question arose among probabilists: What is the proper way to measure
the degree of difference between two random quantities [see the review article by
Kruskal (1958)]? Specific contributions to the solution of this problem, which is
closely related to Kantorovich’s problem 5.2.2, were made by Gini, Hoeffding,
Frechet, and their successors. In 1914, Gini introduced the concept of a simple
index of dissimilarity, which coincides with Kantorovich’s metric Ad D R

1,

4See also the general discussion in Whittle (1982, p. 210–211).
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d.x; y/ D jx � yj). That is, Gini studied the functional

K.F1; F2/ D inf

�Z

R2

jx � yjdF.x; y/ W F 2 F.F1; F2/
�

(5.2.32)

in the space F of one-dimensional distribution functions (DF) F1 and F2. In
(5.2.32), F.F1; F2/ is the class of all bivariate DFs F with fixed marginal
distributions F1.x/ D F.x;1/ and F2.x/ D F.1; x/, x 2 R

1 [see (3.4.54)].
Gini and his students devoted a great deal of effort to studying the properties
of the sample measure of discrepancy, Glivenko’s theorem, and goodness-of-
fit tests in terms of K. Of special importance in these investigations was the
question of finding explicit expressions for this measure of discrepancy and its
generalizations. Thus in 1943, Salvemini showed that

K.F1; F2/ D
Z 1

�1
jF1.x/ � F2.x/jdx (5.2.33)

in the class of discrete DFs and in 1956 Dall’Aglio extended it to all of F .
This formula was proved and generalized in many ways [see Example 3.4.3,
Eq. (3.4.19), and Sect. 7.4].

2. Ornstein metric. Let .U; d/ be an s.m.s., and let dn;˛, ˛ 2 Œ0;1�, be the analog
of the Hamming metric on Un,5 namely,

dn;˛.x; y/ D 1

n

 

n
X

iD1
d˛.xi ; yi /

!˛0

; x D .x1; : : : ; xn/ 2 Un;

y D .y1; : : : ; yn/ 2 Un; 0 < ˛ <1; ˛0 D min.1; 1=˛/;

dn;0.x; y/ D 1

n

n
X

iD1
I fxi ¤ yi g;

dn;1.x; y/ D 1

n
maxfd.xi ; yi / W i D 1; : : : ; ng:

For any Borel probability measures P and Q on Un define the following analog
of the Kantorovich metric:

Dn;˛.P;Q/ D inf

�Z

dn;˛dbP W bP 2 P .P;Q/

�

: (5.2.34)

The simple probability metric Dn;0 is known among specialists in the theory of
dynamical systems and coding theory as Ornstein’s d -metric, while Dn;1 is called

5See Gray (1988, p. 48).
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the �-distance. In information theory, the Kantorovich metric D1;1 is known as
the Wasserstein (sometimes Lévy–Wasserstein) metric. We will show that

Dn;˛.P;Q/ D sup

�ˇ

ˇ

ˇ

ˇ

Z

f d.P �Q/
ˇ

ˇ

ˇ

ˇ

W f W un ! R
1; Ln;˛.f / � 1

�

;

Ln;˛.f / D supfjf .x/ � f .y/j=dn;˛.x; y/; x ¤ y; y 2 Ung; (5.2.35)

for all ˛ 2 Œ0;1/ (see Corollary 6.2.1 for the case where 0 < ˛ < 1 and
Corollary 7.5.2 for the case where ˛ D 0).

3. Multidimensional Kantorovich problem. We now generalize the preceding prob-
lems as follows.

Let eP D fPi ; i D 1; : : : ; N g be a set of probability measures given on an
s.m.s. .U; d/, and let P.eP/ be the space of all Borel probability measures P
on the direct product UN with fixed projections Pi on the i th coordinates, i D
1; : : : ; N . Evaluate the functional

Ac.eP / D inf

�Z

UN
cdP W P 2 P.eP /

�

; (5.2.36)

where c is a given continuous function on UN .

This transportation problem of infinite-dimensional linear programming is of
interest in its own right in problems of stability of stochastic models.6 This is related
to the fact that if fP .i/

1 ; : : : ; P
.i/
N g, i D 1; 2, are two sets of probability measures

on .U; d/ and P .i/ WD P
.i/
1 � � � � � P .i/

N are their products, then the value of the
Kantorovich functional

Ac� .P .1/; P .2// D inf

�Z

U2N
c�dbP W bP 2 P .P .1/;P .2//

�

(5.2.37)

with cost function c� given by

c�.x1; : : : ; xN ; y1; : : : ; yN / WD �.c1.x1; y1/; : : : ; cN .xN ; yN //; (5.2.38)

xi ; yi 2 U; i D 1; : : : ; N;
where � is some nondecreasing, nonnegative continuous function on R

n, coincides
with

6See Kalashnikov and Rachev (1988, Chaps. 3 and 6).
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Ac�.P
.1/
1 ; : : : ; P

.1/
N ; P

.2/
1 ; : : : ; P

.2/
N /

D inf

�Z

U2N
c�dP W P 2 P.P

.1/
1 ; : : : ; P

.1/
N ; P

.2/
1 ; : : : ; P

.2/
N /

�

: (5.2.39)

See further Theorem 7.2.3 of Chap. 7.

5.3 Multidimensional Kantorovich Theorem

In this section, we will prove the duality theorem for the multidimensional
Kantorovich problem [see (5.2.36)].

For brevity, P will denote the space PU of all Borel probability measures on an
s.m.s. .U; d/. Let N D 2; 3; : : : and let kbk (b 2 R

m, m D �

N
2

�

) be a monotone
seminorm k � k, i.e., k � k is a seminorm in R

m with the following property: if 0 <
b0
i ;� b00

i , i D 1; : : : ; m, then kb0k � kb00k. For example,

kbkp WD
 

m
X

iD1
jbi jp

!1=p

; kbk1 WD maxfjbi j W i D 1; : : : ; mg;

kbk WD
ˇ

ˇ

ˇ

ˇ

ˇ

m
X

iD1
bi

ˇ

ˇ

ˇ

ˇ

ˇ

and kbk WD
0

@

ˇ

ˇ

ˇ

ˇ

ˇ

k
X

iD1
bi

ˇ

ˇ

ˇ

ˇ

ˇ

p

C
ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iDkC1
bi

ˇ

ˇ

ˇ

ˇ

ˇ

p
1

A

1=p

; p � 1:

For any x D .x1; : : : ; xN / 2 UN let

D.x/ D kd.x1; x2/; d.x1; x3/; : : : ; d.x1; xN /; d.x2; x3/; : : : ; d.xN�1; xN /k:
Let eP D .P1; : : : ; PN / be a finite set of measures in P , and let

AD. QP/ WD inf

�Z

UN
DdP W P 2 P. QP

�

; (5.3.1)

where D.x/ WD H.D.x//, x 2 UN , and H 2 H� D fH 2 H, H convexg (see
Example 2.4.1).

Let PH be the space of all measures in P for which
R

U
H.d.x; a//P.dx/ <1,

a 2 U . For any U0 � U define the class Lip.U0/ WD S˛>0 Lip1;˛.U0/, where

Lip1;˛.U0/ WD ff W U ! R
1 W jf .x/ � f .y/j � ˛d.x; y/; 8x; y 2 U0;

and supfjf .x/j W x 2 U0g <1g:
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Define the class

G.U0/ D
n

f D .f1; : : : ; fn/ W
n
X

iD1
fi .xi / � D.x1; : : : ; xN /

for xi 2 U0; fi 2 Lip.U0/; i D 1; : : : ; N
o

;

and for any class U of vectors f D .f1; : : : ; fN / of measurable functions let

K.eP IA/ D sup

(

N
X

iD1

Z

U

fidP W f 2 A

)

; (5.3.2)

assuming that Pi 2 PH and fi is P -integrable.

Lemma 5.3.1.
AD.eP/ � K.eP IG.U //: (5.3.3)

Proof. Let f D .f1; : : : ; fN / 2 G.U / and P 2 B.eP /, where, as in (5.2.36), B.eP/
is the set of all laws on UN with fixed projections Pi on the i th coordinates, i D
1; : : : ; N . Then

N
X

iD1

Z

U

fi .xi /P.dxi / D
Z

UN

N
X

iD1
fi .xi /P.dx1; : : : ; dxN /

�
Z

UN
DdP:

The last inequality, together with (5.3.1) and (5.3.2), completes the proof (5.3.3).
ut

The next theorem [an extension of Kantorovich’s (1940) theorem to the multidi-
mensional case] shows that exact equality holds in (5.3.3).

Theorem 5.3.1. For any s.m.s. .U; d/ and for any set eP D .P1; : : : ; PN /, Pi 2
PH , i D 1; : : : ; N ,

AD.eP / D K.eP IG.U //: (5.3.4)

If the set P consists of tight measures, then the infimum is attained in (5.3.1).

Proof. 1. Suppose first that d is a bounded metric in U , and let

�i .xi ; yi / D supfjD.x1; : : : ; xN / �D.y1; : : : ; yN /j W xj D yj 2 U;
j D 1; : : : ; N; j ¤ ig; (5.3.5)

for xi ; yi 2 U , i D 1; : : : ; N . Since H is a convex function and d is bounded,
�1; : : : ; �N are bounded metrics. Let U0 � U and let G0.U0/ be the space of all
collections f D .f1; : : : ; fN / of measurable functions on U0 such that f1.x1/C
� � � C fN .xN / < D.x1; : : : ; xN /, x1; : : : ; xN 2 U0. Let G00.U0/ be a subset of
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G0.U0/ of vectors f for which jfi.x/ � fi .y/j � �i .x; y/, x; y 2 U0, i D
1; : : : ; N . Observe that G00 � G � G0. We wish to show that if Pi.U0/ D 1,
i D 1; : : : ; N , then

K.eP IG0.U0// D K.eP IG00.U //: (5.3.6)

Let f 2 G00.U0/. We define sequentially the functions

f �
1 .x1/ D inffD.x1; : : : ; xN / � f2.x2/ � � � � � fN .xN / W

x2; : : : ; xN 2 U0g; x1 2 U;
f �
2 .x2/ D inffD.x1; : : : ; xN / � f �

1 .x1/ � f3.x3/� � � � � fN .xN / W
x1 2 U; x3; : : : ; xN 2 U0g; x2 2 U; : : : ;

f �
N .xN / D inffD.x1; : : : ; xN / � f �

1 .x1/ � � � � � f �
N�1.xN�1/ W

x1; : : : ; xN�1 2 U g; xN 2 U:
Since D is continuous, it follows that f �

j are upper semicontinuous and,
hence, Borel measurable. Also, f �

1 .x1/ C � � � C f �
N .xN / � D.x1; : : : ; xN /

8x1; : : : ; xN 2 U . Furthermore, for any x1; y1 2 U
f �
1 .x1/� f �

1 .y1/ D inffD.x1; : : : ; yN / � f2.x2/ � � � � � fN .xN / W
x2; : : : ; xN 2 U0g
C supff2.y2/C � � � C fn.yN /�D.y1; : : : ; yN / W
y2; : : : ; yN 2 U0g

� supfD.x1; y2; : : : ; yN / �D.y1; : : : ; yN / W
y2; : : : ; yN 2 U0g

� �1.x1; y1/:
A similar argument proves that the collection f� D .f �

1 ; : : : ; f
�
N / belongs to the

set G00.U /. Given x1 2 U0, we have f .x1/ � D.x1; x2; : : : ; xN /�f2.x2/�� � ��
fN .xN / for all x2; : : : ; xN 2 U0. Thus, f .x1/ � f �.x1/. Also, if x2 2 U0, then

f �
2 .x2/ D inf

x12U;x3;:::;xN2U0
fD.x1; : : : ; xN /

� inf
y2;:::;yN 2U0

ŒD.x1; y2; : : : ; yN / � f2.x2/ � � � � � fN .yN /�

�f3.x3/� � � � � fN .xN /g
� inf

x12U;x3;:::;xN2U0
fD.x1; : : : ; xN / �D.x1; x2; : : : ; xN /C f2.x2/

C � � � C fN .xN /� f3.x3/ � � � � � fN .xN /g
D f2.x2/:
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Similarly, f �
i .xj / � fi .xi / for all i D 1; : : : ; N and xi 2 U0. Hence,

N
X

iD1

Z

fidPi �
N
X

iD1

Z

f �
i dPi ;

which implies the inequality

K.eP IG0.U0/ < K.eP IG00.U //; (5.3.7)

from which (5.3.6) clearly follows.

Case 1. Let U be a finite space with the elements u1; : : : ; un. From the duality
principle in linear programming, we have7

AD.eP / D inf

(

n
X

i1D1
� � �

n
X

iND1
D.ui1 ; : : : ; uiN /	.i1; : : : ; iN / W

	.i1; : : : ; iN / � 0;
X

ij Wj¤k
	.i1; : : : ; iN / D Pk.uik /; k D 1; : : : ; N

)

D sup

(

n
X

iD1

N
X

jD1
fj .uj /Pj .ui / W

N
X

jD1
fj .Quj / � D.Qu/i; : : : ; QuN /;

Qu1; : : : ; QuN 2 U
)

D K.eP IG0.U //:

Therefore, (5.3.7) implies the chain of inequalities

K.eP IG.U // � K.eP IG00.U // � K.eP IG0.U // � AD.eP /;

from which (5.3.4) follows by virtue of (5.3.3).
Case 2. Let U be a compact set. For any n D 1; 2; : : : , choose disjoint

nonempty Borel setsA1; : : : ; Amn of diameter less than 1=nwhose union is U .
Define a mapping hh W U ! Un D fu1; : : : ; umng such that hn.Ai / D ui ,
i D 1; : : : ; mn. According to (5.3.6) we have for the collection ePn D
.P1 ı h�1

n ; : : : ; PN ı h�1
n / the relation

K.ePnIG0.Un// D sup

(

N
X

iD1

Z

U

fi .hn.u//Pi .du/ W f 2 G0.u/
)

: (5.3.8)

7See, for example, Bazaraa and Jarvis (2005).
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If f 2 G0.Un/, then
N
P

iD1
fi .hn.Qui // � D.hn.Qu1/; : : : ; hn.QuN // �

D.Qu1; : : : ; QuN / C K=n, where the constant K is independent of n and
Qu1; : : : ; QuN 2 U . Hence, from (5.3.8) we have

K.ePnIG0.Un// � K.eP IG0.U //CK=n: (5.3.9)

According to Case 1, there exists a measure P .n/ 2 P.eP n/ such that
Z

UN
DdP .n/ � K.eP nIG0.Un//: (5.3.10)

SincePi ıh�1
n converges weakly to Pi , i D 1; : : : ; N , the sequence fP .n/; n D

1; 2; : : : g is weakly compact (Billingsley 1999, Sect. 6).
Let P � be a weak limit of P .n/. From estimate (5.3.9) and equality (5.3.10) it
follows that

Z

UN
DdP � � K.eP IG0.U //;

which together with Lemma 5.3.1 implies (5.3.4).
Case 3. Let .U; d/ be a bounded s.m.s. Since

R

U
H.d.x; a//Pi .dx/ <1, the

convexity ofH and (5.3.5) imply that
R

U
�i .x; a/Pi .dx/ <1, i D 1; : : : ; N .

Let the Pi be tight measures (Definition 2.6.1). Then for each n D 1; 2; : : :

there exists a compact set Kn such that

sup
1�i�N

Z

UnKn
.1C �i .x; a//Pi .dx/ < 1

n
: (5.3.11)

For any A 2 B.U / set

Pi;n.A/ WD Pi .A\Kn/C Pi.U nKn/ı˛.A/; eP n WD .P1;n; : : : ; PN;n/;
where

ı˛.A/ WD
�

1; ˛ 2 A;
0; ˛ … A:

By (5.3.6),

K.ePnIG0.Kn [ fag// D K.eP IG00.U //

� sup

(

N
X

iD1

Z

U

fi .x/Pi .dx/C
Z

UnKn
�i .x; a/Pi .dx/ W f 2 G.u/

)

� K.eP IG.U //CN=n: (5.3.12)
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According to Case 2, there exists a measure P .n/ 2 P.eP / such that
Z

Un
DdP .n/ � K.ePnIG0.Kn [ fag//: (5.3.13)

Similarly to Case 2, we then obtain (5.3.4) from relations (5.3.12) and
(5.3.13).

Now let P1; : : : ; PN be measures that are not necessarily tight. Let U be the
completion of U . To any positive " choose the largest set A such that d.x; y/ �
"=2 8x; y 2 A. The set A is countable: A D fx1; x2; : : : g. Let An D fx 2
U W d.x; xn/ < "=2 � d.x; xj / 8j < ng, and let An D An \ U . Then An,
n D 1; 2; : : : , are disjoint Borel sets in U and An, n D 1; 2; : : : , are disjoint
sets in U of diameter less than ". Let P i be a measure generated on U by Pi ,
i D 1; : : : ; N . Then for Q D .P 1; : : : ; P N / there exists a measure � 2 P.Q/
such that

Z

U
N
Dd� D K.QIG.U //:

Let Pi;m.B/ D Pi.B \ Am/ for all B 2 B.U /, i D 1; : : : ; N . To any multiple
index m D .m1; : : : ; mn/, mi D 1; 2; : : : , i D 1; : : : ; N , define the measure

�m D cmP1;m1 � � � � � PN;mN ;
where the constant cm is chosen such that

�m.Am1 � � � � � AmN / D �m.Am1 � � � � � AmN /:
Let �" DPm �m. Then for any B 2 B.U /

�".B � UN�1/ D
X

m

cmP1;m1.B/P2;m2 .U / � � �PN;mN .U /

D
X

m

cmP1.B \ Am1/P2.Am2/ � � �PN .AmN /

D
X

m

0 �.Am1 � � � � �AmN /
P1;m1 .Am1/ : : : PN;mN .AmN /

�P1.B \Am1/P2.Am2/ : : : PN .AmN /;
where

P

m
0 indicates summation over all m such that Pj;mj .Amj / > 0 for all

j D 1; : : : ; mN . Note that if P1;m1.Am1/ > 0, then we have

X

m2;:::;mN

�.Am1 � � � � �AmN /
P1;m1 .Am1/

D �.Am1 � UN�1/=P1;m1.Am1/

D P 1.Am1/=P1;m1.Am1/ D 1:
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This, together with analogous calculations for �".U k � B � UN�k�1/, k D
1; 2; : : : ; N � 1, shows that �" 2 P.eP/; hence, to each positive ",

�".D.y1; : : : ; yn/ > ˛ C 2"kek/
�
X

f�m.Am1 � � � � � Amn/ W D.x1; : : : ; xN / > ˛ C "kekg
� �.D.y1; : : : ; yn/ > ˛/;

where e is a unit vector in R
m. Since H.t/ is strictly increasing and D.x/ D

H.D.x//,

Z

N

D.x/�".dx/ D
Z 1

0

�".D.x/ > t/dH.t/

�
Z 1

0

�.D.x/ > t/dH.t C 2"kek/CH.2"kek/

�
Z

U
N
D.x/�.dx/C

Z

U
N
.H.D.x/C 2"kek/

�D.x//�.dx/CH.2"kek/:

From the Orlicz condition it follows that for any positive p the inequality

Z

UN
.H.D.x/C 2"kek/�D.x//�.dx/

� supfH.t C 2"kek/�H.t/ W t 2 Œ0; 2pkek�g

Cc1
N
X

iD1

Z

U

H.d.x; a//I fd.x; a/ > p=N gPi.dx/

holds, where c1 is a constant independent of " and p. As "! 0 and p !1, we
obtain

lim sup
"!0

Z

UN
Dd�" �

Z

U
N
Dd� D K.QIG.U // D K.eP IG.U //:

2. Let U be any s.m.s. Suppose that P1; : : : ; PN are tight measures. For any n D
1; 2; : : : , define the bounded metric dn D min.n; d/. Write Dn.x1; : : : ; xN / D
H.kdn.x1; x2/; : : : ; dn.x1; xN /; dn.x2; x3/; : : : ; dn.xN�1, xN /k/. According to
Part 1 of the proof, there exists a measure P .n/ 2 P.eP/ such that

Z

UN
DndP .n/ D K.eP IG.U; dn//: (5.3.14)
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Since P .n/, n D 1; 2; : : : , is a uniformly tight sequence, passing on to a
subsequence if necessary, we may assume that P .n/ converges weakly to P .0/ 2
P.eP /. By the Skorokhod–Dudley theorem [see Dudley (2002, Theorem 11.7.1)],
there exist a probability space .
;�/ and a sequence fXk; k D 0; 1; : : : g
of N -dimensional random vectors defined on .
;�/ and assuming values on
UN . Moreover, for any k D 0; 1; : : : , the vector Xk has distribution P .k/ and
the sequence X1;X2; : : : converges �-almost everywhere to X0. According to
(5.3.14) and the Fatou lemma,

lim inf
n!1 K.eP IG.U; dn// D lim inf

n!1 E�Dn.Xn/ � E� lim inf
n!1 Dn.Xn/

� E�D.X0/� E� lim sup
n!1

jDn.Xn/ �D.X0/j;

where

jDn.Xn/�D.X0/j � jDn.Xn/�Dn.X0/j C jDn.X0/�D.X0/j ! 0

�-a.e. as n!1
and

E� lim sup
n!1

.Dn.Xn/CD.X0// < const �
N
X

iD1

Z

U

H.d.x; a//Pi .dx/ <1:

Hence

K.eP IG.U // � lim
k!1K.eP IG.U; dk// � AD.eP /;

which by virtue of (5.3.3) implies (5.3.4). If P1; : : : ; PN are not necessarily tight,
then one can use arguments similar to those in Case 3 of Part 1 and prove (5.3.4),
which completes the proof of the theorem. ut
As already mentioned, the multidimensional Kantorovich theorem can be

interpreted naturally as a criterion for the closeness of n-dimensional sets
of probability measures. Let .Ui ; di / be an s.m.s., and Pi ;Qi 2 PUi , i D
1; : : : ; n. Write eP D .P1; : : : ; Pn/, eQ D .Q1; : : : ;Qn/, Pi ;Qi 2 PUi ,
and �.x; y/ D H.kd1.x1; y1/; : : : ; dn.xn; yn/k/, where x D .x1; : : : ; xn/ and
y D .y1; : : : ; yn/ 2 U1 � � � � � Un D A and k � kn is a monotone seminorm in
R
n. The analog of the Kantorovich distance in eP D PU1 � � � � � PUn is defined as

follows:

KH .eP ; eQ/ D inf

�Z

A�A

�.x; y/P.dx; dy/ W P 2 P.eP ; eQ/

�

; (5.3.15)

where P.eP ; eQ/ is the space of all probability measures on A � A with fixed
one-dimensional marginal distributions P1; : : : ; Pn;Q1; : : : ;Qn. Subsequently
(Chap. 7) we will consider more examples of minimal functionals of the type
(5.3.15) (the so-called K-minimal metrics).
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Case N D 2. Dual representation of the Kantorovich functional Ac.P1; P2/.
bLH D `H . Let C be the class of all functions c.x; y/ D H.d.x; y//, x; y 2 U ,
where the function H belongs to the class H of all nondecreasing continuous
functions on Œ0;1/ for which H.0/ D 0 and that satisfy Orlicz’ condition

KH D supfH.2t/=H.t/ W t > 0g <1: (5.3.16)

We also recall that H� is the subset of all convex functions in H and let C� be the
set of all c.x; y/ D H.d.x; y//, H 2 H�.

Corollary 5.3.1. Let .U; d/ be an s.m.s. and P1; P2 be Borel probability measures
on U . Let c 2 C� and Ac.P1; P2/ be given by (5.2.2). Let Lip1;˛.U / WD ff W U !
R W jf .x/ � f .y/j � ˛d.x; y/; x; y 2 U g,

Lipc.U / D
(

.f; g/ 2
[

˛>0

ŒLip1;˛.U /�
�2If .x/C g.y/ � c.x; y/; x; y 2 U

)

and

Bc.P1; P2/ D sup

�Z

U

f dP1 C
Z

U

gdP2 W .f; g/ 2 Lipc.U /

�

:

If
R

U
c.x; a/.P1 C P2/.dx/ <1 for some a 2 U , then

Ac.P1; P2/ D Bc.P2; P2/:

Moreover, if P1 and P2 are tight measures, then there exists an optimal measure
P � 2 P .P1;P2/ for which the infimum in (5.2.2) is attained.

The corollary implies that if A is a class of pairs .f; g/ of P1-integrable
(resp. P2-integrable) functions satisfying f .x/ C g.y/ � c.x; y/ for all x; y 2 U
and A 	 ŒLipc.U /��2, then the Kantorovich functional (5.2.2) admits the following
dual representation:

Ac.P1; P2/ D sup

�Z

U

f dP1 C
Z

U

gdP2 W .f; g/ 2 A

�

:

The equality Ac D Bc furnishes the main relationship between the
H -average distance LH.X; Y / D EH.d.X; Y // [(3.4.1)], [resp. p-average metric
Lp.X; Y / D ŒEdp.X; Y /�1=p , p 2 .1;1/, (3.4.3)] and the Kantorovich distance
`H [resp. `p-metric; see (3.3.11)].

Corollary 5.3.2. (i) If .U; d/ is an s.m.s., H 2 H�, and

P1; P2 2 PH.U / WD
�

P 2 P.U / W
Z

U

H.d.x; a//P.dx/ <1
�

;
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then

`H.P1; P2/ D bLH.P1; P2/ WD inffLH.X1;X2/ W Xi 2 X.U /;

PrX D Pi ; i D 1; 2g: (5.3.17)

Moreover, if U is a u.m.s.m.s., then `H is a simple distance in PH.U / with
parameter K`H D KH , i.e., for any P1, P2, and P3 2 PH.U /, `H.P1; P2/ �
KH.`H .P1; P3/C`H .P3; P2//. In this case, the infimum in (5.3.17) is attained.

(ii) If 1 < p <1 .U; d/ is an s.m.s. and

P1; P2 2 P .p/.U / WD
�

P 2 P.UW
Z

U

dp.x; a/P.dx/ <1
�

;

then

`p.P1; P2/ D bLp.P1; P2/: (5.3.18)

In the space Pp.U /, `p is a simple metric, provided U is a u.m.s.m.s.

Proof. See Theorem 3.3.1, Corollary 5.3.1, and Remark 2.7.1. ut

5.4 Dual Representation of Minimal Norms
ı
�c:

Generalization of Kantorovich–Rubinstein Theorem

The Kantorovich–Rubinstein duality theorem has a long and colorful history,
originating in the 1958 work of Kantorovich and Rubinstein on the mass transport
problem. For a detailed survey, see Kemperman (1983). Given probabilities P1 and
P2 on a space U and a measurable cost function c.x; y/ on U � U satisfying some
integrability conditions, let us consider the Kantorovich–Rubinstein functional

ı
�c.P1; P2/ WD inf

Z

c.x; y/db.x; y/; (5.4.1)

where the infimum is over all finite measures b on U � U with marginal difference

b1 � b2 D P1 � P2, where bi D Tib is the i th projection of b [see (5.2.17)]. (
ı
�c is

sometimes called the Wasserstein functional; in Example 3.3.6, we defined
ı
�c as a

minimal norm.)

The duality theorem for
ı
�c is of the general form

ı
�c.P1; P2/ D sup

Z

U

f d.P1 � P2/; (5.4.2)
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with the supremum taken over a class of f W U ! R satisfying the Lipschitz
condition f .x/ � f .y/ < c.x; y/. When the probabilities in question have a finite
support, this becomes a dual representation of the minimal cost in a network flow
problem.8

The results for (5.4.2) were obtained by Kantorovich and Rubinstein (1958) with
cost function c.x; y/ D d.x; y/, where .U; d/ is a compact metric space. Levin
and Milyutin (1979) proved the dual relation (5.4.2) for a compact space U and for
an arbitrary continuous cost function c.x; y/. Dudley (1976, Theorem 20.1) proved
(5.4.2) for s.m.s.U and c D d . Following the proofs of Kantorovich and Rubinstein
(1958) and Dudley (1976), we will show (5.4.2) for cost functions c.x; y/, which
are not necessarily metrics. The supremum in (5.4.2) is shown to be attained for
some optimal function f .

Let .U; d/ be a separable metric space. Suppose that c W U � U ! Œ0;1/ and
� W U ! Œ0;1/ are measurable functions such that

(C1) c.x; y/ D 0 iff x D y;
(C2) c.x; y/ D c.y; x/ for x; y in U ;
(C3) c.x; y/ � �.x/C �.y/ for x; y 2 U ;
(C4) � maps bounded sets to bounded sets;
(C5) supfc.x; y/ W x; y 2 B.aIR/; d.x; y/ � ıg tends to 0 as ı ! 0 for each

a 2 U and R > 0. Here, B.aIR/ WD fx 2 U W d.x; a/ < Rg.
We give two examples of function c satisfying (C1)–(C5), which are related to

our discussion in Sect. 5.2 (Examples 5.2.1 and 5.2.2):

1. c.x; y/ D H.d.x; y//, H 2 H [see (5.3.16)].
2. c.x; y/ D d.x; y/max.1; h.d.x; a//; h.d.y; a///, where h W Œ0;1/ ! Œ0;1/

is a continuous nondecreasing function.

Given a real-valued function f W U ! R, we define

kf kc WD supfjf .x/� f .y/j=c.x; y/ W x ¤ yg (5.4.3)

and set

L WD ff W kf kc < C1g: (5.4.4)

It is easy to see that k � kc is a seminorm on the linear space L. Notice that for f 2 L

we have jf .x/ � f .y/j � kf kcc.x; y/ 8x; y 2 U . It follows from Condition (C5)
on c that each function in L is continuous and, hence, measurable. Note also that
kf kc D 0 if and only if f is constant. Define L0 as the quotient of L modulo the
constant functions. Then k � kc is naturally defined on L0, and .L0; k � k/ is a normed
linear space.9

8See Bazaraa and Jarvis (2005) and Berge and Chouila-Houri (1965, Sect. 9.8).
9See Fortet and Mourier (1953).
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Now suppose that M D M�.U / denotes the linear space of all finite signed
measuresm on U such that

m.U / D 0 and
Z

�djmj � 1: (5.4.5)

Here jmj WD mC Cm�, where m D mC �m� is the Jordan decomposition of m.
For eachm 2M let B.m/ be the set of all finite measures b on U �U such that

b.A � U / � b.U � A/ D m.A/ (5.4.6)

for each Borel A � U . Note that B.m/ is always nonempty since it contains
.mC�m�/=mC.U /. Here,mC�m� denotes the product measuremC�m�.A/ D
mC.A/m�.A/. A 2 B.U /. Define a functionm! kmkw on M by

kmkw WD inf

�Z

c.x; y/b.dx; dy/ W b 2 B.m/

�

: (5.4.7)

We have

kmkw �
Z

c.x; y/.mC �m�/.dx; dy/=mC.U /

�
Z

�.x/mC.dx/C
Z

�.y/m�.dy/

D
Z

�djmj <1: (5.4.8)

For c.x; y/ D d.x; y/, kmkw is sometimes called the Kantorovich–Rubinstein or
Wasserstein norm of m [see also (3.3.38) and Definition 3.3.4].

We will demonstrate that for probabilities P and Q on U with P �Q 2M we
have

kP �Qkw D sup

�Z

f d.P �Q/ W kf kc � 1
�

; (5.4.9)

which furnished (5.4.2) with cost function c satisfying (Cl)–(C5). When c.x; y/ D
d.x; y/ and �.x/ D d.x; a/, a being some fixed point ofU , this is a straightforward
generalization of the classic Kantorovich–Rubinstein duality theorem [see Dudley
(1976, Lecture 20)].

First note that k � kw is a seminorm on M W (Lemma 3.3.2). Now givenm 2M,
f 2 Ł, and a fixed a 2 U , we have

jf .x/j � jf .x/ � f .a/j C jf .a/j � kf kcc.x; a/C jf .a/j
� kf kc.�.x/C �.a//C jf .a/j D K1�.x/CK2; 8x 2 U;

for constants K1;K2 � 0. Thus, each f 2 Ł is jmj-integrable and induces a linear
form �f W L! R defined by
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�f .m/ WD
Z

f dm: (5.4.10)

Note that if f and g differ by a constant, then �f D �g. Given b 2 B.m/, we have

j�f .m/j D
ˇ

ˇ

ˇ

ˇ

Z

f dm

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

.f .x/ � f .y//b.dx; dy/
ˇ

ˇ

ˇ

ˇ

�
Z

jf .x/ � f .y/jb.dx; dy/ � kf kc
Z

c.x; y/b.dx; dy/:

Taking the infimum over all b 2 B.m/, this yields j�f .m/j � kf kckmkw, so that
�f is a continuous linear functional with dual norm k�f k�w such that

k�f k�w � kf kc: (5.4.11)

Thus, we may define a continuous linear transformation

.L0; k � kc/ D�! .M�; k � k�w/ (5.4.12)

by D.f / D �f .

Lemma 5.4.1. The mapD is an isometry, i.e., kf kc D k�f k�w.

Proof. Given x 2 U , denote the point mass at x by ıx. Note first that if mxy WD
ıx � ıy for some x; y 2 U , then

kmxykw �
Z

c.u; t/.ıx � ıy/.du; dt/ D c.x; y/:

Then for each f 2 L,

kf kc D supfjf .x/� f .y/j=c.x; y/ W x ¤ yg
D supfj�f .mxy/j=c.x; y/ W x ¤ yg
� k�f k�w supfkmxykw=c.x; y/ W x ¤ yg � k�f k�w;

so that kf kc D k�f k�w by (5.4.11). ut
We now set about proving that the map D is subjective and, hence, an isometric

isomorphism of Banach spaces. Recall that an isometric isomorphism between two
normed linear spaces A1 andA2 is a one-to-one continuous linear map T W A1 ! A2

with TA1 D A2 and kT xkA2 D kxkA1 .10

We need some preliminary facts. Let M0 be the set of signed measures of the
form m D m1 � m2, where m1 and m2 are finite measures on U with bounded
support such that m1.U / D m2.U /. Condition (C4) on � implies that M0 �M.

10See Dunford and Schwartz (1988, p. 65).
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Lemma 5.4.2. M0 is a dense subspace of .M; k � kw/.

Proof. Given m 2M (m ¤ 0), fix a 2 U and set

Bn D B.a; n/ WD fx 2 U W d.x; a/ < ng

for n D 1; 2; : : : . For all sufficiently large n, we have mC.Bn/m�.Bn/ > 0. For
such n, let us denote

mn.A/ WD mC.U /
�

mC.A\ Bn/
mC.Bn/

� m
�.A \ Bn/
m�.Bn/

�

;

ın WD m�.U /
m�.Bn/

� 1; "n WD mC.U /
mC.Bn/

� 1:

Then ın; "n ! 0 as n!1. Also,

.m�mn/.A/ D m.A n Bn/ � "nmC.A\ Bn/C ınm�.A \ Bn/:

Define finite measures �n and n on U by

�n.A/ WD mC.A n Bn/C ınm�.A\ Bn/;
n.A/ WD m�.A n Bn/C "nmC.A \ Bn/:

Then, m � mn D �n � n. Moreover, �n and n are absolutely continuous with
respect to jmj. Letting P and N be the supports ofmC andm� in the Jordan–Hahn
decomposition for m, we determine the Radon–Nikodym derivatives

d�n
djmj.x/ D

8

<

:

1; x 2 P n Bn;
ın; x 2 N \ Bn;
0; otherwise;

dn
djmj.y/ D

8

<

:

1; y 2 N n Bn;
"n; y 2 P \ Bn;
0; otherwise:

Then the measure bn D .�n � m/=�n.U / belongs to B.m �mn/. Noting that

n.U / D �n.U / D mC.U n Bn/C ınm�.Bn/

D mC.U n Bn/C .m�.U / �m�.Bn//

D jmj.U n Bn/ D jmj.Bc
n/;

we write the Radon–Nikodym derivative

fn.x; y/ WD dbn
d.jmj � jmj/.x; y/ WD

1

jmj.Bc
n/

d�n
djmj.x/

dn
djmj.y/:

Then we make the following claim.
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Claim. The function g.x; y/ D supn fn.x; y/c.x; y/ is jmj � jmj-integrable.

Proof of Claim. We show that g is integrable over various subsets of U � U .

(i) g is integrable over P �N : we suppose that x 2 P and y 2 N . Then

g.x; y/ �
1
X

nD1

c.x; y/

jmj.Bc
n/
ICn.x; y/;

where Cn D .Bc
n � Bc

n/� .Bc
nC1 � Bc

nC1/ and I.�/ is the indicator of .�/. Thus,

Z

P�N
gdjmj � jmj �

1
X

nD1

1

jmj.Bc
n/

Z

Cn

.�.x/C �.y//jmj � jmj.dx; dy/

�
1
X

nD1

2

jmj.Bc
n/

Z

.Bcn�BcnC1/�Bcn
�.x/jmj � jmj.dx; dy/

D 2

1
X

nD1

Z

Bcn�Bc
nC1

�.x/jmjdx

D 2

Z

B1

�djmj < C1:

(ii) g.x; y/ < Kc.x; y/ for some K � 0 on P � P : we suppose x; y 2 P . Then

g.x; y/ � sup
n

"nc.x; y/

jmj.Bc
n/
D sup

n

c.x; y/

mC.Bn/
.mC.U /�mC.Bn//

1

jmj.Bc
n/

D sup
n

mC .Bc
n/

jmj.Bc
n/

c.x; y/

mC.Bn/
� c.x; y/

mC.B1/
:

Very similar arguments serve to demonstrate
(iii) g.x; y/ � Kc.x; y/ for some K � 0 on N �N ;
(iv) g.x; y/ � Kc.x; y/ for some K � 0 on N � P .

Combining (i)–(iv) establishes the claim.
Now fn.x; y/ ! 0 as n ! 1 8x; y 2 U . In view of the claim, Lebesgue’s

dominated convergence theorem implies that

km �mnkw �
Z

c.x; y/.dx; dy/

D
Z

c.x; y/fn.x; y/.jmj � jmj/.dx; dy/! 0

as n!1. ut
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Call a signed measure on U simple if it is a finite linear combination of signed
measures of the form ıx�ıy . M contains all the simple measures. In the next lemma
we will use the Strassen–Dudley theorem.

Theorem 5.4.1. Suppose that .U; d/ is an s.m.s. and thatPn ! P weakly inP.U /.
Then for each "; ı > 0 there is some N such that whenever n � N , there is some
law bn on U � U with marginals Pn and P such that

bnf.x; y/ W d.x; y/ > ıg < ": (5.4.13)

Proof. Further (Corollary 7.5.2),11 we will prove that the Prokhorov metric 	 is
minimal with respect to the Ky Fan metric K. In other words,

	.P1; P2/ D inffK.P / W P 2 P.U � U /; P.� � U / D P1.�/; P.U � �/ D P2.�/g;

where K.P /D inff">0 W P..x; y/ W d.x; y/>"/<"g. Since 	 metrizes the weak
topology in P.U / (Dudley 2002), the preceding equality yields (5.4.13). ut
Lemma 5.4.3. The simple measures are dense in .M; k � kw/.

Proof. In view of Lemmas 3.3.2 and 5.4.2, there is no loss of generality to assume
that m D P � Q, where P and Q are laws on U supported on a bounded set

U0 � U . Then there are laws Pn
w�! P , Qn

w�! Q such that for each n, we have
Pn.U0/ D Qn.U0/ D 1 and Pn � Qn is simple [see, for example, the Glivenko-
Cantelli–Varadarajan theorem (Dudley 2002)]. To prove the lemma, it is enough to
show that kPn � P kw ! 0 as n!1.

Given " > 0, use the boundedness of U0 and Condition (C5) on c to find ı > 0

such that c.x; y/ < "=2whenever x; y 2 U0 with d.x; y/ � ı. SetK D supf�.x/ W
x 2 U0g. By Theorem 5.4.1, for all large n, there is a law bn on U � U with
marginals Pn and P such that bnf.x; y/ W d.x; y/ > ıg < ıg < "=4K . Set A D
f.x; y/ W d.x; y/ > ıg. Then

kPn � P kw �
Z

c.x; y/bn.dx; dy/

D
Z

A

c.x; y/bn.dx; dy/C
Z

U=A

c.x; y/bn.dx; dy/

�
Z

A

.�.x/C �.y/bn.dx; dy/C "=2 � 2Kbn.A/C "=2 < "

for all large n. ut
Lemma 5.4.4. The linear transformation D (5.4.12) is an isometric isomorphism
of .L0; k � kc/ onto .M�; k � k�w/.

11See also Dudley (2002, Theorem 11.6.2).
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Proof. Suppose that � WM! R is a continuous linear functional on M. Fix a 2 U
and define f W U ! R by f .x/ D �.ıx � ıa/. For any x; y 2 U

jf .x/ � f .y/j D j�.ıx � ıy/j � k�k�wkıx � ıykw � k�k�wc.x; y/;

so that kf kc � k�k�w < 1. We see that �.m/ D �f .m/ for m D ıx � ıy and,
hence, for all simple m 2 M. Lemma 5.4.3 implies that �.m/ D �f .m/ for all
m 2M. Thus � D D.f /.

We have shown that D is subjective. Earlier results now apply to complete the
argument. ut

Now we consider the adjoint of the transformation D. As usual, the Hahn–

Banach theorem applies to show that .L�
0 ; k � k�c /

D�

 � .M��; k � k�w/ is an isometric
isomorphism; see Dunford and Schwartz (1988, Theorem II 3.19). Let .M��; k �
k��

w
T � .M; k � kw/ be the natural isometric isomorphism of M into its second

conjugateM��. Then .L�
0 ; k�k�c

D�ıT � .M; k�kw/ is an isometry. A routine diagram
shows that kmkw D supfR f dm W kf kc � 1g.

We summarize by stating the following, the main result of this section.

Theorem 5.4.2. Let m be a measure in M. Then

kmkw D sup

�Z

f dm W f .x/ � f .y/ � c.x; y/
�

:

We now show that the supremum in Theorem 5.4.2 is attained for some
optimal f .

Theorem 5.4.3. Letm be a measure in M. Then there is some f 2 L with kf kc D
1 such that kmkw D

R

f dm.

Proof. Using the Hahn–Banach theorem, choose a linear functional � in M� with
k�k� D 1 and such that �.m/ D kmkw. By Lemma 5.4.4, we have � D �f for
some f 2 L with kf kc D k�k� D 1. ut

Given probability measures P1 and P2 on U , define the minimal norm

ı
�c.P1; P2/ D inf

�Z

c.x; y/b.dx; dy/ W b 2 B.P1 � P2/
�

(5.4.14)

[see (5.4.6) and Example 3.3.6]. Let P.U / be the set of all laws P on U such that

� is P -integrable. Then
ı
�c.P1; P2/ defines a semimetric on P�.U / (Remark 3.3.1).

In the next section, we will analyze the explicit representations and the topological
properties of these semimetrics.
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It should also be noted that if X and Y are random variables taking values in U ,
then it is natural to define

ı
�c.X; Y / D

ı
�c.PrX ;PrY /;

where PrX is the law of X . We will freely use both notations in the next section.

Example 5.4.1. Suppose that c.x; y/ D d.x; y/ and set �.x/ D d.x; a/ for some
a 2 U . Then Conditions (C1)–(C5) are satisfied, and Theorem 5.4.2 yields

inf

�Z

d.x; y/b.dx; dy/ W b 2 B.P1 � P2/
�

D sup

�Z

f d.P1 � P2/ W kf kL � 1
�

; (5.4.15)

where P1; P2 2 P�.U / and kf kL is the Lipschitz norm of f . In this case,
ı
�c.P1; P2/ is a metric in P�.U /. This classic situation has been much studied; see
Kantorovich and Rubinstein (1958) and Dudley (1976, Lecture 20). In particular,

(5.4.15) gives us the dual representations of
ı
�c.P1; P2/ given by [(3.4.53)]

ı
�.P1; P2/ D inff˛Ed.X; Y / W for some ˛ > 0;X 2 X.U /; Y 2 X.U /;

such that ˛.PrX � PrY / D P1 � P2g

D sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

I kf kL � 1
�

: (5.4.16)

5.5 Application: Explicit Representations for a Class
of Minimal Norms

Throughout this section, we take U D R, d.x; y/ D jx � yj, and we also define
c W R � R! Œ0;C1/ by

c.x; y/ D jx � yjmax.h.jx � aj/; h.jy � aj//; (5.5.1)

where a is a fixed point of R and h W Œ0;1/! Œ0;1/ is a continuous nondecreasing
function such that h.x/ > 0 for x > 0. Note that the cost function in Example 5.2.1
[see (5.2.24)] has precisely the same form as (5.5.1). Define � W R! Œ0;1/ by

�.x/ D 2jxjh.jx � aj/:
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It is not difficult to verify that c and � satisfy Conditions (C1)–(C5) specified in
Sect. 5.4. As in Sect. 5.4, the normed space .L0; k � kc/ and the set M, comprising
all finite signed measures m on R such that m.U / D 0 and

R

�djmj < C1, are to
be investigated.

We consider random variables X and Y in X D X.R/ with E.�.X// C
E.�.Y // < 1. Then m D PrX �P rY is an element of M, and Theorem 5.4.2

implies the dual representation of
ı
�c :

ı
�c.X; Y / D inff˛E.c.X 0; Y 0// W X 0; Y 0 2 X; ˛ > 0; ˛.PrX 0 � PrY 0/ D mg

D sup

�ˇ

ˇ

ˇ

ˇ

Z

R

f dm

ˇ

ˇ

ˇ

ˇ

W jf .x/ � f .y/j < c.x; y/;8x; y 2 R

�

: (5.5.2)

An explicit representation is given in the following theorem.

Theorem 5.5.1. Suppose c is given by (5.5.1) and X; Y 2 X with E.�.X// C
E.�.Y // <1; then

ı
�c.X; Y / D

Z 1

�1
h.jx � aj/jFX.x/ � FY .x/jdx: (5.5.3)

Proof. We begin by proving the theorem in the special case where X and Y

are bounded. Suppose that jX j � N and jY j � N for some N . Appli-

cation of Theorem 5.4.2 with U WD UN WD Œ�N;N � yields
ı
�c.X; Y / D

sup
˚ˇ

ˇ

R

f dm
ˇ

ˇ W f W Un ! R; jf .x/ � f .y/j < c.x; y/;8x; y 2 UN
�

, where m D
PrX � PrY . It is easy to check that if jf .x/� f .y/j � c.x; y/ as previously, then f
is absolutely continuous on any compact interval. Thus, f is differentiable a.e. on
Œ�N;N �, and jf 0.x/j � h.jx � aj/ wherever f 0 exists. Therefore

ı
�c.X; Y / �

(

ˇ

ˇ

ˇ

ˇ

Z 1

�1
.FX.x/ � FY x//f 0.x/dx

ˇ

ˇ

ˇ

ˇ

W f W UN ! R;

jf 0.x/j � h.jx � aj/ a.e

)

�
Z 1

�1
h.jx � aj/jFX.x/ � FY .y/jdx

using integration by parts.
On the other hand, if f is absolutely continuous with jf 0.x/j � h.jx � aj/ a.e.,

then jf .x/�f .y/j D ˇˇR y
x
f 0.t/dt

ˇ

ˇ � jx�yjmax.h.jx�aj/; h.jy�aj// D c.x; y/.
Define f� W R! R by

f 0� D h.jx � aj/sgn.FX.x/ � FY .x// a.e.
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Then

ı
�c.X; Y / D sup

�ˇ

ˇ

ˇ

ˇ

Z

FX.x/ � FY .x//f 0.x/dx
ˇ

ˇ

ˇ

ˇ

W jf 0.x/j � h.jx � aj/ a.e.

�

�
ˇ

ˇ

ˇ

ˇ

Z

.FX.x/ � FY .x//f 0�.x/dx
ˇ

ˇ

ˇ

ˇ

D
Z

h.jx � aj/jFX.x/ � FY .x/jdx:

We have shown that wheneverX and Y are bounded random variables, (5.5.3) holds.
Now define H W R! R by

H.t/ D
Z t

0

h.jx � aj/dx: (5.5.4)

For t � 0,H.t/ � h.jaj/jaj C jt � ajh.jt � aj/, so that E.�.X//CE.�.Y // <1
implies that EjH.X/j C EjH.Y /j < 1. Under this assumption, integrating by
parts we obtain

EjH.X/j D
Z 1

0

h.jx � aj/.1 � FX.x//dx C
Z 0

�1
h.jx � aj/FX.x/dx:

An analogous equality holds for the variable Y . These imply that

Z 1

�1
h.jx � aj/jFX.x/ � FY .x/jdx <1:

For n � 1, define random variablesXn, Yn by

Xn D
8

<

:

n; if X > n;

X; if �n � X � n;
�n; if X < �n;

Yn D
8

<

:

n; if Y > n;

Y; if �n � Y � n;
�n; if Y < �n:

Then Xn ! X , Yn ! Y in distribution, and for n � jaj
ı
�c.Xn;X/ � Ec.Xn;X/ � E.jX jI fjX j � ngh.jX � aj//;

which tends to 0 as n ! 1 [E.�.X// < 1]. Similarly,
ı
�c.Xn; Y / ! 0. Then

ı
�c.Xn; Yn/!

ı
�c.X; Y / as n!1. Also, we have

jFXn.x/ � FYn.x/j D
� jFX.x/ � FY .x/j; for � n � x < n;
0; otherwise:
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Applying dominated convergence, we see that as n!1,

Z

h.jx � aj/jFXn.x/ � FYn.x/jdx !
Z

h.jx � aj/jFX.x/ � FY .x/jdx:

Combining this with
ı
�c.Xn; Yn/ !

ı
�c.X; Y / and the result for bounded random

variables yields

ı
�c.X; Y / D

Z 1

�1
h.jx � aj/jFX.x/ � FY .x/jdx: ut

For h.x/ D 1, this yields a well-known formula presented in Dudley (1976,
Theorem 20.10). We also note the following formulation, which is not hard to derive
from the strict monotonicity ofH [see (5.5.4)].

Corollary 5.5.1. Suppose c is given by (5.5.1) and X; Y 2 X with E.�.X// C
E.�.Y // <1, and set P D PrX , Q D PrY . Then

ı
�c.P;Q/ D

Z 1

�1
jFH.X/.x/ � FH.Y /.x/jdx; (5.5.5)

where H is given by (5.5.4).

For h.x/ D 1 we see that H.t/ D t and that
ı
� gives the Kantorovich metric.12

Corollary 5.5.2. In this context,
ı
�c.P1; P2/ defines a metric on P�.R/ WD

˚

P W R
R
�dP <1�.
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Fortet R, Mourier B (1953) Convergence de la réparation empirique vers la répétition theorétique.

Ann Sci Ecole Norm 70:267–285
Gabriel J, Gonzlez-Hernndez J, Lpez-Martnez R (2010) Numerical approximations to the mass

transfer problem on compact spaces. J Numer Anal 30(4):1121–1136
Gray RM (1988) Probability, random processes, and ergodic properties. Springer, New York
Igbida N, Mazón JM, Rossi JD, Toledo J (2011) A Monge-Kantorovich mass transport problem

for a discrete distance. J Funct Anal 260:494–3534
Kalashnikov VV, Rachev ST (1988) Mathematical methods for construction of stochastic queueing

models. Nauka, Moscow (in Russian). [English transl. (1990) Wadsworth, Brooks—Cole,
Pacific Grove, CA]

Kantorovich LV (1940) On one effective method of solving certain classes of extremal problems.
Dokl. Akad. Nauk, USSR 28:212–215

Kantorovich LV, Rubinshtein GSh (1958) On the space of completely additive functions. Vestnik
LGU Ser Mat, Mekh i Astron 7:52–59

Karatzas I (1984) Gittins indices in the dynamic allocation problem for diffusion processes. Ann
Prob 12:173–192

Kemperman JHB (1983) On the role of duality in the theory of moments. Semi-infinite program-
ming and applications. In: Lecture notes economic mathematical system, vol 215. Springer,
Berlin, pp 63–92

Kruskal WM (1958) Ordinal measures of association. J Am Stat Assoc 53:814–861
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Chapter 6
Quantitative Relationships Between Minimal
Distances and Minimal Norms

The goals of this chapter are to:

• Explore the conditions under which there is equality between the Kantorovich
and the Kantorovich–Rubinstein functionals;

• Provide inequalities between the Kantorovich and Kantorovich–Rubinstein
functionals;

• Provide criteria for convergence, compactness, and completeness of probability
measures in probability spaces involving the Kantorovich and Kantorovich–
Rubinstein functionals;

• Analyze the problem of uniformity between the two functionals.

Notation introduced in this chapter:

Notation Description

P� D P�.U / Space of laws with a finite �-moment
bƒ Generalized Kantorovich functional
ı

ƒ Generalized Kantorovich–Rubinstein functional

6.1 Introduction

In Chap. 5, we discussed the Kantorovich and Kantorovich–Rubinstein functionals.

They generate minimal distances,b�c , and minimal norms,
ı
�c , respectively, and we

considered the problem of evaluating these functionals. The similarities between the
two functionals indicate there can be quantitative relationships between them.

In this chapter, we begin by exploring the conditions under which b�c D ı
�c .

It turns out that equality holds if and only if the cost function c.x; y/ is a metric

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 6, © Springer Science+Business Media, LLC 2013
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itself. Under more general conditions, certain inequalities hold involving b�c ,
ı
�c ,

and other probability metrics. These inequalities imply criteria for convergence,
compactness, and uniformity in the spaces of probability measures .P.U /;b�c/ and

.P.U /; ı
�c/. Finally, we conclude with a generalization of the Kantorovich and

Kantorovich–Rubinstein functionals.

6.2 Equivalence Between Kantorovich Metric
and Kantorovich–Rubinstein Norm

Levin (1975) proved that if U is a compact, c.x; x/ D 0, c.x; y/ > 0, and c.x; y/C
c.y; x/ > 0 for x ¤ y, then b�c D ı

�c if and only if c.x; y/C c.y; x/ is a metric in
U . In the case of an s.m.s. U , we have the following version of Levin’s result.

Theorem 6.2.1 (Neveu and Dudley 1980). Suppose U is an s.m.s. and c 2 C�
(Corollary 5.3.1). Then

b�c.P1; P2/ D ı
�c.P1; P2/ (6.2.1)

for all P1 and P2 with

Z

U

c.x; a/.P1 C P2/.dx/ < 1 (6.2.2)

if and only if c is a metric.

Proof. Suppose (6.2.1) holds and set P1 D ıx and P2 D ıy for x; y 2 U . Then the
set P .P1;P2/ of all laws in U �U with marginalsP1 and P2 contains only P1 �P2 D
ı.x;y/, and by Theorem 5.4.2,

b�c.P1; P2/ D c.x; y/ D ı
�c.P1; P2/ D sup

�Z

f d.P1 � P2/ W kf kc � 1

�

D supfjf .x/ � f .y/j W kf kc � 1g
� supfjf .x/ � f .z/j C jf .z/ � f .y/j W kf kc � 1g
� c.x; z/C c.z; y/:

By assumption, c 2 C�, and therefore the triangle inequality implies that c is a
metric in U .

Now define G.U / as the set of all pairs .f; g/ of continuous functions f W U !
R and g W U ! R such that f .x/C g.y/ < c.x; y/ 8x; y 2 U . Let GB.U / be the
set of all pairs .f; g/ 2 G.U / with f and g bounded.

Now suppose that c.x; y/ is a metric and that .f; g/ 2 GB.U /. Define h.x/ D
inffc.x; y/�g.y/ W y 2 U g. As the infimum of a family of continuous functions, h
is upper semicontinuous. For each x 2 U we have f .x/ � h.x/ � �g.x/. Then
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h.x/ � h.x0/ D inf
u
.c.x; u/ � g.u//� inf

v
.c.x0; v/ � g.v//

< sup
v
.g.v/ � c.x0; v/C c.x; v/ � g.v//

D sup
v
.c.x; v/ � c.x0; v// � c.x; x0/;

so that khkc � 1. Then for P1, P2 satisfying (6.2.2) we have
Z

f dP1 C
Z

gdP2 �
Z

hd.P1 � P2/;

so that (according to Corollary 5.3.1 and Theorem 5.4.2 of Chap. 5) we have

b�c.P1; P2/ D sup

�Z

f dP1 C
Z

gdP2 W .f; g/ 2 GB.U /
�

� sup

�Z

hd.P1 � P2/ W khkc � 1

�

D ı
�c.P1; P2/:

Thusb�c.P1; P2/ D ı
�c.P1; P2/. ut

Corollary 6.2.1. Let .U; d/ be an s.m.s. and a 2 U . Then

b�d.P1; P2/ D ı
�d.P1; P2/ D sup

�Z

f d.P1 � P2/ W kf kL � 1

�

(6.2.3)

whenever
Z

d.x; a/Pi .dx/ < 1; i D 1; 2: (6.2.4)

The supremum is attained for some optimal f0 with kf0kL WD supx¤yfjf .x/ �
f .y/j=d.x; y/g.

If P1 and P2 are tight, there are some b0 2 P .P1;P2/ and f0 W U ! R with
kf0kL � 1 such that

b�d.P1; P2/ D
Z

d.x; y/b0.dx; dy/ D
Z

f0d.P1 � P2/;

where f0.x/ � f0.y/ D d.x; y/ for b0-a.e. .x; y/ in U � U .

Proof. Set c.x; y/ D d.x; y/. Application of the theorem proves the first statement.
The second (existence of f0) follows from Theorem 5.4.3.

For each n � 1 choose bn 2 P .P1;P2/ with
Z

d.x; y/bn.dx; dy/ < b�d.P1; P2/C 1

n
:
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If P1 and P2 are tight, then by Corollary 5.3.1 there exists b0 2 P .P1;P2/ such that

b�d.P1; P2/ D
Z

d.x; y/b0.dx; dy/;

i.e., that b0 is optimal. Integrating both sides of f0.x/�f0.y/ � d.x; y/with respect
to b0 yields

R

f0d.P1�P2/ � R

d.x; y/b0.dx; dy/. However, we know that we have
equality of these integrals. This implies that f0.x/ � f0.y/ D d.x; y/ b0-a.e. ut

6.3 Inequalities Between b�c and
ı
�c

In the previous section we looked at conditions under which b�c D ı
�c . In general,

b�c ¤ ı
�c . For example, if U D R, d.x; y/ D jx � yj,

c.x; y/ D d.x; y/max.1; dp�1.x; a/; dp�1.y; a//; p � 1; (6.3.1)

then for any laws Pi (i D 1; 2) on B.R/ with distribution functions (DFs) Fi we
have the following explicit expressions:

b�c.P1; P2/ D
Z 1

0

c.F �1
‘ .t/; F �1

2 .t//dt; (6.3.2)

where F �1
i is the function inverse to the DF Fi (see Theorem 7.4.2 in Chap. 7). On

the other hand,

ı
�c.P1; P2/ D

Z 1

�1
jF1.x/ � F2.x/j max.1; jx � ajp�1/dx (6.3.3)

(see Theorem 5.5.1 in Chap. 5). However, in the space Mp D Mp.U / [U D .U; d/

is an s.m.s.] of all Borel probability measures P with finite
R

dp.x; a/P.dx/, the

functionalsb�c and
ı
�c [where c is given by (6.3.1)] metrize the same exact topology,

that is, the followingb�c- and
ı
�c-convergence criteria will be proved.

Theorem 6.3.1. Let .U; d/ be an s.m.s., let c be given by (6.3.1), and let P;Pn 2
Mp (n D 1; 2; : : : ). Then the following relations are equivalent:

(I)
b�c.Pn; P / ! 0I

(II)
ı
�c.Pn; P / ! 0I
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(III)

Pn converges weakly to P .Pn
w�! P/ and

lim
N!1 supn

Z

dp.x; a/I fd.x; a/ > N gPn.dx/ D 0I
(IV)

Pn
w�! P and

Z

dp.x; a/Pn.dx/ !
Z

dp.x; a/P.dx/:

(The assertion of the theorem is an immediate consequence of Theorems 6.3.2–6.3.5
below and the more general Theorem 6.4.1).

Theorem 6.3.1 is a qualitative b�c (
ı
�c)-convergence criterion. One can rewrite

(III) as

�.Pn; P / ! 0 and lim
"!0

supn !."IPnI�/ D 0;

where � is the Prokhorov metric1

�.P;Q/ WD inff" > 0 W P.A/ � Q.A"/C " 8A 2 B.U /g
.A" WD fx W d.x;A/ < "g/ (6.3.4)

and !."IP I�/ is the following modulus of �-integrability:

!."IP I�/ WD
Z

�.x/I

�

d.x; a/ >
1

"

�

P.dx/; (6.3.5)

where �.x/ WD max.d.x; a/; dp.x; a//. Analogously, (IV) is equivalent to

(IV �)
�.Pn; P / ! 0 and D.Pn; P I�/ ! 0;

where

D.P;QI�/ WD
ˇ

ˇ

ˇ

ˇ

Z

�.x/.P �Q/.dx/

ˇ

ˇ

ˇ

ˇ

: (6.3.6)

In this section we investigate quantitative relationships between b�c ,
ı
�c , � ,

!, and D in terms of inequalities between these functionals. These relationships
yield convergence and compactness criteria in the space of measures w.r.t. the

Kantorovich-type functionals b�c and
ı
�c (see Examples 3.3.2 and 3.3.6 in Chap. 3)

as well as the
ı
�c-completeness of the space of measures.

1See Examples 3.3.3 and 4.3.2 in Chaps. 3 and 4, respectively.
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In what follows, we assume that the cost function c has the form considered in
Example 5.2.1:

c.x; y/ D d.x; y/k0.d.x; a/; d.y; a// x; y 2 U; (6.3.7)

where k0.t; s/ is a symmetric continuous function nondecreasing on both arguments
t � 0, s � 0, and satisfying the following conditions:

(C1)

˛ WD sup
s¤t

jK.t/ �K.s/j
jt � sjk0.t; s/ < 1;

whereK.t/ WD tk0.t; t/, t ¤ 0;
(C2)

ˇ WD k.0/ > 0;

where k.t/ D k0.t; t/ t � 0; and
(C3)

� WD sup
t�0;s�0

k0.2t; 2s/

k0.t; s/
< 1:

If c is given by (6.3.1), then c admits the form (6.3.7) with k0.t; s/ D max.1,
tp�1; sp�1/, and in this case ˛ D p, ˇ D 1, � D 2p�1. Further, let P� D P�.U / be
the space of all probability measures on the s.m.s. .U; d/ with finite �-moment

P�.U / D
�

P 2 P.U / W
Z

U

�.x/P.dx/ < 1
�

; (6.3.8)

where �.x/ D K.d.x; a// and a is a fixed point of U .
In Theorems 6.3.2–6.3.5 we assume that P1 2 P�, P2 2 P�, " > 0, and denote

b�c WD b�c.P1; P2/ [see (5.2.16)],
ı
�c WD ı

�c.P1; P2/ [see (5.2.17)], � WD �.P1; P2/,

!i ."/ WD !."IPi I�/ WD
Z

�.x/I fd.x; a/ > 1="gPi.dx/; Pi 2 P�

D WD D.P1; P2I�/ WD
ˇ

ˇ

ˇ

ˇ

Z

�d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

;

and the function c satisfies conditions (C1)–(C3). We begin with an estimate of b�c
from above in terms of � and !i ."/.

Theorem 6.3.2.

b�c � �Œ4K.1="/C !1.1/C !2.1/C 2k.1/�C 5!1."/C 5!2."/: (6.3.9)

Proof. Recall that P .P1;P2/ is the space of all laws P on U � U with prescribed
marginals P1 and P2. Let K D K1 be the Ky Fan metric with parameter 1 (see
Example 3.4.2 in Chap. 3)
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K.P / WD inffı > 0 W P.d.x; y/ > ı/ < ıg P 2 P�.U /: (6.3.10)

Claim 1. For any N > 0 and for any measure P on U 2 with marginals P1 and P2,
i.e., P 2 P .P1;P2/, we have

Z

U�U
c.x; y/P.dx; dy/ � K.P /

�

4K.N/C
Z

U

k.d.x; a//.P1 C P2/.dx/

�

C 5!1.1=N /C 5!2.1=N /: (6.3.11)

Proof of Claim 1. Suppose K.P / < � � 1,P 2 P .P1;P2/. Then by (6.3.7) and (C3),

Z

c.x; y/P.dx; dy/ �
Z

d.x; y/k.maxfd.x; a/; d.y; a/g/P.dx; dy/
� I1 C I2;

where

I1 WD
Z

U�U
d.x; y/k.d.x; a//P.dx; dy/

and

I2 WD
Z

U�U
d.x; y/k.d.y; a//P.dx; dy/:

Let us estimate I1:

I1 WD
Z

d.x; y/k.d.x; a//ŒI fd.x; y/ < ıg C I fd.x; y/ � ıg�P.dx; dy/

� ı

Z

k.d.x; a//P.dx; dy/

C
Z

d.x; y/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/
� I11 C I12 C I13; (6.3.12)

where

I11 WD ı

Z

U

k.d.x; a//ŒI fd.x; a/ � 1g C I fd.x; a/ � 1g�P1.dx/;

I12 WD
Z

U�U
d.x; a/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/; and

I13 WD
Z

U�U
d.y; a/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/:
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Obviously, by �.x/ WD K.d.x; a//, I11 � ı
R

k.d.x; a//I fd.x; a/ � 1gP1.dx/C
ık.1/ � ı!1.1/C ık.1/. Further,

I12 D
Z

K.d.x; a//I fd.x; y/�ıgŒI fd.x; a/ > N gCI fd.x; a/�N g�P.dx; dy/

�
Z

U

�.x/I fd.x; a/ > N gP1.dx/CK.N/

Z

U�U
I fd.x; y/ � ıgP.dx; dy/

� !1.1=N /CK.N/ı:

Now let us estimate the last term in estimate (6.3.12):

I13 D
Z

U�U
d.y; a/k.d.x; a//I fd.x; y/ � ıgŒI fd.x; a/ � d.y; a/ > N g

C I fd.y; a/ > d.x; a/ > N g C I fd.x; a/ > N; d.y; a/ � N g
C I fd.x; a/�N; d.y; a/ > N gCI fd.x; a/ � N; d.y; a/ � N g�P.dx; dy/

�
Z

U�U
�.x/I fd.x; a/ > d.y; a/ > N gP.dx; dy/

C
Z

U�U
�.y/I fd.y; a/ � d.x; a/ � N gP.dx; dy/

C
Z

U

�.x/I fd.x; a/ > N gP1.dx/C
Z

U

�.y/I fd.y; a/ > N gP2.dy/

CK.N/

Z

U�U
I fd.x; y/ � ıgP.dx; dy/

� 2!1.1=N /C 2!2.1=N /CK.N/ı:

Summarizing the preceding estimates we obtain I1 � ı!1.1/Cık.1/C3!1.1=N /C
2!2.1=N /C 2K.N/ı. By symmetry we have I2 � ı!2.1/C ık.1/C 3!2.1=N /C
2!1.1=N /C 2K.N/ı. Therefore, the last two estimates imply

Z

c.x; y/P.dx; dy/ � I1 C I2

� ı.!1.1/C !2.1/C 2k.1/C 4K.N//

C 5!1.1=N /C 5!2.1=N /:

Letting ı ! K.P / we obtain (6.3.11), which proves the claim.

Claim 2 (Strassen–Dudley Theorem).

inffK.P / W P 2 P .P1;P2/g D �.P1; P2/: (6.3.13)



6.3 Inequalities Betweenb�c and
ı

�
c 153

Proof of Claim 2. See Dudley (2002) (see also further Corollary 7.5.2 in Chap. 7).
Claims 1 and 2 complete the proof of the theorem. ut
The next theorem shows that b�c-convergence and

ı
�c-convergence imply the

weak convergence of measures.

Theorem 6.3.3.
ˇ�2 � ı

�c � b�c: (6.3.14)

Proof. Obviously, for any continuous nonnegative function c,

ı
�c � b�c (6.3.15)

and
ı
�c � �c; (6.3.16)

where �c is the Zolatarev simple metric with a �-structure (Definition 4.4.1)

�c WD �c.P1; P2/

WD sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f W U ! R; jf .x/ � f .y/j�c.x; y/8x; y2U
�

:

(6.3.17)

Now, using assumption (C2) we have that c.x; y/ � ˇd.x; y/ and, hence, �c �
ˇ�d . Thus, by (6.3.16),

ı
�c � ˇ�d : (6.3.18)

Claim 3.
�d � �2: (6.3.19)

Proof of Claim 3. Using the dual representation ofb�d [see (6.2.3)] we are led to

b�d D �d ; (6.3.20)

which in view of the inequality
Z

d.x; y/P.dx; dy/ � K2.P / for any P 2 P .P1;P2/ (6.3.21)

establishes (6.3.19). The proof of the claim is now completed.
The desired inequalities (6.3.14) are the consequence of (6.3.15), (6.3.16),

(6.3.18), and Claim 3. ut
The next theorem establishes the uniform �-integrability

lim
"!0

sup
n

!."; Pn; �/ D 0

of the sequence of measures Pn 2 P�
ı
�c-converging to a measure P 2 P�.
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Theorem 6.3.4.

!1."=2/ � ˛.2� C 1/
ı
�c C 2.� C 1/!2."/: (6.3.22)

Proof. For any N > 0, by the triangle inequality, we have

!1.1=2N / WD
Z

�.x/I fd.x; a/ > 2N gP1.dx/ � T1 C T2; (6.3.23)

where

T1 WD
ˇ

ˇ

ˇ

ˇ

Z

�.x/I fd.x; a/ > 2N g.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

and

T2 WD
Z

�.x/I fd.x; a/ > N gP2.dx/ D !2.1=N /:

Claim 4.

T1 � ˛
ı
�c CK.2N/

Z

I fd.x; a/ > 2N g.P1 C P2/.dx/: (6.3.24)

Proof of Claim 4. Denote fN .x/ WD .1=˛/max.�.x/;K.2N //. Since �.x/ D
K.d.x; a// D d.x; a/k0.d.x; a/; d.x; a//, then by (C1),

jfN .x/ � fN .y/j � .1=˛/j�.x/� �.y/j
� jd.x; a/� d.y; a/jk0.d.x; a/; d.y; a// � c.x; y/

for any x; y 2 U . Thus the inequalities

ˇ

ˇ

ˇ

ˇ

Z

U

fN .x/.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

� �c.P1; P2/ � ı
�c.P1; P2/ (6.3.25)

follow from (6.3.16) and (6.3.17). Since f̨N .x/ D max.K.d.x; a//;K.2N // and
(6.3.25) holds, then

T1 <
ˇ

ˇ

ˇ

ˇ

Z

U

K.d.x; a//I fd.x; a/ > 2N g.P1 � P2/.dx/

�
Z

U

K.2N/I fd.x; a/ � 2N g.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

CK.2N/

ˇ

ˇ

ˇ

ˇ

Z

U

I fd.x; a/ � 2N g.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ
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D
ˇ

ˇ

ˇ

ˇ

Z

U

f̨N .x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

CK.2N/

ˇ

ˇ

ˇ

ˇ

Z

U

I fd.x; a/ > 2N g.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

� ˛
ı
�c CK.2N/

Z

I fd.x; a/ > 2N g.P1 C P2/.dx/;

which proves the claim.

Claim 5.

A.P1/ WD K.2N/

Z

U

I fd.x; a/ > 2N gP1.dx/ � 2˛�
ı
�c C 2�!2.1=N /: (6.3.26)

Proof of Claim 5. As in the proof of Claim 4, we choose an appropriate Lipschitz
function. That is, write

gN .x/ D .1=.2˛�//minfK.2N/;K.2d.x;O.a;N ///g;
whereO.a;N / WD fx W d.x; a/ < N g. Using (C1) and (C3),

jgN .x/ � gN .y/j � .1=.2˛�//jK.2d.x;O.a;N ///�Kf2d.y;O.a;N ///j
by (C1)

� .1=�/jd.x;O.a;N //
�d.y;O.a;N //jk0.2d.x;O.a;N //; 2d.y;O.a;N ///

by (C3)

� d.x; y/k0.d.x;O.a;N //; d.y;O.a;N /// � c.x; y/:

Hence
ˇ

ˇ

ˇ

ˇ

Z

gN .P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

� �c � ı
�c: (6.3.27)

Using (6.3.27) and the implications

d.x; a/ > 2N ) d.x;O.a;N // > N ) K.2d.x;O.a;N /// � K.2N/

we obtain the following chain of inequalities:

A.P1/ � 2˛�

Z

gN .x/P1.dx/

� 2˛�

ˇ

ˇ

ˇ

ˇ

Z

gN .x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

C 2˛�

Z

U

gN .x/P2.dx/

� 2˛
ı
�c C

Z

K.2d.x;O.a;N ///I fd.x; a/ � N gP2.dx/;
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by C3;
K.2t/

K.t/
D 2tk0.2t; 2t/

tk0.t; t/
� 2�

!

� 2˛�
ı
�cC2�

Z

K.d.x;O.a;N ///I fd.x; a/�N gP2.dx/

� 2˛�
ı
�c C 2�!2.1=N /; (6.3.28)

which proves the claim.
For A.P2/ [see (6.3.26)] we have the following estimate:

A.P2/ �
Z

U

K.d.x; a//I fd.x; a/ > 2N gP2.dx/ � !2.1=N /: (6.3.29)

Summarizing (6.3.23), (6.3.24), (6.3.26), and (6.3.29) we obtain

!1.1=2N / � ˛
ı
�c CA.P1/C A.P2/C !2.1=N /

� .˛ C 2˛�/
ı
�c C .2� C 2/!2.1=N /

for any N > 0, as desired. ut
The next theorem shows that

ı
�c-convergence implies convergence of the

�-moments.

Theorem 6.3.5.
D � ˛

ı
�c: (6.3.30)

Proof. By (C1), for any finite nonnegative measure Q with marginals P1 and P2
we have

D WD
ˇ

ˇ

ˇ

ˇ

Z

U

�.x/.P1 � P2/.dx/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

U�U
�.x/ � �.y/Q.dx; dy/

ˇ

ˇ

ˇ

ˇ

�
Z

U�U
˛jd.x; a/ � d.y; a/jk0.d.x; a/; d.y; a//Q.dx; dy/

� ˛

Z

U�U
c.x; y/Q.dx; dy/

which completes the proof of (6.3.30). ut
Inequalities (6.3.9), (6.3.14), (6.3.22), and (6.3.30), described in Theorems

6.3.2–6.3.5, imply criteria for convergence, compactness, and uniformity in the

spaces of probability measures .P.U /;b�c/ and .P.U /; ı
�c/ (see also the next

section). Moreover, the estimates obtained for b�c and
ı
�c may be viewed as

quantitative results demanding conditions that are necessary and sufficient for



6.4 Convergence, Compactness, and Completeness in .P.U /;b�c/ and .P.U /;
ı

�
c/ 157

b�c-convergence and
ı
�c-convergence. Note that, in general, quantitative results

require assumptions additional to the set of necessary and sufficient conditions
implying the qualitative results. The classic example is the central limit theorem,
where the uniform convergence of the normalized sum of i.i.d. RVs can be at any
low rate assuming only the existence of the second moment.

6.4 Convergence, Compactness, and Completeness

in .P.U /; b�c/ and .P.U /;
ı
�c/

In this section, we assume that the cost function c satisfies conditions (C1)–(C3) in
the previous section and �.x/ D K.d.x; a//. We begin with the criterion for b�c-

and
ı
�c-convergence.

Theorem 6.4.1. If Pn, and P 2 P�.U /, then the following statements are
equivalent

(A)
b�c.Pn; P / ! 0I

(B)
ı
�c.Pn; P / ! 0I

(C)

Pn
w! P .Pn converges weakly to P/ and

Z

�d.Pn � P/ ! 0 as n ! 1I

(D)

Pn
w�! P and lim

"!0
sup
n

!n."/ D 0;

where !n."/ WD !."IPnI�/ D R

�.x/fd.x; a/ > 1="gPn.dx/.
Proof. From inequality (6.3.14) it is apparent that A ) B and B ) Pn

w�! P .
Using (6.3.30) we obtain that B implies

R

�d.Pn � P/ ! 0, and thus B ) C .
Now, let C hold.

Claim 6. C ) D.

Proof of Claim 6. Choose a sequence "1 > "2 > � � � ! 0 such that P.d.x; a/ D
1="n/ D 0 for any n D 1; 2; : : : . Then for fixed n

Z

�.x/I fd.x; a/ � 1="ng.Pk � P/.dx/ ! 0 as k ! 1
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by Billingsley (1999, Theorem 5.1). Since P 2 P�, !."n/ WD !."nIP I c/ ! 0 as
n ! 1, and hence

lim sup
k!1

!k."n/ � lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/fd.x; a/ > 1="ng.Pk � P/.dx/

ˇ

ˇ

ˇ

ˇ

C !."n/

� lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/.Pk � P/.dx/

ˇ

ˇ

ˇ

ˇ

C lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/I fd.x; a/ � 1="ng.Pk � P/.dx/

ˇ

ˇ

ˇ

ˇ

C!."n/ ! 0 as n ! 1:

The last inequality and Pk 2 P� imply lim"!0 supn !n."/ D 0, and hence D
holds.

The claim is proved.

Claim 7. D ) A.

Proof of Claim 7. By Theorem 6.3.2,

b�c.Pn; P / � �.Pn; P /Œ4K.1="n/C !n.1/C !.1/C 2k.1/�C 5!n."n/C 5!."n/;

where !n and ! are defined as in Claim 6 and, moreover, "n > 0 is such that

4K.1="n/C sup
n�1

!n.1/C !.1/C 2k.1/ � .�.Pn; P //
�1=2:

Hence, using the last two inequalities we obtain

b�c.Pn; P / � p

�.Pn; P /C 5 sup
n�1

!n."n/C 5!."n/;

and hence D ) A, as we claimed. ut
The Kantorovich–Rubinstein functional

ı
�c is a metric in P�.U /, whileb�c is not

a metric except for the case c D d (see the discussion in the previous section). The

next theorem establishes a criterion for
ı
�c-relative compactness of sets of measures.

Recall that a set A � P� is said to be
ı
�c-relatively compact if any sequence of

measures in A has a
ı
�c-convergent subsequence and the limit belongs to P�. Recall

that the set A � P.U / is weakly compact if A is �-relatively compact, i.e., any
sequence of measures in A has a weakly (�-) convergent subsequence.

Theorem 6.4.2. The set A � P� is
ı
�c-relatively compact if and only if A is weakly

compact and

lim
"!0

sup
P2A

!."IP I�/ D 0: (6.4.1)
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Proof. “If” part: If A is weakly compact, (6.4.1) holds and fPngn�1 � A, then
we can choose a subsequence fPn0g � fPng that converges weakly to a probability
measure P .

Claim 8. P 2 P�.

Proof of Claim 8. Let 0 < ˛1 < ˛2 < � � � , lim˛n D 1 be such a sequence that
P.d.x; a/ D ˛n/ D 0 for any n � 1. Then, by Billingsley (1999, Theorem 5.1) and
(6.4.1),

Z

�.x/I fd.x; a/ � ˛n0gP.dx/ D lim
n!1

Z

�.x/I fd.x; a/ � ˛n0gPn0.dx/

� lim inf
n!1

Z

�.x/Pn0.dx/ < 1;

which proves the claim.

Claim 9. ı
�c.Pn0 ; P / ! 0:

Proof of Claim 9. Using Theorem 6.3.2, Claim 8, and (6.4.1) we have, for any
ı > 0,

ı
�c.Pn0 ; P / � b�c.Pn0 ; P / � �.Pn0 ; P /Œ4K.1="/C !1.1/C !2.1/C 2K.1/�

C5 sup
n0

!.Pn0 I "I�/C !.P I "I�/

� �.Pn0 ; P /Œ4K.1="/C !1.1/C !2.1/C 2K.1/�C ı

if " D ".ı/ is small enough. Hence, by �.Pn0 ; P / ! 0, we can choose N D N.ı/

such that
ı
�c.Pn0 ; P / < 2ı for any n0 � N , as desired.

Claims 8 and 9 establish the “if” part of the theorem.

“Only if” part: If A is
ı
�c-relatively compact and fPng � A, then there exists

a subsequence fPn0g � fPng that is convergent w.r.t.
ı
�c , and let P be the limit.

Hence, by Theorem 6.3.3,
ı
�c.Pn; P / � ˇ�2.Pn; P / ! 0, which demonstrates that

the set A is weakly compact.
Further, if (6.4.1) is not valid, then there exists ı > 0 and a sequence fPng

such that

!.1=nIPnI�/ > ı 8n � 1: (6.4.2)

Let fPn0g be a
ı
�c-convergent subsequence of fPng, and let P 2 P� be the

corresponding limit. By Theorem 6.3.4,!.1=n0IPn0 I�/ � .2�C2/.˛ ı
�c.Pn0 ; P /C

!.1=n0IP I�// ! 0 as n0 ! 1, which is in contradiction with (6.4.2). ut
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In the light of Theorem 6.4.1, we can now interpret Theorem 6.4.2 as a criterion

for
ı
�c-relative compactness of sets of measures in P by simply changing

ı
�c with

b�c in the formation of the last theorem.
The well-known Prokhorov theorem says that .U; d/ is a complete s.m.s; then the

set of all laws on U is complete w.r.t. the Prokhorov metric �.2 The next theorem is

an analog of the Prokhorov theorem for the metric space P�;
ı
�c/.

Theorem 6.4.3. If .U; d/ is a complete s.m.s., then .P�.U /;
ı
�c/ is also complete.

Proof. If fPng is a
ı
�c-fundamental sequence, then by Theorem 6.3.3, fPng is also

�-fundamental, and hence there exists the weak limit P 2 P.U /.

Claim 10. P 2 P�.

Proof of Claim 10. Let " > 0 and
ı
�c.Pn; Pm/ � " for any n;m � n". Then, by

Theorem 6.3.5,
ˇ

ˇ

R

�.x/.Pn � Pn"/.dx/
ˇ

ˇ < ˛" for any n > n"; hence,

sup
n�n"

Z

�.x/Pn.dx/ < ˛"C
Z

�.x/Pn".dx/ < 1:

Choose the sequence 0 < ˛1 < ˛2 < � � � , limk!1 ˛k D 1, such that P.d.x; a/ D
˛k/ D 0 for any k > 1. Then

Z

�.x/I fd.x; a/ � ˛kgP.dx/ D lim
n!1

Z

�.x/I fd.x; a/ � ˛kgPn.dx/

� lim inf
n!1

Z

�.x/Pn.dx/

� sup
n�n"

Z

U

�.x/Pn.dx/ < 1:

Letting k ! 1 the assertion follows.

Claim 11. ı
�c.Pn; P / ! 0:

Proof of Claim 11. Since
ı
�c.Pn; Pn"/ � " for any n � n", then, by Theorem 6.3.4,

sup
n�n"

!.ıIPnI�/ � 2.� C 1/.˛"C !.2ıIPn" I�//

for any ı > 0. The last inequality and Theorem 6.3.2 yield

ı
�c.Pn; P / � b�c.Pn; P / � �.Pn; P /Œ4K.1=ı/

2See, for example, Hennequin and Tortrat (1965) and Dudley (2002, Theorem 11.5.5).
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C sup
n�n"

!.1IPnI�/C !.1IP I�/C 2K.1/�

C10.� C 1/.˛"C !.2ıIPn" I�/C 5!.ıIPn" I�// (6.4.3)

for any n � n" and ı > 0. Next, choose ın D ın;" > 0 such that ın ! 0 as n ! 1
and

4K.1=ın/C sup
n�n"

!.1IPnI�/C !.1IP I�/C 2k.1/ � 1

.�.Pn; P //1=2
: (6.4.4)

Combining (6.4.3) and (6.4.4) we have that
ı
�c.Pn; P / � const: " for n large

enough, which proves the claim. ut

6.5
ı
�c- and b�c-Uniformity

In the previous section, we saw that
ı
�c and b�c induce the same exact convergence

in P�. Here we would like to analyze the uniformity of
ı
�c and b�c-convergence.

Namely, if for any Pn;Qn 2 P�, the equivalence

ı
�c.Pn;Qn/ ” b�c.Pn;Qn/ ! 0 n ! 1 (6.5.1)

holds. Obviously, (, by
ı
�c.Pn;Qn/ � b�c . So, if

b�c.P;Q/ � �.
ı
�c.P;Q// P;Q 2 P� (6.5.2)

for a continuous nondecreasing function, �.0/ D 0, then (6.5.1) holds.

Remark 6.5.1. Given two metrics, say � and 	, in the space of measures, the
equivalence of �- and 	-convergence does not imply the existence of a continuous
nondecreasing function � vanishing at 0 and such that � � �.	/. For example, both
the Lévy metric L [see (4.2.3)] and the Prokhorov metric � [see (3.3.18)] metrize
the weak convergence in the space P.R/. Suppose there exists � such that

�.X; Y / � �.L.X; Y // (6.5.3)

for any real-valued r.v.s X and Y . (Recall our notation �.X; Y / WD �.PrX ;PrY / for
any metric � in the space of measures.) Then, by (4.2.4) and (3.3.23),

L.X=�; Y=�/ D L�.X; Y / ! �.X; Y / as � ! 0 (6.5.4)
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and

�.X=�; Y=�/ D ��.X; Y / ! � .X; Y / as � ! 0; (6.5.5)

where � is the Kolmogorov metric [see (4.2.6)] and � is the total variation metric
[see (3.3.13)]. Thus, (6.5.3)–(6.5.5) imply that � .X; Y / � �.�.X; Y //. The last
inequality simply is, however, not true because in general �-convergence does not
yield � -convergence. [For example, if Xn is a random variable taking values k=n,
k D 1; : : : ; n with probability 1=n, then �.Xn; Y / ! 0 where Y is a .0; 1/-
uniformly distributed random variable. On the other hand, � .Xn; Y / D 1.]

We are going to prove (6.5.2) for the special but important case where
ı
�c is the

Fortet–Mourier metric on P�.R/, i.e.,
ı
�c.P;Q/ D �.P;QIGp/ [see (4.4.34)]; in

other words, for any P;Q 2 P�,

ı
�c.P;Q/D sup

�Z

f d.P �Q/ W f W R ! R; jf .x/�f .y/j�c.x; y/8x; y2R
�

;

where

c.x; y/ D jx � yj max.1; jxjp�1; jyjp�1/ p � 1: (6.5.6)

Since �.x/ WD 2max.jxj; jxjp/, then P�.R/ is the space of all laws on R, with finite
pth absolute moment.

Theorem 6.5.1. If c is given by (6.5.6), then

b�c.P;Q/ � p
ı
�c.P;Q/ 8P;Q 2 P�.R/: (6.5.7)

Proof. Denote h.t/ D max.1; jt jp�1/, t 2 R, and H.x/ D R x

0
h.t/dt , x 2 R.

Let X and Y be real-valued RVs on a nonatomic probability space .
;A;Pr/ with
distributions P and Q, respectively. Theorem 5.5.1 gives us explicit representation

of
ı
�c , namely,

ı
�c.P;Q/ D

Z 1

�1
h.t/jFX.t/ � FY .t/jdt; (6.5.8)

and thus

ı
�c.P;Q/ D

Z 1

�1
jFH.X/.x/ � FH.Y /.x/jdx: (6.5.9)

Claim 12. Let X and Y be real-valued RVs with distributions P and Q, respec-
tively. Then

ı
�c.P;Q/ D inffEjH.eX/ �H.eY /j W F

eX D FX; F
eY D FY g: (6.5.10)

Proof of Claim 12. Using the equality b�d D ı
�d [see (6.2.3) and (5.5.5)] with

H.t/ D t we have that
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ı
�d.F;G/ D b�d.F;G/ D inffEjX 0 � Y 0j W FX 0 D F;FY 0 D Gg

D
Z 1

�1
jF.x/ �G.x/jdx (6.5.11)

for any DFs F and G. Hence, by (6.5.9)

ı
�c.P;Q/ D inffEjX 0 � Y 0j W FX 0 D FH.X/; FY 0 D FH.Y /g

D inffEjH.eX/�H.eY /j W F
eX D FX; F

eY D FY g

which proves the claim.
Next we use Theorem 2.7.2, which claims that on a nonatomic probability space,

the class of all joint distributions PrX;Y coincides with the class of all probability
Borel measures on R

2. This implies

b�c.P;Q/ D inffEc.eX;eY / W F
eX D FX; F

eY D FY g: (6.5.12)

Claim 13. For any x; y 2 R, c.x; y/ � pjH.x/ �H.y/j.
Proof of Claim 13.

(a) Let y > x > 0. Then

c.x; y/ D .y � x/h.y/ D yh.y/ � xh.y/ � yh.y/ � xh.x/

� .H.y/ �H.x// sup
y>x>0

yh.y/ � xh.x/
H.y/ �H.x/

:

Since H.t/ is a strictly increasing continuous function,

B WD sup
y>x>0

yh.y/ � xh.x/

H.y/ �H.x/ D sup
t>s>0

f .t/ � f .s/

t � s
;

where f .t/ WD H�1.t/h.H�1.t// and H�1 is a function inverse to H ; hence,
B D ess supt jf 0.t/j � p.

(b) Let y > 0 > x > �y. Then c.x; y/ D jx � yjh.y/ D .y C .�x//h.y/ D
yh.y/C .�x/h.jxj/C ..�x/h.y/� .�x/h.jxj// � yh.y/C .�x/h.jxj/. Since

th.t/ D
�

t if t � 1;

tp if t � 1;
H.t/ D

8

<

:

t if 0 < t � 1;
p � 1
p

C 1

p
tp if t � 1;

then yh.y/ C .�x/h.jxj/ � p.H.y/ C H.�x// D p.H.y/ � H.x//.
By symmetry, the other cases are reduced to (a) or (b). The claim is shown.
Now, (6.5.7) is a consequence of Claims 12, 13, and (6.5.12). ut



164 6 Quantitative Relationships Between Minimal Distances and Minimal Norms

6.6 Generalized Kantorovich and Kantorovich–Rubinstein
Functionals

In this section, we consider a generalization of the Kantorovich-type functionalsb�c
and

ı
�c [see (5.2.16) and (5.2.17)].

Let U D .U; d/ be an s.m.s. and M.U � U / the space of all nonnegative Borel
measures on the Cartesian product U �U . For any probability measures P1 and P2
define the sets P .P1;P2/ and Q.P1;P2/ as in Sect. 5.2 [see (5.2.2) and (5.2.13)].

Let ƒ W M.U � U / ! Œ0;1� satisfy the conditions

1. ƒ.˛P / D ˛ƒ.P / 8˛ � 0,
2. ƒ.P CQ/ � ƒ.P /Cƒ.Q/ 8P andQ in M.U � U /.
We introduce the generalized Kantorovich functional

bƒ.P1; P2/ WD inffƒ.P / W P 2 P .P1;P2/g (6.6.1)

and the generalized Kantorovich–Rubinstein functional

ı
ƒ.P1; P2/ WD inffƒ.P / W P 2 Q.P1;P2/g: (6.6.2)

Example 6.6.1. The Kantorovich metric3

`1.P1; P2/ WD sup

�ˇ

ˇ

ˇ

ˇ

Z

f d.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W f W U

! R; jf .x/ � f .y/j � d.x; y/; x; y 2 U g

in the space of measures P with finite “first moment,”
R

d.x; a/P.dx/ < 1, has

the dual representations `1.P1; P2/ D ı
ƒ.P1; P2/ D bƒ.P1; P2/, where

ƒ.P / D ƒ1.P / WD
Z

U�U
d.x; y/P.dx; dy/: (6.6.3)

Example 6.6.2. Let U D R, d.x; y/ D jx � yj. Then

`1.P1; P2/ D
Z

R

jF1.t/ � F2.t/jdt;

3See Example 3.3.2 in Chap. 3.
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where Fi is the DF of Pi and

ƒ1.P / D
Z

R

.Pr.X � t < Y /C Pr.Y � t < X//dt

D
Z

R

Pr.X � t/C Pr.Y � t/ � 2 Pr.max.X; Y / � t/dt

D E.2max.X; Y / �X � Y / D EjX � Y j

for RVs X and Y with PrX;Y D P . We generalize (6.6.3) as follows: for any 1 �
p � 1, define

ƒ.P / WD ƒp.P /WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�Z

R

�Z

R

ct .x; y/P.dx; dy/

�p

�.dt/

� 1=p

1 � p < 1

ess sup�

Z

R2

ct .x; y/P.dx; dy/

WD inf

�

" > 0 W �
�

t W
Z

R2

ctdP > "

�

D 0

�

p D 1;

(6.6.4)
where ct (t 2 R) is the following semimetric in R

ct .x; y/ WD I fx � t � yg C I fy � t � xg8x; y 2 R; (6.6.5)

and �.�/ is a nonnegative measure on R. In the space X D X.R/ of all real-valued
RVs on a nonatomic probability space .
;A;Pr/, the minimal metric w.r.t. ƒ is
given by

bƒp.P1; P2/D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

inf

(

�Z

R

�
p
t .X; Y /�.dt/

�1=p

W X; Y 2 X;PrX D P1;PrY D P2

)

1 � p < 1

inf

�

sup
t2R

�t .X; Y / W X; Y 2 X;PrX D P1;PrY D P2

�

p D 1:

(6.6.6)
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Similarly, the minimal norm with respect to ƒ is

ı
ƒp.P1; P2/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

inf

(

˛

�Z

R

�
p
t .X; Y /�.dt/

�1=p

W ˛ > 0; X; Y 2 X;

˛.PrX � PrY / D P1 � P2

)

if p < 1

inf
n

˛ sup� �t .X; Y / W ˛ > 0; X; Y 2 X;

˛.PrX � PrY / D P1 � P2
o

if p D 1 ,

(6.6.7)

where in (6.6.6) and (6.6.7)

�t .X; Y / WD Pr.X � t < Y /C Pr.Y � t < X/: (6.6.8)

The next theorem gives the explicit form of bƒp and
ı
ƒp .

Theorem 6.6.1. Let Fi be the DF of Pi (i D 1; 2). Then

bƒp.P1; P2/ D ı
ƒp.P1; P2/ D �p.F1; F2/; (6.6.9)

where

�p.F1; F2/D

8

ˆ

ˆ

<

ˆ

ˆ

:

�Z

R

jF1.t/ � F2.t/jp�.dt/
�1=p

1 � p < 1
ess sup�jF1 � F2j D inff" > 0 W �.t W jF1.t/ � F2.t/j > "/ D 0g

p D 1:
(6.6.10)

Claim 14. �p.F1; F2/ � ı
ƒp.P1; P2/.

Proof of Claim 14. Let P 2 Q.P1;P2/. Then in view of Remark 2.7.2 in Chap. 2,
there exist ˛ > 0, X 2 X, Y 2 X, such that ˛ PrX;Y D P and ˛.FX � FY / D
F1 � F2; thus

jF1.x/ � F2.x/j D ˛jFX.t/ � FY .t/j
D ˛Œmax.FX.t/ � FY .t/; 0/C max.FY .t/ � FX.t/; 0/�

� ˛�t .X; Y /: (6.6.11)

By (6.6.7) and (6.6.11), it follows that �p.F1; F2/ � ı
ƒp.P1; P2/, as desired.



References 167

Further
ı
ƒp.P1; P2/ � bƒp.P1; P2/ (6.6.12)

by the representations (6.6.6) and (6.6.7).

Claim 15.
bƒp.P1; P2/ � �p.F1; F2/:

Proof of claim 15. Let eX WD F �1
1 .V /,eY WD F�1

2 .V /, whereF�1
i is the generalized

inverse to the DF Fi [see (3.3.16) in Chap. 3] and V is a .0; 1/-uniformly distributed
RV. Then F

eX;eY .t; s/ D min.F1.t/; F2.s// for all t; s 2 R. Hence, �t .eX;eY / D
jF1.t/ � F2.t/j, which proves the claim by using (6.6.6) and (6.6.7).

Combining Claims 14, 15, and (6.6.12) we obtain (6.6.9). ut

Problem 6.6.1. In general, dual and explicit solutions of bƒp and
ı
ƒp in (6.6.1) and

(6.6.2) are not known.
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Chapter 7
K -Minimal Metrics

The goals of this chapter are to:

• Define the notion of K-minimal metrics and describe their general properties;
• Provide representations of the K-minimal metrics with respect to several

particular metrics such as the Lévy metric, Kolmogorov metric, and p-average
metric;

• ConsiderK-minimal metrics when probability measures are defined on a general
separable metric space;

• Provide relations between the multidimensional Kantorovich and Strassen
theorems.

Notation introduced in this chapter:

Notation Description
On
� K-minimal metric w.r.t. a probability

distance � on .P2.U n/

�˛ Metric on the Cartesian product Un

E A .0; 1/-distributed random variable
XE D .X1; : : : ; Xn/E Random vector with components FXi .E/; i D 1; : : : ; n

e� For a given compound distance �,e�.X; Y / D �.XE; YE/

L.X; Y I˛/ Lévy distance in space of random vectors on .R2; �˛/
W.X; Y I˛/ Limit �L.X=�; Y=�I˛/ as � ! 1
ı Discrete metric in space of distribution functions on R

n

KF˛ Ky Fan functional in X.UN /

…�.eP/ Prokhorov functional in .P.U //N
Œx� Integer part of x

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 7, © Springer Science+Business Media, LLC 2013
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7.1 Introduction

As we saw in the previous two chapters, the notion of minimal distance

b�.P1; P2/ D inff�.P / W P 2 P.U 2/; TiP D Pi ; i D 1; 2g P1; P2 2 P.U /

(7.1.1)

represents the main relationship between compound and simple distances (see the
general discussion in Sect. 3.3). In view of the multidimensional Kantorovich
problem (Sect. 5.2, VI), we have been interested in the n-dimensional analog of the
notion of minimal metrics, that is, we have defined the following distance between
n-dimensional vectors of probability measures [see (5.3.15)]

R.eP ; eQ/ D inf

�Z

Un�Un
�.x; y/P.dx; dy/ W P 2 P.eP ; eQ/

�

; (7.1.2)

where eP D .P1i; : : : ; Pn/, eQ D .Q1; : : : ;Qn/, Pi ;Qi 2 P.U /, �.x; y/ is a
distance in the Cartesian product Un, and P.eP ; eQ/ is the space of all probability
measures on U 2n with fixed one-dimensional marginals P1; : : : ; Pn, Q1; : : : ;Qn.

In the 1960s, H. G. Kellerer investigated the multidimensional marginal problem.
His results on this topic were the major source for the famous Strassen (1965) work
on minimal probabilistic functionals. In this chapter, we study the properties of
metrics in the space of vectors eP that have representation similar to that of R.

7.2 Definition and General Properties

In this section, we defineK-minimal distances and provide some general properties.

Definition 7.2.1. Let � be a probability distance (p. distance) in P2.U n/ (U is
an s.m.s.). For any two vectors eP i D .P

.1/
i ; : : : ; P

.n/
i /, i D 1; 2, of probability

measures P .j /
i 2 P1.U / define the K-minimal distance

On
�.eP 1;eP 2/ D inff�.P / W P 2 P.eP 1;eP 2/g; (7.2.1)

where P.eP 1;eP 2/ D fP 2 P2.U n/ W TjP D P .j /
1 ; TjCnP D P .j /

2 ; j D 1; : : : ; ng.

Obviously,
O1
� D b�. One of the main reasons to study K-minimal metrics is

based on the simple observation that in most cases the minimal metric between the

product measuresb�.P .1/
1 � � � � �P .n/

1 ; P
.1/
2 � � � � �P .n/

2 / coincides with
On
�.eP 1;eP 2/.

Surprisingly, it is much easier to find explicit representations for
On
�.eP1;eP2/
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eP i 2 P.U n/ than for b�.P1; P2/ [Pi 2 P.U /]. Some general relations between
compound, minimal, and K-minimal distances are given in the next four theorems.
Recall that for any P 2 P.U k/, k � 2, the law T˛1;:::;˛mP 2 P.Um/ (1 � m � k)
is the marginal distribution of P on the coordinates ˛1 < ˛2 < � � � < ˛m.

Theorem 7.2.1. Let  be a right semicontinuous (RSC) function on .0;1/ and
�.t1; : : : ; tn/ a nondecreasing function in each argument ti � 0, i D 1; : : : ; n.
Suppose that a p. distance � on P.U n/ and p. distances �1; : : : ; �n on P2.U /
satisfy the following inequality: for any P 2 P.eP 1;eP 2/

 .�.P // � �.�.T1;nC1P /; �2.T2;nC2P /; : : : ; �n.Tn;2nP //: (7.2.2)

Then

 

�

On
�.eP1;eP 2/

�

� �
�

b�
�

P
.1/
1 ; P

.1/
2

�

; : : : ;b�
�

P
.n/
1 ; P

.n/
2

��

:

Proof. Given " > 0, there exists P ."/ 2 P.eP1;eP 2/ such that jD"j < ", where

D" D  
�

On
�.eP 1;eP 2//�  .�.P ."//

�

. Thus, by (7.2.2),

 

�

On
�.eP 1;eP 2/

�

D  �� �P ."/
		CD" � �

�

b�1

�

P
.1/
1 ; P

.2/
2

�

; : : : ;b�
�

P
.n/
1 ; P

.n/
2

��

�":

ut
Theorem 7.2.2. Let �1; : : : ; �k; �1; : : : ; �k be probability distances on
P2.U n/ and suppose

 .�1.P1/; : : : ; �k.Pk// � �.�1.P1/; : : : ; �k.Pk//; Pi 2 P2.U n/;

where � is nondecreasing in each argument and  is an RSC function on R
n. Then

 .
On
�1; : : : ;

On
�k/ � �.

On
�1; : : : ;

On
�k/:

The proof is straightforward.
In what follows, P1 � � � � � Pn denotes the product measure generated by

P1; : : : ; Pn. The next theorem describes conditions providing an equality between
On
�.eP 1;eP 2/ and �.P .1/

1 � � � � � P .n/
1 ; P

.1/
2 � � � � � P .n/

2 /.

Theorem 7.2.3. Suppose that a p. distance � on P2.U n/ and p. distances
�1; : : : ; �n on P2.U / satisfy the equality

�.P / D �.�1.T1;nC1P /; : : : ; �n.Tn;2nP //; (7.2.3)
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where � is an RSC function, nondecreasing in each argument. Then for any vectors
of measures eP 1;eP 2 2 P1.U /n

On
�
�

eP1;eP2

	 D b�
�

P
.1/
1 � � � � � P .n/

1 ; P
.1/
2 � � � � � P .n/

2

�

D �
�

b�1

�

P
.1/
1 ; P

.1/
2

�

; : : : ;b�
�

P
.n/
1 ; P

.n/
2

��

: (7.2.4)

Proof. Given " > 0, choose ı" 2 .0; "/ and P ."/ 2 P.eP1;eP 2/ such that

On
�.eP 1;eP 2/ D �.P ."//� ı" D �.�1.T1;nC1P ."/; : : : ; �n.Tn;2nP

."///� ı": (7.2.5)

Take

Q."/ D T1;nC1P ."/ � � � � � Tn;2nP ."/:

Then

T1;:::;nQ
."/ D P .1/

1 � � � � � P .n/
1 ; TnC1;:::;2nQ."/ D P .1/

2 � � � � � P .n/
2 ;

and by (7.2.3), �.P ."// D �.Q."//, which, together with (7.2.5), implies

On
�.eP 1;eP 2/ D �.Q."// � ı" � b�.P .1/

1 � � � � � P .n/
1 ; P

.1/
2 � � � � � P .n/

2 /� ı"
and

On
�.eP 1;eP 2/ � �

�

b�1.P
.1/
1 ; P

.1/
2 /; : : : ;b�n.P

.n/
1 ; P

.n/
2 /

�

� ı":

On the other hand,
On
�.eP1;eP2/ � b�.P .1/

1 � � � � � P .n/
1 ; P

.1/
2 � � � � � P .n/

2 /, and if

D" WD �
�

b�1.P
.1/
1 ; P

.1/
2 /; : : : ;b�n.P

.n/
1 ; P

.n/
2 /

�

�� ��1.T1;nC1P ."/; : : : ; Tn;2nP
."//
	

;

then, taking into account (7.2.3), we get

�.b�1.P
.1/
1 ; P

.1/
2 /; : : : ;b�n.P

.n/
1 ; P

.n/
2 // D �.P ."//CD" � On

�.eP 1;eP 2/CD";

whereD" ! 0 as "! 0. ut
In terms of distributions of random variables (RVs), the last theorem can be

rewritten as follows. Let Xi D .X.1/
i ; : : : ; X

.n/
i / (i D 1; 2) be two vectors in X.U n/

with independent components, and suppose that the compound metric � in X.U n/

has the following representation:

�.X; Y / D � ��1.X.1/; Y .1//; : : : ; �n.X
.n/; Y .n//

	

X; Y 2 X.U n/; (7.2.6)
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where � is defined as in Theorem 7.2.3. Then

On
�.X1;X2/ D b�.X1;X2/ D �

�

b�1.X
.1/
1 ; X

.1/
2 /; : : : ;b�n.X

.n/
1 ; X

.n/
2 /

�

: (7.2.7)

Remark 7.2.1. The implication (7.2.6) ) (7.2.7) is often used in problems of
estimating the closeness between two RVs with independent components. In many
cases, working with compound distances is more convenient than working with
simple ones. That is, when we are seeking inequalities, estimators, and so on, then,
considering all RVs on a common probability space, we are dealing with simple
operations (for example, sums and maximums) in the space of RVs. However,
considering inequalities between simple metrics and distances, we must evaluate
functionals in the space of distributions involving, e.g., convolutions or product of
distribution functions (DFs). Among many specialists, this simple idea is referred to
as the “method of one probability space.”

A particular case of Theorem 7.2.3 asserts that the equality

�.X1;X2/ D �.�1.X1;X2// X1;X2 2 X.U / (7.2.8)

yields

b�.X1;X2/ D �.b�1.X1;X2// (7.2.9)

for any RSC nondecreasing function � on Œ0;1/. The next theorem is a variant of
the implication (7.2.8)) (7.2.9) and essentially says that if

��.X1;X2/ D �.�.X1/; �.X2//; (7.2.10)

then

b�� D .b�/� (7.2.11)

for any measurable function �. More precisely, let .U;A/, .V;B/ be measurable
spaces and � W U ! V be a measurable function. Let � be a p. distance on P.V 2/;
then define

�� W P.V 2/! Œ0;1� ��.Q/ WD �.Q.�;�// Q 2 P.V 2/; (7.2.12)

where Q.�;�/ is the image of Q under the transformation .�; �/.x; y/ D
.�.x/; �.y//. Similarly, if � is a simple distance ��.P1; P2/ D �.P1�; P2�/, where
Pi;�.A/ D Pi.��1.A//.

It is easy to see that �� defines a probability semidistance on P.U 2/. In terms of
RVs, the preceding definition can also be written in the following way: ��.X; Y / D
�.�.X/; �.Y //.

Definition 7.2.2. A measurable space .U;A/ is called a Borel space if there exists a
Borel subset B 2 B1 D B.R1/ and a Borel isomorphism � W .U;A/! .B;B\B1/,
i.e., if U and B are Borel-isomorphic (see Definition 2.6.6 in Chap. 2).
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Theorem 7.2.4. Let .U;A/ be a Borel space, .V;B/ a measurable space such that
fvg 2 B for all v 2 V , and � W U ! V a measurable mapping. Let b�, b�� denote
the minimal distance corresponding to �, �� . Then

b��.P1; P2/ D b�.P1�; P2�/ (7.2.13)

for all P1; P2 2 P1.U /.

Proof. We need an auxiliary result on the construction of RVs. Let .	; E ;Pr/ be a
probability space, and let .S;Z/ W 	! V �R be a pair of independent RVs, where
S is a V -valued RV and Z is uniformly distributed on Œ0; 1�. Let P be a probability
measure on .U;A/ such that P ı ��1 coincides with the law of S , PrS . ut
Lemma 7.2.1. There exists a U -valued RV X such that

PrX D P and �.X/ D S a.e. (7.2.14)

Proof. We start with the special case .U;A/ D .R;B1/. Let I W R! R denote the
identity, I.x/ D x, and define the set .Ps/s2V of regular conditional distributions
Ps WD PI j�Ds , s 2 V . Let Fs be the DF of Ps , s 2 V . Then it is easily verified that

F W V � R! Œ0; 1�; F .s; x/ WD Fs.x/ (7.2.15)

is product-measurable. For s 2 V let F�1
s .x/ WD supfy W Fs.y/ < xg, x 2 .0; 1/, be

the generalized inverse ofFs and define the RVX WD F�1
S .Z/. For anyA 2 A D B1

we have

Pr.X 2 A/ D
Z

V

PrX jSDs.A/ PrS .ds/:

For the regular conditional distributions we obtain, by the independence of S andZ,

PrX jSDs D PrF�1
s .Z/jSDs D PrF�1

s .Z/ :

Since PrF�1
s .Z/ D Ps D PI j�Ds , then Pr.X 2 A/ D R

PI j�Ds.A/P ı ��1.ds/ D
P.A/. Thus, the law of X is P . To show that �.X/ D S a.e., observe that, by
PrS D P ı ��1 and PrX jSDs D PI j�Ds , we have

Pr.�.X/ D S/ D
Z

V

PrX jSDs.x W �.x/ D s/ PrS.ds/

D
Z

V

PI j�Ds.x W �.s/ D s/P ı ��1.ds/ D 1:

Now let .U;A/ be a Borel space. Let  W .U;A/! .B W Bn\B1/, B 2 B1, be a
measure isomorphism, and defineP 0 WD P ı �1, �0 WD �ı �1. By the first part of
this proof, there exists a RV X 0 W 	! B such that PrX 0 D P 0 and �0 ıX 0 D S a.e.;
thus, PrX D P and � ı X D S a.e., where X D  �1 ı X 0, as desired in (7.2.14).

ut
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Now let P .P1;P2/ be the set of all probability measures on U � U with marginals
P1, P2. Then

fQ.�;�/ W Q 2 P .P1;P2/g � P .P1� ;P2�/;

and hence

b��.P1; P2/ D inff�.P�;�/ W P 2 P .P1;P2/g
� inff�.P / W P 2 P .P1� ;P2� /g D b�.P1�; P2�/:

On the other hand, suppose P 2 P .P1�;P2� /. Let .	; E ;Pr/ be a probability space
with V -valued RVs S , S 0 such that Pr.S;S 0/ D P and rich enough to contain a further
RV Z W M ! Œ0; 1� uniformly distributed on Œ0; 1� and independent of S , S 0. By
Lemma 7.2.1, there exist U -valued RVs X and Y such that PrX D P1, PrY D P2
and �.X/ D S , �.Y / D S 0 a.e. Therefore, �.P / D �.� ıX; � ı V / D ��.X; Y /,
implying that

b��.P1; P2/ D inff��.X; Y / W PX D P1; PY D P2g
� inff�.S; S 0/ W PrS D P1�;PrS 0 D P2�g D b�.P1�; P2�/:

Remark 7.2.2. Theorem 7.2.4 is valid under the alternative condition of U being a
u.m.s.m.s. and V being an s.m.s.

Remark 7.2.3. Let U D V be a Banach space, ds.x; y/ D kxkxks�1� ykyks�1k,
x; y 2 U , where s � 0 and xkxks�1 D 0 for x D 0. Let �s.X; Y / D Eds.X; Y /.
Then the corresponding minimal metrics �s.X; Y / WD b�s.X; Y / are the absolute
pseudomoments of order s [see (4.4.40)–(4.4.43)]. By Theorem 7.2.4, �s can
be expressed in terms of the more simple metric �1, �s.P1; P2/ D �1.P1�; P2�/,
where �.x/ D xkxks�1.

7.3 Two Examples of K -Minimal Metrics

Let .U; d/ be an s.m.s. with metric d and Borel 
-algebra B.U /. Let Un be the
Cartesian product of n copies of the space U . We consider in Un the metrics
�˛.x; y/, ˛ 2 Œ0;1�, x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ 2 Un of the following
form:

�˛.x; y/ D
 

n
X

iD1
d˛.xi ; yi /

!min.1;1=˛/

for ˛ 2 .0;1/

�1.x; y/ D maxfd.xi ; yi /I i D 1; : : : ; ng

�0.x; y/ D
n
X

iD1
I f.x; y/I xi ¤ yi g; (7.3.1)
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where I is the indicator in U 2n. Let X.U n/ D fX D .X1; : : : ; Xn/g be the space
of all n-dimensionalU -valued RVs defined on a probability space .	;A;Pr/ that is
rich enough.1

Let � be a probability semimetric in the space X.U n/. For every pair of random
vectors X D .X1; : : : ; Xn/, Y D .Y1; : : : ; Yn/ in X.U n/ we define the K-minimal
metric

On
�.X; Y / D inf�.X; Y /;

where the infimum is taken over all joint distributions PrX;Y with fixed one-
dimensional marginal distributions PrX , PrY , i D 1; : : : ; n. In the case n D 1,
On
� D b� is the minimal metric with respect to�. Following the definitions in Sect. 2.5,
a semimetric � in X.U n/ is called a simple semimetric if its values �.X; Y / are
determined by the pair of marginal distributions PrX , PrY . A semimetric �.X; Y / in
X.U n/ is called componentwise simple (or K-simple) if its values are determined
by the one-dimensional marginal distributions PrXi , PrYi , i D 1; : : : ; n. Obviously,
everyK-simple semimetric is simple in X.U n/.

We give two examples of K-simple semimetrics that will be used frequently in
what follows.

Example 7.3.1. Suppose that in R
n a monotone seminorm kxk is given, that is,

(a) kxk � 0 for any x 2 R
n; (b) k�xk D j�j � kxk for � 2 R, x 2 R

n; (c)
kx C yk � kxk C kyk; (d) if 0 < xi < yi , i D 1; : : : ; n, then kxk � kyk.
Examples of monotone seminorms:

1. A monotone norm

kak˛ D
 

n
X

iD1
jai j˛

!1=˛

1 � ˛ <1 a D .a1; : : : ; an/ 2 R
n; (7.3.2)

kak1 D maxfjai j; i D 1; : : : ; ngI (7.3.3)

2. A monotone seminorm

kak D
ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1
ai

ˇ

ˇ

ˇ

ˇ

ˇ

: (7.3.4)

Let �.1/; : : : ; �.n/ be simple metrics in X.U /. The semimetric �.X; Y / D
k�.1/.X1; Y1/; : : : ; �.n/.Xn; Yn/k is K-simple in X.U n/.

Example 7.3.2. Denote by E an RV uniformly distributed on .0; 1/, and for
every X D .X1; : : : ; Xn/ 2 X.Rn/ denote by XE the random vector XE D
.F�1

X1
.E/; : : : ; F �1

Xn
.E//, where F�1

Xi
.t/ D supfx W FXi .x/ � tg. For any p. metric

�.X; Y / in the space X.Rn/

1See Sect. 2.7 and Remark 2.7.1 in Chap. 2.
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e�.X; Y / D �.XE; YE/ (7.3.5)

is K-simple in X.Rn/. Obviously,
On
� � e�.

In the next two sections, for some simple and compound probability metrics, we
will find the explicit form of the corresponding K-minimal metrics. We will often
use the following obvious assertion.

Theorem 7.3.1. Let � D b�. Then
On
� D On

�.

7.4 K -Minimal Metrics of Given Probability Metrics:
The Case of U D R

In this section, we will examine the representations of the K-minimal metrics w.r.t.
the following probability metrics in X.Rn/: Lévy metric, Kolmogorov metric, and
the p-average metric Lp .2

Let 0 < ˛ < 1 and �˛ be defined by (7.3.1). The expression x � y or x 2
.�1; y� for x; y 2 R

n means that xi � yi for all i D 1; : : : ; n. As a metric d in
U D R

1 we take the uniform metric d.x1; y1/ D jx1�y1j for x1; y1 2 R. For every
˛ 2 .0;1/ we define a Lévy metric in X.Rn/

L.X; Y I˛/ D inff" > 0IPr.X � x/ � Pr.Y 2 .�1; x�"˛/C ";
Pr.Y � x/ � Pr.X 2 .�1; x�"˛/C "; 8x 2 R

ng;

where A"˛ D fx W �˛.x; A/ � "g for any A � R
n. As is well known, L.X; Y I˛/,

˛ 2 .0;1� metrizes the weak convergence in X.Rn/. In X.R1/ we define the
Lévy metric L.X1; Y1I˛/ in the foregoing manner. Obviously, L.X1; Y1I˛/ D
L.X1; Y1I 1/ for ˛ 2 Œ1;1� is the usual Lévy metric (2.2.3) (Fig. 4.1). We recall
the uniform metric (Kolmogorov metric) �.X; Y / in X.Rn/

�.X; Y / D supfj Pr.X � x/ � Pr.Y � x/j W x 2 R
ng:

Denote by W and ı the following simple metrics in X.Rn/:

W.X; Y I˛/ WD inff" > 0IPr.X � x/ � Pr.Y 2 .�1; x�"˛/;
Pr.Y � x/ � Pr.X 2 .�1; x�"˛/; 8x 2 R

ng;

2See (3.4.3) in Chap. 3 and (4.2.22) and (4.2.24) in Chap. 4.
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and ı.X; Y / is the discrete metric: ı.X; Y / D 0 if FX D FY and ı.X; Y / D C1
if FX ¤ FY . The following relations are valid (Example 4.2.3):

L
�

1

�
X;
1

�
Y I˛

�

! �.X; Y / as �! 0; � > 0; ˛ 2 .0;1�; (7.4.1)

lim
�!1�L

�

1

�
X;
1

�
Y I˛

�

D W.X; Y I˛/; for ˛ 2 Œ1;1�;

lim
�!1�L

�

1

�
X;
1

�
Y I˛

�

D ı.X; Y /; for ˛ 2 .0; 1/: (7.4.2)

For any X D .X1; : : : ; Xn/ 2 X.Rn/ we denote by MX.x/ D min.FX.x1/,
: : : ; FX.xn// D Pr.F �1

X1
.E/ � x1; : : : ; F �1

Xn
.E/ � xn/, x D .x1; : : : ; xn/ 2 R

n, the
maximal DF having fixed one-dimensional marginal distributionsFXi , i D 1; : : : ; n.
For any semimetric �.X; Y / in X.Rn/ we denote by �.Xi ; Yi /, i D 1; : : : ; n, the
corresponding semimetric in X.R/.

Theorem 7.4.1. For any ˛ 2 .0;1� and X; Y 2 X.Rn/

max
1�i�nL.Xi ; Yi I˛/˛� � On

L.X; Y I˛/ � max
1�i�nL.n1=˛Xi ; n1=˛Yi I˛/

˛� WD max.1; 1=˛/: (7.4.3)

Proof. The lower estimate for
On
L follows from the inequality

maxfL.Xi ; Yi I˛/I i D 1; : : : ; ng � L.X; Y I˛/ˇ; ˇ WD min.1; ˛/;

for any X; Y 2 X.Rn/. Let maxfL.n1=˛Xi ; n1=˛Yi I˛/I i D 1; : : : ; ng < " and
x 2 R

n. Then for any i D 1; : : : ; n, any xi 2 R

Pr.Xi � xi / < Pr.Yi � xi C n�1=˛"/C ";
and thus

min
1�i�nPr.Xi � xi / � min

1�i�nPr.Yi � xi C n�1=˛ � "max.1;1=˛//C ": (7.4.4)

Given X; Y 2 X.Rn/, denote eX D XE , eY D YE (see Example 7.3.2 in Sect. 7.3).
Then X and Y have DFs MX and MY , respectively. Now, (7.4.4) implies that
MX.X/ D Pr.eX � x/ � Pr.eY 2 .�1; x�"˛/ C ". Therefore, L.X; Y I˛/ < "

and thus the upper bound in (7.4.3) is established. ut
Letting ˛ D1 in (7.4.3) we obtain the following corollary immediately.

Corollary 7.4.1. For any X and Y 2 X.Rn/

On
L.X; Y I1/ D L.XE; YE I1/ D maxfL.Xi ; Yi ;1/I i D 1; : : : ; ng: (7.4.5)
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Corollary 7.4.2. For any X and Y 2 X.Rn/

On
�.X; Y / D �.XE; YE/ D maxf�.Xi ; Yi /I i D 1; : : : ; ng: (7.4.6)

Proof. One can prove (7.4.6) using the same arguments as in the proof of Theorem
7.4.1. Another way is to use (7.4.5) and (7.4.1). ut
Corollary 7.4.3. For every ˛ 2 .0;1� and X; Y 2 X.Rn/

max
1�i�nW.Xi ; Yi I˛/˛� � On

W.X; Y I˛/ � max
1�i�nW.n1=˛Xi ; n

1=˛Yi I˛/

On
W.X; Y I1/ D supfjF�1

Xi
.t/ � F�1

Yi
.t/jI t 2 Œ0; 1�; i D 1; : : : ; ng: (7.4.7)

Proof. The first estimates follow from (7.4.2) and (7.4.3). The representation for
On

W.X; Y;1/ is a consequence of the preceding estimates. ut
Corollary 7.4.4. For any X; Y 2 X.Rn/

On
ı.X; Y / D ı.XE; YE/ D maxfı.Xi ; Yi /I i D 1; : : : ; ng: (7.4.8)

Equalities (7.4.5)–(7.4.8) describe the sharp lower bounds of the simple metrics
L.X; Y /, �.X; Y /, W.X; Y /, and ı.X; Y / in X.Rn/ in the case of fixed one-
dimensional distributions, FXi , FYi , (i D 1; : : : ; n).

We will next consider the K-minimal metric with respect to the average
compound distance

LH.X; Y / D EH.d.X; Y //; X; Y 2 X.Rn/ (7.4.9)

[see Example 3.4.1 and (3.4.3)], where d.x; y/ D �˛.x; y/ (7.3.2)–(7.3.4) (˛ � 1)
and H is a convex function on Œ0;1/, H.0/ D 0. We will examine minimal

functionals that are more general than
On
LH .

Definition 7.4.1 (Cambanis et al. 1976). A function � W E � R
2 ! R is said to

be quasiantitone if

�.x; y/C �.x0; y0/ � �.x0; y/C �.x; y0/ (7.4.10)

for all x0 > x, y0 > y, x, x0, y, y0 2 E . We call � W E � R
n ! R quasiantitone if

it is a quasiantitone function of any two coordinates considered separately.

Some examples of quasiantitone functions are as follows: f .x � y/ where f is
a nonnegative convex function on R; jx � yjp for p � 1; max.x; y/, x, y 2 R; any
concave function on R

n; and any DF of a nonpositive measure in R
n.
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At first we will find an explicit solution of the multidimensional Kantorovich
problem [see Sect. 5.2, VI, and (5.2.36)] in the case of U D R, d D �˛ , and a cost
function c being quasiantitone. That is, let eF D fFi ; i D 1; : : : ; N g be the vector of
N DFs F1; : : : ; FN on R, and let P.eF / be the set of all DFsF onRN with fixed one-
dimensional marginal F1; : : : ; FN . The pointwise upper bound of the distributions
F in P.eF / is obtained at the Hoeffding distribution

M.x/ WD min.F1.x1/; : : : ; FN .xN //; x D .x1; : : : ; xN /: (7.4.11)

The next theorem shows that the minimal total cost in the multidimensional
Kantorovich transportation problem

Ac.eF / D inf

�Z

RN

c dF W F 2 P.eF /

�

(7.4.12)

coincides with the total cost of
R

RN
c dM , i.e., M describes the optimal plan of

transportation.

Lemma 7.4.1 (Lorentz 1953). For a p-tuple .x1; : : : ; xp/ let .x1; : : : ; xp/

denote its rearrangement in increasing order. Then, given N p-tuples .x.1/1 ; : : : ,

x
.1/
p /; : : : ; .x

.N/
1 ; : : : ; x

.N/
p / for any quasiantitone function �, the minimum of

Pp
iD1 �.x

.1/
i ; : : : ; x

.N/
i / over all the rearrangements of the p-tuples is attained

at .x.1/1 ; : : : ; x
.1/
p /; : : : ; .x

.N/
1 ; : : : ; x.N/p /.

Proof. Let X.k/ D .x.k/1 ; : : : ; x
.k/
p /. Further, in inequalities containing values of the

function � at different points, we will omit those arrangements that take the same but
arbitrary values. For a group I of indices i , 1 � i � N , we denote UI WD fuigi2I ,
U 0
I D fu0

igi2I , and UI C U 0
I D fui C u0

i gi2I .

Claim 1. For any two disjoint groups of indices I , J , and hi , hi � 0,

�.UI CHI ;UJ CHJ /��.UI CHI ;UJ /��.UI ; UJ CHJ /C�.UI ; UJ /� 0:
(7.4.13)

Proof of the Claim 1. Let I 0 be the group consisting of I and the index k, which
belongs to neither I nor J . Then

�.UI 0 CHI 0 ; UJ CHJ /� �.UI 0 CHI 0 ; UJ /� �.UI 0; UJ CHJ /C �.UI 0; UJ /

D f�.UI CHI ; uk C hk; UJ CHJ / � �.UI CHI ; uk C hk; UJ /
��.UI ; uk C hk; UJ CHJ /C �.UI ; uk C hk; UJ /g
C f�.UI ; uk C hk; UJ CHJ / � �.UI ; uk C hk; UJ /
��.UI ; uk; UJ CHJ /C �.UI ; uk; UJ /g:
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Starting the inductive arguments with the inequality

�.x0; y0/ � �.x0; y/ � �.x; y0/C �.x; y/ � 0; x0 � y; y0 � y;
we prove the claim by induction with respect to the number of elements of I and J .

Further, for any 1 � s < p we consider the following operation, which gives
a new set of p-tuples eX.k/. We set ex.k/i D x

.k/
i for i ¤ s, i ¤ s C 1, and ex.k/s D

min.x.k/s ; x
.k/
sC1/,ex

.k/
sC1 D max.x.k/s ; x

.k/
sC1/. If I consists of indices k for which x.k/s �

x
.k/
sC1, J of indices k for which x.k/s � x

.k/
sC1, uk is the smaller, and uk C hk is the

larger of the two values, then

p
X

iD1
�.x

.1/
i ; : : : ; x

.N/
i / �

p
X

iD1
�.ex

.1/
i ; : : : ;ex

.N/
i / (7.4.14)

is exactly inequality (7.4.13). Continuing in the same manner we prove the theorem
after a finite number of steps. ut
Theorem 7.4.2 (Tchen 1980). Let eF D .F1; : : : ; FN / be a set ofN DFs on R and
M be defined by (7.4.11). Given a quasiantitone function � W RN ! R, suppose
that the family f�.X/;X distributed as F 2 B.eF /g is uniformly integrable. Then

A�.eF / D
Z

� dM: (7.4.15)

Remark 7.4.1. For N D 2, this theorem is known as the Cambanis et al. (1976)
theorem.3

Proof. Suppose first that the Fi have compact support. Let X D .X1; : : : ,
XN/ be distributed as F 2 P.eF / and defined on Œ0; 1� with the Lebesgue
measure. By Lemma 7.4.1, if the distribution F is concentrated on p atoms
.x
.1/
i ; : : : ; x

.N/
i / (i D 1; : : : ; p) of mass 1=p, then E�.X/ � E�.XE/, where

XE D .F�1
X1
.E/; : : : ; F �1

XN
.E//, E.!/ D !, ! 2 Œ0; 1� (Sect. 7.3, Example 7.3.2).

In the general case, let

xmi;k D 2mEfXiI Œk2�m � Xi � .k C 1/2�m�g
and

Xm
i .!/ D

2m�1
X

kD0
xmi;k � I Œk2�m � ! � .k C 1/2�m� i D 1; : : : ; N; ! 2 Œ0; 1�:

Xm
1 ;X

m
2 ; : : : ; X

m
N are step functions and bounded martingales converging almost

surely (a.s.) to X1; : : : ; XN , respectively; see Breiman (1992).

3See Kalashnikov and Rachev (1988, Theorem 7.1.1).
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Call Xm
i , i D 1; : : : ; N the reorderings of Xm

i . Xm
i and Xm

i have the same
distribution andXm

i D F �1
Xmi
.E/; hence,Xm

i ! F�1
Xi
.E/ a.s., so that in the bounded

case the theorem follows by bounded convergence.
Consider the general case. Let BN D .�B;B/N , and let FB be the distribution

that is F outside BN and FBfAg D F fA \ B
c
N g C F BfA \ BN g for all Borel sets

on R
N , where FB is the maximal subprobability with the sub-DF

MB.x/ D min
1�i�N F f.�B;B�

i�1 � .�B; xi � � .�B;B�N�i g

for
x D .x1; : : : ; xN / 2 BN :

Clearly, FB 2 P.eF / and FB converges weakly to M as B !1, which completes
the proof of the theorem. ut

As a consequence of the explicit solution of the N -dimensional Kantorovich
problem, we will find an explicit representation of the following minimal functional:

Lp;q.eF / WD inffEDp;q.X/ W X D .X1; : : : ; XN / 2 X.RN /;

FXi D Fi ; i D 1; : : : ; N g; (7.4.16)

where Dp;q.x/ D
h

P

1�i�j�N jxi � xj jp
iq

, p � 1, q � 1, and eF D .F1; : : : ; FN /
is a vector of one-dimensional DFs.

Corollary 7.4.5. For any p � 1 and q � 1

L.eF / D
Z 1

0

Dp;q.F
�1
1 .t/; : : : ; F �1

n .t//dt: (7.4.17)

As a special case of Theorem 7.4.2 [N D 2, �.x; y/ D H.jx � yj], H convex
on Œ0;1/, H 2 H (Example 2.4.1), we obtain the following corollary.

Corollary 7.4.6. Let H be a convex function from H and

LH.X; Y / D EH.jX � Y j/

be the H -average distance on X.R/ (Example 3.4.1). Then

bLH.X; Y / D eLH.X; Y / D
Z 1

0

H.jF�1
X .t/ � F�1

Y .t/j/dt: (7.4.18)

Further, we will consider other examples of explicit formulae for K-minimal
and minimal distances and metrics. Denote by m.X; Y / the following probability
metric:
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m.X; Y / D E
"

2max.X1; : : : ; Xn; Y1; : : : ; Yn/ � 1
n

n
X

iD1
.Xi C Yi/

#

: (7.4.19)

Theorem 7.4.3. Suppose that the set of random vectors X and Y with fixed
one-dimensional marginals is uniformly integrable. Then

On
m.X; Y / D em.X; Y / D

Z 1

�1
1

n

n
X

iD1
ŒFXi .u/C FYi .u/�

�2minŒFX1.u/; : : : ; FXn.u/; FY1.u/; : : : ; FYn .u/�du: (7.4.20)

Proof. Suppose EjXi j C EjYi j <1, i D 1; : : : ; n. Then from the representation

m.X; Y / D
Z 1

�1
1

n

n
X

iD1
ŒFXi .u/C FYi .u/�

�2 Pr.max.X1; : : : ; Xn; Y1; : : : ; Yn/ � u/du

and the Hoeffding inequality,

Pr.max.X1; : : : ; Xn; Y1; : : : ; Yn/ � u/

� min.FX1.u/; : : : ; FXn.u/; FY1.u/; : : : ; FYn .u//;

we obtain (7.4.20). The weaker regularity condition is obtained as in the previous
theorem. ut

Consider the special case n D 1. We will prove the equality

b�.X; Y / D e�.X; Y / WD �.F�1
X .E/; F�1

Y .E//; (7.4.21)

whereE is uniformly distributed on .0; 1/ for various compound distances in X.R/.
In Example 3.4.3 we introduced the Birnbaum–Orlicz compound distances

‚H.X1;X2/ D
Z 1

�1
H.Pr.X1 � t < X2/C Pr.X2 � t < X1//dt

H 2 H (7.4.22)

RH.X1;X2/ D sup
t2R

H.Pr.X1 � t < X2/C Pr.X2 � t < X1//
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and compound metrics

‚p.X1;X2/ D
�Z 1

�1
ŒPr.X1 � t < X2/C Pr.X2 � t < X1/�pdt

�p0

;

p0 D min.1; 1=p/;

‚1.X1;X2/ D sup
t2R
ŒPr.X1 � t < X2/C Pr.X2 � t < X1/�:

Note that ‚1.X1;X2/ D EjX1 � X2j for H.t/ D t . In Example 3.3.4, we consider
the corresponding simple Birnbaum–Orlicz distances

�H.F1; F2/ D
Z 1

�1
H.jF1.x/ � F2.x/jdx; H 2 H;

�H.F1; F2/ D sup
x2R

H.jF1.x/ � F2.x/j/ (7.4.23)

and simple metrics

�p.F1; F2/ D
�Z 1

�1
jF1.x/ � F2.x/jpdx

�p0

;

�1.F1; F2/ D �.F1; F2/ D sup
x2R
jF1.x/ � F2.x/j:

Theorem 7.4.4.

�H D e‚H D b‚H �H D eRH D bRH �p D e‚p D b‚p 0 < p � 1:
(7.4.24)

Proof. To prove the first equality in (7.4.24), consider the set of all random pairs
.X1;X2/ with marginal DFs F1 and F2. For any such pair

‚H.X1;X2/ D
Z 1

�1
H.F1.t/C F2.t/ � 2 Pr.X1 _ X2 � t//dt

� e‚H.X1;X2/ D
Z 1

�1
H.F1.t/C F2.t/ � 2min.F1.t/; F2.t//dt

D
Z 1

�1
H.jF1.t/ � F2.t/j/dt D �H.F1; F2/:

Thus e‚H D b‚H D �H . In a similar way one proves the other equalities in (7.4.24).
ut
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Remark 7.4.2. Theorem 7.4.2 for N D 2 shows that the infimum of
E�.X1;X2/ (� is a quasiantitone function (7.4.10) over P.F1; F2/, the set of
all possible joint DF H D FX1;X2 with fixed marginals FXi D Fi ) is attained at the
upper Hoeffding–Fréchet boundH.x; y/ D min.F1.x/; F2.y//. Similarly,4

supfE�.X1;X2/ W H 2 P.F1; F2/ D
Z 1

0

�.F1.t/; F2.1 � t//dt; (7.4.25)

i.e., the supremum of E�.X1;X2/ is attained at the lower Hoeffding–Fréchet
bound H.x; y/ D max.0; F1.x/ C F2.y/ � 1/. The multidimensional analogs of
(7.4.25) are not known. Notice that the multivariate lower Hoeffding–Fréchet bound
H.x1; : : : ; xN / D max.0; F1.x1/ C � � � C FN .xN / � N C 1/ is not a DF on R

N ,
in contrast to the upper boundH.x1; : : : ; xN / D min.F1.x1/; : : : ; FN .xN //, which
is a DF on R

N . That is why we do not have an analog for Theorem 7.4.2 when
the supremum of E�.X1; : : : ; XN / over the set of N -dimensional DFs with fixed
one-dimensional marginals is considered.

Remark 7.4.3. In 1981, Kolmogorov stated the following problem to Makarov:
find the infimum and supremum of Pr.X C Y < z/ over P.F1; F2/ for any
fixed z. The problem was solved independently by Makarov (1981) and Rüschendorf
(1982). Rüschendorf (1982) considered also the multivariate extension. Another
solution was given by Frank et al. (1987). Their solution was based on the notion of
copula linking the multidimensional DFs to their one-dimensional marginals.5

7.5 The Case Where U Is a Separable Metric Space

We begin with a multivariate extension of the Strassen theorem, � D bK, where � is
the Prokhorov metric.6

The following theorem was proved by Schay (1979) in the case where .U; d/ is a
complete separable space. We will use the method of Dudley (1976, Theorem 18.1)
to extend this result in the case of a separable space.

Denote by P.U / the space of all Borel probability measures (laws) on an s.m.s.
.U; d/. Let N � 2 be an integer, let kxk, x 2 R

m, be a monotone norm (if 0 < x <
y, then kxk < kyk) in R

n, where m D �N
2

	

, and let

D.x1; : : : ; xN / D kd.x1; x2/; : : : ; d.x1; xn/; d.x2; x3/; : : : ; d.xN�1; xN /k:
(7.5.1)

4See Cambanis et al. (1976) and Tchen (1980).
5See Sklar (1959), Schweizer and Sklar (2005), Wolff and Schweizer (1981), and Genest and
MacKay (1986).
6See Example 3.3.3 and (3.3.18) in Chap. 3.
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Theorem 7.5.1. For any P1; : : : ; PN in P.U /, ˛ � 0, ˇ � 0, the following two
assertions are equivalent:

(I) For any a > ˛ there exists � 2 P.U N / with marginal distributionsP1; : : : ; PN
such that

�fD.x1; : : : ; xN / > ag � ˇ: (7.5.2)

(II) For any Borel sets B1; : : : ; BN�1 2 B.U /

P1.B1/C � � � C PN�1.BN�1/ � PNB.˛/ C ˇ CN � 2; (7.5.3)

where B.˛/ D fxN 2 U W D.x1; : : : ; xN / � ˛, for some x1 2 B1; : : : ; xN�1 2
BN�1g. If P1; : : : ; PN are tight measures, then a D ˛.

Proof. Assertion (I) implies (II) since

P1.B1/ � �.D.x1; : : : ; xN / > a/C �
 

N�1
\

iD1
fxi 2 Bi g;D.x1; : : : ; xN / � a

!

C�
 

x1 2 B1;
N�1
[

iD2
fxi … Bi g;D.x1; : : : ; xN / � a

!

� ˇ C �.B.a//C
N�1
X

iD2
.1� Pi.Bi //:

As a! ˛ we obtain (II).
To prove that (II) ) (I), suppose first that P1; : : : ; PN are tight measures.

Let fxi W i D 1; 2; : : : g be a dense sequence in U , and let Pi;n (i D 1; : : : ; N )
be probability measures on the set Un WD fx1; : : : ; xng. We first fix n and prove (II)
! (I) for a D ˛, Un, and P1;n; : : : ; PN;n in place of U and P1; : : : ; PN , and then let
n!1.

For any I D .i1; : : : ; iN / 2 f1; : : : ; ngN and XI D .xi1 ; : : : ; xiN / define the
indicator: Ind.XI / D 1 if D.XI / � ˛ and Ind.XI / D 0 otherwise. To obtain the �
of the theorem, we consider �n on UN

n . We denote

�I D �n.fXI g/ Pik ;j D Pj;n.fxik g/ ik D 1; : : : ; n; k; j D 1; : : : ; N:
Since we want�n to haveP1;n; : : : ; PN;n as one-dimensional projections, we require
the constraints

X

i`

�I � Pik;j j D 1; : : : ; N ik D 1; : : : ; n;

�I � 0; (7.5.4)

where in (7.5.4) i` runs from 1 to n for all ` 2 f1; : : : ; k � 1; k C 1; : : : ; N g.
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If we denote by ��
n the “optimal” �n that assigns as much probability as possible

to the “diagonal cylinder” C˛ in UN
n given by D.XI / � ˛, then we will determine

��
n.C˛/ by looking at the following linear programming problem of canonical form:

maximize Z D
X

I2.1;:::;n/N
Ind.XI /�I subject to (7.5.4): (7.5.5)

The dual of the foregoing problem is easily seen to be

minimizeW D
n
X

ikD1

N
X

jD1
Pik ;j uik ;j

subject to uik ;j � 0
N
X

jD1
uik ;j � Ind.XI / 8ik D 1; : : : ; n; k D 1; : : : ; N; j D 1; : : : ; N; (7.5.6)

and by the duality theorem,7 the maximum of Z equals the minimum of W . Let us
write uik ;j D 1 � uik ;j . Then (7.5.6) becomes

minimizeW D N � 1 �
n
X

ikD1

N�1
X

jD1
Pik ;juik ;j C

n
X

ikD1
pik;N uik ;N

subject to uik ;j � 1; j D 1; : : : ; N � 1; uik ;N � 0;

and uik ;N � .Ind.XI /�N � 1/C
n�1
X

jD1
uik ;j

8ik D 1; : : : ; n k D 1; : : : ; N: (7.5.7)

We may also assume

uik ;j � 0 j D 1; : : : ; N � 1 uik ;N � 1 (7.5.8)

since these additional constraints cannot affect the minimum of W . Now the set of
“feasible” solutions uik ;j , j D 1; : : : ; N � 1, uik ;N , ik D 1; : : : ; n, k D 1; : : : ; N

for the dual problem (7.5.7), (7.5.8) is a convex polyhedron contained in the unit
cube Œ0; 1�Nn, the extreme points of which are the vertices of the cube. Since the
minimum of W is attained at one of these extreme points, there exists uik ;j , uik ;N
equal to 0 or 1, which minimizeW under the constraints in (7.5.7) and (7.5.8). Thus,
without loss of generality, we may assume that uik ;j uik ;N are 0s and 1s.

7See, for example, Berge and Chouila-Houri (1965, Sect. 5.2).
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Define the sets Fj � Un, j D 1; : : : ; N � 1, such that uik ;j D 1 for all j such
that xik 2 Fj and uik ;j D 0 otherwise. Then, by (7.5.7), uik ;N D 1 for all k such
that Ind.XI / D 1 when uik ;j D 1, j D 1; : : : ; N � 1, that is, whenever xiN satisfies
D.XI / � ˛ with xij 2 Fj , j D 1; : : : ; N � 1. Hence

minW D N � 1 �maxŒP1;n.F1/C � � � C PN�1;n.FN�1/ � PN;n.F .˛/
n /�;

where

F .˛/
n WD fxiN W D.XI / � ˛ for some xij 2 Fj ; j D 1; : : : ; N � 1g:

Thus, by the duality theorem in linear programming, maximum Z D minimum W ,
and then

��
n.D.XI / > ˛/ D 1 � ��

n.C˛/

D 2 �N CmaxfŒP1;n.F1/C � � � C PN�1;n.FN�1/

�PN;n.F .˛/
n � W F1; : : : ; FN�1 � Ung:

The latter inequality is true for any ˛ > 0, and therefore

inff˛ W ��
nD..XI / � ˛/ � ˛g

D inf

(

˛ W max
F1;:::;FN�1�Un

ŒP1;n.F1/C � � � C PN�1;n.FN�1/

�PN;n.F .˛/
n �C 2 �N � ˛

)

:

Given Pj (j D 1; : : : ; N ), one can take Pj;n concentrated in finitely many atoms,
say in Un such that the Prokhorov distance �.Pj;n; Pj / � ". The latter follows, for
example, by the Glivenko–Cantelli–Varadarajan theorem.8 As Pj is tight, then Pj;n
is uniformly tight and thus there is a weakly convergent subsequencePj;n.k/ ! Pj .
The corresponding sequence of optimal measures ��

n.k/ with marginalsPj;n.k/ (j D
1; : : : ; N ) is also uniformly tight. Now the same “tightness” argument implies the
existence of a measure � for which (7.5.2) holds. ut
Remark 7.5.1. It is easy to see that (II) is equivalent to (7.5.3) for all closed sets Bj
(j D 1; : : : ; N � 1) and/or B.˛/ given by fxN 2 U W D.x1; : : : ; xN / < ˛g.

Now, suppose that P1; : : : ; PN are not tight. Let U be a completion of the space
U . For a given a > ˛ let " 2 .0; .a � ˛/=2kek/, where e D .1; : : : ; 1/ and A is a

8See Dudley (2002, Theorem 11.4.1).
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maximal subset of U such that d.x; y/ � "=2 for x ¤ y in A. Then A is countable;
A D fxkg1kD1. Let Ak D fx 2 U I d.x; xk/ < "=2 � d.x; xj /; j D 1; : : : ; k � 1g
and A D Ak \ U . The measure P1; : : : ; PN on U determines the probability
measures P 1; : : : ; P N on U . Then P1; : : : ; PN are tight, and consequently there

exists � 2 P.UN
/ with marginal distributions P 1; : : : ; P N for which (I) holds for

a D ˛. Let Pk;m.B/ D Pk.B \ Am/, k D 1; : : : ; N , for any B 2 B.U /. We define
the measure

�m1;:::;mN D cm1;:::;mN Pm1 � � � � � PmN ;
where the number cm1;:::;mN is chosen such that

�m1;:::;mN .Am1 � � � � � AmN / D �.Am1 � � � � � AmN /:

We set

�" D
X

m1;:::;mN

�m1;:::;mn:

Then �" has marginal distributions P1; : : : ; PN (see the proof of Case 3, Theo-
rem 5.3.1 in Chap. 5) and

�".D.y1; : : : ; yN / > a/ �
X

m1;:::;mN

�m1;:::;mN .D.y1; : : : ; yN / > ˛ C 2"kek/

�
X

m1;:::;mN

�f.Am1 � � � � � AmN / W

D.x1; : : : ; xN / > ˛ C "kekg
� �.D.y1; : : : ; yn/ > ˛/ � ˇ:

Thus (II)! (I), as desired.
Let us apply Theorem 7.5.1 to the set X.U / of RVs defined on a rich enough

probability space (Remark 2.7.1), taking values in the s.m.s. .U; d/.
Given ˛ > 0 and a vector of laws eP D .P1; : : : ; PN / 2 .P.U //N , define

S1.eP I˛/ D inffPr.D.X/ > ˛/ W X D .X1; : : : ; XN / 2 X.U N /;

PrXi D Pi ; i D 1; : : : ; N g (7.5.9)

and

S2.eP I˛/ D supfP1.B1/C � � � C PN�1.BN�1/� PN .B.˛/
N /

�N C 2 W B1;B2; : : : ; BN�1 2 B.U /g; (7.5.10)
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where D.x1; : : : ; xN / D kd.x1; x2/; : : : ; d.x1; xN /; : : : ; d.xN�1; xN /k, k � k is a
monotone seminorm and B.˛/

N is defined as in Theorem 7.5.1. Then the following
duality theorem holds.

Corollary 7.5.1. For any ˛ > 0

S1.eP I˛/ D S2.eP I˛/: (7.5.11)

If Pi s are tight measures, then the infimum in (7.5.9) is attained.

In the case N D 1, we obtain the Strassen–Dudley theorem.

Corollary 7.5.2. Let K� (� > 0) be the Ky Fan metric [see (3.4.10)] and �� the
Prokhorov metric [see (3.3.22)]. Then �� is the minimal metric relative to K�, i.e.,

bK� D ��: (7.5.12)

In particular, by the limit relations ���!
�!0

`0 D � (Lemma 3.3.1) and K��!
�!0

L0
[see (3.4.11) and (3.4.6)], we have that the minimal metric relative to the indicator
metric L0.X; Y / D EI fX ¤ Y g equals the total variation metric

� .X; Y / D sup
A2B.U /

j Pr.X 2 A/ � Pr.Y 2 A/j;

i.e., (Dobrushin (1970))bL0 D � .
By the duality Theorem 7.5.1, for any � > 0 and eP D .P1; : : : ; PN / 2 P.U /N ,

inf
X2X.UN /

PrXi DPi ; iD1;:::;N

KF�.X/ D …�.eP /; (7.5.13)

where KF� is the Ky Fan functional in X.U N /,

KF�.X/ WD inff" > 0 W Pr.D.X/ > �"/ � "g;

and…�.eP / is the Prokhorov functional in .P.U //N with parameter � > 0

…�.eP / D inff" > 0 W S2.eP ; �"/ � "g:

Letting � ! 0 in (7.5.13), we obtain the following multivariate version of the
Dobrushin (1970) duality theorem:

inf
X2X.UN /

PrXi DPi ; iD1;:::;N

Pr.Xi ¤ Xj 81 � i < j � N/
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D sup
B1;:::;BN�12B.U /

"

P1.B1/C � � � C PN�1.BN�1/ � PN
 

N�1
\

iD1
Bi

!

�N C 2
#

D sup
B1;:::;BN�12B.U /

"

PN

 

N�1
[

iD1
Bi

!

� P1.B1/� � � � � PN�1.BN�1/
#

:

(7.5.14)

Note that the preceding quantities are symmetric with respect to any rearrange-
ment of the vector eP .

Multiplying both sides of (7.5.13) by � and then letting �!1 [or simply using
(7.5.11)] we obtain

inf
X2X.UN /

PrXi DPi ; iD1;:::;N

ess supD.X/ D inff" > 0 W S2.eP I "/ D 0g:

Using the preceding equality for N D 2, we obtain that the minimal metric
relative to L1.X; Y / D ess supd.X; Y / [see (3.4.5), (3.4.7), (3.4.11)] is equal to
`1 [see (3.3.14) and Lemma 3.3.1], i.e.,

bL1 D `1: (7.5.15)

Suppose that d1; : : : ; dn are metrics in U and that U is a separable metric space
with respect to each di , i D 1; : : : ; n. We introduce in Un the metric

d†.x; y/ D
n
X

iD1
di .xi ; yi /; x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Un: (7.5.16)

We consider in X.U n/ the metric �†.X; Y / WD Ed†.X; Y /. Denote by
�.Xi ; Yi I di / the Kantorovich metric in the space X.U; di /

�.Xi ; Yi I di / D sup

(

jEŒf .Xi/ � f .Yi /�j W kf k.i/L WD sup
x¤y
jf .x/ � f .y/j
di .x; y/

� 1
)

(7.5.17)

(Example 3.3.2).

Theorem 7.5.2. Suppose that for X D .X1; : : : ; Xn/, Y D .Y1; : : : ; Yn/ 2 X.U n/,
�†.X; a/C �†.Y; a/ < C1 for some a 2 Un. Then

On
�†.X; Y / D

n
X

iD1
�.Xi ; Yi I di/: (7.5.18)



192 7 K-Minimal Metrics

Proof. By the Kantorovich theorem (Corollary 6.2.1), the minimal metric relative
to the metric �.Xi ; Yi I di / D Edi.Xi ; Yi / in X.U / is �.Xi ; Yi I di /. Hence,

On
�†.X; Y / �

n
X

iD1
b�.Xi ; Yi I di/ D

n
X

iD1
�.Xi ; Yi I di /: (7.5.19)

Conversely, let L.i/m , i D 1; 2; : : : , be a sequence of joint distributions of RVs Xi ,
Yi such that �.Xi ; Yi I di/ D limm!1 �.Xi ; Yi I di ;L.i/m /, where �.Xi ; Yi I di IL.i/m /
is the value of the metric � for the joint distribution L

.i/
m . Then

On
�†.X; Y / �

Pn
iD1 �.Xi ; Yi I di IL.i/m /, and as m! C1 we get the inequality

On
�.X; Y / �

n
X

iD1
�.Xi ; Yi I di /: (7.5.20)

Inequalities (7.5.19) and (7.5.20) imply equality (7.5.18). ut
Corollary 7.5.3. For any ˛ 2 Œ0; 1�

On
�.X; Y I d˛/ D

n
X

iD1
�.Xi ; Yi I d˛/ for 0 < ˛ � 1; (7.5.21)

On
�.X; Y I d0/ D

n
X

iD1
� .Xi ; Yi /: (7.5.22)

The proof of (7.5.21) follows from (7.5.18) if we set di D d˛. Equality (7.5.21)
follows from equality (7.5.21) as ˛ ! 0.

7.6 Relations Between Multidimensional Kantorovich
and Strassen Theorems: Convergence of Minimal
Metrics and Minimal Distances

Recall the multidimensional Kantorovich theorem [see (5.3.1), (5.3.2), and (5.3.4)]

AD.eP/ D K.eP/ WD K.eP ;G.U //; (7.6.1)

where eP D .eP1; : : : ;ePN / 2 .P.U //N

AD.eP/ D inf

�Z

UN
DdP; P 2 P.eP/

�

;D D H.D/: (7.6.2)
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In the preceding relations, the minimal functional D.x/ is given by

D.x/ D kd.x1; x2/; d.x1; x3/; : : : ; d.x1; xN /; d.x2; x3/; : : : ; d.xN�1; xN /k:

k � k is a monotone seminorm on R
n, m D �

N
2

	

, and B.eP / is the space of all Borel
probability measures P on UN with fixed one-dimensional marginals P1; : : : ; PN
(Sect. 5.3).

Next we turn our attention to the relationship between (7.6.1) and the multidi-
mensional Strassen theorem [see (7.5.13)].

Theorem 7.6.1. Suppose that .U; d/ is an s.m.s.,

KF.P / D inff˛ > 0 W P.D.x/ > ˛/ < ˛g (7.6.3)

is the Ky Fan functional in P.U N /, and

….eP/ D inff˛ > 0 W P1.B1/C � � � C PN�1.BN�1/

� PN .B.˛//C ˛ CN � 2
for all B1; : : : ; BN�1; Borel subsets of U g (7.6.4)

is the Prokhorov functional in .P.U //N , where
B.˛/ D fxN 2 U W D.x1; : : : ; xN / � ˛ for some x1 2 B1; : : : ; xN�1 2 BN�1g.
Then

inffKF.P / W P 2 P.eP/g D ….eP /; (7.6.5)

and if eP is a set of tight measures, then the infimum is attained in (7.6.3).

The next inequality represents the main relationship between the Kantorovich
functionalAD.eP / and the Prokhorov functional….eP /.

Theorem 7.6.2. For any H 2 H� (i.e., H 2 H, Example 2.4.1, and H is convex),
M > 0, and a 2 U

….eP/H.….eP // � K.eP / � H.….eP //C c1H.M/….eP/

Cc2
N
X

iD1

Z

U

H.d.x; a//I.d.x; a/ > M/Pi.dx/; (7.6.6)

where c2 WD K`
H [see (2.4.3)], ` WD Œlog2.AmN

2/�C 1, c1 D Nc2, Œx� is the integer
part of x, and

Am WD max
1�j�mfk.i1; : : : ; im/k W ik D 0; k ¤ j; ij D 1g m D

 

N

2

!

:
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Proof. For any probability measure P on UN and " > 0 the inequality
R

UN
H.D.x//P.dx/ < ı D "H."/ follows from P.D.x/ > "/ < "; hence,

KF.P / �H.KF.P // �
Z

UN
H.D.x//P.dx/:

From (7.6.1), (7.6.2), and (7.6.5) it follows that….eP /H.….eP // � AD.eP /. We will
now prove the right-hand-side inequality in (7.6.6). Given KF.P / < ı and a 2 U ,
we have

Z

H.D.x//P.dx/ D
�Z

D.x/�ı
C
Z

D.x/>ı

�

H.D.x//P.dx/

� H.ı/C
Z

D.x/>ı
H

0

@Am
X

i<j

d.xi ; xj /

1

AP.dx/

� H.ı/C
Z

D.x/>ı
H

�

AmN
2 max
1�i<�N d.xi ; a/

�

P.dx/

[by (2.4.3), H.2kt/ � Kk
HH.t/]

� H.ı/CK`
H

N
X

iD1
Ii ;

where

Ii WD
Z

D.x/>ı
H.d.xi ; a//P.dx/

D
�Z

D.x/>ı;d.xi ;a/>M
C
Z

D.x/>ı;d.xi ;a/�M

�

H.d.xi ; a//P.dx/

�
Z

d.xi ;a/�M
H.d.xi ; a//P.dx/CH.M/ı:

Hence,

Z

H.D.x//P.dx/ � H.KF.P //C c2NH.M/KF.P /

C C2

N
X

iD1

Z

d.xi ;a/>M

H.d.xi ; a//Pi .dx//:

Together with (7.6.1) and (7.6.5), the latter inequality yields the required esti-
mate (7.6.6). ut
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The inequality (7.6.6) provides a “merging” criterion for a sequence of vectors
eP .n/ D .P .n/

1 ; : : : ; P
.n/
N /.

As in Diaconis and Freedman (1984), D’Aristotile et al. (1988), and
Dudley (2002, Sect. 11.7), we call two sequences fP .n/gn�1, fQ.n/gn�1 2 P.U /,
�-merging, where� is a simple probability metric if �.P .n/;Q.n//! 0 as n!1.
More generally, we say the sequence feP .n/gn�1 � .P.U //N is �-merging if

�.P
.n/
i ; P

.n/
j /! 0 as n!1

for any i; j D 1; : : : ; N .
The next corollary gives criteria for merging it and the minimal distance `H

(3.3.10) with respect to the Prokhorov metric.

Corollary 7.6.1. Let feP .n/gn�1 � .P.U //N . Then the following statements
hold:

(i) feP .n/gn�1 is �-merging if and only if

….eP .n//! 0 as n!1: (7.6.7)

(ii) If H 2 H� and
R

H.d.x; a//Pi .dx/ < 1, i D 1; : : : ; N , then feP .n/gn�1 is
`H -merging if and only if

K.eP .n//! 0 as n!1:

Proof. (i) There exist constants C1 and C2 depending on the seminorm k � k
such that

C1
X

1�i�j�N
K.TijP / � KF.P / � C2

X

1�i�j�N
K.TijP /;

where K is the Ky Fan distance in Pi .U / (Example 3.4.2). Now Theorem 7.6.1
can be used to yield the assertion.

(ii) The same argument is applied. Here we make use of the multidimensional
Kantorovich theorem 7.6.1. ut

Theorem 7.6.2 and Corollary 7.6.1 show that `H -merging implies �-merging.
On the other hand, if

lim
M!1 max

n�1;1�i�N

Z

H.d.x; a//I fd.x; a/ > M gP .n/
i .dx/ D 0;

then `H -merging and �-merging of feP .n/gn�1 are equivalent.

Regarding the K-minimal metric
On
�† [see (7.5.16) and (7.5.18)], we have the

following criterion for the
On
�†-convergence.
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Corollary 7.6.2. Given X.k/ D .X
.k/
1 ; : : : ; X

.k/
n / 2 X.U n/ such that

Edj .X
.k/
j ; a/ < 1, j D 1; : : : ; n, k D 0; 1; : : : , the convergence

On
�†.X

.k/; X.0// ! 0 as k ! 1 is equivalent to convergence in distributions,

X
.k/
j

w�! X
.0/
j , and the moment convergence Edj .X

.k/
j ; a/ ! Edj .X

.0/
j ; a/

8j D 1; : : : ; n.

Corollary 7.6.2 is a consequence of Theorems 7.5.2 and 6.4.1 [for �.x/ D
d.x; a/, c.x; y/ D d.x; y/].

To conclude, we turn our attention to the inequalities between minimal distances
bLH , the Kantorovich distance `H [see (3.3.10), (3.3.15), and (5.3.17)], and the
Prokhorov metric � [see (3.3.18)].

Corollary 7.6.3. (i) For any H 2 H, M > 0, a 2 U , and P1; P2 2 P.U /
such that

Z

H.d.x; a//.P1 C P2/.dx/ <1 (7.6.8)

the following inequality holds:

H.�.P1; P2//�.P1; P2/ � bLH.P1; P2/

� H.�.P1; P2//CKH

"

2�.P1; P2/H.M/

C
Z

d.x;a/>M

H.d.x; a//.P1 C P2/.dx/
#

:

(7.6.9)

If H 2 H is a convex function, then one can replacebLH with `H in (7.6.9).
(ii) Given a sequence P0; P1; � � � 2 P.U / with

R

H.d.x; a//Pj .dx/ < 1
(j D 0; 1; : : : ), the following assertions are equivalent as n!1:

(a) bL.Pn; P0/! 0,

(b) Pn converges weakly to P (Pn
w�! P ) and

Z

H.d.x; a//.Pn�P/.dx/!
0,

(c) Pn
w�! P and lim

N!1 lim sup
n

Z

H.d.x; a//I fd.x; a/ > N gPn.dx/ D 0.

This theorem is a particular case of more general theorems (see further Theorems
8.3.1 and 11.2.1).
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Chapter 8
Relations Between Minimal and Maximal
Distances

The goals of this chapter are to:

• Discuss dual representations of the maximal distances L�c and
.s/
�c and to compare

them with the corresponding dual representations of the minimal metric b� and

minimal norm
ı
�c ,

• Provide closed-form expressions for L�c and
.s/
�c in some special cases,

• Study the topological structure of minimal distances and minimal norms.

Notation introduced in this chapter:

Notation Description

F.F1; F2/ Set of bivariate distribution functions with
fixed marginals F1 and F2

F�.F1; F2/ Hoeffding–Fréchet lower bound in F.F1; F2/
FC.F1; F2/ Hoeffding–Fréchet upper bound in F.F1; F2/
D Metric between pth moments

8.1 Introduction

The metric structure of the functionals b�c ,
ı
�, L�c , and

.s/
� was discussed in Chap. 3

(see, in particular, Fig. 3.3). In Chap. 6, we found dual and explicit representations

for the minimal distance b�c and minimal norm
ı
�c choosing some special form of

the function c. Here we will deal mainly with the following two questions:

1. What are the dual representations and explicit forms of L�c , .s/�?
2. What are the necessary and sufficient conditions for lim

n!1b�c.Pn; P / D 0, resp.

lim
n!1

ı
�c.Pn; P / D 0?

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 8, © Springer Science+Business Media, LLC 2013
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We begin with duality theorems and explicit representations for L�c and
.s/
�c and

then proceed with a discussion of the topological structure of b�c and
ı
�c .

8.2 Duality Theorems and Explicit Representations

for L�c and
.s/
�c

Let us begin by considering the dual form for the maximal distance L�c and
.s/
�c , and let us compare them with the corresponding dual representations for the

minimal metric b� and minimal norm
ı
�c (Definitions 3.3.2, 3.3.4, 3.4.4, and 3.4.5).

Recall that

ı
�c.P1; P2/ � b�c.P1; P2/ � L�c.P1; P2/ � .s/

�c.P1; P2/: (8.2.1)

Subsequently, we will use the following notation:

L˛ D ff W U ! R
1I jf .x/ � f .y/j � ˛d.x; y/; x; y 2 U g;

Lip WD
[

˛>0

L˛;

Lipb WD ff 2 Lip W supfjf .x/j W x 2 U g < 1g;
c.x; y/ WD H.d.x; y//; x; y 2 U;H 2 H (Example 2.4.1);

PH WD
�

P 2 P.U / W
Z

c.x; a/P.dx/ < 1
�

;

G
H

WD f.f; g/ W f; g 2 Lipb; f .x/C g.y/ � c.x; y/; x; y 2 U g; (8.2.2)

GH WD f.f; g/ W f; g 2 Lipb; f .x/ � 0; g.y/ � 0; f .x/

Cg.y/ � c.x; y/; x; y 2 U g; (8.2.3)

h.x; y/ WD d.x; y/h0.d.x; a/ _ d.y; a// x; y 2 U; _ WD max; (8.2.4)

where a is a fixed point of U and h0 is a nonnegative, nondecreasing, continuous
function on Œ0;1/

Liph WD ff W U ! R
1 W jf .x/ � f .y/j � h.x; y/; x; y 2 U g

H� WD fconvexH 2 Hg
F WD ff 2 Lipb W f .x/C f .y/ � c.x; y/; x; y 2 U g (8.2.5)

and

T.P1; P2IF/ WD inf

�Z

f d.P1 C P2/ W f 2 F
�

: (8.2.6)
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Theorem 8.2.1. Let .U; d/ be an s.m.s.

(i) If H 2 H� and P1; P2 2 PH , then the minimal distance,

b�c.P1; P2/ WD inff�c.P / W P 2 P.U � U /; TiP D Pi ; i D 1; 2g; (8.2.7)

relative to the compound distance,

�c.P / D
Z

U�U
c.x; y/P.dx; dy/; (8.2.8)

admits the dual representation

b�c.P1; P2/ D sup

�Z

f dP1 C
Z

gdP2 W .f; g/ 2 GH
�

: (8.2.9)

If P1 and P2 are tight measures, then the infimum in (8.2.7) is attained.
(ii) If

R

h.x; a/.P1 C P2/.dx/ < 1, then the minimal norm

ı
�h.P1; P2/ WD inff�h.m/ W m-bounded nonnegative measures with fixed

T1m � T2m D P1 � P2g (8.2.10)

has a dual form

ı
�h.P1; P2/ D sup

�ˇ

ˇ

ˇ

ˇ

Z

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f 2 Liph

�

; (8.2.11)

and the supremum in (8.2.11) is attained.
(iii) If H 2 H� and P1; P2 2 PH , then the maximal distance

L�.P1; P2/ WD supf�c.P1; P2/ W P 2 P.U � U /; TiP D Pi ; i D 1; 2g
(8.2.12)

has the dual representation

L�c.P1; P2/ D inf

�Z

f dP1 C
Z

gdP2 W .f; g/ 2 GH
�

: (8.2.13)

If P1 and P2 are tight measures, then the supremum in (8.2.12) is attained.
(iv) If H 2 H� and P1; P2 2 PH , then

.s/
�c.P1; P2/ WD .s/

�c.P1 C P2/

WD supf�.P / W P 2 P.U � U /; T1P C T2P D P1 C P2g
(8.2.14)
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has the dual representation

.s/
�c.P1; P2/ D T.P1; P2IF/: (8.2.15)

If P1 and P2 are tight measures, then the supremum in (8.2.14) is attained.

Proof. (i) This is Corollary 5.3.2 in Chap. 5.
(ii) This is a special case of Theorems 5.4.2 and 5.4.3 with c.x; y/ D h.x; y)

given by (8.2.9).
(iii) The proof here is quite similar to that of Corollary 5.3.2 and Theorem 5.3.1

and is thus omitted.
(iv) For any probability measures P1 and P2 on U , any P 2 P.U � U / with fixed

sum of marginals,T1PCT2P D P1CP2, and any f 2 F [see (8.2.5)] we have

Z

f d.P1 C P2/ D
Z

f d.T1P C T2P /

D
Z

f .x/C f .y/P.dx; dy/ �
Z

c.x; y/P.dx; dy/;

hence
.s/
�c.P1 C P2/ � T.P1; P2IF/: (8.2.16)

Our next step is to prove the inequality

.s/
�c.P1 C P2/ � T.P1; P2;F/; (8.2.17)

and here we will use the main idea of the proof of Theorem 5.3.1. To prove (8.2.17),
we first treat the following case.

Case A. .U; d/ is a bounded s.m.s. For any subset U1 � U define

F.U1/ D ff W U ! R
1; f .x/C f .y/ � c.x; t/ for all x; y 2 U1g;

F.U1/ D F.U1/ \ Lip� .U1/;

where Lip� .U1/ WD ff W U ! R
1 W jf .x/ � f .y/j � �.x; y/ for all x; y 2 U1g

and �.x; y/ WD supfjc.x; z/ � c.y; z/j W z 2 U g, x; y 2 U . We need the following
equality: if P1.U1/ D P2.U1/ D 1, then

T.P1; P2IF.U1// D T.P1; P2IF.U //: (8.2.18)

Let f 2 F.U1/. We extend f to a function on the whole U letting f .x/ D 1
for x … U1, and hence

f .x/ � f �.x/ WD supfc.x; y/ � f .y/ W y 2 U g 8x 2 U: (8.2.19)
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Since for any x; y 2 U
f �.x/ � f �.y/ D sup

z2U
fc.x; z/ � f .z/g � sup

w2U
fc.y;w/ � f .w/g

� sup
z2U

fc.x; z/ � c.y; z/g � �.x; y/;

then f � 2 F.U /. Moreover, if P1.U1/ D P2.U1/ D 1, then by (8.2.19),

T.P1; P2IF.U1// � T.P1; P2IF.U // (8.2.20)

which yields (8.2.18).

Case A1. Let .U; d/ be a finite set, say, U D fu1; : : : ; ung. By (8.2.18) and the
duality theorem in the linear programming, we obtain

.s/
�c.P1 C P2/ D T.P1; P2IF.U // D T.P1; P2IF.U //; (8.2.21)

as desired.
The remaining cases A2 [.U; d/ is a compact space], A3 [.U; d/ is a bounded

s.m.s.], and B [.U; d/ is an s.m.s.] are treated in a way quite similar to that in
Theorem 5.3.1. ut

In the special case c D d , one can get more refined duality representations

for
.s/
�c . This is the following corollary.

Corollary 8.2.1. If .U; d/ is an s.m.s. and P1; P2 2 P.U /,
R

d.x; a/.P1 C
P2/.dx/ < 1, then

.s/
�d .P1; P2/ D inf

�Z

f d.P1 C P2/ W f 2L1; f .x/C f .y/ � d.x; y/ 8x; y 2 U
�

:

(8.2.22)

Here the proof is identical to the proof of (iv) in Theorem 8.2.1 with some
simplifications due to the fact that c D d .

Open Problem 8.2.1. Let us compare the dual forms of b�d ,
ı
�d , L�d , and

.s/
�d .

The Kantorovich metric b�d in the space P1 of all measures P with finite moment
R

d.x; a/P.dx/ < 1 has two dual representations:

b�d.P1; P2/ D sup

(

Z

f dP1 C
Z

gdP2 W f; g 2 L; f .x/C g.y/ � d.x; y/;

x; y 2 U
)

D sup

�Z

f d.P1 � P2/ W f 2 L1
�

D ı
�d .P1; P2/ (8.2.23)
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[see Sect. 6.2, (5.4.15), and (8.2.9)]. On the other hand, by (8.2.13) and (8.2.16), a
dual form of L�d is

L�.P1; P2/ D inf

(

Z

f dP1 C
Z

gdP2 W f; g 2 L1; f .x/C g.y/ � d.x; y/

8x; y 2 U
)

; (8.2.24)

which corresponds to the first expression for b�d in (8.2.23), so an open problem is
to check whether the equality

L�d .P1; P2/ D .s/
�d .P1; P2/ (8.2.25)

holds [here,
.s/
�d is given by (8.2.22)]. In the special case .U; d/ D .R; j � j/, equality

(8.2.25) is true (see further Remark 8.2.1).

Next we will concern ourselves with the explicit representations for b�c ,
ı
�c , L�d ,

and
.s/
�c in the case U D R, d.x; y/ D jx � yj.

Suppose � W R
2 ! R is a quasiantitone upper-semicontinuous function

(Sect. 7.4). Thenb�� , L�� , and
.s/
�� have the following representations.

Lemma 8.2.1. Given P1 and P2 2 P.R/ with finite moments
R

�.x; a/dPi.x/ < 1, i D 1; 2, we have:

(i) (Cambanis–Simons–Stout)

b��.P1; P2/ D
Z 1

0

�.F�1
1 .t/; F �1

2 .t//dt; (8.2.26)

where Fi is the DF of Pi and

L��.P1; P2/ D
Z 1

0

�.F�1
1 .t/; F �1

2 .1 � t//dt: (8.2.27)

(ii) Assuming that �.x; y/ is symmetric,

.s/
�.P1 C P2/ D

Z 1

0

�.A.t/; A.1 � t//dt; (8.2.28)

where A.t/ D 1
2
.F1.t/C F2.t//.

Proof. (i) Equality (8.2.26) follows from Theorem 7.4.2 (with N D 2). Analo-
gously, one can prove (8.2.27). That is, let F.F1; F2/ be the set of all DFs
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F on R
2 with marginals F1 and F2. By the well-known Hoeffding–Fréchet

inequality, F.F1; F2/ has a lower bound

F�.x1; x2/ WD max.0; F1.x1/C F2.x2/� 1/; F� 2 F.F1; F2/; (8.2.29)

and an upper bound

FC.x1; x2/ D min.F1.x1/; F2.x2//; FC 2 F.F1; F2/: (8.2.30)

Consider the space X.R/ of all random variables (RVs) on a nonatomic
probability space (Remark 2.7.2). Then

b��.P1; P2/ D inffE�.X1;X2/ W Xi 2 X.R/; FXi D Fi ; i D 1; 2g; (8.2.31)

L��.P1; P2/ D supfE�.X1;X2/ W Xi 2 X.R/; FXi D Fi ; i D 1; 2g: (8.2.32)

If E is a (0,1)-uniformly distributed RV, then F�.x1; x2/ D P.X�
1 �

x1;X
�
2 � x2/, where X�

1 WD F �1
1 .E/, X�

2 WD F�1
2 .1 � E/ and F �1

i .u/ WD
infft W Fi .t/ � ug is the generalized inverse function to Fi . Similarly,
FC.x1; x2/ D P.XC

1 � x1;X
C
2 � x2/, where XC

i D F �1
i .E/, i D 1; 2.

Thus

L��.P1; P2/ � E�.X�
1 ; X

�
2 / D

Z 1

0

�.F�1
1 .t/; F �1

2 .1 � t//dt (8.2.33)

and

b��.P1; P2/ � E�.XC
1 ; X

C
2 / D

Z 1

0

�.F�1
1 .t/; F�1

2 .t//dt: (8.2.34)

In Theorem 7.4.2 of Chap. 7 (in the special case N D 2), we showed that
(8.2.34) is true with an equality sign. Using the same method, one can check
that L��.P1; P2/ D E�.X�

1 ; X
�
2 /.

1

(ii) From the definition of
.s/
�.P1; P2/ [see (8.2.14)] it follows that

.s/
��.P1 C P2/ D .s/

��.F1 C F2/

WD supfE�.X1;X2/ W X1;X2 2 X.R/;

FX1 C FX2 D F1 C F2 DW 2Ag;

or, in other words,

1See Kalashnikov and Rachev (1988, Theorem 7.1.1).
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.s/
��.F1 C F2/ D sup

�Z

R2

�.x; y/dF.x; y/ W F 2 F.F1; F2/;
1

2
.F1 C F2/ D A

�

:

For any F 2 F.F1; F2/ denote eF .x; y/ D 1
2
ŒF .x; y/C F.y; x/�. Then, by the

symmetry of �.x; y/,

.s/
��.F1; F2/ D sup

�Z

R2

�.x; y/deF .x; y/ W eF 2 F.A;A/
�

D L��.A;A/ D
Z 1

0

�.A�1.t/; A�1.1 � t//dt: ut

Remark 8.2.1. It is easy to see that for any symmetric cost function c

.s/
��.P1 C P2/ D L�c.1

2
.P1 C P2/;

1

2
.P1 C P2//; Pi 2 P.U /: (8.2.35)

On the other hand, in the case U D R, c.x; y/ D jx � yj, by Lemma 8.2.1,

L�c.P1; P2/ D
Z 1

0

jF �1
1 .t/ � F �1

2 .1 � t/jdt

D
Z 1

�1
jx � ajd.F1.x/C F2.x//; (8.2.36)

where a is the point of intersection of the graphs of F1 and 1�F2, i.e., F1.a� 0/ �
1 � F2.a � 0/ but F1.aC 0/ � 1 � F2.a C 0/. Hence, by (8.2.1) and (8.2.37),

.s/
�c.P1; P2/ � b�c.P1; P2/

D supfEjX1�aj C EjX2�aj W X1;X2 2 X.R/; FX1CFX2 D F1CF2g

� .s/
�c.P1; P2/;

i.e.,
.s/
�c D b�c .

By virtue of Lemma 8.2.1 [with �.x; y/ D c.x; y/ WD H.jx�yj/,H convex on

Œ0;1/], we obtain the following explicit expressions forb�c , L�c , .s/�c , and
ı
�h.

Theorem 8.2.2. (i) Suppose P1; P2 2 P.R/ have finite H -absolute moments,
R

H.jxj/.P1 C P2/.dx/ < 1, where H 2 H�. Then

b�c.P1; P2/ D
Z 1

0

c.F �1
1 .t/; F �1

2 .t//dt; (8.2.37)

L�.P1; P2/ D
Z 1

0

c.F �1
1 .t/; F �1

2 .1 � t//dt; (8.2.38)
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and

.s/
�c.P1; P2/ D

Z 1

0

c.A�1.t/; A�1.1 � t//dt; (8.2.39)

where Fi is the DF of Pi , F �1
i is the inverse of Fi , and A D 1

2
.F1 C F2/.

(ii) Suppose h W R2 ! R is given by (8.2.3), where d.x; y/ D jx�yj and h.t/ > 0
for t > 0. Then

ı
�h.P1; P2/ D

Z 1

�1
h.jx � aj/jF1.x/ � F2.x/jdx: (8.2.40)

8.3 Convergence of Measures with Respect to Minimal
Distances and Minimal Norms

In this section, we investigate the topological structure of minimal distances (b�c)

and minimal norms
ı
�h defined as in Sect. 8.2 in Chap. 8.

First, note that the definition of a simple distance � (say, � D b�c or � D ı
�h)

does not exclude infinite values of �. Hence, the space P1 D P.U / of all laws P on
an s.m.s. .U; d/ is divided into the classes D.�; P0/ WD fP 2 P1 W �.P; P0/ < 1g,
P0 2 P1 with respect to the equivalence relation P1 � P2 ” �.P1; P2/ < 1.
In Sects. 6.3, 6.4, and 7.6, the topological structure of the Kantorovich distance
bLH D b�c , where c.x; y/ D H.d.x; y//, H 2 H [Example 3.3.2 and (5.3.17)],
was analyzed only in the set D.b�c; ı˛/, ˛ 2 U , where ı˛.f˛g/ D 1. Here we will
consider the b�c convergence in the following sets: D.b�c; P0/, eDc.P0/ WD fP 2
P1 W �c.P � P0/ WD R

U�U c.x; y/P.dx/P0.dy/ < 1g and D. L�c; P0/ WD fP 2
P1 W L�c.P; P0/ � 1g, whereb� is the maximal distance relative to �c [see (8.2.12)]
and P0 is an arbitrary law in P1. Obviously, D. L�c; P0/ � eDc.P0/ � D.b�c; P0/ for
any P0 2 P1 and D. L�c; ı˛/ 	 eDc.ı˛/ 	 D.b�c I ı˛/, ˛ 2 U .

Let HN.t/ D H.t/I ft > N g for H 2 H, t � 0, N > 0, and define
cN .x; y/ WD HN.d.x; y//. �cN , b�cN , L�cN by (8.2.8), (8.2.7), and (8.2.12),
respectively. Therefore,

D.b�c; P0/ D
�

P 2 P1 W lim
N!1b�cN .P; P0/ D 0

�

; (8.3.1)

eDc.P0/ D
�

P 2 P1 W lim
N!1b�cN .P � P0/ D 0

�

; (8.3.2)

D. L�c; P0/ 
 eD. L�c; P0/ WD
�

P 2 P1 W lim
N!1 L�cN .P; P0/ D 0

�

: (8.3.3)

As usual, we denote the weak convergence of laws fPng1
nD1 to the law P by

Pn
w�! P .
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Theorem 8.3.1. Let .U; d/ be a u.m.s.m.s. (Sect. 2.6), H 2 H [H.t/ > 0 for
t > 0], and P0 be a law in P1.

(i) If fP1; P2; : : : g � D.b�c; P0/ andQ 2 eD. L�c; P0/, then

lim
N!1b�c.Pn;Q/ D 0 (8.3.4)

if and only if the following two conditions are satisfied:

(1*) Pn
w�! Q;

(2*) lim
N!1 sup

n

b�cN .Pn; P0/ D 0.

(ii) If fQ;P1; P2; : : : g � eDc.P0/, then (8.3.4) holds if and only if the conditions
(1*) and

(3*) lim
N!1 sup

n

�c.Pn � P0/ D 0

are fulfilled.
(iii) If fP1; P2; : : : g � eD. L�c; P0/ and Q 2 D.b�c; P0/, then (8.3.4) holds if and

only if the conditions (1*) and

(4*) lim
N!1 sup

n

L�c.Pn; P0/ D 0

are fulfilled.

Theorem 8.3.1 is an immediate corollary of the following lemma. Further, we
use the same notation as in (8.2.1)–(8.2.2).

Lemma 8.3.1. Let U be a u.m.s.m.s., � the Prokhorov metric in P , and H 2 H.
For any P0; P1; P2 2 P1 and N > 0 the following inequalities are satisfied:

L�c.P1; P2/ � H.�.P1; P2//

CKH f2�.P1; P2/H.N/C b�cN .P1; P0/C L�cN .P2; P0/g;
(8.3.5)

b�c.P1; P2/ � H.�.P1; P2//

CKH f2�.P1; P2/H.N/C �cN .P1 � P0/C �cN .P2 � P0/g;
(8.3.6)

�.P1; P2/H.�.P1; P2// � b�.P1; P2/; (8.3.7)

b�cN .P1; P0/ � K.b�c.P1; P2/Cb�cN=2.P2; P0//; (8.3.8)

�cN .P1 � P0/ � K.b�c.P1; P2/C �cN=2.P2 � P0//; (8.3.9)

L�cN .P1; P0/ � K.b�c.P1; P2/C L�cN=2.P2; P0//; (8.3.10)

where KH is given by (2.4.3) andK D KH CK2
H .
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Remark 8.3.1. Relationships (8.3.5)–(8.3.10) give us necessary and sufficient
conditions for b�c-convergence as well as quantitative representations of these
conditions. Clearly, such treatment of the b�c-convergence is preferable because it
gives not only a qualitative answer when b�c.Pn;Q/ ! 0 but also establishes a
quantitative estimate of the convergenceb�c.Pn;Q/ ! 0.

Proof of Lemma 8.3.1. To get (8.3.5), we require the following relation between
the H -average compound �c D LH and the Ky Fan metric K (Examples 3.4.1 and
3.4.2):

LH.P / � H.K.P //

CKH f2K.P /H.N/C LHN .P 0/C LHN .P 00/g LHN WD �cN

(8.3.11)

for N > 0 and any triplet of laws .P; P 0; P 00/ 2 P2 such that there exists a law
Q 2 P3 with marginals

T12Q D P T13Q D P 0 T23Q D P 00: (8.3.12)

If K.P / > ı, then, by (2.4.3),

Z

H.d.x; y//P.dx; dy/

� KH

Z

ŒH.d.x; x0//CH.d.y; x0//�I fd.x; y/ > ıgQ.dx; dy; dx0/CH.ı/

� H.ı/CKH f2H.N/ıC LHN .P 0/C LHN .P 00/g:

Letting ı ! K.P / completes the proof of (8.3.11).
For any " > 0 we choose P 2 P2 with marginals P1; P2, and P 0 2 P2 with

marginals P1 and P0 such that

bK.P1; P2/ > K.P / � "; bLHN .P1; P0/ > LHN .P 0/� ": (8.3.13)

ChoosingQ with property (8.3.12) [see (3.3.5)] we obtain

bLH.P1; P2/ � L.P /

� H.bK.P1; P2/C "/C KH f2.bK.P1; P2/C "/H.N/

CbLHN .P1; P0/C "C LHN .T23Q/g
by (8.3.11) and (8.3.13). The last inequality, together with the Strassen theorem (see
Corollary 7.5.2), proves (8.3.5).

If P1 � P0 and P2 � P0 stand for P 0 and P 00, respectively, then (8.3.11) implies
(8.3.6). To prove that (8.3.7)–(8.3.10) hold, we use the following two inequalities:
for any P 2 P2 with marginals P1 and P2

K.P /H.K.P // � LH .P / (8.3.14)
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and

LHN .P 0/ � KŒLH.P /C LHN=2.P 00/�; (8.3.15)

where .P; P 0; P 00/ are subject to conditions (8.3.12) and N > 0. Using the same
arguments as in the proof of (8.3.5), we get (8.3.7)–(8.3.10) by means of (8.3.14)
and (8.3.15). ut

Given a u.m.s.m.s. .U; d/ and an s.m.s. .V; g/, let � W U ! V be a measurable
function. For any probability distance � on P.V 2/ define the probability distance
�� on P.U 2/ by (7.2.12). Theorem 7.2.4 states that (Remark 7.2.2)

b��.P1; P2/ D b�.P1;� ; P2;�/; (8.3.16)

or, in terms of U -valued RVs,

b��.X1;X2/ D b�.�.X1/; �.X2//; X1;X2 2 X.U /: (8.3.17)

Next we will generalize Theorem 8.3.1, considering criteria for b�c;� -
convergence. We start with the special but important case of �c D Lpp (p � 1).
Define the Lp-metric in P.V 2/

Lp.Q/ WD
�Z

V�V
gp.x; y/.dx; dy/

�1=p

; p � 1 Q 2 P.V 2/:

Then, by (7.2.12), Lp;� is a probability metric in P.U 2/ andbLp;� is the correspond-
ing minimal metric. In the next corollary, we apply Theorems 7.2.4 and 8.2.1 to get
a criterion forbLp;� -convergence.

Let Q;P1; P2; : : : be probability measures on P.U /. Denote �n;� D
�.Pn;� ;Q�/, � being the Prokhorov metric in P.V /

Dn;� WD D.Pn;� ;Q�/ WD
ˇ

ˇ

ˇ

ˇ

ˇ

�Z

V

gp.x; a/Pn;�.dx/

�1=p

�
�Z

V

gp.x; a/Q�.dx/

�1=p
ˇ

ˇ

ˇ

ˇ

ˇ

.a is a fixed point in V /;

A.Q�/ D
�

p

Z

V

.g.x; a/C 1/p�1Q�.dx/

�1=p

;

M.Q�;N / WD
�Z

V

gp.x; a/I fg.x; a/ > N gQ�.dx/

�1=p

;

M.Q�/ WD
�Z

V

gp.x; a/Q�.dx/

�1=p

:

Corollary 8.3.1. For all n D 1; 2; : : : let

M.Pn;�/CM.Q�/ < 1: (8.3.18)
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Then bLp;�.Pn;Q/ ! 0 as n ! 1 if and only if Pn;� weakly tends to Q� and
Dn;� ! 0 as n ! 1. Moreover, the quantitative estimates

bLp;�.Pn;Q/ � max.Dn;� ; .�n;�/
1C1=p/; (8.3.19)

bLp;�.Pn;Q/ � .1C 2N/�n;� C 5M.Q�;N /

C.�n;�/1=p.3A.Q�/C 22C1=pN /CDn;� (8.3.20)

are valid for each positive N .

Proof. The first part of Corollary 8.3.1 follows immediately from (8.3.19), (8.3.20)
[for the “if” part set, for instance,N D .�n;�/

�1=2p]. Relations (8.3.19) and (8.3.20)
establish additionally a quantitative estimate of the convergence of bLp;�.Pn;Q/ to
zero. To prove the latter relations, we use (8.3.16) and the following inequalities:

bLp.Q1;Q2/ � max.�.Q1;Q2/
1C1=p;D.Q1;Q2//; (8.3.21)

bLp.Q1;Q2/ � .1C 2N/�.Q1;Q2/CM.Q1;N /CM.Q2;N /; (8.3.22)

and

M.Q1; 2N / � D.Q1;Q2/C 4M.Q2;N /

C�.Q1;Q2/
1=p.3A.Q2/C 22C1=pN / (8.3.23)

for each positive N and Q1, Q2 2 P.V /, where D is the primary metric given by

D.Q1;Q2/ D
ˇ

ˇ

ˇ

ˇ

ˇ

�Z

V

gp.x; a/Q1.dx/

�1=p

�
�Z

V

gp.x; a/Q2.dx/

�1=p
ˇ

ˇ

ˇ

ˇ

ˇ

: (8.3.24)

Claim 1. Equation (8.3.21) holds.
For any V -valued RVs X1 and X2 with distributionsQ1 and Q2, respectively,

Lp.X1;X2/ D ŒEgp.X1;X2/�
1=p > D.Q1;Q2/

by the Minkowski inequality. Thus bLp.Q1;Q2/ � D.Q1;Q2/. Using (8.3.7) with
H.t/ D tp , we have also thatbLp � �1C1=p.

Claim 2. Equation (8.3.22) holds.
We start with Chebyshev’s inequality: for any Xi with lawsQi

Lp.X1;X2/ � .1C 2N/K.X1;X2/CM.Q1;N /CM.Q2;N /;

where K is the Ky Fan metric in X.V / andM.Qi/ D �R

V
gp.x; a/Qi .dx/

�1=p
. The

proof is analogous to that of (8.3.11). By virtue of the Strassen theorem, it follows
that bK D � , and the preceding inequality yields (8.3.22).
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Claim 3. Equation (8.3.23) holds.
Observe that

M.Q1; 2N / WD
�Z

V

gp.x; a/I fg.x; a/ > 2N gQ.dx/
�1=p

� D.Q1;Q2/C
ˇ

ˇ

ˇ

ˇ

Z

V

gp.x; a/I fg.x; a/ � 2N g.Q1 �Q2/.dx/

ˇ

ˇ

ˇ

ˇ

1=p

CM.Q2; 2N /:

Denote f .x/ WD minfgp.x; a/; .2N /pg, h.x/ WD minf2pgp.x;O.a;N //; .2N /pg,
whereO.a;N / WD fx 2 V W g.x; a/ � N g. Then

I WD
ˇ

ˇ

ˇ

ˇ

Z

V

gp.x; a/I fg.x; a/ � 2N g.Q1 �Q2/.dx/

ˇ

ˇ

ˇ

ˇ

1=p

�
ˇ

ˇ

ˇ

ˇ

Z

V

f .x/.Q1 �Q2/.dx/

ˇ

ˇ

ˇ

ˇ

1=p

C 2N

ˇ

ˇ

ˇ

ˇ

Z

V

I fg.x; a/ > 2N g.Q1 �Q2/.dx/

ˇ

ˇ

ˇ

ˇ

1=p

DW I1 C I2:

Using the inequality

jf .x/ � f .y/j � jgp.x; a/ � gp.y; a/j
� pmax.gp�1.x; a/; gp�1.y; a//jg.x; a/ � g.y; a/j
� pmax.gp�1.x; a/; gp�1.y; a//g.x; y/ x; y 2 V

we get for any pair .X1;X2/ of V -valued RVs with marginal distributions Q1

andQ2

I
p
1 WD jE.f .X1/� f .X2//j

� Ejf .X1/ � f .X2/jI fg.X1;X2/ � �g
CEŒjf .X1/j C jf .X2/j�I fg.X1;X2/ � �g

� �pE.g.X2; a/C �/p�1 C 2.2N /p Pr.g.X1;X2/ � �g for any � 2 Œ0; 1�:
LetK D K.X1;X2/ be the Ky Fan metric in X.V /. Then from the preceding bound

I1 � K1=pŒA.Q2/
p C 2.2N /p�1=p � K1=pŒA.Q2/C 21C1=pN �:

Now let us estimate the second term in the upper bound for I :

I2 WD
ˇ

ˇ

ˇ

ˇ

Z

V

.2N /pI fg.x; a/ > 2N g.Q1 �Q2/.dx/

ˇ

ˇ

ˇ

ˇ

1=p

�
�Z

V

.2N /pI fg.x; a/ > 2N gQ1.dx/

�1=p

CM.Q2; 2N /:
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If g.x; c/ > 2N , then g.x;O.c;N // � N , and therefore

�Z

V

.2N /pI fg.x; a/ > 2N gQ1.dx/

	1=p

� ŒEh.X1/�
1=p

� jEh.X1/�Eh.X2/j1=p
CŒEh.X2/�1=p DW I 0

1 C I 0
2:

The inequality

jh.x/ � h.y/j � 2pjgp.x;O.a;N // � gp.y;O.a;N //j
� 2ppmaxŒgp�1.x;O.a;N //; gp�1.y;O.a;N //�g.x; y/

implies

I 0
1 � ŒEjh.X1/� h.X2/jI fg.X1;X2/ � �g�1=p

C ŒE.h.X1/C h.X2//I fg.X1;X2/ > �g�1=p
� 2f�EpŒg.X2;O.a;N //C 1�p�1g1=p

C 2.2N /p Pr.g.X1;X2/ > �/1=p forK < �:

On the other hand, by the definition of h,

I 0
2 WD ŒEh.X2/�

1=p � ŒE.2N /pI fg.X2; a/ > N g�1=p � 2M.Q2;N /:

Combining the foregoing estimates we get

I2 � 3M.Q2;N /C 2K1=pA.Q2/C 21C1=pNM1=p:

Making use of the estimates for I1 and I2 and the Strassen theorem we get

I � I1 C I2 � 3M.Q2;N /C �.Q1;Q2/
1=p.3A.Q2/C 22C1=pN /:

This completes the proof of (8.3.23). ut
We can extend Corollary 8.3.1 considering the H -average compound distance

�c.Q/ WD LH .Q/ D
Z

V 2
c.x; y/Q.dx; dy/ Q 2 P.V 2/; (8.3.25)

where c.x; y/ D H.g.x; y// and H.t/ is a nondecreasing continuous function on
Œ0;1/ vanishing at zero (and only there) and satisfying the Orlicz condition

KH WD supfH.2t/=H.t/I t > 0g < 1 (8.3.26)

[see (3.4.1) and Example 2.4.1].
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Corollary 8.3.2. Assume that
R

V c.x; a/.Pn;� C Q�/.dx/ < 1. Then the
convergenceb�c;�.Pn;Q/ ! 0 as n ! 1 is equivalent to the following relations:
Pn;� tends weakly to Q� as n ! 1, and for some a 2 U

lim
N!1 lim

n

Z

V

c.x; a/I fg.x; a/ > N gPn;�.dx/ D 0:

Proof. See Theorems 8.3.1 and 7.2.4. ut
Note that the Orlicz condition (8.3.26) implies a power growth of the functionH .

To extend the b�c;�-convergence criterion in Corollary 8.3.2, we consider the
functions H in (8.3.25) with exponential growth. Let RB represent the class of
all bounded from above real-valued RVs. Then

	 2 RB ” (8.3.27)

�.	/ WD inffa > 0 W E exp
	 � exp
a 8
 > 0g D sup

>0

1



lnE exp.
	/ < 1:

In fact, clearly, if 	 2 RB , then �.	/ < 1. On the other hand, if F	.x/ < 1

for x 2 R, then for any a > 0, E expŒ
.	 � a/� � exp.
a/ Pr.	 > 2a/ ! 1 as

 ! 1. By the Holder inequality one gets

�.	 C �/ � �.	/C �.�/; (8.3.28)

and hence, if Q 2 P.V 2/ and .Y1; Y2/ is a pair of V -valued RVs with joint
distributionQ, then

�.Q/ WD �.g.Y1; Y2// (8.3.29)

determines a compound metric on P.V 2/.2 The next theorem gives us a criterion
forb��-convergence, whereb�� is defined by (8.3.16) and (8.3.17).

Theorem 8.3.2. Let Xn, n D 1; 2; : : : , and Y be U -valued RVs with distributions
Pn and Q, respectively, and let �.g.�.Xn/; a// C �.g.�.Y /; a// < 1. Then the
convergenceb��.Pn;Q/ ! 0 as n ! 1 is equivalent to the following relations:

(a) Pn;� tends weakly to Q� ,
(b) limN!1 limn �.g.�.Xn/; a/I fg.�.Xn/; a/ > N g/ D 0.

Proof. As in Corollary 8.3.1, the assertion of the theorem is a consequence
of (8.3.16) and the following three claims. Let V -valued RVs Y1 and Y2 have
distributionsQ1 andQ2, respectively.

Claim 1.
�2.Q1;Q2/ �b�.Q1;Q2/: (8.3.30)

2See Sect. 2.5 of Chap. 2.
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By the Strassen theorem bK D � (see Corollary 7.5.2 in Chap. 7), it is enough to
prove that �.g.Y1; Y2// � K2.Y1; Y2/. Let 	 D g.Y1; Y2/ and �.	/ < "2 � 1. Then

Pr.	 > "/ � Ee	 � 1
e" � 1 � e�.	/ � 1

e" � 1 � e"
2 � 1

e" � 1
� ":

Letting "2 ! �.	/ we obtain (8.3.30).

Claim 2.

�.g.Y1; a/I fg.Y1; a/ > N g/ � 2b�.Q1;Q2/C 2�.g.Y2; c/I fg.Y2; a/ > N=2g/:
(8.3.31)

Note that the inequality 	 � � with probability 1 implies �.	/ � �.�/. Hence

�.g.Y1; a/I fg.Y1; a/ > N g/
� �Œ.g.Y1; Y2/C g.Y2; a//I fg.Y2; a/C g.Y1; Y2/ > N g�
� �Œ.g.Y1; Y2/C g.Y2; a//max.I fg.Y2; a/ > N=2g; I fg.Y1; Y2/ > N=2g/�
� �.g.Y1; Y2/I fg.Y1; Y2/ > N=2g/C �.g.Y1; Y2/I fg.Y1; Y2/ � N=2g

� I fg.Y2; a/ > N=2g/C �.g.Y2; a/fg.Y2; a/ > N=2g/C �.g.Y2; a/

� I fg.Y2; a/ > N=2gI fg.Y1; Y2/ > N=2g/
� 2�.g.Y1; Y2/I fg.Y1; Y2/ > N=2g/C 2�.g.Y2; a/I fg.Y2; a/ � N=2g/
� 2�.g.Y1; Y2//C 2�.g.Y2; a/I fg.Y2; a/ > N=2g/:

Passing to the minimal metricb� we get (8.3.31).

Claim 3.

b�.Q1;Q2/� �.Q1;Q2/.1C 2N/C �.g.Y1; a/I fg.Y1; a/ > N g/
C�.g.Y2; a/I fg.Y2; a/ > N g/; 8N > 0; a 2 V: (8.3.32)

For each ı the following relation holds: �.g.Y1; Y2// � �.g.Y1; Y2/I fg.Y1; Y2/
� ıg/C �.g.Y1; Y2/I fg.Y1; Y2/ > ıg/ DW I1 C I2. For I1 we obtain the estimate

I1 D sup

>0

1=
 lnE exp.
g.Y1; Y2/I fg.Y1; Y2/ � ıg/ � sup

>0

1=
E exp
ı D ı:

For I2 we have

I2 � �.g.Y1; a/C g.Y2; a//I fg.Y1; Y2/ > ıg/
� �.g.Y1; a/I fg.Y1; Y2/ � ıg/

C�.g.Y2; a/I fg.Y1; Y2/ � ıg/ DW A1 C A2:
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Furthermore,

A1 � �.g.Y1; a/I fg.Y1; Y2/ > ıgI fg.Y1; a/ � N g/
C�.g.Y1; a/I fg.Y1; Y2/ > ıgI fg.Y1; a/ > N g/

� �.NI fg.Y1; Y2/ > ıg/C �.g.Y1; a/I fg.Y1; a/ � N g/:

Hence, if K.Y1; Y2/ < ı, then

�.g.Y1; Y2// � .1C 2N/ı C �.g.Y1; c/I fg.Y1; c/ > N g/
C�.g.Y2; a/I fg.Y2; a/ > N g/:

Letting ı ! K.Y1; Y2/ and passing to the minimal metrics, we obtain (8.3.32). ut
In the rest of this section, we look at the topological structure of the minimal

norms
ı
�h.P1; P2/, P1; P2 2 P1 [see (8.2.10)], where the function h.x; y/ D

d.x; y/ ho.d.x; a/ _ d.y; a//, x; y 2 U , is defined as in (8.2.3).

Theorem 8.3.3. Let .U; d/ be an s.m.s.

(a) If g WD d=.1C d/ and an WD supt>0 h0.2t/=h0.t/ < 1, then

ı
�h.P1; P2/ � .1CN/

ı
�g.P1; P2/

C.2ahC4/
Z

h.x; a/I fd.x; a/>N g.P1CP2/.dx/ for N � 1:

(b) If bh D sup0<s<1Œ.1C t � s/=h0.t/��1 < 1, then
ı
�g.P1; P2/ � ı

�h.P1; P2/.
(c) If

ch WD sup
0<s<1

Œth0.t/ � sh0.s/�=Œ.t � s/=h0.t/� < 1;

then
ˇ

ˇ

ˇ

ˇ

Z

h.x; a/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

� ch
ı
�h.P1; P2/:

(d) If ah C bh C ch < 1 and
R

h.x; a/.Pn C P/.dx/ < 1, n D 1; 2; : : : , then

lim
n!1

ı
�h.Pn; P / D 0

if and only if Pn
w�! P and

lim
n!1

ˇ

ˇ

ˇ

ˇ

Z

h.x; a/.Pn � P/.dx/
ˇ

ˇ

ˇ

ˇ

D 0:



Reference 217

The proof of the theorem is similar to that of Theorem 6.4.1 in Chap. 6 and
can therefore be omitted. Note that, in contrast to Theorems 6.3.2 and 6.3.3, the
preceding bounds are based only on the relationships between minimal norms.

Open Problem 8.3.1. A question of great interest concerning the topological
structure of minimal distances is the necessary and sufficient conditions for the
convergence b�c.Pn; P / ! 0, where fP;Pn; n D 1; 2; : : : g � D.b�c; P0/ and
P0 is an arbitrary law of P1. Note that in the case .U; d/ D .R1; j � j/, if
fP;Pn; n D 1; 2; : : : g � D.b�d ; P0/, then b�d.Pn; P / D R1

�1 jFn.x/ � F.x/jdx D
bL1.Pn; P / ! 0 if and only if Pn

w�! P and

lim
N!1 sup

n

Z

jxj>N
jFn.x/ � F0.x/jdx D 0;

where Fn is a DF of Pn, n D 0; 1; : : : , and F is the DF of P .

Reference

Kalashnikov VV, Rachev ST (1988) Mathematical methods for construction of stochastic queueing
models. Nauka, Moscow (in Russian). [English transl. (1990) Wadsworth, Brooks–Cole, Pacific
Grove, CA]



Chapter 9
Moment Problems Related to the Theory
of Probability Metrics: Relations Between
Compound and Primary Distances

The goals of this chapter are to:

• Explore the general relations between compound and primary probability
distances that are similar to the relations between compound and simple
probability distances,

• Study the primary minimal metrics arising from minimal functionals with one
pair of marginal moments fixed,

• Extend the setting to minimal functionals with two pairs of marginals and with
linear combinations of moments fixed.

9.1 Introduction

In Chaps. 5–8, we investigated the relationships between compound and simple
distances. The main method we used was based on the dual and explicit solutions of
the following problem:

Marginal problem. For fixed probability measures (laws) P1 and P2 on an s.m.s.
.U; d/ and a continuous function c on the product space U 2 D U � U

minimize (maximize)
Z

U2
c.x; y/P.dx; dy/;

where the laws P on U 2 have marginals P1 and P2, i.e., TiP D Pi , i D 1; 2.

Similarly, in this chapter we will study the connection between compound and
primary distances (see Sect. 3.2 of Chap. 3) solving the following problem:

Moment problem. For fixed real numbers aij and real-valued continuous
functions fij (i D 1; 2, j D 1; : : : ; n)

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 9, © Springer Science+Business Media, LLC 2013
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minimize (maximize)
Z

U2
c.x; y/P.dx; dy/;

where the law P on U 2 satisfies the marginal moment conditions

Z

U

fij dPi D aij ; i D 1; 2; j D 1; : : : ; n:

We begin with moment problems in which one pair of marginal moments is fixed;
then, we extend the setting to moment problems with two pairs of marginal moments
fixed and with linear combinations of marginal moments fixed.

9.2 Primary Minimal Distances: Moment Problems
with One Fixed Pair of Marginal Moments

Let U be a separable norm space with norm k � k, X D X.U / the space of all U -
valued random variables (RVs), � a compound metric in X.U /, and M the class
of all strictly increasing continuous functions f W Œ0;1� ! Œ0;1�, f .0/ D 0,
f .1/ D1. Following the definition of primary distances (see Sect. 3.2 of Chap. 3)
let us define the spaces h.X/ D fEh.kXk/ W X 2 Xg [see (3.2.3)] for a fixed h 2M
and a primary minimal distancee�h (in h.X/)

e�.a; b/ WD inff�.X; Y / W X; Y 2 X; Eh.kXk/ D a;Eh.kY k/ D bg: (9.2.1)

Given the H -average compound distance

�.X; Y D LH.X; Y / D EH.kX � Y k/ H 2M \H (9.2.2)

(see Example 3.4.1) we will treat the explicit representations of the following
extremal functional:

I.H; h; a; b/ WD e�h.a; b/: (9.2.3)

Moreover, for �.X; Y /WDLH.X; Y / we will consider the upper bound

S.H; hI a; b/ WD supf�.X; Y / W X; Y 2 X; Eh.kXk/ D aEh.kY k/ D bg (9.2.4)

whose explicit form will lead to the expression for the moment functions discussed
in Sect. 3.4 (Definition 3.4.6). Denote for all p � 0, q � 0 the values

I.p; qI a; b/ WD I.H; hI a; b/.H.t/ D tp; h.t/ D tq/; (9.2.5)

S.p; qI a; b/ WD S.H; hI a; b/.H.t/ D tp; h.t/ D tq/; (9.2.6)
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where here and in the sequel 00 means 0, and thus EkX � Y k0 means Pr.X ¤ Y /.
Clearly, I.p; qI a; b/min.1;1=p/ represents the primary h-minimal metric .eLp;h/ with
respect to the Lp-metric

Lp.X; Y / WD fEkX � Y kpgmin.1;1=p/;L0.X; Y / D ess sup kX � Y k;
where hX WD EkXkq , q � 0, i.e.,1

I.p; qI a; b/min.1;1=p/ D eLp;h.a; b/ WD inffLp.X; Y / W hX D a; hY D bg:
Further (Corollary 9.2.1), we will find explicit expressions for eLp;h for any p � 0
and any q � 0.

The scheme of the proofs of all statements here is as follows. First we prove the
necessary inequalities that give us the required bounds, and then we construct pairs
of random variables that achieve the bounds or approximate them with arbitrary
precision.

Let f , f1, f2 2M, and consider the following conditions (in what follows, f �1
is the inverse function of f 2M):

A. .f1; f2/ W f1 ı f �1
2 .t/ (t � 0) is convex.

B. .f / W f �1.Ef .kX C Y k// � f �1.Ef .kXk// C f �1.Ef .kY k// for any
X; Y 2 X.

C. .f / W Ef .kX C Y k/ � Ef .kXk/C Ef .kY k/ for any X; Y 2 X.
D. .f1; f2/ W limt!1 f1.t/=f2.t/ D 0.
E. .f1; f2/ W f1 ı f2.t/ (t � 0) is concave.
F. .f1; f2/ W f1 is concave and f2 is convex.
G. .f1; f2/ W limt!1 f1.t/=f2.t/ D1.

Obviously, ifH.t/ D tp , h.t/ D tq (p > 0, q > 0), then A.H; h/ ” p � q,
B.h/ ” q � 1, C.h/ ” q � 1, D.H; h/ ” q > p, E.H; h/ ”
q � p, F.H; h/ ” p � 1 � q, G.H; h/ ” p > q, and hence conditions A
to G cover all possible values of the pairs .p; q/.

Theorem 9.2.1. For any a � 0 and b � 0, a C b > 0, the following equalities
hold:

(i)

I.H; hI a; b/ D
8

<

:

.H.jh�1.a/ � h�1.b/j/ if A.H; h/ and B.h/ hold;
H ı h�1.ja � bj/ if A.H; b/ and C.h/ hold;
0 if D.H; h/ holds:

(9.2.7)
(ii) For anyH 2M and h 2M

inffPrfX ¤ yg W Eh.kXk/ D a;Eh.kY k/ D bg D 0; (9.2.8)

1See Definition 3.2.2 in Chap. 3.
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inffEH.kX � Y k/ W PrfX ¤ ug D a;PrfY ¤ ug
D 0 .u 2 U; a; b 2 Œ0; 1�/: (9.2.9)

(iii)

S.H; hI a; b/ D
8

<

:

H.h�1.a/C h�1.b// if F.H; h/ holds or if B.h/ and E.H; h/ hold;
H ı h�1.˛ C ˇ/ if C.h/ and E.H; h/ hold;
1 if G.H; h/ holds:

(9.2.10)

(iv) For any u 2 U , H 2M, h 2M

supfPrfX C Y g W Eh.kXk/ D a;Eh.kY k/ D bg D 1; (9.2.11)

supfPrf¤ Y g W PrfX ¤ ug D a;PrfY ¤ ug D bg
D min.aC b; 1/.a; b 2 Œ0; 1�/; (9.2.12)

supfEH.kX � Y k/ W Pr.X ¤ u/ D a;PrfY ¤ ug D bg D 1: (9.2.13)

Proof. (i) Case 1. Let A.H; h/ and B.h/ be fulfilled. Denote �.a; b/ WD
H.jh�1.a/ � h�1.b/j/, a � 0, b � 0.

Claim. I.H; h; a; b/ � �.a; b/.
By Jensen’s inequality and A.H; h/,

H ı h�1.EZ/ � EH ı h�1.Z/: (9.2.14)

Taking Z D h.kX � Y k/ and using B.h/ we obtain H�1.EH.kX �
Y k// D H�1.EH ı h�1.Z// � h�1.Eh.kX � Y k// � jh�1.Eh.kXk/ �
h�1.Eh.kY k//j for any X; Y 2 X, which proves the claim.

Claim. There exists an optimal pair .X�; Y �/ of RVs such that Eh.kX�k/ D
a, Eh.kY �k/ D b, EH.kX� � Y �k/ D �.a; b/. (Note that an optimal pair of
RVs has this restricted meaning in the chapter.)

Let e here and in what follows be a fixed point of U with kek D 1. Then the
required pair .X�; Y �/ is given by

X� D h�1.a/e Y � D h�1.b/e; (9.2.15)

which proves the claim.

Case 2. LetA.H; h/ andC.h/ be fulfilled. Denote �1.t/ WD H ıh�1.t/, t � 0.
As in Claim 1, we get I.H; hI a; b/ � �1.ja�bj/. Suppose that a > b,
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and for each " > 0 define a pair .X"; Y"/ of RVs as follows: PrfX" D
c"e; Y" D 0g D p", PrfX" D d"e; Y" D d"eg D 1 � p", where

0 WD 0e p" WD a � b
a�bC" c" WD h�1.a�bC"/ d" WD h�1

�

b

1 � p"
�

:

(9.2.16)

Then .X"; Y"/ enjoys the side conditions in (9.2.1) and EH.kX" �
Y"k/ D �1.a � b C "/.a � b/=.a � b C "/. Letting " ! 0, we claim
(9.2.7).

Case 3. Let D.H; h/ be fulfilled. To obtain (9.2.7), it is sufficient to define a
sequence .Xn; Yn/ (n � N ) such that limn!1EH.kXn � Ynk/ D 0,
Eh.kXnk/ D a, Eh.kYnk/ D b. An example of such a sequence is
the following one: PrfXn D 0; Yn D 0g D 1 � cn � dn, PrfXn D
nae; Yn D 0g D cn, PrfXn D 0; Yn D nbeg D dn, where cn D
a=h.na/, dn D b=h.nb/, and N satisfies cN C dN < 1.

(ii) Define the sequence .Xn; Yn/ (n D 2; 3; : : : ) such that PrfXn D
h�1.na/e; Yn D h�1.nb/g D 1=n, PrfXn D 0; Yn D 0g D .n � 1/=n.
Hence, Eh.kXnk/ D a, Eh.kYnk/ D b, and Pr.Xn ¤ Yn/ D 1=n, which
proves (9.2.8).

Further, suppose a � b. Without loss of generality, we may assume
that uD 0. Then consider the random pair .eXn;eY n/ with the following joint
distribution: PrfeXn D 0;eY n D 0g D 1�a, PrfeXn D .1=n/e;eY n D 0g D a�b,
PrfeXn D .1=n/e;eY n D .1=n/eg D b. Obviously .eXn;eY n/ satisfies the
constraints Pr.eXn ¤ 0/ D a, Pr.eY n ¤ 0/ D b, and limn!1EH.kXn �
Ynk/ D 0, which proves (9.2.9).

The proofs of (iii) and (iv) are quite analogous to those of (i) and (ii),
respectively. ut

Remark 9.2.1. If A.H; h/ and B.h/ hold, then we have constructed an optimal
pair .X�; Y �/ [see (9.2.15)], i.e., .X�; Y �/ realizes the infimum in I.H; hI a; b/.
However, if D.H; h/ holds and a ¤ b, then optimal pairs do not exist because
EH.kX � Y k/ D 0 implies a D b. Note that the latter was not the case when
we studied the minimal or maximal distances on a u.m.s.m.s. .U; d/ since, by
Theorem 8.2.1 of Chap. 8, .X�; Y �/ and .X��; Y ��/ exist such that

b�c.X; Y / WD inff�c.eX;eY / W X; Y 2 X.U; d/;Pr
eX D PrX ;Pr

eY D PrY g
D �c.X

�; Y �/

and

L�c.X; Y / WD supf�c.eX;eY / W X; Y 2 X.U; d/;Pr
eX D PrX ; P r

eY D PrY g
D �c.X

��; Y ��/:
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Corollary 9.2.1. For any a � 0, b � 0, aC b > 0, p � 0, q � 0,

I.p; qI a; b/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ja1=q � b1=qjp; if p � q � 1;
ja � bjp=q; if p � q 0 < q < 1;

0; if 0 � p < q or q D 0; p > 0;
ja � bj; if p D q D 0;

(9.2.17)

and in particular, the primary h-minimal metric, eLp;h.hX D EkXkq/, admits the
following representation:

eLp;h.a; b/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ja1=q � b1=qj; if p � q � 1;
ja � bj1=q; if p � 1; 0 < q < 1;
ja � bjp=q; if 1 � p � q > 0;
0; if 0 � p < q or q D 0; p > 0;
ja � bj; if p D q D 0:

(9.2.18)

One can verify that if � is a compound or simple probability distance with
parameter KH , then

M.P1; P2/ WD sup

(

�.X1;X2/ W X1;X2 2 X;

Eh.kXik/ D
Z

U

h.kxk/Pi .dx/; i D 1; 2
)

(9.2.19)

is a moment function with the same parameter KM D K� (see Definition 3.4.2
of Chap. 3). In particular, in (9.2.4), S.H; hI a; b/ (H 2 H \M), and in (9.2.6),
Mp.P1; P2/ D S.p; qI a; b/min.1;1=p/, a D R kxkqP1.dx/, b D

R kxkqP2.dx/ may
be viewed as moment functions with parametersKM D KH [see (2.4.3)] andKM D
1, respectively.

Corollary 9.2.2. For any a � 0, b � 0, aC b > 0, p � 0, q � 0,

S.p; qI a; b/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.a1=q C b1=q/q; if 0 � p � q; q � 1;

.aC b/p=q; if 0 � p � q < 1; q ¤ 0;
1; if p > q � 0;
min.aC b; 1/; if p D q D 0:

(9.2.20)

Obviously, if q D 0 in (9.2.17), (9.2.18), or (9.2.20), then the values of I and S
make sense for a; b 2 Œ0; 1�.
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The following theorem is an extension for p D q D 1 of Corollaries 9.2.1 and
9.2.2 to a nonnormed space U such as the Skorokhod space DŒ0; 1�.2

Theorem 9.2.2. Let .U; d/ be a separable metric space and X D X.U / the space
of all U -valued RVs, and let u 2 U , a � 0, b � 0. Assume that there exists z 2 U
such that d.z; u/ � max.a; b/. Then

minfEd.X; Y / W X; Y 2 X; Ed.X; u/ D a;Ed.Y; u/ D bg D ja � bj (9.2.21)

and

maxfEd.X; Y / W X; Y 2 X; Ed.X; u/ D a;Ed.Y; u/ D bg D aC b: (9.2.22)

Proof. Let a � b, � D d.z; u/. By the triangle inequality, the minimum in (9.2.21)
is greater than b � a. On the other hand, if Pr.X D u; Y D u/ D 1 � b=� , Pr.X D
u; Y D z/ D .b � a/=� , Pr.X D z; Y D u/ D 0, Pr.X D z; Y D z/ D a=� ,
then Ed.X; u/ D a, Ed.Y; u/ D b, Ed.X; Y / D b � a, which proves (9.2.21).
One proves (9.2.22) analogously. ut

From (9.2.21) it follows that the primary h-minimal metric, eL1;h.hX; hY /, with
respect to the average metric L1.X; Y / D Ed.X; Y / with hX D Ed.X; u/, is
equal to jhX �hY j. The preceding theorem provides the exact values of the bounds
(3.4.48) and (3.4.52).

Open Problem 9.2.1. Find the explicit solutions of moment problems with one
fixed pair of marginal moments for RVs with values in a separable metric space
U . In particular, find the primary h-minimal metric eLp;h.hX; hY /, with respect to
Lp.X; Y / D fEdp.X; Y /g1=p , p > 1, with hX D Edq.X; u/, q > 0.

Suppose that U D R
n and d.x; y/ D kx � yk1, where kx1; : : : ; xn/k1 D

jx1j C � � � C jxnj. Consider the H -average distance LH.X; Y / WD EH.kX �
Y k1/, with convex H 2 H, and the Lp-metric Lp.X; Y / D fEkX � Y kp1 g1=p .
Define the engineer distance EN.X; Y IH/ D H.kEX � EY k1/, where EX D
.EX1; : : : ; EXn/ in the space of eX.Rn/ of all n-dimensional random vectors
with integrable components (Example 3.2.5). Similarly, define Lp-engineer metric,

EN.X; Y; p/ D �Pn
iD1 jEXi � EYi jp

�1=p
, p � 1 [see (3.2.14)]. Let hX D EX for

anyX 2 eX.Rn/. Then the following relations between the compound distances LH ,
Lp and the primary distances EN.�; �IH/, EN.�; �Ip/ hold.

Corollary 9.2.3. (i) If H is convex, then

eLH;h.hX; hY / WD minfLH.eX;eY / W heX D hX; heY D hY g
D EN.X; Y IH/: (9.2.23)

2See, for example, Billingsley (1999).
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(ii) For any p � 1
eLp;h.hX; hY / D EN.X; Y Ip/: (9.2.24)

Proof. Use Jensen’s inequality to obtain the necessary lower bounds. The “optimal
pair” is eX D EX , eY D EY . ut

Combining Theorems 8.2.1, 8.2.2, and 9.2.1, we obtain the following sharp
bounds of the extremal functionals bLH.P;Q/ P;Q 2 P.U / and LLH.P;Q/
(Theorem 8.2.1) in terms of the moments

a D
Z

U

h.x/P.dx/; b D
Z

U

h.x/Q.dx/: (9.2.25)

Corollary 9.2.4. Let .U; k � k/ be a separable normed space andH 2 H.

(i) If A.H; h/ and B.h/ hold, then bLH.P;Q/ � H.jh�1.a/ � h�1.b/j/.
(ii) If B.h/ and E.H; h/ hold, then LLH.P;Q/ � H.h�1.a/C h�1.b//.

Moreover, there exist Pi ;Qi 2 P.U /, i D 1; 2, with a D R

U
h.x/Pi .dx/,

b D R

U
h.x/Qi .dx/ such that bLH.P1;Q1/ D H.jh�1.a/ � h�1.b/j/ and

LLH.P2;Q2/ D H.h�1.a/C h�1.b//.

9.3 Moment Problems with Two Fixed Pairs of Marginal
Moments and with Fixed Linear Combination
of Moments

In this section we will consider the explicit representation of the following bounds:

I.H; h1; h2I a1; b1; a2; b2/ WD infEH.kX � Y k/; (9.3.1)

S.H; h1; h2I a1; b1; a2; b2/ WD supEH.kX � Y k/; (9.3.2)

where H , h1, h2 2 M, and the infimum in (9.3.1) and the supremum in (9.3.2)
are taken over the set of all pairs of RVs X; Y 2 X.U /, satisfying the moment
conditions

Ehi .kXk/ D a; Ehi .kY k/ D bi ; i D 1; 2; (9.3.3)

and U is a separable normed space with norm k � k. In particular, if H.t/ D tp ,
hi .t/ D tqi , i D 1; 2 (p � 0, q2 > q1 � 0), then we write

I.p; q1; q2I a1; b1; a2; b2/ WD I.H; h1; h2I a1; b1; a2; b2/; (9.3.4)

S.p; q1; q2I a1; b1; a2; b2/ WD S.H; h1; h2I a1; b1; a2; b2/: (9.3.5)
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If H 2 H, then the functional I represents a primary h-minimal distance with
respect to LH.X; Y / D EH.kX � Y k/ with hX D .Eh1.kXk/; Eh2.kXk//.3
In particular, I.p; q1; q2I a1; b1; a2; b2/min.1;1=p/ is a primary h-minimal metric with
respect to Lp.X; Y / D fEkX � Y kpgmin.1;1=p/. The functionals (9.3.2) and (9.3.5)
may be viewed as moment functions with parameters KH and 2min.1;p/, respec-
tively.4 A moment problem with two pairs of marginal conditions is considerably
more complicated, and in the present section, our results are not as complete as in
the previous one. Further, conditions A to G are defined as in the previous section.

Theorem 9.3.1. Let the conditions A.h2; h1/ and G.h2; h1/ hold. Let ai � 0,
bi � 0, i D 1; 2, a1 C a2 > 0, b1 C b2 > 0, and

h�1
1 .a1/ � h�1

2 .a2/; h�1
1 .b1/ � h�1

2 .b2/: (9.3.6)

(i) If A.H; h1/, B.h1/ and D.H; h2/ are fulfilled, then

I.H; h1; h2I a1; b1; a2; b2/ D I.H; h1I a1; b1/ D H.jh�1
1 .a1/� h�1

1 .b1/j/:
(9.3.7)

(ii) Let D.H; h2/ be fulfilled. If F.H; h1/ holds or if B.h1/ and E.H; h1/

hold, then

S.H; h1; h2I a1; b1; a2; b2/ D S.H; h1I a1; b1/
D H.h�1

1 .a1/C h�1
1 .b1//: (9.3.8)

(iii) If G.H; h2/ is fulfilled and h�1
1 .a1/ ¤ h�1

2 .a2/ or h�1
1 .b1/ ¤ h�1

2 .b2/, then

S.H; h1; h2I a1; b1; a2; b2/ D S.H; h1I a1; b1/ D 1: (9.3.9)

Proof. By Theorem 9.2.1 (i), we have

I.H; h1; h2If li; a1; b1; a2; b2/ � I.H; h1I a1; b1/ D �.a1; b1/
WD H.jh�1

1 .a1/ � h�1
1 .b1/j/: (9.3.10)

Further, we will define an appropriate sequence of RVs .Xt ; Yt / that satisfy the side
conditions (9.3.3) and limt!1EH.kXt � Ytk/ D �.a1; b1/. Let f .x/ D h2 ı
h�1
1 .x/. Then, by Jensen’s inequality and A.h2; h1/,

f .a1/ D f .Eh1.kXk// � Ef ı h1.kXk/ D a2 (9.3.11)

and f .b1/ < b2. Moreover, limt!1 f .t/=t D1 by G.h1; h2/.

3See Sect. 3.2 in Chap. 3.
4See Definition 3.4.2 in Chap. 3.
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Case 1. Suppose that f .a1/ < a2, f .b1/ < b2.

Claim. If the convex function f 2M and the real numbers c1, c2 possess
the properties

f .c1/ < c2 lim
t!1f .t/=t D1; (9.3.12)

then there exist a positive t0 and a function k.t/ (t � t0) such that the
following relations hold for any t � t0:

0 < k.t/ < c1; (9.3.13)

tf .c1 � k.t//C k.t/f .c1 C t/ D c2.k.t/C t/; (9.3.14)

k.t/

k.t/C t �
c2

f .c1 C t/ ; (9.3.15)

and

lim
t!1k.t/ D 0: (9.3.16)

Proof of the claim. Let us take t0 such that f .c1 C t/=.c1 C t/ > c2=c1,
t � t0, and consider the equation

F.t; X/ D c2;
where F.t; x/ WD .f .c1 � x/t C f .c1 C t/x/=.x C t/. For each t � t0
we have F.t; c1/ > c2, F.t; 0/ D f .c1/ < c2. Hence, for each t � t0
there exists x D k.t/ such that k.t/ 2 .0; c1/ and F.t; k.t// D c2,
which proves (9.3.13) and (9.3.14). Further, (9.3.14) implies (9.3.15), and
(9.3.13), (9.3.15) imply (9.2.16). The claim is established.

From the claim we see that there exist t0 > 0 and functions `.t/ and
m.t/ (t � t0) such that for all t > t0 we have

0 < `.t/ < a1; 0 < m.t/ < b1; (9.3.17)

tf .a1 � `.t//C `.t/f .a1 C t/ D a2.`.t/C t/; (9.3.18)

tf .b1 �m.t//Cm.t/f .b1 C t/ D b2.m.t/C t/; (9.3.19)

lim
t!1 `.t/ D 0; lim

t!1m.t/ D 0: (9.3.20)

Using (9.3.17)–(9.3.20) and the conditions A.H; h1/, D.H; h2/, and
G.h2; h1/ one can obtain that the RVs .Xt ; Yt / (t > t0) determined by
the equalities are

PrfXt D xi .t/; Yt D yj .t/g D pij .t/; i; j D 1; 2;



9.3 Moment problems with two fixed pairs of marginal moments 229

where

x1.t/ WD h�1
1 .a1 � `.t//e; x2.t/ WD h�1

1 .a1 C t/e;
y1.t/ WD h�1

1 .b1 �m.t//e; y2.t/ WD h�1
1 .b1 C t/e;

p11.t/ WD minft=.`.t/C t/; t=.m.t/C t/g; p12.t/ WD t=.`.t/C t/ � p11.t/;
p21.t/WDt=.m.t/C t/ � p11.t/; p22.t/WDminf`.t/=.`.t/C t/;m.t/=.m.t/C t/g

possess all the desired optimal properties. ut
Case 2. Suppose f .a1/ D a2 [i.e., h�1

1 .a1/ D h�1
2 .a2/], f .b1/ < b2. Then we

can determine .Xt ; Yt / by the equalities PrfXt D h�1
1 .a1/; Yt D y1.t/g D

t=.m.t/C t/, PrfXt D h�1
1 .a1/; Yt D y2.t/g D m.t/=.m.t/C t/.

Case 3. The cases (f .a1/ < a2, f .b1/ D b2) and (f .a1/ D a2, f .b1/ D b2) are
considered in the same way as in Case 2.

Parts (ii) and (iii) are proved by analogous arguments. ut
Corollary 9.3.1. Let a1 � 0, bi � 0, a1 C a2 > 0, b1 C b2 > 0, a1=q11 � a

1=q2
2 ,

b
1=q1
1 � b1=q22 .

(i) If 1 � q1 � p < q2, then

I.p; q1; q2I a1; b1; a2; b2/ D I.p; q1I a1; b1/ D .a1=q11 � b1=q11 /p: (9.3.21)

(ii) If 0 < p � q1, 1 � q1 < q2, then

S.p; q1; q2I a1; b1; a2; b2/ D S.p; q1I a1; b1/ D .a1=q11 � b1=q11 /p: (9.3.22)

(iii) If 0 < q1 < q2 < p and a1=q11 D a1=q22 or b1=q11 D b1=q22 , then

S.p; q1; q2I a1; b1; a2; b2/ D S.p; q1I a1; b1/ D1:

Corollary 9.3.1 describes situations in which the “additional moment informa-
tion” a2 D EkXkq2 , b2 D EkY kq2 does not affect the bounds

I.p; q1; q2I a1; b1; a2; b2/ D I.p; q1I a1; a2/;
S.p; q1; q2I a1; b1; a2; b2/ D S.p; q1I a1; a2/

(and likewise Theorem 9.3.1).

Open Problem 9.3.1. Find the explicit expression of I.p; q1; q2; a1; b1; a2; b2/ and
S.p; q1; q2I a1; b1; a2; b2/ for all p � 0, q2 > 0, q1 � 0 [see (9.3.4), Corollary 9.3.1,
and Theorem 9.3.1]. One could start with the following one-dimensional version of
the problem. Let hi W Œ0;1/ ! R (i D 1; 2) and H W R ! R be given continuous
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functions with H symmetric and strictly increasing on Œ0;1/. Further, let X and Y
be nonnegative RVs having fixed moments ai D Ehi.X/, bi D Ehi.Y /, i D 1; 2.
The problem is to evaluate

I D infEH.X � Y /; S D supEH.X C Y /: (9.3.23)

If one desired, one could think of X D X.t/ and Y D Y.t/ as functions on
the unit interval (with Lebesgue measure).5 The five moments a1, a2, b1, b2, and
EH.X˙Y / depend only on the joint distribution of the pair .X; Y / and the extremal
values in (9.3.23) are realized by a probability measure supported by six points.6

Thus the problem can also be formulated as a nonlinear programming problem
to find

I D inf
6
X

jD1
pjH.uj � vj /; S D sup

6
X

jD1
pjH.uj C vj /;

subject to

pj � 0;
6
X

jD1
pj D 1; uj � 0; vj � 0; j D 1; : : : ; 6;

6
X

jD1
pj hi .uj / D ai ;

6
X

jD1
pj hi .vj / D bi ; i D 1; 2:

Such a problem becomes simpler when the function hi and the function H on RC
are convex.7

Note that in the case where U is a normed space, the moment problem was
easily reduced to the one-dimensional moment problem (U D R). This is no longer
possible for general (nonnormed) spaces U , rendering the problem quite different
from that considered in Sects. 9.2 and 9.3.

Open Problem 9.3.2. Let �.X; Y / be a given compound probability metric in
.U; k � k/, I an arbitrary index set, ˛i , ˇi (i 2 I ) positive constants, and hi 2M,
i 2 I . Find

I f�I˛i ; ˇi ; i 2 I g D inff�.X; Y / W X; Y 2 X.U /;

Ehi.kXk/ D ˛i Ehi .kY k/ D ˇi ; i 2 I g;(9.3.24)

and define Sf�I˛i ; ˇi ; i 2 I g by changing in to sup in (9.3.24). One very special
case of the problem is

5See Karlin and Studden (1966, Chap. 3) and Rogosinky (1958).
6See Rogosinky (1958, Theorem 1), Karlin and Studden (1966, Chap. 3), and Kemperman (1983).
7See, for example, Karlin and Studden (1966, Chap. 14).
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�.X; Y / D ı.X; Y / D
�

0 if Pr.X D Y / D 1;
1 if Pr.X ¤ Y / D 1

(Example 3.2.4). Then one can easily see thats

I fıI˛i ; ˇi ; i 2 I g D
�

0 if ˛i D ˇi ; 8i 2 I;
1 otherwise;

(9.3.25)

and

S.ıI˛i ; ˇi ; i 2 I / D 1: (9.3.26)

In Sect. 3.4 we introduced the �-upper bound with fixed sum of marginal qth
moments

�.cIm; q/ WD supf�.X; Y / W X; Y 2 X.U /;mq.X/Cmq.Y / D cg; (9.3.27)

where � is a compound probability distance in X.U / and mp.X/ is the “qth
moment”

mq.X/ WD Ed.X; a/q; q > 0;

m0.X/ WD EI fd.X; a/ ¤ 0g D Pr.X ¤ a/:
Similarly, we defined the �-lower bound with fixed difference of marginal qth
moments

�.cIm; q/ WD inff�.X; Y / W X; Y 2 X.U /;mq.X/�mq.Y / D cg: (9.3.28)

The next theorem gives us explicit expressions for �.cIm; q/ and �.cIm; q/
when � is the p-average metric (Example 3.4.1), �.X; Y / D Lp.X; Y / D
fEkX � Y kpgp0

, p0 D min.1; 1=p/ (p > 0) or � is the indicator metric,
�.X; Y / D L0.X; Y / D EkX � Y k0 D EI fX ¤ Y g. [We assume, as before,
that .U; d/, d.x; y/ WD kx � yk, is a separable normed space.]

We will generalize the functionals � and � given by (9.3.27) and (9.3.28) in the
following way. For any p � 0, q � 0, ˛, ˇ, c 2 R, consider

I.p; q; c; ˛; ˇ/ WD inffEkX � Y kp W ˛mq C ˇmq D cg (9.3.29)

and

S.p; q; c; ˛; ˇ/ WD supfEkX � Y kp W ˛mq C ˇmq D cg: (9.3.30)

Theorem 9.3.2. For any ˛ > 0, ˇ > 0, c > 0, p � 0, q � 0, the following
relations hold:

I.p; q; c; ˛; ˇ/ D
�

0 if q ¤ 0 or if q D 0; c � ˛ C ˇ;
C1 if q D 0; c > ˛ C ˇ (9.3.31)
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[the valueC1 means that the infimum in (9.3.29) is taken over an empty set],

I.p; q; c; ˛;�ˇ/ D 0 if ˇ < ˛; p2 C q2 ¤ 0; or 0 � p < q;
or q D 0; p > 0; and c � ˛

D Œc.ˇ1=.q�1/ � ˛1=.q�1//q�1=.˛ˇ/�p=q if ˛ � ˇ; p � ˇ > 1
D .c=˛/p=q if ˛ � ˇ; p � q; 0 < q � 1

D max

�

c � ˛ C ˇ
˛

; 0

�

if p D q D 0; ˇ < ˛; c � ˛

D C1 if q D 0; c > ˛: (9.3.32)

Proof. Clearly, if c > ˛ C ˇ, then there is no .X; Y / such that ˛m0.X/ C
ˇm0.Y / D c. Suppose q > 0. Define the optimal pair .X�; Y �/ by X� D Y � D
.c=.˛ C ˇ//1=qe, where kek D 1. Then Lp.X�; Y �/ D 0 for all 0 � p < 1 and
clearly ˛mq C ˇmq D c, i.e., (9.3.31) holds.

To prove (9.3.32), we will make use of Corollary 9.2.1 [see (9.2.17)]. By the
definition of the extremal functional I.p; qI a; b/ (9.2.5),

I.p; q; c; ˛;�ˇ/ D inffI.p; qI d; f / W d � 0; f � 0; ˛d � f̌ D cg; (9.3.33)

where I.p; qI a; b/ admits the explicit representation (9.2.17). Solving the mini-
mization problem (9.3.33) yields (9.3.32). ut

Similarly, we have the following explicit formulae for S.p; q; c; ˛; ˇ/ (9.3.30).

Theorem 9.3.3. For any ˛ > 0, ˇ > 0, c > 0, p � 0, q � 0,

S.p; q; c; ˛;�ˇ/ D
8

<

:

C1 if p > 0; q > 0; or p > 0; q D 0; c � ˛
1 if p D q D 0; c � ˛; or p D 0; q > 0
�1 if q D 0; c > ˛;

[the value �1 means that the supremum in (9.3.30) is taken over an empty set],

S.p; q; c; ˛; ˇ/D Œc.˛1=.q�1/ C ˇ1=.q�1//q�1=.˛ˇ/�p=q if 0 � p � q; q > 1;
D
�

1

c
min.˛; ˇ/

�p=q

if 0 � p � q � 1; q > 0
D C1 if p>q >0 or p>q D 0;

c � ˛ C ˇ;
D minŒ1; c=min.˛; ˇ/� if p D q D 0; c � ˛ C ˇ;
D �1 if q D 0; c > ˛ C ˇ:

Using Corollary 9.3.1 one can study similar but more general moment problems:

minimize
(maximize)

fLp.X; Y / W F.mq1.X/;mq2.X/;mq1.Y /;mq2.Y // D 0g:
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Part III
Applications of Minimal Probability

Distances



Chapter 10
Moment Distances

The goals of this chapter are to:

• Discuss convergence criteria in terms of a simple metric between characteristic
functions assuming they are analytic,

• Provide estimates of a simple metric between characteristic functions of two
distributions in terms of moment-based primary metrics,

• Discuss the inverse problem of estimating moment-based primary metrics in
terms of a simple metric between characteristic functions.

Notation introduced in this chapter:

Notation Description

�.F;G/ Simple probability metric calculating the distance between two
distributions F and G in terms of their characteristic functions

�j .F / j th moment of distribution F
d˛.F;G/ Primary metric based on moments of F and G with parameter ˛ > 0
D Set of all distributions with finite moments of all orders and uniquely

determined by them
N Subclass of D defined by distributions having moments that do not

increase faster than a given sequence

10.1 Introduction

In this chapter we show that in some cases the investigation of the convergence of a
sequence of distributions fFng to a prescribed distribution function (DF) F (or to a
prescribed class K of DFs) can be replaced by studying the convergence of certain
characteristics of Fn to the corresponding characteristics of F (or characteristics
of K). For example, if I is a functional on a class of DFs for which a function F is

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 10, © Springer Science+Business Media, LLC 2013
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the only minimum point and the problem of minimizing I is well posed in the sense
that any minimizing I sequence of functions converges to F , then

Fn ! F ” I .Fn/ ! I .F /:

Thus, the convergence of fFng to F is equivalent to the convergence of I .Fn/ to
I .F /. Of course, estimating the closeness of Fn to F from that of I .Fn/ to I .F /
is interesting by itself. Sometimes it is useful to construct a functional I for which
F is a minimum point in order to have scalar characteristics whose convergence to
the corresponding characteristics of F implies the convergence of the distributions
themselves. These problems are considered below for certain special distributions.

We begin the discussion by introducing a simple metric between characteristic
functions of probability distributions denoted by �.F;G/ and derive bounds for
the metric assuming the characteristic functions are analytic. In Sect. 10.3, we
introduce a primary metric d˛.F;G/ defined through the absolute distance between
the corresponding moments of the distributions F and G. Bounds of �.F;G/ are
derived in terms of d˛.F;G/. Finally, we consider the question of estimating the
primary metric d˛.F;G/ in terms of the simple metric �.F;G/. Although not
always possible because of the nature of the metrics, we consider the conditions
under which an estimate can be provided.

10.2 Criteria for Convergence to a Distribution
with an Analytic Characteristic Function

Consider two characteristic functions f0.t/ and f1.t/ of real random variables
(RVs). Assume that the function f0.t/ has derivatives of all orders and is uniquely
determined by them (i.e., the corresponding random variable has all moments and its
distribution is determined by these moments). In this case, the coincidence of f0.t/
and f1.t/ in a neighborhood of t D 0 implies their coincidence for all values of t .
Therefore, it is natural to think that the convergence on a fixed interval of a sequence
of characteristic functions ffn.t/g: limn!1 fn.t/ D f0.t/ for jt j � T0 (where
T0 > 0 is a fixed number) will imply the weak convergence of the sequence fFng of
the corresponding DFs to F0. To measure the distance between two distributions F
and G in terms of their characteristic functions, we employ the following metric:

�.F;G/ D min
T>0

max

�

max
jzj�T

.jf .z/� g.z/j; 1=T /
�

; (10.2.1)

where f .z/ and g.z/ denote the characteristic functions of F and G.
In this section, we will consider this problem for an analytic characteristic

function f0. The first result [see Klebanov and Mkrtchyan (1980)] is formulated
for an entire characteristic function f0.
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Theorem 10.2.1. Suppose that a nondegenerate DF F.x/ has the moments �j D
R1

�1 xj dF.x/ of all orders with �1=.2k/2k =.2k/ ! 0 as k ! 1. For fFng1
nD1 to

converge weakly to F , it is necessary and sufficient that for some T0 > 0,

sup
jt j�T0

jfn.t/ � f .t/j ! 0; n ! 1; (10.2.2)

where fn and f are the characteristic functions of Fn and F , respectively.
Moreover,

�.Fn; F / � C min
kD1;2;:::

n

�
1=2
2 k3=2"1=.4kC1/

n C �
1=.2k/

2k =.2k/
o

; (10.2.3)

where �.F;G/ is defined in (10.2.1),

"n D sup
jt j�T0

jfn.t/ � f .t/j ;

and C is a constant depending only on F and T0.

Proof. Clearly, the weak convergence of Fn to F implies that �.Fn; F / ! 0,
especially as supjt j�T0 jfn.t/�f .t/j ! 0. Therefore, it is enough to prove (10.2.3).
Let g.t/ be an arbitrary characteristic function. We write

" D sup
jt j�T0

jf .t/ � g.t/j (10.2.4)

and prove that

�.F;G/ � C min
kD1;2;:::

n

�
1=2
2 k3=2"1=.4kC1/ C �

1=.2k/

2k =.2k/
o

; (10.2.5)

where G is the DF corresponding to the characteristic function g.t/. This will lead
to (10.2.3) when we take g.t/ D fn.t/.

For all real t , relation (10.2.4) can be written as

f .t/ � g.t/ D R.t I "/; (10.2.6)

where jR.t I "/j � " for jt j � T0. Suppose that

u.t/ D
(

expf�1=.1C t2/� 1=.1� t2/g for t 2 .�1; 1/;
0 for t 62 .�1; 1/;

and

uı.t/ D u.t=ı/=
�

ı

Z 1

�1
u.�/d�

�

; ı > 0:

Let

Quı.z/ D
Z 1

�1
uı=z.t/uı=z.t � z/dt:
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Clearly, Quı.z/ D 0 for jzj � ı and
R1

�1 Quı.z/dz D 1. Without much difficulty we
can verify that Quı.z/ is an infinitely differentiable function and

sup
z

ˇ

ˇ

ˇQu.m/ı .z/
ˇ

ˇ

ˇ � Cm3m; m D 1; 2; : : : ; (10.2.7)

where C > 0 is an absolute constant.
Multiplying both sides of (10.2.6) by Quı.t � z/ and integrating with respect to t ,

we obtain

fı.z/ � gı.z/ D Rı.zI "/; (10.2.8)

where

fı.z/ D
Z 1

�1
f .t/Quı.t � z/dt;

gı.z/ D
Z 1

�1
g.t/Quı.t � z/dt;

Rı.zI "/ D
Z 1

�1
R.t I "/Quı.t � z/dt:

Clearly, all functions that appear in (10.2.8) are infinitely differentiable, and
by (10.2.7), for any integer n � 1,

ˇ

ˇ

ˇR
.n/

ı .zI "/
ˇ

ˇ

ˇ � C3n"=ın for jzj � T0 � ı: (10.2.9)

Differentiating both sides of (10.2.8) k times with respect to z and letting z D 0, in
view of (10.2.9) we find that

ˇ

ˇ

ˇf
.k/

ı .0/� g
.k/

ı .0/
ˇ

ˇ

ˇ � Ckk
3k"=ık; k D 1; 2; : : : : (10.2.10)

Note that although fı and gı are not characteristic functions of probability
distributions, by the construction of Quı, they are the Fourier transforms of positive
and finite (but not necessarily normalized) measures. Therefore, they have all the
properties of a characteristic function with the exception of the fact that for z D 0

their values may be different than unity. Thus, for an arbitrary integer k � 1 and
any ı 2 .0; T0/, taking (10.2.10) into account we have for all real z

jfı.z/ � gı.z/j �
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2k�1
X

jD0

f
.j /

ı .0/� g
.j /

ı .0/

j Š
zj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇf
.2k/

ı .0/C g
.2k/

ı .0/
ˇ

ˇ

ˇ

.2k/Š
jzj2k

� C"
.2k/

ı2k
exp jzj C

2
ˇ

ˇ

ˇf
.2k/

ı .0/
ˇ

ˇ

ˇ

.2k/Š
jzj2k: (10.2.11)
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Since
ˇ

ˇ

ˇf
.2k/

ı .z/
ˇ

ˇ

ˇ �
Z 1

�1
ˇ

ˇf .2k/.t/
ˇ

ˇ Quı.t � z/dt � �2k;

we find from (10.2.11) that

jfı.z/� gı.z/j � C exp jzj.2k/ık=ı2k C 2�2kjzj2k=.2k/Š: (10.2.12)

In addition,

jfı.z/� f .z/j �
Z 1

�1
jf .t/ � f .z/jQuı.t � z/dt

� sup
jt�zj�ı

jf .t/ � f .z/j

� �
1=2
2 ı: (10.2.13)

Next,

jgı.z/ � g.z/j � sup
jt�zj�ı

jg.t/ � g.z/j D sup
jt�zj�ı

ˇ

ˇ

ˇ

Z 1

�1
�

eix.t�z/ � 1� eizxdG.x/
ˇ

ˇ

ˇ

� sup
jt�zj�ı

Z 1

�1

ˇ

ˇeix.t�z/ � 1
ˇ

ˇdG.x/

� sup
jt�zj�ı

Z 1

�1
f1� cos.t � z/x2 C sin2.t � z/xg1=2dG.x/

� sup
jt�zj�ı

p
3

Z 1

�1
�

1 � cos.t � z/x
�1=2

dG.x/

� sup
jt�zj�ı

p
3
�

Z 1

�1
�

1 � cos.t � z/x
�

dG.x/
�1=2

� p
3
�

sup
j� j�ı

j1 � g.�/j
�1=2

:

Since ı < T0,

sup
j� j�ı

j1 � g.�/j � sup
j� j�ı

jg.�/ � f .�/j C sup
j� j�ı

j1 � f .�/j

� "C �
1=2
2 ı:

From this and the preceding inequality we deduce that

jgı.z/ � g.z/j � p
3 "1=2 C p

3�
1=4
2 ı1=2: (10.2.14)
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Relations (10.2.12)–(10.2.14) lead us to

jf .z/ � g.z/j � C"
.2k/ık

ı2k
exp jzj C 2�2k

.2k/Š
jzj2k C C�

1=2
2 ı1=2; (10.2.15)

which holds for any real z. Here, we assume that " � ı < T0, and C is an absolute
constant.

Let us find the minimum with respect to ı of the right-hand side of (10.2.15).
Without difficulty we can verify that this minimum is attained when

ı1=2 D ı1=2.z/

D C1=.4kC1/"1=.4kC1/.4k/1=.4kC1/.2k/6k=.4kC1/ exp

� jzj
4k C 1

	

=�
1=.8kC2/
2

(10.2.16)

and is equal to

2�2k

.2k/Š
jzj2k C 2C

4kC2
4kC1 "

1
.4kC1/ .4k/

1
.4kC1/ .2k/

6k
.4kC1/ exp

n jzj
4k C 1/

o

=�
1=2�1=.8kC2/
2 :

(10.2.17)

Since

�.F;G/ D min
T>0

max
˚

max
jzj�T

jf .z/ � g.z/j; 1=T 
;

we find from (10.2.15) and (10.2.17) that

�.F;G/ � min
kD1;2;::: min

0<T�4kC1max

�

2�2k

.2k/Š
T 2k C C"

1
4kC1 .2k/3=2�

1=2
2 ; 1=T

	

:

(10.2.18)

Here, ı D ı.T / determined by (10.2.16) must be less than T0.
For T D C1.2k/Š=.2�2k/

1=.2kC1/, where C1 > 0 is a constant, we have

max
˚

2�2kT
2k=.2k/ŠC C"

1
4kC1 .2k/3=2�

1=2
2 ; 1=T




� .2�2k=.2k/Š/
1=.2kC1/ C C"

1
4kC1 .2k/3=2�

1=2
2

� C�
1=.2k/

2k =k C ";

where C is a new absolute constant. We now see from (10.2.18) that

�.F;G/ � min
kD1;2::: C

˚

�
1=.2k/

2k =k C "
1

4kC1 .2k/3=2�
1=2
2




(10.2.19)

if only ı.T / � T0 holds. However, for T � 4k C 1,
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ı1=2.T / D QC" 1
4kC1 .2k/3=2=�2; (10.2.20)

where QC > 0 is an absolute constant.
Since the moments �2k cannot decrease faster than a geometric progression, it is

clear that C1 can be chosen in such a way that

T D C1 ..2k/Š=.2�2k//
1

2kC1 � 4k C 1:

It is easy to see that the minimum on the right-hand side of (10.2.19) is attained for
k D k."/, satisfying

k."/ � C ln
1

"
= ln ln

1

"
;

and that for this k the right-hand side of (10.2.20) can be made to be less than T0 for
sufficiently small " > 0. ut
Corollary 10.2.1. Suppose that F.x/ is a DF concentrated on a finite interval
.a; b/ and DF G.x/ is such that the characteristic function g.t/ satisfies (10.2.4).
Then there exist a constant "0 > 0, depending only on T0, a, and b, and a constant
C > 0, depending only on a and b, for which

�.F;G/ � C
ln ln 1

"

ln 1
"

when 0 < " � "0.

Corollary 10.2.2. Suppose that F.x/ is the standard normal DF and G.x/ is such
that its characteristic function g.t/ satisfies (10.2.4). Then there exist constants "0 D
"0.T0/ > 0 and C > 0 such that for " 2 .0; "0�,

�.F;G/ � C
� ln ln 1

"

ln 1
"

�1=2

:

Let us now turn to the case of an analytic characteristic function f0. First let us
obtain an estimate of the closeness of F andG in � knowing that f .t/ WD f0.t/ and
g.t/ are close in some fixed neighborhood of zero.

Theorem 10.2.2. Let F.x/ be a distribution function whose characteristic function
f .t/ is analytic in jt j � R. Assume thatG.x/ is such that its characteristic function
g.t/ satisfies

jf .t/ � g.t/j � " (10.2.21)

for real t 2 Œ�T0; T0�. Then there exist "0 D "0.T0/ > 0 and C > 0, depending only
on F and T0, such that for " 2 .0; "0�,
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�.F;G/ � C

�

ln ln
1

"

��1
: (10.2.22)

The proof of this theorem will require the following lemma, which was obtained in
Sapogov (1980).

Lemma 10.2.1. Suppose that F.x/ is an arbitrary distribution function and f .t/
its characteristic function. We denote by �.2k/

u .f I t/ a symmetric, 2kth-order finite
difference of f with step u � 0 at t 2 R

1. Then

F

�

�2�
s

�

C 1 � F
�2�

s

�

� .�1/k2�
4kI2ks

Z s

0

�.2k/
u .f; 0/du; (10.2.23)

where s > 0 is arbitrary, k D 1; 2; : : : ; and

I2k D .2k � 1/ŠŠ
.2k/ŠŠ

�:

Proof of Lemma 10.2.1. It is well known that for any function '.t/

�.2k/
u .'I t/ D

2k
X

lD0
.�1/l' .t � .k � 1/u/ : (10.2.24)

For '.t/ D exp.i tx/ we have

�.2/
u

�

exp.i tx/I t� D exp.i tx/
�

�4 sin2
ux

2

�

:

Since

�.2k/
u .'I t/ D �.2/

u

�

�.2k�2/
u .'I t/I t�;

for any k � 1 we obtain

�.2k/
u

�

exp.i tx/I t/ D exp.i tx/
�

�4 sin2
ux

2

�k

;

�.2k/
u

�

exp.i tx/I 0/ D
�

�4 sin2
ux

2

�k

:

By the fact that �.2k/
u .'I t/ is linear, we find from the last relation that

.�1/k�.2k/
u .f I 0/ D 4k

Z 1

�1
sin2k

xu

2
dF.x/: (10.2.25)

Integrating this identity with respect to u between 0 � u � s < 1 we obtain
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.�1/k
Z s

0

�.2k/
u .f I 0/du D 4k

Z s

0

Z 1

�1
sin2k

xu

2
dF.x/du

D 4k
Z s

0

Z 1

�1
sin2k

xu

2
d ŒF.x/ � F.�x/�du: (10.2.26)

Suppose that for h D 0; 1; 2; : : : the domainsEh � R
2 andGh � R

2 are determined
as follows:

Eh WD f.x; u/ W 0 � u � s; 2h� � x � 2.hC 1/�g ;
Gh WD f.x; u/ W xh � x < 1; 2h� � xu � 2.hC 1/�g ;

where

xh WD 2�.hC 1/=s: (10.2.27)

If .x; u/ 2 Gh, then 2h�=x � u � 2.h C 1/�=x and according to (10.2.27),
0 � u � 2.hC 1/�=xh D s. Consequently, .x; u/ 2 Eh. This means that Gn � Eh,
h D 0; 1; 2; : : : . Now, letting F1.x/ D F.x/ � F.�x/, we obtain by (10.2.26) that

.�1/k
Z s

0

�.2k/
u .f I 0/du D 4k

1
X

hD0

Z Z

Eh

sin2k
xu

2
dF1.x/du

� 4k
1
X

hD0

Z Z

Gh

sin2k
xu

2
dF1.x/du

D 4k
1
X

hD0

Z 1

xh

dF1.x/
Z 2�.hC1/=x

2�h=x

sin2k
xu

2
du

D 4k
1
X

hD0

Z 1

xh

dF1.x/
x

2

Z �.hC1/

�h

sin2k ydy

D 4k2

1
X

hD0

Z 1

xh

dF1.x/

x
I2k

D 4k2I2k

1
X

hD0

1
X

lDh

Z XiC1

xi

dF1.x/

x

D 4k2I2k

1
X

hD1
h

Z xh

xh�1

dF1.x/

x

� 4k2I2k

1
X

hD1

h

xh

Z xh

xh�1

dF1.x/



246 10 Moment Distances

D 4k2I2k

1
X

hD1

hs

2�.hC 1/

Z xh

xh�1

dF1.x/

� 4kI2k
s

2�

Z 1

x0

dF1.x/

D 4ks

2�
I2k ŒF.�x0/C 1 � F.x0/� :

Here we denoted x0 D 2�=s and used

I2k WD .2k � 1/ŠŠ

.2k/ŠŠ
D
Z �

0

sin2k ydy:

This concludes the proof of Lemma 10.2.1. ut
Remark 10.2.1. Let us note now that if f .t/ has a derivative of order 2k at t D 0,
then

ˇ

ˇ�.2k/
u .f I 0/ˇˇ � u2k

ˇ

ˇf .2k/.0/
ˇ

ˇ : (10.2.28)

Let us now prove the theorem.

Proof of Theorem 10.2.2. Suppose that g.t/ satisfies (10.2.21). The distribution
function G.x/ corresponding to g.t/ is truncated at �=s, where s is a positive
number. This means that the probability

R

jxj��=s dG.x/ is displaced from jxj � �=s

to x D 0 on R
1.

For the corresponding distribution function G�.x/ we have

Z �=s

��=s
'.x/d

�

G�.x/ �G.x/
� D '.0/

Z

jxj��=s
dG.x/;

regardless of what the continuous function ' W Œ��=s; �=s� ! R
1 is. Therefore, for

any integer k � 1,

ˇ

ˇg�.2k/.0/
ˇ

ˇ D
Z �=s

��=s
x2kdG.x/; (10.2.29)

jg�.t/ � g.t/j �
ˇ

ˇ

ˇ

Z 1

�1
ei txd

�

G�.x/ �G.x/
�

ˇ

ˇ

ˇ

� 2

Z

jxj��=s
dG.x/; (10.2.30)

where t 2 R
1 and g�.t/ D R1

�1 exp.i tx/dG�.x/. Next, according to (10.2.24),
letting ' D f and ' D g, we find, with 0 � ku � ks � T0 and (10.2.21) taken into
account, that



10.2 Criteria for Convergence to a Distribution with an Analytic Characteristic Function 247

ˇ

ˇ�.2k/
u .f I 0/��.2k/

u .gI 0/ˇˇ �
2k
X

lD0

 

2k

l

!

ˇ

ˇf
�

t � .k � l/u
�� g

�

t � .k � l/u�ˇˇ

� "4k: (10.2.31)

Therefore, for u D s,

ˇ

ˇ�.2k/
s .gI 0/ˇˇ � ˇ

ˇ�.2k/
s .f I 0/ˇˇC "4k (10.2.32)

and
ˇ

ˇ

ˇ

Z s

0

�.2k/
u .gI 0/du

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

Z s

0

�.2k/
u .f I 0/

ˇ

ˇ

ˇC "s4k: (10.2.33)

To estimate
R

jxj��=s dG.x/, we apply Lemma 10.2.1 and (10.2.33), substituting
s for 2s:

Z

jxj��=s
dG.x/ � �

4kl2ks

ˇ

ˇ

ˇ

Z 2s

0

�.2k/
u .gI 0/du

ˇ

ˇ

ˇ

� �

4kI2ks

�ˇ

ˇ

ˇ

Z 2s

0

�.2k/
u .f I 0/du

ˇ

ˇ

ˇC 2"4k
�

: (10.2.34)

Denote �2k D R1
�1 x2kdF.x/. By (10.2.28) and the fact that

ˇ

ˇf .2k/.0/
ˇ

ˇ D �2k ,
we have

ˇ

ˇ

ˇ

Z 2s

0

�.2k/
u .f I 0/du

ˇ

ˇ

ˇ � �2k
.2s/2kC1

2k C 1
: (10.2.35)

Since f .t/ is analytic in jt j � R, for all integers k � 1

�2k � C
.2k/Š

R2k
: (10.2.36)

Here and subsequently in the proof of the theorem, C denotes a constant (possibly
different on each occasion) that depends only on f .

Relations (10.2.35) and (10.2.36) and Stirling’s formula imply

�

4kI2ks

ˇ

ˇ

ˇ

Z 2s

0

�.2k/
u .f I 0/du

ˇ

ˇ

ˇ � �2k.2s/
2k.2k/ŠŠ

�.2k C 1/ŠŠ

� C

�

s2k

eR

�2k p
k: (10.2.37)

From (10.2.21), (10.2.30), (10.2.34), and (10.2.37) we derive, for �T0 � t � T0,
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jF.t/ �G�.t/j � "C �

4kI2ks

 

ˇ

ˇ

ˇ

Z 2s

0

�.2k/
u .f I 0/du

ˇ

ˇ

ˇC 2"s4k

!

� C
p
k

"

�s2k

eR

�2k C "

#

: (10.2.38)

Passing from F.x/ to its truncation F �.x/, we obtain

jf .t/ � g�.t/j � C
p
k

"

�2ks

eR

�2k C "

#

(10.2.39)

for �T0 � t � T0.
Let us now choose � > 0 and consider g�.t/ for complex t with jIm.t/j � �.

We assume that � is fixed and chosen sufficiently small so that � < min.R; T0; 1/.
Subsequently more constraints will be imposed on �. We write

W.x/ WD 1 �G�.x/CG�.�x/:

We have

jg�.t/j D
ˇ

ˇ

ˇ

Z �=s

��=s
ei txdG�.x/

ˇ

ˇ

ˇ

D
Z �=s

��=s
e�xdG�.x/

D
1
X

nD0

��

nŠ

Z �=s

��=s
jxjndG�.x/: (10.2.40)

However, for n � 1,

Z �=s

��=s
jxjndG�.x/ D �

Z �=s

0

xndW.x/

D n

Z �=s

0

xn�1W.x/dx:

In addition, because (10.2.34) and (10.2.37) imply

W.x/ � C
p
k

"

�2k�

xRe

�2k C "

#

;

therefore, for �=s > 1 and n � 1,
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Z �=s

��=s
jxjndG�.x/ D n

Z 1

0

xn�1W.x/dx C n

Z �=s

1

xn�1W.x/dx

� n

Z 1

0

xn�1dx C n

Z �=s

1

xn�1C
p
k

"

�2�k

xRe

�2k C "

#

dx

� 1C C
p
k"
��

s

�n C C
p
k

�

2�k

Re

�2k

n

Z �=s

1

xn�2k�1dx:

Thus,

Z �=s

��=s
jxjndG�.x/ D 1C C

p
k"
��

s

�n C C
p
k

�

2�k

Re

�2k
n

n � 2k
��

s

�n�2k

for n ¤ 2k and

Z �=s

��=s
jxj2kdG�.x/ � 1C C

p
k"
��

s

�2k C C
p
k

�

2�k

Re

�2k

2k ln
�

s
:

Substituting the last two estimates into (10.2.34) and applying Stirling’s formula,
we find that

jg�.t/j � 1C
X

nD1
n¤2k

�n

nŠ

"

1C C
p
k"
��

s

�n C C
p
k

�

2�k

Re

�2k
n

n � 2k

��

s

�n�2k
#

C �2k

.2k/Š

 

1C C
p
k"
��

s

�2k C C
p
k

�

2�k

Re

�2k

2k ln
�

s

!

� e� C "C
p
ke

��
s C C

p
k

�

2k

Re

�2k

s2ke
��
s C C

�

2��

Re

�2k

ln
�

s
:

(10.2.41)

Note that (10.2.39) and (10.2.41) hold for all s > 0 and all integers k � 1. Let
us first choose s D ��=.2k/ in these relations. We then have

jf �.t/ � g�.t/j � C
p
k

"

���

Re

�2k C "

#

(10.2.42)

for real t 2 Œ�T0; T0� and

jg�.t/j � e� C C
p
k"e2k C C

���

R

�2k C ln
2k

�
(10.2.43)
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for complex t with jIm.t/j � �. Without loss of generality, we can assume that
��=R < 1. Let us choose in (10.2.42) and (10.2.43)

k D
�

˛ ln
1

"

�

;

where ˛ > 0 is a sufficiently small number and Œx� denotes the integer part of x.
We can assume that "0 D "0.˛/ is chosen sufficiently small so that k > 0. Then we
obtain from (10.2.42)

jf �.t/ � g�.t/j � C"	; t 2 Œ�T0; T0�; (10.2.44)

for some 	 D 	.˛/ > 0, and from (10.2.43) we find that

jg�.t/j � M.�/; jIm.t/j � �; (10.2.45)

whereM.�/ depends only on � and "0.
The arguments given in deriving (10.2.45) also apply in estimating the modulus

of f �.t/ (the corresponding calculations can even be simplified). That is, we can
assume that

jf �.t/j � M.�/; jIm.t/j � �: (10.2.46)

Next, we obtain a relation similar to (10.2.44) but for complex t . Let us choose an
arbitrary integer n > 1 and write

f �.t/ � g�.t/ D
2n�1
X

jD0

f �.j /.0/� g�.j /.0/
j Š

tj C f �.2n/.�/� g�.2n/.�/
.2n/Š

t2n;

(10.2.47)

where � satisfies j� j � jt j. We have

f �.2n/.�/ D
Z �=s

��=s
.�1/nx2nei�xdF �.x/;

g�.2n/.�/ D
Z �=s

��=s
.�1/nx2nei�xdG�.x/:

From this we find that for real �

ˇ

ˇf �.2n/.�/
ˇ

ˇ �
Z �=s

��=s
x2ndF �.x/

�
��

s

�2n

;

ˇ

ˇg�.2n/.�/
ˇ

ˇ �
��

s

�2n

: (10.2.48)
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If, however, � is a complex number with jIm.�/j < �=2, then

jf �.2n/.�/j �
Z �=s

��=s
x2ne�s=2dF �.x/

�
 

Z �=s

��=s
x4ndF �.x/

!1=2

;

 

Z �=s

��=s
e�xdF �.x/

!1=2

� �

M.�/
�1=2

��

s

�2n

; (10.2.49)

and, analogously,

jg�.2n/.�/j � �

M.�/
�1=2

��

s

�2n

; jIm.�/j � �=2: (10.2.50)

From (10.2.47) and (10.2.48) we obtain for real t such that jt j � min.T0; 1/

ˇ

ˇ

ˇ

2n�1
X

jD0

f �.j /.0/� g�.j /.0/
j Š

tj
ˇ

ˇ

ˇ � C"	 C
��

s

�2n 1

.2n/Š
:

Since we let s D ��=.2k/, for real t such that jt j � T0 WD min.T0; 1/ the last
inequality produces

ˇ

ˇ

ˇ

2n�1
X

jD0

f �.j /.0/� g�.j /.0/
j Š

tj
ˇ

ˇ

ˇ � C"	 C
�

2k

�

�2n
1

.2n/Š
: (10.2.51)

But then it is well known that1

ˇ

ˇ

ˇ

2n�1
X

jD0

f �.j /.0/� g�.j /.0/
j Š

tj
ˇ

ˇ

ˇ � C

 

"	 C
�

ke

�n

�2n
1p
n

!


2n (10.2.52)

for 
 > 1 and complex t inside an ellipse with foci ˙T1, real semi-axis T1

C1=

2

,

and imaginary semi-axis T1

�1=

2

.
Let us consider complex t such that jt j � �1, where �1 > 0 and 
 > 1 are chosen

in such a way that

�1 < T1

 � 1=


2
< �=2:

1See Bernstein (1937, Chap. II, Sect. 1).
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Then for complex t such that jt j � �1, we obtain from (10.2.52), (10.2.47), (10.2.49),
and (10.2.50) that

ˇ

ˇf �.j /.t/ � g�.j /.t/
ˇ

ˇ � C

 

"	 C
� ke

�n

�2n 1p
n

!


2n

CM1=2.�/C
�ke

�n

�2n .
 � 1=
/2n
2n

p
n

:

If we assume in the last relation that n D ˇk, where e=.ˇ�/ < 1, then we obtain

jf �.t/ � g�.t/j � C"	1; (10.2.53)

where 	1 > 0 is such that 	1 < 	 and (10.2.53) is fulfilled for complex t with
jt j � �1.

Let us now consider a conformal mapping � D th
�

�t
4�1

�

of ft W jIm.t/t j � �1g
onto the unit circle f� W j�j � 1g. Denote by r the radius of the largest circle with
center at � D 0 that can be inscribed into the image of jt j � �1 under the mapping

� D th

�

�t

4�1

�

: (10.2.54)

Let

'.�/ D f ��t.�/
�

;

‰.�/ D g��t.�/
�

:

From (10.2.53) we have

j'.�/�‰.�/j � C"	1; j�j � r; (10.2.55)

and from (10.2.45) and (10.2.46)

j'.�/j � M.�/; ‰.�/j � M.�/; j�j � 1: (10.2.56)

Since '.�/ and ‰.�/ are analytic in j�j � 1, we can let

'.�/ D
1
X

jD0
aj �

j ;

‰.�/ D
1
X

jD0
bj �

j :

When j�j � r1 < r , taking (10.2.55) into account and using the Cauchy inequality
for coefficients of the expansion of an analytic function into a power series, we
obtain
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ˇ

ˇ

ˇ'.�/�‰.�/ �
m
X

jD0
.aj � bj /�j

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

1
X

jDmC1
.aj � bj /�

j
ˇ

ˇ

ˇ

� C"	
.r1=r/

mC1

1 � r1=r
; (10.2.57)

wherem > 1 is an arbitrary integer. Hence,

ˇ

ˇ

ˇ

m
X

jD0
.aj � bj /�

j
ˇ

ˇ

ˇ � C"	1

"

1C .r1=r/
mC1

1 � r1=r

#

(10.2.58)

for j�j � r1 < r . According to Bernstein (1937), for � > 1 and real

� 2
�

�r1 � C 1=�

2
; r1

� C 1=�

2

�

we have

ˇ

ˇ

ˇ

m
X

jD0
.aj � bj /�

j
ˇ

ˇ � C"	1

"

1C .r1=r/
mC1

1 � r1=r

#

�mC2: (10.2.59)

However, for all complex � 2
n

j�j < r1 ��1=�
2

o

ˇ

ˇ

ˇ'.�/�‰.�/�
m
X

jD0
.aj � bj /�j

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

1
X

jDmC1
.aj � bj /�

j
ˇ

ˇ

ˇ

� M.�/

�

r1.� C 1=�/=2
�mC1

1 � r1.� C 1=�/=2
; (10.2.60)

where we used (10.2.56) and the Cauchy inequality for coefficients of the expansion
of an analytic function into a power series. From (10.2.59) and (10.2.60) we
conclude that

j'.�/�‰.�/j � C"	1
h

1C .r1=r/
mC1

1 � r1=r
i

�mC1 CM.�/

�

r1.� C 1=�/=2
�mC1

1 � r1.� C 1=�/=2

for real � such that j�j � r1.� C 1=�/=2. Denoting

‚ WD 1 � r1.� C 1=�/=2

and taking into account that 0 < r1 < r , we can make the last inequality slightly
cruder:

j'.�/�‰.�/j � C"	1�mC2 CM.�/.1�‚/mC1=‚ (10.2.61)
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for real � such that j�j � 1 � ‚. Note that (10.2.61) is true for all integers m � 1

and all real ‚ 2 .0; 1/. Now, in (10.2.61) let

m D
�

˛1 ln
1

"

�

;

‚ D ln ln 1="

˛2 ln 1="
;

where ˛1 > 0 and ˛2 > 0 are sufficiently small (but are independent of "). Then,
elementary (though still quite cumbersome) calculations show that

"	1�mC2 CM.�/.1�‚/mC1=‚ � C.ln 1="/�	2 ;

where 	 > 0 is a constant. Therefore, (10.2.7) yields

j'.�/�‰.�/j � C.ln 1="/�	2

for real �, satisfying the condition

j�j � 1 � ln ln
1

"
=

�

˛1 ln
1

"

�

:

Turning from '.�/ and ‰.�/ back to f .t/ and g.t/ we obtain

jf .t/ � g.t/j � C

�

ln
1

"

��	2

for real t , satisfying

jt j � 4�1

�
ath

 

1 � ln ln 1
"

˛1 ln 1
"

!

;

that is, for

jt j � C ln ln
1

"
;

which concludes the proof of Theorem 10.2.2. ut
Corollary 10.2.3. Suppose that a nondegenerate F.x/ satisfies Cramér’s condi-
tion: there exists a positive constant R such that

R1
�1 exp.Rjxj/dF.x/ < 1.

A sequence fFng1
nD1 of DFs converges weakly to F.x/ if and only if for some T0 > 0

"n D sup
jt j�T0

jfn.t/ � f .t/j ! 0; n ! 1;

where fn.t/; f .t/ are the characteristic functions of Fn and F , respectively.
Moreover,
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�.Fn; F / � C=

�

ln ln
1

"n

�

:

To prove this result, it is enough to note that Cramér’s condition is equivalent to
the analyticity of f .t/ in jt j < R and then use Theorem 10.2.2.

10.3 Moment Metrics

Suppose that D is a set of DFs given on the real line R
1 with finite moments of

all orders and uniquely determined by them. Below we give a definition of metrics
on D in which closeness means closeness (or coincidence) of a certain number of
moments of the corresponding distributions.

Assume that F 2 D. We denote by �j .F / the j th moment of the DF F :

�j .F / WD
Z 1

�1
xj dF.x/ .j � 0 is an integer/:

For each positive number ˛ we introduce in D a metric d˛ by setting

d˛.F1; F2/ WD min
kD0;1;:::max

�

1

k C 1
; ˛j�0.F1/� �0.F2/j; : : : ;

˛j�k.F1/� �k.F2/jg : (10.3.1)

Let us show that d˛ is indeed a metric. Clearly, d˛ is symmetric in F1 and F2, and
0 � d˛.F1; F2/ � 1. Moreover, d˛.F1; F2/ D 0 implies the coincidence of all
moments of F1 and F2, and consequently the equality of F1 and F2 since Fi 2 D

.i D 1; 2/. It remains to show that d˛ satisfies the triangle inequality. To this end,
let us clarify the meaning of d˛ . Let

d˛.F1; F2/ D d; (10.3.2)

where d > 0 is a number. If 1=d �1 D k is an integer, then (10.3.2) is equivalent to

j�j .F1/� �j .F2/j � d=˛ (10.3.3)

being fulfilled for j D 0; 1; : : : ; k. If, however, 1=d is not an integer, then (10.3.2)
is equivalent to (10.3.3) for j D 0; 1; : : : ; Œ1=d �. Let F1; F2; F3 2 D. For any j

˛j�j .F1/� �j .F2/j � ˛j�j .F1/ � �j .F3/j C ˛j�j .F2/� �j .F3/j: (10.3.4)

Let us show that d˛.F1; F2/ � d˛.F1; F3/Cd˛.F3; F2/. Without loss of generality,
we can assume that d˛.F1; F3/ � d˛.F3; F2/.

To prove the triangle inequality, it is enough to show that

˛j�j .F1/� �j .F2/j � d˛.F1; F3/C d˛.F3; F2/
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for

j � Œ1= .d˛.F1; F3/C d˛.F3; F2//�:

However,

Œ1= .d˛.F1; F3/C d˛.F3; F2//� � Œ1=d˛.F1; F3/�

if 1=d˛.F1; F3/ is not an integer, and

Œ1= .d˛.F1; F3/C d˛.F3; F2//� � 1=d˛.F1; F3/� 1

if 1=d˛.F1; F3/ is an integer. The conclusion now follows from the value of d˛.F1;
F3/, d˛.F2; F3/, and (10.3.4).

Clearly, for 0 < ˛ < 1 the metrics d˛ are topologically equivalent to each other.
Let us now introduce in D the metric d1 by setting

d1.F1; F2/ D 1

k C 1
.k � 0/

if all moments of F1 and F2 up to and including order k coincide and �kC1.F1/ ¤
�kC1.F2/. It is easy to verify that d1.F1; F2/ is the limit of d˛.F1; F2/ as ˛ ! 1.
Clearly, d1 is a metric on D. Moreover, it satisfies the strengthened version of the
triangle inequality:

d1.F1; F2/ � max .d1.F1; F3/; d1.F3; F2//

for all F1; F2; F3 2 D (so that d1 is an ultrametric on D). It is also clear that for
˛1 < ˛2 < 1 we have

d˛1.F1; F2/ < d˛2.F2; F2/ � d1.F1; F2/:

It is easy to verify that d1 is a stronger metric than any of the d˛ with ˛ < 1.
The metrics d˛ and d1 can be extended to the space of all distribution functions

on R
1 by setting

d˛.F1; F2/ D min
kD0;1;:::;mmax

n 1

k C 1
; ˛j�0.F1/� �0.F2/j; : : : ;

˛j�k.F1/ � �k.F2/j
o

;

d1.F1; F2/ D lim
˛!1 d˛.F1; F2/:

Here m is determined from the condition that moments of F1 and F2, up to and
including orderm, exist (are finite) and at least one of the F1 and F2 does not have a
finite moment of ordermC1. Note that under such considerations, d˛ ceases to be a
metric. Indeed, d˛.F1; F2/ D 0 does not generally imply that F1 D F2 (this occurs
if F1 and F2 have coinciding moments of all orders, but the problem of moments
is indeterminate for them). However, the loss of this property is inconsequential for
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our purposes, and we retain the term “metric” for d˛.F1; F2/ .0 < ˛ � 1/ even
when F1; F2 62 D. Note that d1 was first introduced in Mkrtchyan (1978) and d˛
.0 < ˛ < 1/ in Klebanov and Mkrtchyan (1979).

10.3.1 Estimates of � by Means of d1

Suppose that for two DFs F and G

d1.F;G/ D 1

2mC 1
; m � 2:

Then

�j .F / D �j .G/; j D 0; 1; : : : ; 2m:

Let

�j D �j .F / D �j .G/; j D 0; 1; : : : ; 2m;

ˇm D
m
X

jD1
�

�1=.2j /
2j : (10.3.5)

Clearly, ˇm is a truncated Carleman’s series. Since the divergence of a Carle-
man’s series is a sufficient condition for the problem of moments to be determi-
nate,2it is natural to seek an estimate of the closeness of F and G in � in terms
of ˇ�1

m . Note that m � Œ1=d1.F;G/ � 1�=2, that is, a large m corresponds to
distributions close in d1 and, if Carleman’s series

P1
jD1 �

�1=.2j /
2j diverges, then

also a small ˇ�1
m . We start with the following result due to Klebanov and Mkrtchyan

(1980).

Theorem 10.3.1. Let F and G be two DFs for which (10.3.5) holds. Then there
exists an absolute constant C such that

�.F;G/ � Cˇ
�1=4
m�1

�

1C �
1=2
2

�1=4

; (10.3.6)

where

m � 1

2
Œ1=d1.F;G/ � 1�:

Proof. We will use some results from Akhiezer (1961), which, for the convenience
of the reader, are stated below.

2See, for example, Akhiezer (1961).
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From a sequence of moments �0 D 1; �1; : : : ; �2m we can construct a sequence
of determinants

Dk D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�0 �1 : : : �k
�1 �2 : : : �kC1
: : : : : : : : : : : :

�k �kC1 : : : �2k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; k D 0; 1; : : : ; m;

a sequence of polynomials

P0.�/ D 1;

Pk.�/ D 1p
Dk�1Dk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�0 �1 : : : �k
�1 �2 : : : �kC1
: : : : : : : : : : : :

�k �kC1 : : : �2k
1 � : : : �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

and numbers

˛k D
Z 1

�1
�P 2

k .�/dF.�/;

bk D
p
Dk�1DkC1
Dk

; k D 1; 2; : : : ; m � 1:

Here, Pk.�/ .k D 0; 1; : : : ; m/ are solutions of the finite-difference equations

bkC1ykC1 C akyk C bkC1ykC1 D �ykC1;

the second linearly independent solution of which is denoted by Qk.�/.
The following analog of the Liouville–Ostrogradski formula holds for Pk.�/ and

Qk.�/ for any complex �3:

Pk�1.�/Qk.�/� Pk.�/Qk�1.�/ D 1

bk�1
; k D 1; : : : ; m:

In Akhiezer (1961, pp. 110–111), it is shown that

ˇm�1 D
m�1
X

nD1
�

�1=.2n/
2n � e

m�2
X

nD0

1

bn
: (10.3.7)

3For more information on these concepts see Akhiezer (1961, pp. 1–18).
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Let us now estimate
Pm�2

nD0 1=bn. Using an analog of the Liouville–Ostrogradski
formula and the Cauchy–Buniakowsky inequality, we obtain

m�2
X

nD0

1

bn
�

m�2
X

nD0
jPn.�/QnC1.�/j C

m�2
X

nD0
jPnC1.�/Qn.�/j

� 2

 

m�1
X

nD1
Pn.�/j2

!1=2  m�1
X

nD0
jQn.�/j2

!1=2

: (10.3.8)

Note that (10.3.8) holds for any complex �.
If Im.�/ ¤ 0, then for any n � 14 we have

n�1
X

kD0
jwPk.�/CQk.�/j2 � w � Nw

� � N� ; (10.3.9)

where

w WD w.�/ WD
Z 1

�1
dF.t/

t � �
; (10.3.10)

and the bar denotes complex conjugate. Using (10.3.9) we find that

m�2
X

nD0
jQn.�/j2 � 2

m�2
X

nD0
jwPn.�/CQnC1.�/j2 C 2

m�2
X

nD0
jwj2jPn.�/j2

� 2
w � Nw
� � N� C 2jwj2

m�1
X

nD0
jPn.�/j2:

This, together with (10.3.7) and (10.3.8), implies that

ˇm�1 � e2
p
2

ˇ

ˇ

ˇ

ˇ

w � Nw
� � N�

ˇ

ˇ

ˇ

ˇ

 

m�2
X

nD0
jPn.�/j2 C e2

p
2jwj

m�1
X

nD0
jPn.�/j2

!

: (10.3.11)

If
Pm�1

nD0 jPn.�/j2 � 1, then
Pm�1

nD0 jPn.�/j2 �
�

Pm�1
nD0 jPn.�/j2

�1=2

, and we derive

from (10.3.11) that

m�1
X

nD0
jPn.�/j2 � ˇm�1=

 

2
p
2e

 

jwj C
ˇ

ˇ

ˇ

ˇ

w � Nw
� � N�

ˇ

ˇ

ˇ

ˇ

1=2
!!

:

4See Akhiezer (1961, pp. 25, 46–48).
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If, however,
Pm�1

nD0 jPn.�/j2 < 1, then we analogously find from (10.3.11) that

 

m�1
X

nD0
jPn.�/j2

!1=2

� ˇm�1=
 

2
p
2e

 

jwj C
ˇ

ˇ

ˇ

ˇ

w � Nw
� � N�

ˇ

ˇ

ˇ

ˇ

1=2
!!

;

and consequently,

max

8

<

:

m�1
X

nD0
jPn.�/j2;

 

m�1
X

nD0
jPn.�/j2

!1=2
9

=

;

� ˇm�1

 

2
p
2e

 

jwjC
ˇ

ˇ

ˇ

ˇ

w � Nw
� � N�

ˇ

ˇ

ˇ

ˇ

1=2
!!

:

(10.3.12)

If G has the same moments �0; �1; : : : ; �2m as F , then for any � satisfying
Im.�/D 0 we have5

ˇ

ˇ

ˇ

Z 1

�1
dF.t/

t � �
�
Z 1

�1
dG.t/

t � �
ˇ

ˇ

ˇ � 1

t � �

2
Pm�1

nD0 jPn.�/j2
:

The last inequality and (10.3.12) yield the following estimate:

ˇ

ˇ

ˇ

Z 1

�1
dF.t/

t � �
�
Z 1

�1
dG.t/

t � �
ˇ

ˇ

ˇ � C.jwj C j.w � Nw/=.� � N�/j1=2/
j� � N�jˇm�1

; (10.3.13)

where C is an absolute constant (below we denote by C possibly different absolute
constants).

To transform (10.3.13) into a more convenient form, we estimate jwj and j.w �
Nw/=.� � N�/j. Denoting � D � C i�, we have

w D w.�/

D
Z 1

�1
dF.t/

.t � �/

D
Z 1

�1
.t � �/

.t � �/2 C �
dF.t/C i

Z 1

�1
�

.t � �/2 C �2
dF.t/:

From this it is easy to obtain that

jI m.w/j � 1

j�j ;

jRe.w/j � 1

j�j ;

j.w � Nw=.� � N�/j D jI m.w/=�j � 1=�2:

5See Akhiezer (1961, pp. 22 and 55).
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Next we assume that 0 < � � 1. Then the preceding inequalities and (10.3.13)
produce

ˇ

ˇ

ˇ

Z 1

�1
dF.t/

t � �
�
Z 1

�1
dG.t/

t � �
ˇ

ˇ

ˇ � C

�2ˇm�1
;

so that

ˇ

ˇ

ˇ

Z 1

�1
�

.t � �/2 C �2
dF.t/ �

Z 1

�1
�

.t � �/2 C �2
dG.t/

ˇ

ˇ

ˇ � C

�2ˇm�1
: (10.3.14)

Using (10.3.14) it is easy to verify that

ˇ

ˇ

ˇ

Z A

�A
eiu�

�

Z 1

�1
�

.t � �/2 C �2
dF.t/

�

d�

�
Z A

�A
eiu�

�

Z 1

�1
�

.t � �/2 C �2
dG.t/

�

d�
ˇ

ˇ

ˇ

� CA

�2ˇm�1
(10.3.15)

for all A > 0. We want to pass to integrals along the entire axis on the left-hand side
of (10.3.15). To this end, we estimate

Z 1

�1
d�
Z 1

�1
�eiu�

.t � �/2 C �2
dF.t/ �

Z A

�A
d�
Z 1

�1
�eiu�

.t � �/2 C �2
dF.t/

D
Z A

�1
d�
Z 1

�1
�eiu�

.t � �/2 C �2
dF.t/C

Z 1

�1
d�
Z 1

�1
�eiu�

.t � �/2 C �2
dF.t/:

(10.3.16)

For this purpose we consider

I1 D
Z A

�1
d�
Z 1

�1
�

.t � �/2 C �2
dF.t/

D
Z 1

�1

�

Z �ACt

�1
�

.�2 C �2
d�
�

dF.t/

D
Z 1

�1

��

2
� arctan

A� t

�

�

dF.t/:

It is easy to verify that for some constant C

�

2
� arctan z �

(

C
1Cz ; for z � 0;

�; for z < 0:
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Then

I1 D
Z A

�1

��

2
� arctan

A� t

�

�

dF.t/

C
Z 1

A

��

2
� arctan

A� t

�

�

dF.t/

�
Z A

�1
CdF.t/

1C j.A� t/=�j C �

Z 1

A

dF.t/

�
Z 1

�1
CdF.t/

1C j.A� t/=�j C �
�

1 � F.A/
�

: (10.3.17)

Let us now show that the first term on the right-hand side of (10.3.17) is not greater
than C.1C �

1=2
2 /=A. Indeed,

A

�

Z 1

�1
C

1C j.A� t/=�jdF.t/ � C
ˇ

ˇ

ˇ

Z 1

�1
A=�� t=�

1C j.A� t/=�
dF.t/

C
Z 1

�1
t=�

1C j.A� t/=�jdF.t/

� C

 

Z 1

�1
j.A� t/=�j

1C j.A� t/=�jdF.t/

C 1

�

Z 1

�1
jt j

1C j.A� t/=�jdF.t/

!

� C.1C �
1=2
2 =�/:

Therefore,
Z 1

�1
CdF.t/

1C j.A� t/=�jdF.t/ � C

A

�

�C �
1=2
2

� � C

A

�

1C �
1=2
2

�

:

In addition, it is clear that

1 � F.A/ � �
1=2
2 =A:

Consequently,

ˇ

ˇ

ˇ

Z �A

�1
d�
Z 1

�1
�eiu�

.� � t/2 C �2
dF.t/

ˇ

ˇ

ˇ � I1 � C.1C �
1=2
2 /

A
:

We now see that

ˇ

ˇ

ˇ

Z 1

A

d�
Z 1

�1
�eiu�

.� � t/2 C �2
dF.t/

ˇ

ˇ

ˇ � C.1C �
1=2
2 /

A
: (10.3.18)
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Arguing analogously we obtain

ˇ

ˇ

ˇ

Z 1

A

d�
Z 1

�1
�eiu�

.� � t/2 C �
dF.t/

ˇ

ˇ

ˇ � C.1C �
1=2
2 /

A
: (10.3.19)

Substituting (10.3.18) and (10.3.19) into (10.3.16), we find that

ˇ

ˇ

ˇ

Z 1

�1
d�
Z 1

�1
�eiu�

.� � t/2 C �2
dF.t/ �

Z A

�A
d�
Z 1

�1
�eiu�

.� � t/2 C �
dF.t/

ˇ

ˇ

ˇ

� C.1C �
1=2
2 /

A
: (10.3.20)

Using the same arguments for G.t/ we obtain an estimate similar to (10.3.20) but
with F.t/ replaced by G.t/. Taking this and (10.3.15) into account, we obtain

ˇ

ˇ

ˇ

Z 1

�1
d�
Z 1

�1
�eiu�

.� � t/2 C �2
dF.t/ �

Z 1

�1
d�
Z 1

�1
�eiu�

.� � t/2 C �2
dG.t/

ˇ

ˇ

ˇ

(10.3.21)

� CA

�2ˇm�1
C C.1C �

1=2
2 /

A
: (10.3.22)

Next, suppose that f .u/ and g.u/ are the characteristic functions of F and G,
respectively. Since for any distribution functionH we have

Z 1

�1
eiu�

Z 1

�1
�

.� � t/2 C �2
dH.t/d.�/ D �e�j�ujh.u/;

where h is a characteristic function of H , (10.3.21) implies that

jf .u/� g.u/j � C

"

A

�2ˇm�1
C 1C �

1=2
2

A

#

e�j�j: (10.3.23)

Letting here

juj � T;

� D min.1=T; 1/;

A D ˇ
1=2
m�1�.1C �

1=2
2 /1=2;

we obtain

jf .u/� g.u/j � Cˇ
�1=2
m�1 .1C �

1=2
2 /1=2T: (10.3.24)
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Therefore,

�.F;G/ D min
t>0

max

�

1

2
max
juj�T

jf .u/� g.u/j; 1=T
	

� Cˇ
�1=2
m�1 .1C �

1=2
2 /1=4:

Note that estimate (10.3.6) is not exact. A better estimate can be easily obtained
for distributions with slowly increasing moments. It is, however, altogether unfit for
distributions with fast increasing moments. ut
Theorem 10.3.2. Let F and G be two DFs for which (10.3.5) holds. Then

�.F;G/ � C�
1=.2mC1/
2m =m; (10.3.25)

where m � Œ1=d1.F;G/ � 1�=2 and C is an absolute constant.

Proof. Suppose that f .t/ and g.t/ are the characteristic functions of F and G,
respectively. According to Taylor’s formula we have

f .t/ � g.t/ D
2m�1
X

kD0

f .k/.0/� g.k/.0/

kŠ
tk C f .2m/.�/� g.2m/.�/

.2m/Š
t .2m/;

where � is a point between 0 and t . Since

�j .F / D �j .G/ D �j ; j D 0; 1; : : : ; 2m;

we have f .k/.0/ D g.k/.0/; k D 0; 1; : : : ; 2m. In addition,

jf .2m/.�/j � �2m; jg.2m/.�/j � �2m:

Thus,

jf .t/ � g.t/j � 2�2m

.2m/Š
jt j2m;

and hence
1

2
max
jt j�T

jf .t/ � g.t/j � �2mT
2m=.2m/Š: (10.3.26)

Clearly,

min
t>0

maxf�2mT 2m=.2m/Š; 1=T g D f�2m=.2m/Šg1=.2mC1/;

that is,

�.F;G/ � .�2m=.2m/Š/
1=.2mC1/:

Applying Stirling’s formula, we obtain the desired result. ut
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Note that if F is a uniform DF on .0; 1/ and G satisfies (10.3.5), then (10.3.25)
yields

�.F;G/ � C=m; (10.3.27)

while (10.3.6) yields only
�.F;G/ � C=m1=4: (10.3.28)

Of course, estimate (10.3.27) is significantly better than (10.3.28). On the other
hand, if F is an exponential DF with parameters � D 1 and G satisfies (10.3.5),
then (10.3.25) yields only the trivial estimate

�.F;G/ � 1;

while (10.3.6) implies that

�.F;G/ � C.lnm/�1=4:

Thus, the precision of (10.3.6) and (10.3.25) varies rather substantially for different
classes of distributions. The following result is intermediate between Theorems
10.3.1 and 10.3.2.

Theorem 10.3.3. Suppose that the characteristic function f .t/ of F is analytic in
some circle,�j WD �j .F /; j D 0; 1; : : : , and letG be such that (10.3.5) is fulfilled.
Then

�.F;G/ � CF = ln.m/; (10.3.29)

where the constant CF depends only on F (but not on G andm).

Proof. Let g be a characteristic function corresponding to G. As in the proof of
Theorem 10.3.2, we obtain

jf .t/ � g.t/j � 2�2m

.2m/Š
jt j2m

for all real t . If f .t/ is analytic in a circle of radiusR, then it is clear that forR1 < R
and all m

2�2m

.2m/Š
R2m1 � QCF :

Therefore, for jt j � T0 < R1

jf .t/ � g.t/j � QCF .T0=R1/2m:

We derive the desired result from Theorem 10.2.2 when " WD QCF .T0=R1/2m. ut
Remark 10.3.1. It is clear that for an exponential distribution estimate (10.3.29) is
better than (10.3.6).
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10.3.2 Estimates of � by Means of d˛; ˛ 2 .0; 1/

Let us now turn to estimating the closeness of F and G in � if we know that these
distributions are close in d˛, ˛ 2 .0;1/. The problem of constructing estimates of
this type is equivalent to the problem of estimating the closeness of distributions in
� from the closeness of their first 2m moments.

Assume that F andG have finite moments up to and including order 2m and that

j�j .F / � �j .G/j � ı; j D 1; 2; : : : ; 2m; (10.3.30)

where ı > 0 is a given number.

Theorem 10.3.4. Suppose that F and G satisfy (10.3.30), where 0 < ı � 1. Then

�.F;G/ D 2= ln
�

1C ı�1=2/C .2�2m=.2m/Š
�1=.2mC1/

: (10.3.31)

Proof. If f .t/ and g.t/ are the characteristic functions of F and G, then for all
t 2 Œ�T; T � .T > 0/ we have

jf .t/ � g.t/j �
ˇ

ˇ

ˇ

2m�1
X

jD0

f .j /.0/� g.j /.0/

j Š
tj
ˇ

ˇ

ˇC 2�2m C ı

.2m/Š
jt j2m

�
2m�1
X

jD0

ı

j Š
T j C 2�2m

.2m/Š
T 2m

� ıeT C 2�2m

.2m/Š
T 2m: (10.3.32)

Letting here

T D min
˚

ln.1C ı�1=2/;
�

.2m/Š=.2�2m/
�1=.2m�1/


;

we obtain

�.F;G/ � max
˚

ı1=2 C ı C �

2�2m.2m/Š
�1=.2mC1/

; 1=T



� max
˚

ı1=2 C ı C �

2�2m=.2m/Š
�1=.2mC1/

; 1= ln.1C ı�1=2/

C .2�2m=.2m/Š/
1=.2mC1/


� 2= ln.1C ı�1=2/C �

2�2m=.2m/Š
�1=.2mC1/

:

ut
The following result follows immediately from Theorem 10.3.4.
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Corollary 10.3.1. The following inequality holds:

�.F;G/ � 2= ln
�

1C .d˛.F;G/=˛/
�1=2�C �

2�2s=.2s/Š
�1=.2sC1/

;

where

s WD �

1 � d˛.F;G/
�

=
�

2d˛.F;G/
��

;

�2s WD �2s.F / .0 < ˛ < 1/:

Theorem 10.3.5. Suppose that the characteristic function f of F is analytic in a
circle and that (10.3.30) is fulfilled for F andG. Then for any q 2 .0; 1/ there exists
a value Cq , depending only on q and F (but not on G andm), such that

�.F;G/ � Cq= ln ln.ı C 2q2m/: (10.3.33)

Proof. For any real t [see (10.3.32)] we have

jf .t/ � g.t/j � ıejt j C 2�2m

.2m/Š
jt j2m: (10.3.34)

LetR be the radius of the circle of analyticity of f .t/. Then, for jt j � R1 < R2 < R,

2�2m

.2m/Š
jt j2m � Cq1q

2m
1 ;

R1

R
< q1 <

R2

R
;

where Cq1 depends only on q1 (and F ) but not on m. From (10.3.34) it follows that
for jt j � R1

jf .t/ � g.t/j � eı C Cq1q
2m
1 :

Applying Theorem 10.2.2 we find

�.F;G/ � Cq1;F = ln ln
�

eı C Cq1q
2m
1

�

:

Thus, by the fact thatR1 andR2 are arbitrary under the condition thatR1 < R2 < R,
we obtain (10.3.33). ut

10.3.3 Estimates of d˛ by Means of Characteristic Functions

Previously we obtained estimates of the closeness of distributions in the � metric
from their closeness in the metric d˛ . It is natural to ask whether it is possible to
construct reverse estimates, that is, whether d˛ can be estimated by means of � or a
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similar metric. Since in general weak convergence does not imply the convergence
of the corresponding moments, even in the class D an estimate of d˛ by means of
� is impossible. However, if we consider a subclass N ofD formed by distributions
with moments that do not increase faster than a specified sequence, then such an
estimate becomes possible for ˛ < 1. It is then clear that to construct estimates
of this kind it is enough to know the order of the closeness of the characteristic
functions of the corresponding distributions in some fixed neighborhood of zero.

Suppose that N1 � N2 � � � � � Nk � : : : is an increasing sequence of positive
numbers. Let

N WD N.N1;N2; : : : ; Nk; : : : / D
n

F W
Z 1

�1
jxj jdF.x/ � Nj ; j D 1; 2; : : :




:

Theorem 10.3.6. Suppose that F;G 2 N and the corresponding densities f and g
satisfy

sup
jt j�T0

jf .t/ � g.t/j � "; (10.3.35)

where T0 > 0 is a constant. Then there exists an absolute constant C such that for
all integers k > 0 with

k3C
1

kC1 "
1

kC1 � N
1

kC1

k T0=2 (10.3.36)

we have

j�k.F /� �k.G/j � CNkC1k3"
1

kC1 : (10.3.37)

Proof. Relation (10.3.35) can be written as

f .t/ � g.t/ D R.t I "/; (10.3.38)

where jR.t I "/j � " for jt j � T0. Let

!.t/ D
(

exp
��1=.1C t/2 � 1=.1� t/2� for t 2 .�1; 1/;

0 for t 62 .�1; 1/;

and

!ı.t/ D 1

ı
!.1=ı/=

Z 1

�1
!.�/d�; ı > 0:

We can show that for any integer

sup
t

ˇ

ˇ!.n/.t/
ˇ

ˇ � CN3n; (10.3.39)

where C is an absolute constant.
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Let us multiply both sides of (10.3.38) by !ı.t � z/ and integrate with respect
to t . We then have

fı.z/ � gı.z/ D Rı.zI "/; (10.3.40)

where

fı.z/ D
Z 1

�1
f .t/!ı.t � z/dt;

gı.z/ D
Z 1

�1
g.t/!ı.t � z/dt;

Rı.zI "/ D
Z 1

�1
R.t I "/!ı.t � z/dt:

Moreover, jR.n/ı .zI "/j � " for jzj � T0 � ı.
Clearly, fı.z/; gı.z/, and Rı.zI "/ are infinitely differentiable with respect to z.

By (10.3.39) and the definition of !ı , it is clear that

ˇ

ˇR
.n/

ı .zI "/
ˇ

ˇ � Cn3n"=ın; jzj � T0 � ı: (10.3.41)

Differentiating both sides of (10.3.40) k times with respect to z and taking (10.3.41)
into account, we find that

ˇ

ˇf
.k/

ı .0/� g
.k/

ı .0/
ˇ

ˇ � C"k3k=ık: (10.3.42)

On the other hand,

ˇ

ˇf
.k/

ı .0/� �k.F /
ˇ

ˇ D ˇ

ˇf
.k/

ı .0/� f
.k/

ı .0/
ˇ

ˇ

�
Z 1

�1

ˇ

ˇf .k/.t/ � f .k/.0/
ˇ

ˇ!ı.t/dt

� NkC1
Z 1

�1
jt j!ı.t/dt

� ıNkC1:

Similarly,
ˇ

ˇg
.k/

ı .0/� �k.G/
ˇ

ˇ � ıNkC1:

The last two inequalities, together with (10.3.42), show that

j�k.F / � �k.G/j � C"k3k=ık C 2ıNkC1

for all k � 1 and all ı for which T0�ı > 0. The right-hand side of the last inequality
attains a minimum with respect to ı when
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ı D ımin D .Ck3kC1"=
�

2=NkC1/
�1=.kC1/

;

and this minimum is equal to

4C
1

kC1 K
3kC1
kC1 "

1
kC1 =2

1
kC1 N

1
kC1

kC1 :

From this we see that when (10.3.36) is fulfilled, then so is T0 � ı � T0=2,
and (10.3.35) holds. ut
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Chapter 11
Uniformity in Weak and Vague Convergence

The goals of this chapter are to:

• Extend the notion of uniformity,
• Study the metrization of weak convergence,
• Describe the notion of vague convergence,
• Consider the question of its metrization.

Notation introduced in this chapter:

Notation Description

M Space of bounded nonnegative measures
�K Generalization of `H on M

��;G G-weighted Prokhorov metric
N Space of nonnegative measures finite on any bounded set

v! Vague convergence
K.�0; �00/ Kantorovich-type metric in N

….�0; �00/ Prokhorov metric in N

11.1 Introduction

In this chapter, we consider �-uniform classes in a general setting in order to study
uniformity in weak and vague convergence. In the next section, we begin with a few
definitions and then proceed to the case of weak convergence. Finally, we introduce
the notion of vague convergence and consider the question of its metrization.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 11, © Springer Science+Business Media, LLC 2013
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11.2 �-Metrics and Uniformity Classes

Let .U; d/ be a separable metric space (s.m.s) with Borel �-algebra B. Let M
denote the set of all bounded nonnegative measures on B and P1 D P.U / the
subset of probability measures. Let M0 � M. For each class F of �-integrable
functions f on U (� 2 M0), define on M0 the semimetric

�F .�0; �00/ D sup

�ˇ

ˇ

ˇ

ˇ

Z

f d.�0 � �00/
ˇ

ˇ

ˇ

ˇ

W f 2 F
�

; (11.2.1)

with a �-structure.1 There is a special interest in finding, for a given semimetric �
on M0, a semimetric �F that is topologically equivalent to �. Note that this is not
always possible (see Lemma 4.4.4 in Chap. 4).

Definition 11.2.1. The class F is said to be �-uniform if �F .�n; �/ ! 0 as n ! 1
for any sequence f�1; �2; : : : g � M0 �-convergent to � 2 M0.

Such �-uniform classes were studied in Sect. 4.4 of Chap. 4. Here we investigate
�-uniform classes in a more general setting. We generalize the notion of �-uniform
class as follows. Let K be the class of pairs .f; g/ of real measurable functions on
U that are �-integrable for any � 2 M0 � M. Consider the functional

�K.�
0; �00/ D sup

�Z

f d�0 C
Z

gd�00 W .f; g/ 2 K

�

; �0; �00 2 M: (11.2.2)

The functional �K may provide dual and explicit expressions for minimal distances.
For example, define for any measures �0, �00 with �0.U / D �00.U / the class
A.�0; �00/ of all Borel measurese� on the direct productU �U with fixed marginals
�0.A/ D e�.A � U /, �00.A/ D e�.U � A/, A 2 B. Then (see Corollary 5.3.2 in
Chap. 5), for 1 � p < 1, if

R

dp.x; a/.�0 C �00/.dx/ < 1, then we have that
(11.2.2) gives the dual form of the p-average metric, i.e.,

�K.p/.�
0; �00/ D inf

�Z

dp.x; y/e�.dx � dy/ W e� 2 A.�0; �00/
�

; (11.2.3)

where K.p/ is the set of all pairs .f; g/ for which f .x/ C g.y/ � dp.x; y/,
x; y 2 U .

Definition 11.2.2. We call the class K a �-uniform class (in a broad sense) if for
any sequence f�1; �2; : : : g � M0 � M the �-convergence to � 2 M0 implies
limn!1 �K.�n; �/ D 0.

1See Definition 4.4.1 in Chap. 4.
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The notation �n
w�! � denotes, as usual, the weak convergence of the sequence

f�1; �2; : : : g � M to � 2 M.

Theorem 11.2.1. Let �;�1; �2; : : : be a sequence of measures in M and �.U / D
�n.U /, n D 1; 2; : : : . Let B.t/, t � 0, be a convex nonnegative function, B.0/ D 0,
satisfying the Orlicz condition: supfB.2t/=B.t/ W t > 0g < 1. If

Z

B.d.x; a//.�n C �/.dx/ < 1;

then the joint convergence

�n
w�! �

Z

B.d.x; a//.�n � �/.dx/ ! 0 (11.2.4)

is equivalent to the convergence �B.�n; �/ ! 0, where B is the class of pairs .f; g/
such that f .x/C g.y/ < B.d.x; y//, x; y 2 U .

Proof. Let � be the Prokhorov metric in M, i.e.,2

�.�0; �00/ D inff" > 0 W �0.A/ � �00.A"/C "; �00.A/ � �0.A"/C "

for any closed set A � U g: (11.2.5)

Then, as in Lemma 8.3.1,3 we conclude that

B.�.�0; �00//�.�0; �00/ � �B.�
0; �00/ � B.�.�0; �00//

CKB

�

2�.�0; �00/B.M/C
Z

d.x;a/>M

B.d.x; a/.�0 C �00/.dx/
�

(11.2.6)

for any �0; �00 2 M, M > 0, a 2 U , and KB WD supfB.2t/=B.t/I t > 0g. Hence,
(11.2.4) provides �B.�n; �/ ! 0.

To prove (11.2.4) provided that �B.�n; �/ ! 0, we use the following inequality:
for any �0, �00 2 M with �0.U / D �00.U / and

R

B.d.x; a//.�0 C �00/.dx/ < 1,
and for anyM > 0 and a 2 U , we have

Z

B.d.x; a//I fd.x; a/ > M g�0.dx/ � .KB CK2
B/.
bLB.�0; �00/

C
Z

B.d.x; a//I fd.x; a/ > M=2g�00.dx/: (11.2.7)

2See, for example, Hennequin and Tortrat (1965).
3See (8.3.5)–(8.3.7) in Chap. 8.
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In the preceding inequality, bLB.�0; �00/ WD inffLB.e�/ W e� 2 A.�0; �00/g is the
minimal distance relative to LB.e�/ WD R

B.d.x; y//e�.dx; dy/. To prove (11.2.7),
observe that for any � 2 A.�0; �00/ we have

Z

B.d.x; a//I fd.x; a/ > M g�0.dx/

� KB

Z

B.d.y; a//I fd.x; a/ > M ge�.dx; dy/CKBLB.e�/;

where
Z

B.d.y; a//I fd.x; a/ > M ge�.dx; dy/

� B.M/�0.d.x; a/ > M/C
Z

B.d.y; a//I fd.y; a/ > M g�00.dy/

and

�0.d.x; a/>M/� 1

B.M=2/

�

LB.e�/C
Z

B.d.y; a//I fd.y; a/ > M=2g�00.dy/
�

:

Combining the last three inequalities we obtain

Z

B.d.x; a//I fd.x; a/ > M g�0.dx/

� KBLB.e�/CK2
BLB.e�/CKB

Z

B.d.y; a//I fd.y; a/ > M g�00.dy/

CK2
B

Z

B.d.y; a//I fd.y; a/ > M=2g�00.dy/:

Passing to the minimal distancesbLB in the last estimate yields the required (11.2.7).
Then �B.�n; �/ ! 0, together with (11.2.6) and (11.2.7), implies

�m ! � lim
M!1 sup

n

Z

B.d.x; a//I fd.x; a/ > M g�n.dx/ D 0:

The preceding limit relations complete the proof of (11.2.4).4 ut
Recall that if G.x/ is a nonnegative continuous function on U and

f�0; �1; : : : g � M,
R

Gd�n < 1, n D 0; 1; : : : , then the joint convergence

4See Billingsley (1999, Sect. 5).
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�n
w�! �0

Z

Gd.�n � �0/ ! 0 n ! 1 (11.2.8)

is called a G-weak convergence (Definition 4.3.2).

Theorem 11.2.2. The G-weak convergence (11.2.8) in

MG WD
�

� 2 M W
Z

Gd� < 1
�

is equivalent to the weak convergence �n
w�! �0, where

�n.A/ D
Z

A

.1CG.x//�n.dx/; n D 0; 1; : : : ; A 2 B: (11.2.9)

Proof. Suppose (11.2.8) holds; then define the measures �i .B/ WD R

B
Gd�i (i D

0; 1; : : : ) on AG \ B, where AG WD fx W G.x/ > 0g. For any continuous and
bounded function f

ˇ

ˇ

ˇ

ˇ

Z

f d.�n � �0/
ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

Z

f .1CG/I fG � N gd.�n � �/
ˇ

ˇ

ˇ

ˇ

C
Z

kf k.1CG/I fG > N gd.�n C �/; (11.2.10)

where kf k WD supfjf .x/j W x 2 U g and N > 0. For any N with �0.G.x/ D
N/ D 0, by the weak convergence �n

w�! �0, we have that the first integral on
the right-hand side of (11.2.10) converges to zero, and hence (11.2.10) and (11.2.8)

imply �n
w�! �0.

Conversely, if �n
w�! �0, then for any continuous and bounded function f

and g D f=.1 C G/ we have
R

gd�n ! R

gd�0 since g is also continuous
and bounded (i.e.,

R

f d�n ! R

f d�0). Finally, by
R

U
d�n ! R

U
d�0, we have

�n.U /C R

Gd�n ! �0.U /C R

Gd�0, and thus (11.2.8) holds. ut
Recall the G-weighted Prokhorov metric [see (4.3.5)]

��;G.�1; �2/ D inff" > 0 W �1.A/ � �1.A
�"/C "

�2.A/ � �1.A
�"/C " 8A 2 Bg; (11.2.11)

where �i is defined by (11.2.9) and � > 0.

Corollary 11.2.1. ��;G metrizes the G-weak convergence in MG .

Proof. For any �0; �n 2 MG , ��;G.�n; �0/ ! 0 if and only if �1;G.�n; �0/ ! 0,

which by the Prokhorov (1956) theorem is equivalent to �n
w�! �0. An appeal to

Theorem 11.2.2 proves the corollary. ut
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In the next theorem, Theorem 11.2.3, we will omit the basic restriction in
Theorem 11.2.1,�n.U / D �.U /, n D 1; 2; : : : . Define the class OR of continuous
nonnegative functions B.t/, t � 0, limt!0 sup0�s�t B.s/ D 0, satisfying the
following condition: there exist a point to t � 0 and a nondecreasing continuous
function B0.t/, t � 0, KB0 WD supfB0.2t/=B0.t/ W t > 0g < 1, B0.0/ D 0, such
that B.t/ D B0.t/ for t � t0.

Lemma 11.2.1. Let B 2 OR and �;�1; �2; : : : be a sequence of measures in M
satisfying (11.2.4),�.U / D �n.U /,

R

B.d.x; a//.�nC�/.dx/ < 1, n D 1; 2; : : : .
Then �B.�n; �/ ! 0 as n ! 1, where B is defined as in Theorem 11.2.1.

Proof. One can easily see that the joint convergence (11.2.4) is equivalent to

�n ! �; lim
M!1 sup

n

Z

B0.d.x; a//I fd.x; a/ > M g�n.dx/ D 0 (11.2.12)

[see Billingsley (1999, Sect. 5) and the proof of Theorem 6.4.1 in Chap. 6 in this
book]. Then, as in the proof of (8.3.6), we conclude that for anyM � t0

sup

�Z

f d�n C
Z

gd� W f .x/C g.y/ � B.d.x; y// 8x; y 2 U
�

� inf

�Z

B.d.x; y//e�.dx; dy/ W e� 2 A.�; �n/

�

� eB.	.�n; �//CKB0

"

2	.�n; �/B0.M/

C
Z

B0.d.x; a//I fd.x; a/ > M g.�n C �/.dx/

#

;

where eB.t/ D supfB.s/ W 0 � s � tg. The last inequality implies �B.�n; �/ ! 0

[see (11.2.2)]. ut
Theorem 11.2.3. Let B 2 OR and �;�1; �2; : : : be a sequence of measures in M
satisfying (11.2.4) and

R

B.d.x; a//.�n C �/.dx/ < 1. Then

lim
n!1 �K1 .�n; �/ D 0; (11.2.13)

where K1 D f.f; g/ W f .x/C g.y/ � B.d.x; y//; jg.x/j � B.d.x; b//; x; y 2 U g,
and b is an arbitrary point in U .

Proof. As B 2 OR, it is enough to prove (11.2.13) for b D a. Setting cn D
�.U /=�n.U / we have limn!1 �B.cn�n; �/ D 0 by Lemma 11.2.1. Hence, as n !
1 0 � �K1 .�n; �/ � 1=cn�B.cn�n; �/C j1=cn � 1j R B.d.x; b//�.dx/ ! 0. ut
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In the next theorem we omit the conditionB 2 OR but will assume that the class
G D fg W .f; g/ 2 K1g is equicontinuous, i.e.,

lim
y!x

supfjg.x/� g.y/j W g 2 Gg D 0 x 2 U: (11.2.14)

Theorem 11.2.4 (See Ranga 1962). Let G be a nonnegative continuous function
on U and h a nonnegative function on U � U . Let K be the class of pairs .f; g/
of measurable functions on U such that .0; 0/ 2 K and f .x/ C g.y/ � h.x; y/,
x; y 2 U . Then K is a 	G-uniform class (see Definition 11.2.2 with M0 D MG) if
at least one of the following conditions holds:

(a) limy!x h.x; y/ D h.x; x/ D 0 for all x 2 U , the class F D ff W .f; g/ 2 Kg
is equicontinuous, and jf .x/j � G.x/ for all x 2 U , f 2 F .

(b) limy!x h.y; x/ D h.x; x/ D 0 for all x 2 U and the class G D fg W .f; g/ 2
Kg is equicontinuous, jg.x/j � G.x/ for all x 2 U , g 2 G.

Proof. Suppose that G � 1. Let " > 0, and let (a) hold. For any z 2 U there is
ı D ı.z/ > 0 such that if B.z/ WD fx W d.x; z/ < ıg, then

sup
x2B.z/

h.z; x/ � "=2 sup
f 2F

sup
x2B.z/

jf .x/ � f .z/j < "=2: (11.2.15)

Without loss of generality, we assume that �.
ı
B.z// D 0 (

ı
B is the boundary of B).

As U is an s.m.s., there exists z1; z2; : : : such that [1
jD1B.zj /. Setting A1 WD B.z1/,

Aj WD B.zj / n [j�1
kD1B.zk/, j D 2; 3; : : : , we have f .x/Cg.y/ D f .x/�f .zj /C

f .zj /C g.y/ � "=2C h.zj ; y/ � " for any x; y 2 Aj . Let xj 2 Aj , j D 1; 2; : : : .
Then, by

f .x/C g.y/ � " 8x; y 2 Aj ; j D 1; 2; : : : ; (11.2.16)

it follows that

1
X

jD1
f .xj /�.Aj /C

Z

gd� D
1
X

jD1

Z

Aj

.f .xj /C g.x//�.dx/ � "�.U /

for any .f; g/ 2 K: (11.2.17)

Also,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

f .x/�n.dx/ �
1
X

jD1
f .xj /�n.Aj /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� "�n.U / (11.2.18)

and

1
X

jD1
jf .xj /.�n.Aj /� �.Aj //j �

1
X

jD1
j�n.Aj /� �.Aj /j ! 0 as n ! 1

(11.2.19)
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by (11.2.15) and �n.Aj / ! �.Aj /, respectively. Combining relations (11.2.17)–
(11.2.19) and taking into account that �n.U / ! �.U /, we have that 0 �
�K.�n; �/ ! 0.

In the general case, let AG WD fx W G.x/ > 0g. Define measures �n and �
on B by �n.B/ D R

B
Gd�n and �.B/ D R

B
Gd�, respectively. The convergence

�G.�n; �/ ! 0 implies �n
w�! � as n ! 1. To reduce the general case to the

case G � 1, denote f1.x/ WD f .x/=G.x/, g1.x/ WD g.x/=G.x/ for x 2 AG ,
K1 WD f.f1; g1/ W .f; g/ 2 Kg, F1 WD ff1 W f 2 Fg, and

h1.x; y/ D h.x; y/

G.y/
C
ˇ

ˇ

ˇ

ˇ

1 � G.x/

G.y/

ˇ

ˇ

ˇ

ˇ

:

Then

f1.x/C g1.y/ D f .x/C g.y/

G.y/
C f .x/

G.x/
� f .x/

G.y/
� h1.x; y/;

and thus �K.�n; �/ D �K1 .�n; �/ ! 0 as n ! 1. By symmetry, condition (b) also
implies �K1 .�n; �/ ! 0. ut

For any continuous nonnegative function b.t/, t � 0, b.0/ D 0, we define the
class Ab D Ab.c/, c 2 U , of all real functions f on U with f .c/ D 0 and norm

Lipb.f / D supfjf .x/� f .y/j=D.x; y/ W x ¤ y; x; y 2 U g � 1;

whereD.x; y/ D d.x; y/f1C b.d.x; c//C b.d.y; c//g.
Let C.t/ D t.1C b.t//, t � 0, and p.x; y/ be a nonnegative function on U �U

continuous in each argument, p.x; x/ D 0, x 2 U , and let C be the set of pairs
.f; g/ 2 Ab � Ab for which f .x/C g.y/ � p.x; y/, x; y 2 U .

Corollary 11.2.2 (See Fortet and Mourier 1953). Let
Z

C.d.x; c//.�n C �/.dx/ < 1; n D 1; 2; : : : :

Then

(a) If

�n
w�! �

Z

C.d.x; c//.�n � �/.dx/ ! 0; (11.2.20)

then
�C.�n; �/ ! 0: (11.2.21)

(b) If p.x; y/ � D.x; y/, x; y 2 U and

K WD supfjC.s/� C.t/j=Œ.s � t/.1C b.s/C b.t//
 W s > t � 0g < 1;

(11.2.22)

then (11.2.21) implies (11.2.20).
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Proof. (a) For any x 2 U and f 2 Ab , jf .x/j � C.d.x; c//. The class Ab is
clearly equicontinuous, and thus (11.2.21) follows from Theorem 11.2.4.

(b) As p.x; y/ � D.x; y/, x; y 2 U , it follows that

�C.�
0; �00/ � �Ab .�

0; �00/ �0; �00 2 M: (11.2.23)

Applying Theorem 11.2.4 with g D �f and h D D we see that �Ab -convergence

yields �n
w�! �. As K < 1 in (11.2.22), the function .1=K/C.d.x; c//, x 2 U ,

belongs to the classAb , and hence (11.2.21) implies
R

C.d.x; c//.�n��/.dx/ ! 0.
ut

11.3 Metrization of the Vague Convergence

In this section we will study �-uniform classes in the space N of all Borel measures
� W B ! Œ0;1
 finite on the ring B0 of all bounded Borel subsets of .U; d/.
In particular, this will give two types of metrics metrizing the vague convergence
in N.

Definition 11.3.1. The sequence of measures f�1; �2; : : : g � N vaguely converges

to � 2 N (�n
v�! �) if

Z

f d�n !
Z

f d� for f 2
1
[

mD1
Fm; (11.3.1)

where Fm, m D 1; 2; : : : , is the set of all bounded continuous functions on U equal
to zero on Sm D fx W d.x; a/ < mg.5

Theorem 11.3.1. Let h be a nonnegative function on U � U , lim
y!x

h.x; y/ D
h.x; x/ D 0. Let Km be the class of pairs .f; g/ of measurable functions such that
.0; 0/ 2 Km, f .x/ C g.y/ � h.x; y/, x; y 2 U , f .x/ D g.x/ D 0, x … Sm, and
let the class ˆm D ff W .f; g/ 2 Kmg be equicontinuous and uniformly bounded.

Then, if for the sequence f�0; �1; : : : g, �n
w�! �0, then limn!1 �Km.�n; �0/ D 0,

where �Km is given by (11.2.2), with M0 replaced by N.

Proof. Let �.x/ WD max.0; 1 � d.x; Sm//, x 2 U and �n.A/ WD R

A �d�n,

A 2 B, n D 0; 1; : : : . Then, by �n
v�! �0, we have �n

w�! �0. By virtue of
Theorem 11.2.4, we obtain �Km.�n; �0/ D �Km.�n; �0/ ! 0 as n ! 1. ut

Now we will look into the question of metrization of vague convergence. Known
methods of metrization6 are too complicated from the viewpoint of the structure of
the introduced metrics or use additional restrictions on the space N.

5See Kallenberg (1975) and Kerstan et al. (1978).
6See Kallenberg (1975), Szasz (1975), and Kerstan et al. (1978).
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Let FLm D ff W U ! R; jf .x/ � f .y/j � d.x; y/; x; y 2 U; f .x/ D 0; x …
Smg, m D 1; 2; : : : . Set Km to be the following �-metric [see (11.2.1)]:

Km.�
0; �00/ D �FLm.�

0; �00/; �0; �00 2 N; m D 1; 2; : : : ; (11.3.2)

and define the metric

K.�0; �00/ D
1
X

mD1
2�mKm.�

0; �00/=Œ1C Km.�
0; �00/
 �0; �00 2 N: (11.3.3)

Clearly, in the subspace M0 of all Borel nonnegative measures with common
bounded support the metric K is topologically equivalent to the Kantorovich metric7

`1.�
0; �00/ WD sup

(

ˇ

ˇ

ˇ

ˇ

Z

f d.�0 � �00/
ˇ

ˇ

ˇ

ˇ

W f W U ! R; bounded,

jf .x/ � f .y/j � d.x; y/; x; y 2 U
)

: (11.3.4)

Corollary 11.3.1. For any s.m.s. .U; d/ the metric K metrizes the vague conver-
gence in N.

Proof. For any metric space .U; d/ a necessary and sufficient condition for

�n
v�! � is

Z

f d�n !
Z

f d� for any f 2 FL WD
[

m

FLm: (11.3.5)

Actually, if (11.3.5) holds, then for any " > 0, B 2 B0 (i.e., B is a bounded
Borel set) we have

Z

f";Bd�n !
Z

f";Bd�; (11.3.6)

where f";B.x/ WD max.0; 1 � d.x;B/="/. For any " > 0, B 2 B, define the sets
B" WD fx W d.x;B/ < "g, B�" WD fx W d.x; U n B/ � "g, B"B WD B" n B�". For
any �0, �00 2 N, and B 2 B0

�0.B/ �
Z

f";Bd�0 �
Z

f";Bd.�0 � �00/C �00.B"/;

and hence

7See Example 3.3.2 in Chap. 3.
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�0.B/ � �0.B�"/C �0.B"B/ �
Z

f";B�"d.�
0 � �00/C �00.B/C �0.B"B/

and

�0.B/ �
Z

f";Bd.�0 � �00/C �00.B"/ �
Z

f";Bd.�0 � �00/C �00.B/C �00.B"B/:

By symmetry,

j�0.B/� �00.B/j �
ˇ

ˇ

ˇ

ˇ

Z

f";B�"d.�
0 � �00/

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

Z

f";Bd.�0 � �00/
ˇ

ˇ

ˇ

ˇ

C min.�0.B"B/; �00.B"B//:

Hence, lim supn!1 j�n.B/ � �.B/j � �.B"B/, and thus �n
v�! �.

In particular, from (11.3.5) it follows that the convergence K.�n; �/ ! 0 implies

�n
v�! �.

Conversely, suppose �n
v�! �. By virtue of Theorem 11.3.1, if ‚m is a class of

equicontinuous and uniformly bounded functions f .x/, x 2 U such that f .x/ D 0

for x … Sm, then supfj R f d.�n��/f 2 ‚mg ! 0 as n ! 1. Settingˆm D FLm,
m D 1; 2; : : : , we get K.�n; �/ ! 0. ut

For all m D 1; 2; : : : ; l define

�m.�
0; �00/ WD inff" > 0 W �0.B/ � �00.B"/C "; �00.B/ � �0.B"/

C";8B 2 B; B � Smg �0; �00 2 N

and the Prokhorov metric in N

�.�0; �00/ D
1
X

mD1
2�m�m.�

0; �00/=Œ1C �m.�
0; �00/
: (11.3.7)

Obviously, the metric � does not change if we replace B by the set of all closed
subsets of U or if we replace B" D fx W d.x;B/ < "g by its closure. In M0

(the space of Borel nonnegative measures with common bounded support) the
metric � is equivalent to �. We find from Corollary 11.3.1 that � metrizes the vague
convergence in N. If .U; d/ is a complete s.m.s., then .N;K/ and .N;�/ are also
complete separable metric spaces. Here we refer to Hennequin and Tortrat (1965) for
the similar problem (the Prokhorov completeness theorem) concerning the metric
space M D M.U / of all bounded nonnegative measures with the Prokhorov metric

�.�; �/ D supf" > 0 W �.F / � �.F "/C"; �.F / � �.F "/C" 8 closed F � Ag:
(11.3.8)



282 11 Uniformity in Weak and Vague Convergence

References

Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York
Fortet R, B Mourier (1953) Convergence de la réparation empirique vers la répétition theorétique.

Ann Sci Ecole Norm 70:267–285
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Chapter 12
Glivenko–Cantelli Theorem and
Bernstein–Kantorovich Invariance Principle

The goals of this chapter are to:

• Provide convergence criteria for the classical Glivenko–Cantelli problem in terms
of the Kantorovich functional Ac ,

• Consider generalizations of the Glivenko–Cantelli theorem and provide conver-
gence criteria in terms of Ac ,

• Estimate the rate of convergence in the classic Glivenko–Cantelli theorem
through Ac ,

• Provide convergence criteria in the functional central limit theorem in terms
of Ac ,

• Consider the Bernstein–Kantorovich invariance principle and provide examples
with the `p metric.

Notation introduced in this chapter:

Notation Description

CŒ0; 1� Space of continuous functions on Œ0; 1�
W Wiener measure
DŒ0; 1� Skorokhod space

12.1 Introduction

This chapter begins with an application of the theory of probability metrics to
the problem of convergence of the empirical probability measure. Convergence
theorems are provided in terms of the Kantorovich functional Ac described in
Chap. 5 for the classic Glivenko–Cantelli theorem but also for extensions such as

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 12, © Springer Science+Business Media, LLC 2013

283
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the Wellner and the generalized Wellner theorems. The approach of the theory of
probability metrics allows for estimating the convergence rate in limit theorems,
which for the Glivenko–Cantelli theorem is illustrated through Ac .

As a next application, we provide a convergence criterion in terms of Ac for the
functional central limit theorem. We consider the Bernstein–Kantorovich invariance
principle and provide examples with the `p metric.

12.2 Fortet–Mourier, Varadarajan, and Wellner Theorems

Let .U; d/ be an s.m.s., and let P.U / be the set of all probability measures onU . Let
X1;X2; : : : be a sequence of RVs with values in U and corresponding distributions
P1; P2; : : : 2 P.U /. For any n � 1 define the empirical measure

�n D .ıX1 C � � � C ıXn/=n
and the average measure

Pn D .P1 C � � � C Pn/=n:
Let Ac be the Kantorovich functional (5.2.2),

Ac.P1; P2/ D inf

�Z

U�U
c.x; y/P.dx; dy/ W P 2 P .P1;P2/

�

; (12.2.1)

where c 2 C. Recall that P .P1;P2/ is the set of all laws onU �U with fixed marginals
P1 and P2, and C is the class of all functions c.x; y/ D H.d.x; y//, x; y 2 U ,
where the function H belongs to the class H of all nondecreasing functions on
Œ0;1/ for which H.0/ D 0 and that satisfy the Orlicz condition

KH D supfH.2t/=H.t/ W t > 0g <1 (12.2.2)

(see Example 2.4.1 in Chap. 2).
We now state the well-known theorems of Fortet and Mourier (1953), Varadara-

jan (1958), and Wellner (1981) in terms of Ac , relying on the following criterion for
the �-convergence of measures (see Theorem 11.2.1 in Chap. 11).

Theorem 12.2.1. Let c 2 C and
R

U
c.x; a/Pn.dx/ <1, n D 0; 1; : : : . Then

lim
n!1Ac.Pn; P0/ D 0 if and only if Pn

w�! P0;

lim
n!1

Z

U

c.x; b/.Pn � P0/.dx/ D 0 (12.2.3)

for some (and therefore for any) b 2 U .
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Theorem 12.2.2 (Fortet and Mourier 1953). If P1 D P2 D � � � D � and
c0.x; y/ D d.x; y/=.1 C d.x; y//, then Ac.�n; �/ ! 0 almost surely (a.s.)
as n!1.

Theorem 12.2.3 (Varadarajan 1958). If P1 D P2 D � � � D � and c (c 2 C) is a
bounded function, then Ac.�n; �/! 0 a.s. as n!1.

Theorem 12.2.4 (Wellner 1981). If P 1; P 2; : : : is a tight sequence, then
Ac0.�n; P n/! 0 a.s. as n!1.

Proof. We follow the proof of the original Wellner’s theorem [see Wellner (1981)
and Dudley (1969, Theorem 8.3)]. By the strong law of large numbers,

Z

U

f d.�n � P n/! 0 a.s, as n!1 (12.2.4)

for any bounded continuous function on U . Since fPngn�1 is a tight sequence, then
for any " > 0 there exists a compact K" such that P n.K"/ � 1 � " for all n D
1; 2; : : : . Denote

Lipc0.U / D ff W U ! R W jf .x/ � f .y/j � c0.x; y/; 8x; y 2 U g: (12.2.5)

Thus, for some finite m there are f1; f2; : : : ; fm 2 Lipc0.U / such that

sup
f 2Lipc0 .u/

inf
1�k�m sup

x2K"
jf .x/ � fk.x/j < "I

consequently

sup
f 2Lipc0 .u/

inf
1�k�m sup

x2K"
"

jf .x/ � fk.x/j < 3"; (12.2.6)

where K"
" means the "-neighborhood of K" with respect to the metric c0. Let

g.x/ WD max.0; 1 � d.x;K"/="/. Then, by (12.2.4) and P n.K
"/ � R

gdP n �
Pn.K/ � 1 � ", we have

�n.K
"/ �

Z

gd�n �
Z

gd.�n � P n/C 1 � " � 1 � 2" a.s. (12.2.7)

for n large enough. Inequalities (12.2.6) and (12.2.7) imply that

sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f d.�n � P n/

ˇ

ˇ

ˇ

ˇ

W f 2 Lipc0.U /

�

� 10" a.s. (12.2.8)

for n large enough. Note that the left-hand side of (12.2.8) is equal to the

minimal norm
ı
�c0.�n; P n/ and thus coincides withb�c0.�n; P n/ (see Theorem 6.2.1

in Chap. 6). ut
The following theorem extends the results of Fortet–Mourier, Varadarajan, and

Wellner to the case of an arbitrary functional Ac , c 2 C.
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Theorem 12.2.5 (A generalized Wellner theorem). Suppose that s1; s2; : : : is a
sequence of operators in U , and denote

Di D supfd.six; x/ W x 2 U g
Li D supfd.six; si y/=d.x; y/ W x ¤ y; x; y 2 U g
‚i D minŒDi ; .Li C 1/Ac0.ıXi ; Pi /; 1�; i D 1; 2; : : : :

Let Yi D si .Xi /, Qi be the distribution of Yi , Qn D .Q1 C � � � C Qn/=n and
�n D .ıY1 C � � � C ıYn/=n. If Q1;Q2; : : : is a tight sequence

‚n D .‚1 C � � � C‚n/=n! 0 a.s. n!1 (12.2.9)

c 2 C and for some a 2 U

lim
M!1 sup

n

Z

U

c.x; a/I fd.x; a/ > M g.�n C P n/.dx/ D 0 a.s.; (12.2.10)

then Ac.�n; P n/! 0 a.s. as n!1.

Proof. From Wellner’s theorem it follows that limnAc0.�n;Qn/ D 0 a.s. We next
estimate Ac0 .�n; P n/ obtaining

Ac0.�n; P n/ � Ac0 .�n;Qn/C .B1 C � � � C Bn/=n; (12.2.11)

where

Bi D sup

� ˇ

ˇ

ˇ

ˇ

Z

U

Œf .si x/ � f .x/�.ıXi � Pi/.dx/
ˇ

ˇ

ˇ

ˇ

W f 2 Lipc0.U /

�

:

In fact, by the duality representation of Ac0 (see Corollary 6.2.1 of Chap. 6)

Ac0.�n; P n/ D sup

( ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1

Z

U

f .x/.ıXi � Pi/.dx/
ˇ

ˇ

ˇ

ˇ

ˇ

W f 2 Lipc0 .U /

)

;

and thus

Ac0 .�n; P n/

� Ac0 .�n;Qn/C sup
f 2Lipc0 .U /

ˇ

ˇ

ˇ

ˇ

1

n

Z

f .x/.ıYi�Qi/.dx/� 1
n

Z

f .x/.ıXi�Pi/.dx/
ˇ

ˇ

ˇ

ˇ

D Ac0.�n;Qn/C sup
f 2Lipc0 .U /

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
.f .siXi/ �Ef .siXi/ � f .Xi /C Ef .Xi //

ˇ

ˇ

ˇ

ˇ

ˇ

D Ac0.�n;Qn/C .B1 C � � � CBn/=n:
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We estimate Bi as follows:

Bi � sup
f 2Lipc0 .U /

Z

jf .siXi /� f .x/j.ıXi C Pi /.dx/

� sup
x2U

d.six; x/

1C d.six; x/
Z

.ıXi C Pi /.dx/ � 2min.Di ; 1/;

and, moreover, since for g.x/ WD f .skx/ � f .x/, f 2 Lipc0.U /, we have

jg.x/ � g.y/j � d.six; si y/C d.x; y/ � .Li C 1/d.x; y/;

jg.x/ � g.y/j � 2 d.x; y/

1C d.x; y/ .Li C 1/ if d.x; y/ � 1;

kgk1 WD supfjg.x/j W x 2 U g � 2;
1
4
jg.x/ � g.y/j � 1

4
fjg.x/j C jg.y/jg

� 2 d.x; y/

1C d.x; y/ if d.x; y/ > 1;

and thus

Bi � sup

(

ˇ

ˇ

ˇ

ˇ

Z

U

g.x/.ıXi � Pi /.dx/
ˇ

ˇ

ˇ

ˇ

W g W U ! R;

jg.x/ � g.y/j � 8.Li C 1/c0.x; y/
)

� 8.Li C 1/Ac0.ıXi ; Pi /:

Using the preceding estimates for Bi and assumption (12.2.9) we obtain that
.B1 C � � � C Bn/=n! 0. According to (12.2.11),

Ac0.�n; P n/! 0 a.s. as n!1: (12.2.12)

If K is the Ky Fan metric (see Example 3.4.2 in Chap. 3) and�c0 is the probability
metric

�c0.P / WD
Z

U�U
c0.x; y/P.dx; dy/; P 2 P2.U /;

then by Chebyshev’s inequality we have

K2

1CK
� �c0 � KC K

1CK
:
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Passing to the minimal metrics in the last inequality and using the Strassen–Dudley
theorem (see Corollary 7.5.2 in Chap. 7) we get

�2

1C �
� Ac0 � � C �

1C �
; (12.2.13)

where � is the Prokhorov metric in P.U /. Applying (12.2.13) and (7.6.9) (see also
Lemma 8.3.1) we have, for any positiveM ,

�2.�n; P n/

1C �.�n; P n/
� Ac0.�n; P n/ � �.�n; P n/C �.�n; P n/

1C �.�n; P n/
(12.2.14)

and

Ac.�n; P n/ � H.�.�n; P n//C 2KH�.�n; P n/H.M/

CKH

Z

U

c.x; a/I fd.x; a/ > M g.�n C Pn/.dx/: (12.2.15)

From (12.2.12), (12.2.14), (12.2.15), and (12.2.10) it follows that Ac.�n; P n/! 0

a.s. as n!1. ut
Corollary 12.2.1. If c (c 2 C) is a bounded function and ‚n ! 0 a.s., then
Ac.�n; P n/! 0 a.s. as n!1.

Corollary 12.2.1 is a consequence of the preceding theorem when si .x/ D x,
x 2 U , and clearly is a generalization of the Varadarajan theorem 12.2.3. It is also
clear that Theorem 12.2.3 implies Theorem 12.2.2. The following example shows
that the conditions imposed in Corollary 12.2.1 are actually weaker as compared to
the conditions of Wellner’s theorem 12.2.4.

Example 12.2.1. Let .U; k � k/ be a separable normed space. Let xk be ke, where e
is the unit vector in U , and let Xk D xk a.s. Set sk.x/ WD x� xk ; thenQn D ı0 and
‚n D 0 a.s. Clearly, Ac.�n; P n/ D 0 a.s., but P n is not a tight sequence.

In what follows, we will assume that P1 D P2 D � � � D �. In this case, the
Glivenko–Cantelli theorem can be stated as follows in terms of Ac and the minimal
metric `p D Lp (0 < p <1) [see definitions (3.3.11) and (3.3.12), representations
(3.4.18) and (5.4.16), and Theorem 8.2.1].

Corollary 12.2.2 (Generalized Glivenko–Cantelli–Varadarajan theorem). Let
c 2 C and

R

U
c.x; a/�.dx/ < 1. Then Ac.�n; �/ ! 0 a.s. as n ! 1. In

particular, if
Z

U

dp.x; a/�.dx/ <1; 0 < p <1; (12.2.16)

then `p.�n; �/! 0 a.s. as n!1.
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According to Theorem 6.3.1 and Corollary 7.6.3, the minimal norm
ı
�cp with

cp.x; y/ D d.x; y/max.1; dp�1.x; a/; dp�1.y; a//; p � 1;
and the minimal metric `p metrize the same exact convergence in the space
Pp.U / D fP 2 P.U / W R

U
dp.x; a/P.dx/ <1g, namely,

`p.Pn; P /! 0 ” ı
�cp .Pn; P /! 0 ”

8

<

:

Pn
w�! P and

Z

U

dp.x; a/.Pn � P/.dx/! 0

(12.2.17)
Thus Corollary 12.2.2 implies the following theorem stated by Fortet and Mourier
(1953).

Corollary 12.2.3. If (12.2.16) holds, then

ı
�cp.�n; �/! 0 a.s. as n!1:

Remark 12.2.1. One could generalize Corollaries 12.2.2 and 12.2.3 by means of
Theorem 6.4.1; see also Ranga (1962) for extensions of the original Fortet–Mourier
result. We write H� for the subset of all convex functions in H and C� for the set
fH ıd W H 2 H�g. Theorem 8.2.2 gives an explicit representation of the functionals
Ac , c 2 C�, when U D R

1 [see (8.2.38)]. Corollary 12.2.2 may be formulated in
this case as follows.

Corollary 12.2.4. Let c 2 C�, U D R
1, and d.x; y/ D jx � yj. Let Fn.x/ be the

empirical distribution function corresponding to the distribution function F.x/ with
R

c.x; 0/dF.x/ finite. Then

Z 1

0

c.F �1
n .x/; F �1.x//dx ! 0 a.s. (12.2.18)

In particular, if
Z

jxjpdF.x/ <1 p � 1; (12.2.19)

then

`pp.Fn; F / D
Z 1

0

jF�1
n .x/ � F�1.x/jpdx ! 0 a.s. (12.2.20)

and

ı
�cp .Fn; F / D

Z 1

�1
max.1; jxjp�1/jFn.x/ � F.x/jdx ! 0 a.s. (12.2.21)
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Remark 12.2.2. In the case of p D 1, Corollary 12.2.4 was proved by Fortet and
Mourier (1953). The case p D 2 when F.x/ is a continuous strictly increasing
function was proved by Samuel and Bachi (1964).

We study next the estimation of the convergence speed in the Glivenko–Cantelli
theorem in terms of Ac . Estimates of this sort are useful if one has to estimate not
only the speed of convergence of the distribution �n to � in weak metrics but also
the speed of convergence of their moments. Thus, for example, if E`p.�n; �/ D
O.�.n//, n ! 1, for some p 2 .0;1/, then Lemma 8.3.1 implies that
.E.�.�n; �//

.pC1/=p0 D O.�.n//, n ! 1, where p0 D max.1; p/ [see (8.3.7)],
and by Minkowski’s inequality it follows that

E

ˇ

ˇ

ˇ

ˇ

ˇ

�Z

U

dp.x; a/�n.dx/

�1=p0

�
�Z

U

dp.x; a/�.dx/

�1=p0
ˇ

ˇ

ˇ

ˇ

ˇ

D O.�.n//

for any point a 2 U .
We will estimate EAc.�n; �/ in terms of the "-entropy of the measure �, as was

originally suggested by Dudley (1969). LetN.�; "; ı/ be the smallest number of sets
of diameter at most 2" whose union covers U except for a set A0 with �.A0/ � ı.
Using Kolmogorov’s definition of the "-entropy of a set U , we call logN.�; "; "/
the "-entropy of the measure �. The next theorem was proved by Dudley (1969) for
c D c0.
Theorem 12.2.6 (Dudley 1969). Let c D H ı d 2 C and H.t/ D t˛h.t/,
where 0 < ˛ < 1 and h.t/ is a nondecreasing function on Œ0;1/. Let ˇr D
R

U
cr .x; a/�.dx/ <1 for some r > 1 and a 2 U .

(a) If there exist numbers k � 2 and K <1 such that

N.�; "1=˛; "k=.k�2// � K"�k; (12.2.22)

then

EAc.�n; �/ � Cn�.1�1=r/=k ;

where C is a constant depending just on ˛, k, andK .
(b) If h.0/ > 0 and, for some positive c1 and ı

N.�; "1=˛; 1=2/ � c1"�k; (12.2.23)

then there exists a c2 D c2.�/ such that

EAc.�n; �/ � c2n�1=k : (12.2.24)

The proof of Theorem 12.2.6 is based on Dudley (1969) and the inequality

Ac.�; �/ � 2H.N/Ac˛ .�; �/C 2cH
Z

c.x; a/fd.x; a/ > N=2g.�C �/.dx/;
(12.2.25)
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where c˛ D d˛=.1Cd˛/,N > 0, and � and � are arbitrary measures on P.U /. The
detailed proof is given in Kalashnikov and Rachev (1988, Theorem 9.7, p. 147–150),
where the constant C is bounded from above by 4

3
.
p
k32kC1/.

If .U; d/ D .Rd ; k � k/, m� D
R kxk��.dx/ < 1, where � D k˛d=Œk˛ �

d/.k � 2/�, k˛ > d , k > 2, then requirement (12.2.22) is satisfied. If .U; d/ D
.Rk˛; k � k/, where k˛ is an integer and � is an absolutely continuous distribution,
then condition (12.2.23) is satisfied. The estimate EAc.�n; �/ � cn�1=k has exact
exponent .1=k/ when k˛ is an integer,U D R

k˛ , and � is an absolutely continuous
distribution having uniformly bounded moments ˇr , r > 1, and m� , � > 1.

Open Problem 12.2.1. What is the exact order of n as Ac.�n; �/ ! 0 a.s.? For
the case where � is uniform in Œ0; 1� and

c.x; y/ D c0.x; y/ D jx � yj
1C jx � yj

it follows immediately from a result of Yukich (1989) that there exist constants c
and C such that

lim
n!1 Pr

(

c �
�

n

logn

�1=2

Ac0 .�n; �/ � C
)

D 1: (12.2.26)

12.3 Functional Central Limit and Bernstein–Kantorovich
Invariance Principle

Let �n1; �n2; : : : ; �nkn , n D 1; 2; : : : , be an array of independent RVs with dis-
tribution functions (DFs) Fnk , k D 1; : : : ; kn, obeying the condition of limiting
negligibility

lim
n

max
1�k�kn

Pr.j�nkj > "/ D 0 (12.3.1)

and the conditions

E�nk D 0; E�2nk D �2nk > 0;
kn
X

kD1
�2nk D 1: (12.3.2)

Let 	n0 D 0 and 	nk D �n1 C � � � C �nk , 1 � k � kn, and form a random polygonal
line 	n.t/ with vertices (E	2nk; 	nk).1 Let Pn, from the space of laws on CŒ0; 1� with
the supremum norm kxk D supfjx.t/j W t 2 Œ0; 1�g/, be the distribution of 	n.t/,
and let W be a Wiener measure in CŒ0; 1�. On the basis of Theorem 8.3.1, we have

1See Prokhorov (1956).
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the following Ac-convergence criterion:

Ac.Pn;W /! 0 ”
8

<

:

Pn
w�! W

Z

CŒ0;1�

c.x; 0/.Pn �W /.dx/! 0
(12.3.3)

for any c 2 C D fc.x; y/ D H.kx � yk/, H 2 H [see (12.2.2)].
The limit relation (12.3.3) implies the following version of the classic Donsker–

Prokhorov theorem.2

Theorem 12.3.1 (Bernstein–Kantorovich functional limit theorem). Suppose
that conditions (12.3.1) and (12.3.2) hold and that EH.j�nkj/ < 1, k D
1; 2; : : : ; kn, n D 1; 2; : : : , H 2 H. Then the convergence Ac.Pn;W / ! 0,
n!1, is equivalent to the fulfillment of the Lindeberg condition

lim
n!1

kn
X

kD1

Z

jxj>"
x2dFnk.x/ D 0; " > 0; (12.3.4)

and the Bernstein condition

lim
N!1 lim sup

n!1

kn
X

kD1

Z

jxj>N
H.jxj/dFnk.x/ D 0: (12.3.5)

Proof. By the well-known theorem by Prokhorov (1956), the necessity of (12.3.4) is

a straightforward consequence of Pn
w�! W . Let us prove the necessity of (12.3.5).

Define the functional b W CŒ0; 1�! R by b.x/ D x.1/. For any N > 2
p
2,

Z 1

N

Pr.k	nk > t/dH.t/ < 2
Z 1

N

Pr.j	n;kn j � t �
p
2/dH.t/

� 2
Z 1

N=2

Pr.j	n;kn j > t/dH.2t/

� 2KH

Z

M.N/

Pr.j	n;kn j � t/dH.t/;

whereM.N/ increases to infinity with N " 1.3 From the last inequality it follows
thatEH.k	nk/ <1 for all n D 1; 2; : : : . By Theorem 12.2.1 and Ac.Pn;W /! 0,

the relations Pn
w�! W and

Z

H.kxk/.Pn �W /.dx/! 0

2See, for example, Billingsley (1999, Theorem 10.1).
3See, for example, Billingsley (1999).
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hold as n!1, and since for any N

EH.jb.	n/j/I fjb.	n/j > N g � EH.k	nk/I fk	nk > N g

� 2
Z 1

M1.N/

P r.k	nk > t/dH.t/;

where M1.N/ " 1 together with N " 1, we have (i) Pn ı b�1 w�! W ı b�1 and
(ii)

R

h.kxk/.Pn ı b�1 �W ı b�1/.dx/! 0 as n!1.
The necessity of condition (12.3.5) is proved by virtue of Kruglov’s moment limit

theorem.4 The sufficiency of (12.3.4) and (12.3.5) is proved in a similar way. ut
Next we state a functional limit theorem that is based on the Bernstein cen-

tral limit theorem.5 We formulate the result in terms of the minimal metric
`p (3.3.11), (3.4.18), and (12.2.17).

Corollary 12.3.1. Let �1; �2; : : : be a sequence of independent RVs such that
E�2i D bi and Ej�i jp < 1, i D 1; 2; : : : , p > 2. Let Bn D b1 C � � � C bn,

	n D �1 C � � � C �n, and let the sequence B�1=2
n =�j , j D 1; 2; : : : , satisfy the

limiting negligibility condition. Let Xn.t/ be a random polygonal line with vertices
.Bk=Bn; B

�1=2
n =	k/, and let Pn be its distribution. Then the convergence

`p.Pn;W /! 0; n!1; (12.3.6)

is equivalent to the fulfillment of the condition

lim
n!1B�p=2

n

n
X

iD1
Ej�jp D 0: (12.3.7)

Proof. The proof is analogous to that of Theorem 12.3.1. Here, conditions (12.3.4)
and (12.3.5) are equivalent to (12.3.7).6 ut
Corollary 12.3.2 (Bernstein–Kantorovich invariance principle). Suppose that
c, c 2 C, the array f�nkg satisfies the conditions of Theorem 12.3.1, and
conditions (12.3.4) and (12.3.5) hold. Then Ac.Pn ı b�1;W ı b�1/! 0 as n!1
for any functional on CŒ0; 1� for which

N.bI c; c0/ D supfc0.b.x/; b.y//=c.x; y/ W x ¤ y; x; y 2 CŒ0; 1�g <1:

Proof. Observe that Ac.Pn;W / ! 0 implies Ac0.Pn ı b�1;W ı b�1/ ! 0 as
n!1, providedN.bI c; c0/ <1. Now apply Theorem 12.3.1. ut

4Given (i), then (ii) is equivalent to (12.3.5); see Kruglov (1973, Theorem 1).
5See Bernstein (1964, p. 358).
6See Bernstein (1964), Kruglov (1973), and de Acosta and Gine (1979).
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Let c0.t; s/ D H 0.jt � sj/ and t; s 2 R. Consider the following examples of
functionals b with finite N.bI c; c0/.

(a) If H D H 0 and b has a finite Lipschitz norm,

kbkL D supfjb.x/� b.y/j=kx � yk W x ¤ y; x; y 2 CŒ0; 1�g <1; (12.3.8)

then N.bI c; c0/ < 1. Functionals such as these are b1.x/ D x.a/, a 2 Œ0; 1�;
b2.x/ D maxfx.t/ W t 2 Œ0; 1�g; b3.x/ D kxk, and b4.x/ D

R 1

0 �.x.t//dt ,
where k�kL WD supfj�.x/� �.y/j=jx � yj W x; y 2 Œ0; 1�g < 1.

(b) Let H.t/ D tp and H 0.t/ D tp
0

, 0 < p < p0. Then N.bp=p
0

3 I c; c0/ < 1 and
N.b4I c; c0/ <1 if

j�.x/� �.y/j � jx � yjp=p0

; x; y 2 Œ0; 1�: (12.3.9)

Further, as an example of Corollary 12.3.2 we will consider the functional b4 and
the following moment limit theorem.

Corollary 12.3.3. Suppose �1; �2; : : : are independent random variables with
E�i D 0, E�2i D �2 > 0, and

lim
n!1n�p=2

n
X

jD1
Ej�j jp D 0 for some p > 2: (12.3.10)

Suppose also that � W Œ0; 1�! R has a finite Lipschitz seminorm k�kL. Then

`p

 

1

n

n
X

kD1
�

�

�1 C � � � C �k
�
p
n

�

;

Z 1

0

�.w.t//dt

!

! 0 as n!1; (12.3.11)

where the law of w is W .

Proof. Let Xn.�/ be a random polygon line with vertices .k=n; Sk=�
p
n/, where

S0 D 0, Sk D �1 C � � � C �k . From Corollaries 12.3.1 and 12.3.2 it follows that

lim
n!1 `p

�Z 1

0

�.Xn.t//dt;
Z 1

0

�.w.t//dt

�

D 0: (12.3.12)

Readily,7 we have

K

 ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

0

�.Xn.t//dt � 1
n

n
X

kD1
�

�

Sk

�
p
n

�

ˇ

ˇ

ˇ

ˇ

ˇ

; 0

!

! 0; (12.3.13)

7See Gikhman and Skorokhod (1971, p. 491, or p. 416 of the English edition).
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where K is the Ky Fan metric. By virtue of the maximal inequality8

Z 1

0

Pr

( ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

0

�.Xn.t//dt � 1
n

n
X

iD1

�

Sk

�
p
n

�

ˇ

ˇ

ˇ

ˇ

ˇ

> u

)

dup

�
Z 1

N

Pr

� jSnj
�
p
n
>

t

2k�kL �
p
2

�

dtp: (12.3.14)

Corollary 12.3.1 and (12.3.10) imply that the right-hand side of (12.3.14) goes to
zero uniformly on n as N !1. From (12.3.13) and (12.3.14) it follows that

E

ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

0

�.Xn.t//dt � 1
n

n
X

kD1
�

�

Sk

�
p
n

�

ˇ

ˇ

ˇ

ˇ

ˇ

p

! 0: (12.3.15)

Finally, (12.3.15) and (12.3.13) imply

`p

 

Z 1

0

�.Xn.t//dt;
1

n

n
X

kD1
�

�

Sk

�
p
n

�

!

! 0 as n!1;

which, together with (12.3.12), completes the proof of (12.3.11). ut
We state one further consequence of Theorem 12.3.1. Let the series scheme f�nkg

satisfy the conditions of Theorem 12.3.1, and let 
n.t/ D 	nk for t 2 .tn.k�1/; tnk/,
tnk WD E	2nk, k D 1; : : : ; kn, 
.0/ D 0. Let bP n be the distribution of 
n.

The distribution bP n belongs to the space of probability measures defined on the
Skorokhod space DŒ0; 1�.9

Corollary 12.3.4. The convergence Ac.bP n;W / ! 0 as n ! 1 is equivalent to
the fulfillment of (12.3.4) and (12.3.5).

8See Billingsley (1999).
9See Billingsley (1999, Chap. 3).
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Chapter 13
Stability of Queueing Systems

The goals of this chapter are to:

• Explore the question of stability of a sequence of stochastic models in the context
of general queueing systems by means of the Kantorovich functional Ac ,

• Consider the case of queueing systems with independent interarrival and service
times,

• Consider the special case of approximating a stochastic queueing system by
means of a deterministic model.

Notation introduced in this chapter:

Notation Description

GjGj1j1 Single-server queue with general flows of interarrival times and service
times, and infinitely large “waiting room”

e D .e0; e1; : : : / “Input” flow of interarrival times
s D .s0; s1; : : : / Flow of service times
w D .w0;w1; : : : / Flow of waiting times
GI jGI j1j1 Special case of a GjGj1j1-system in which sn � en are independent

identically distributed random variables
DjGj1j1 GjGj1j1-system with a deterministic input flow
DjDj1j1 Deterministic single-server queueing model
IND.X/ Deviation of PrX from product measure PrX1 � � � � � PrXn ,

X D .X1; : : : ; Xn/

13.1 Introduction

The subject of this chapter is the fundamental problem of the stability of a sequence
of stochastic models that can be interpreted as approximations or perturbations

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 13, © Springer Science+Business Media, LLC 2013
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of a given initial model. We consider queueing systems and study their stability
properties with respect to the Kantorovich functional Ac . We begin with a general
one-server queueing system with no assumptions on the interarrival times and then
proceed to the special cases of independent interarrival times and independent ser-
vice times. Finally, we consider deterministic queueing systems as approximations
to a stochastic queuing model.

13.2 Stability of G jG j1j1-Systems

As a model example of the applicability of Kantorovich’s theorem in the stability
problem for queueing systems, we consider the stability of the system GjGj1j1.1

The notation GjGj1j1 means that we consider a single-server queue with “input
flow” feng1

nD0 and “service flow” fsng1
nD0 consisting of dependent nonidentically

distributed components. Here, feng1
nD0 and fsng1

nD0 are treated as sequences of the
lengths of the time intervals between the nth and .nC 1/th arrivals and the service
times of the nth arrival, respectively.

Define the recursive sequence

w0 D 0; wnC1 D max.wn C sn � en; 0/; n D 1; 2; : : : : (13.2.1)

The quantity wn may be viewed as the waiting time for the nth arrival to begin to be
served. We introduce the following notation: ej;k D .ej : : : ; ek/, sj;k D .sj ; : : : ; sk/,
k > j , e D .e0; e1; : : : /, and s D .s0; s1; : : : /. Along with the model defined
by relations (13.2.1), we consider a sequence of analogous models by indexing it
with the letter r (r � 1). That is, all quantities pertaining to the r th model will be
designated in the same way as model (13.2.1) but with superscript r : e.r/n , s.r/n , w.r/n ,
and so on. It is convenient to regard the value r D 1 (which can be omitted) as
corresponding to the original model. All of the random variables are assumed to be
defined on the same probability space. For brevity, functionalsˆ depending just on
the distributions of the RVs X and Y will be denoted by ˆ.X; Y /.

For the system GjGj1j1 in question, define for k � 1 nonnegative functions �k
on .Rk; kxk/, k.x1; : : : ; xk/k D jx1j C � � � C jxkj, as follows:

�k.�1; : : : ; �k; �1; : : : ; �k/ WD maxŒ0; �k � �k; .�k � �k/
C .�k�1 � �k�1/; : : : ; .�k � �k/C � � � C .�1 � �1/�:

It is not hard to see that �.en�k;n�1; sn�k;n�1/ is the waiting time for the nth arrival
under the condition that wn�k D 0.

1Kalashnikov and Rachev (1988) provide a detailed discussion of this problem.
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Let c 2 C D fc.x; y/ D H.d.x; y//;H 2 Hg [see (12.2.2)]. The system
GjGj1j1 is uniformly stable with respect to the functional Ac finite time intervals
if, for every positive T , the following limit relation holds: as r ! 1,

ı.r/.T IAc/ WD sup
n�0

max
1�k�T

Ac.�k.en;nCk�1; sn;nCk�1/;

�k.e
.r/

n;nCk�1; s
.r/n; nC k � 1// ! 0; (13.2.2)

where Ac is the Kantorovich functional on X.Rk/

Ac.X; Y / D inffEc.eX;eY / W eX dD X;eY
dD Y g (13.2.3)

[see (12.2.1)].
Similarly, we define ı.r/.T I `p/, where `p D Lp (0 < p < 1) is the minimal

metric w.r.t. the Lp-distance.2 Relation (13.2.2) means that the largest deviation

between the variables wnCk and w.r/nCk , k D 1; : : : ; T , converges to zero as r ! 1
if at time n both compared systems are free of “customers,” and for any positive T
this convergence is uniform in n.

Theorem 13.2.1. If for each r D 1; 2; : : : ;1 the sequences e.r/ and s.r/ are
independent, then

ı.r/c .T IAc/ � KH sup
n�0

Ac.en;nCT�1; e.r/n;nCT�1/

CKH sup
n�0

Ac.sn;nCT�1; s.r/n;nCT�1/; (13.2.4)

where KH is given by (12.2.2). In particular,

ı.r/c .T I `p/ � sup
n�0

`p.en;nCT�1; e.r/n;nCT�1/

C sup
n�0

`p.sn;nCT�1; s.r/n;nCT�1/: (13.2.5)

Proof. We will prove (13.2.4) only. The proof of (13.2.3) is carried out in a similar
way. For any 1 � k � T we have the triangle inequality

Lp.�k.en;nCk�1; sn;nCk�1/; �k.e.r/n;nCk�1; s
.r/

n;nCk�1//

� Lp.�k.en;nCk�1; sn;nCk�1/; �k.e.r/n;nCk�1; sn;nCk�1//

C Lp.�k.en;nCk�1; sn;nCk�1/; �k.en;nCk�1; s.r/n;nCk�1//

2See (3.3.11), (3.3.12), (3.4.18), (5.4.16), and Theorem 6.2.1.
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� Lp.�k.en;nCT�1; sn;nCT�1/; �k.e.r/n;nCT�1; sn;nCT�1//

C Lp.�k.en;nCT�1; sn;nCT�1/; �k.en;nCT�1; s.r/n;nCT�1//:

Changing over to minimal metric `p and using the assumption that e.r/ and s.r/ are
independent (r D 1; : : : ;1) we have that

inffLp.�k.en;nCk�1; sn;nCk�1/; �k.e.r/n;nCk�1; s
.r/

n;nCk�1//g
� `p.en;nCT�1; e.r/n;nCT�1/; `p.sn;nCT�1; s.r/n;nCT�1/: (13.2.6)

The infimum in the last inequality is taken over all joint distributions

F.x; y; �; �/ D Pr.en;nCk�1 < x; e.r/n;nCk�1 < y/ Pr.sn;nCk�1<�; s.r/n;nCk�1<�/;

x; y; �; � 2 R
k;

with fixed marginal distributions

F1.x; �/ D Pr.en;nCk�1 < x; sn;nCk�1 < �/;

F2.y; �/ D Pr.e.r/n;nCk�1 < x; s
.r/

n;nCk�1 < �/;

and thus the left-hand side of (13.2.5) is not greater than

`p.�k.en;nCk�1; sn;nCk�1/; �.e.r/n;nCk�1 < x; s
.r/

n;nCk�1 < �//;

which proves (13.2.4). ut
From (13.2.3) and (13.2.4) it is possible to derive an estimate of the sta-

bility of the system GjGj1j1 in the sense of (13.2.2). It can be expressed in
terms of the deviations of the vectors e.r/n;nCT�1 and s.r/n;nCT�1 from en;nCT�1 and
sn;nCT�1, respectively. Such deviations are easy to estimate if we impose additional
restrictions on e.r/ and s.r/, r D 1; 2; : : : . For example, when the terms of the
sequences are independent, the following estimates hold:

Ac.en;nCT�1; e.r/n;nCT�1/ � K
q
H

nCT�1
X

jDn
Ac.ej ; e

.r/
j /; q D Œlog2 T �C 1; (13.2.7)

`p.en;nCT�1; e.r/n;nCT�1/ �
nCT�1
X

jDn
`p.ej ; e

.r/
j / for 0 � p � 1: (13.2.8)

Let us check (13.2.8). One gets (13.2.7) by a similar argument. By the minimality
of `p , for any vectors X D .X1; : : : ; XT /, Y D .Y1; : : : ; YT / 2 X.RT / with
independent components, we have that the Minkowski inequality

Lp.X; Y / D ŒEkX � Y kp�1=p0 �
T
X

iD1
Lp.Xi ; Yi /; p0 D max.1; p/; (13.2.9)
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implies

`p.X; Y / �
T
X

iD1
`p.Xi ; Yi /; (13.2.10)

i.e., (13.2.8) holds.
Estimates (13.2.7) and (13.2.8) can be even further simplified when the terms of

these sequences are identically distributed. On the basis of (13.2.3) and (13.2.4), it
is possible to construct stability estimates for the system that are uniform over the
entire time axis.3

13.3 Stability of GIjGIj1j1-System

The system GI jGI j1j1 is a special case of GjGj1j1. For this model the RVs
�n D sn � en are i.i.d., and we assume that E�1 < 0. Then the one-dimensional
stationary distribution of the waiting time coincides with the distribution of the
following maximum:

w D sup
k�0

Yk; Yk D
�1
X

jD�k
�j ; Y0 D 0; ��j

dD �j : (13.3.1)

The perturbed model [i.e., e.r/k , s.r/k , Y .r/k ] is assumed to be also of the type
GI jGI j1j1.4 Borovkov (1984, p. 239) noticed that one of the aims of the stability
theorems is to estimate the closeness of Ef .r/.W .r// and Ef .W / for various kinds
of functions f , f .r/. Borovkov (1984, p. 239–240) proposed considering the case

f .r/.x/� f .y/ � Ajx � yj; 8x; y 2 R: (13.3.2)

Borovkov (1984, p. 270) proved that

D D supfjEf .w.r// �Ef .w/j W jf .x/ � f .y/j � Ajx � yj; x; y 2 Rg < c";
(13.3.3)

assuming that j�.r/1 � �1j � " a.s. Here and in what follows, c stands for an absolute
constant that may be different in different places.

By (3.3.12), (3.4.18), (5.4.16), and Theorem 6.2.1, we have for the minimal
metric `1 D bL1

A`1.w
.r/;w/ D supfEf .r/.w.r//� Ef .w/ W .f .r/; f / satisfy (13.3.2)g D D;

(13.3.4)

3See Kalashnikov and Rachev (1988, Chap. 5).
4For a discussion of these problems, see Gnedenko (1970), Kennedy (1972), Iglehart (1973),
Borovkov (1984, Chap. IV), Whitt (2010), Baccelli and Bremaud (2010), and Kalashnikov (2010).
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provided that Ejw.r/j C Ejwj < 1. Thus, the estimate in (13.3.3) essentially says
that

`1.w
.r/;w/ � c`1.�.r/1 ; �1/; (13.3.5)

where for any X; Y 2 X.R/

`1.X; Y / D bL1.X; Y / D sup
0�t�1

jF �1
X .t/ � F �1

Y .t/j (13.3.6)

[see (2.5.4), (3.3.14), (3.4.18), (7.5.15), and Corollary 7.4.2]. Actually,
using (7.4.18) with H.t/ D tp we have

`p.X; Y / D bLp.X; Y / D
�Z 1

0

jF�1
X .t/ � F�1

Y .t/jpdt

�1=p

; (13.3.7)

where F �1
X is the generalized inverse of the DF FX

F�1
X .t/ WD supfx W FX.x/ � tg: (13.3.8)

Letting p ! 1 we obtain (13.3.6).
The estimate in (13.3.5) needs strong assumptions on the disturbances in order

to conclude stability. We will refine the bound (13.3.5) considering bounds of

A`pp.w
.r/;w/ D supfEf .r/.w.r//� Ef .w/ W f .r/.x/ � f .y/ � Ajx � yjp;

8x; y 2 R
1g; 0 < p < 1; (13.3.9)

assuming that Ejw.r/jp C Ejwjp < 1. The next lemma considers the closeness of
the prestationary distributions of wn D max.0;wn�1 C �n�1/, w0 D 0, and of w.r/n
[see (13.2.1)].

Lemma 13.3.1. For any 0 < p < 1 and E�1 D E�
.r/
1 , the following inequality

holds:
`p.w

.r/
n ;wn/ � Ap; (13.3.10)

Ap WD min

�

n.nC 1/

2
"p; c min

1=p�1<ı<2=p�1 n
1=.1Cı/"pp.1Cı/

�

; for p 2 .0; 1�;

where

Ap WD cn1=p"p for 1 < p � 2;

Ap WD cn1=2"p for p > 2;

and
"p WD `p.�1; �

.r/
1 /:
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Remark 13.3.1. The condition E�1 D E�
.r/
1 means that we know the mean of �.r/1

for the perturbed “real” model and we chose an “ideal” model with �1 having the
same mean.

Proof. The distributions of the waiting times wn and w�
n can be determined as

follows:

wn D max.0; �n�1; �n�1 C �n�2; : : : ; �n�1 C � � � C �1/
dD max
0�j�n Yj ;

w.r/n D max.0; �.r/n�1; �
.r/
n�1 C �

.r/
n�2; : : : ; �

.r/
n�1 C � � � C �

.r/
1 /

dD max
0�j�n Y

.r/
j :

Further [see (19.4.41), Theorem 19.4.6], we will prove the following estimates of
the closeness between w.r/n and wn:

`p.w
.r/
n ;wn/ � n.nC 1/

2
`p.�1; �

.r/
1 / if 0 < p � 1 (13.3.11)

and

`p.w
.r/
n ;wn/ � p

p � 1Bpn
1=p"p if 1 < p � 2; (13.3.12)

where B1 D 1, Bp D 18p3=2=.p � 1/1=2 for 1 < p � 2. From (13.3.12) and `p �
`p.1Cı/ for any 0 < p < 1 and .1=p/�1 < ı � 2=p�1 we have 1 � p.1Cı/ � 2

and

`p.w
.r/
n ;wn/ � cn1=.1Cı/"pp.1Cı/: (13.3.13)

For p � 2 we have

Lpp.wn;w.r/n / D E

ˇ

ˇ

ˇ

ˇ

ˇ

n
_

kD1
Yk �

n
_

kD1
Y
.r/

k

ˇ

ˇ

ˇ

ˇ

ˇ

p

� p

p � 1
EjYn � Y .r/n jp � cnp=2Lp.�1; �.r/1 /p: (13.3.14)

This last inequality is a consequence of the Marcinkiewicz–Zygmund inequality.5

Passing to the minimal metrics `p D bLp in (13.3.14) we get (13.3.10). ut
Remark 13.3.2. (a) The estimates in (13.3.10) are of the right order, as can be seen

by examples. If, for example, p � 2, consider �i
dD N.0; 1/ and �.r/i D 0; then

`p.w
.r/
n ;wn/ D cn1=2.

(b) If p D 1, then `1.w.r/n ;wn/ � n"1.

5See Chow and Teicher (1997, p. 384).
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Define the stopping times

� D inf

(

k W wk D max
0�j�k Yj D w D sup

j�0
Yj

)

;

� .r/ D inffk W w.r/k D w.r/g: (13.3.15)

From Lemma 13.3.1 we now obtain estimates for `p.w.r/;w/ in terms of the
distributions of � , �.r/. Define G.n/ WD Pr.max.�.r/; �/ D n/ < Pr.�.r/ D n/ C
Pr.� D n/.

Theorem 13.3.1. If 1 < p � 2, �, 	 � 1 with .1=�/ C .1=	/ D 1 and E�1 D
E�

.r/
1 < 0, then

`pp.w
.r/;w/ � c"p�

1
X

nD1
n1=�G.n/1=	: (13.3.16)

Proof.

Lpp.w.r/;w/ D Ejw.r/ � wjp D
1
X

nD0
Ejw.r/ � wjpI fmax.�.r/; �/ D ng

D
1
X

nD0
Ejwn � w.r/n jpI fmax.�.r/; �/ D ng

�
1
X

nD0
.Ejwn � w.r/n jp�/1=�G.n/1=	;

and thus, by (13.3.10),

`pp.w
.r/;w/ �

1
X

nD0
A
p

p�G.n/
1=	 D

1
X

nD0
cn1=�"p�G.n/

1=	: ut

Remark 13.3.3. (a) If
G.n/ � cn�	.1=�C1C"/ (13.3.17)

for some " > 0, then
P1

nD1 n1=�G.n/1=	 � c
P1

nD1 n�1=.1C"/ � 1. For
conditions on �1, ��

1 ensuring (13.3.17), compare Borovkov (1984, pp. 229, 230,
240).

(b) For 0 < p � 1 and p > 2, in the same way we get from Lemma 13.3.1
corresponding estimates for `p.w.r/;w/.
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(c) Note that `1.w.r/;w/ � `p.w.r/;w/, i.e., `p-metric represents more functions
w.r.t. the deviation [see the side conditions in (13.3.9)] than `1. Moreover, "p� D
`p�.�

.r/
1 ; �1/ � `1.�.r/1 ; �1/. Therefore, Theorem 13.3.1 is a refinement of the

estimates given by Borovkov (1984, p. 270).

13.4 Approximation of a Random Queue by Means
of Deterministic Queueing Models

The conceptually simplest class of queueing models are those of the deterministic
type. Such models are usually explored under the assumption that the underlying
(real) queueing system is close (in some sense) to a deterministic system. It is
common practice to change the random variables governing the queueing model
with constants in the neighborhood of their mean values. In this section we evaluate
the possible error involved by approximating a random queueing model with
a deterministic one. To get precise estimates, we explore relationships between
distances in the space of random sequences, precise moment inequalities, and the
Kemperman (1968, 1987) geometric approach to a certain trigonometric moment
problem.

More precisely, as in Sect. 13.2, we consider a single-channel queueing system
GjGj1j1 with sequences e D .e0; e1; : : : / and s D .s0; s1; : : : / of interarrival times
and service times, respectively, assuming that fej gj�1 and fsj gj�1 are dependent
and nonidentically distributed RVs. We denote by � D .f0; �1; : : :/ the difference
s � e and let w D .w0;w1; : : : / be the sequence of waiting times, determined
by (13.2.1).

Along with the queueing model GjGj1j1 defined by the input random charac-
teristics e, s, � and the output characteristic w, we consider an approximating model
with corresponding inputs e�, s�, �� and output w�,

w�
0 D 0; w�

nC1 D .w�
n C S�

n � e�
n /C; n D 1; 2; : : : ; (13.4.1)

where .�/C D max.0; �/. The latter model has a simpler structure, namely, we
assume that e� or s� is deterministic. We also assume that estimates of the deviations
between certain moments of ej and e�

j (resp. sj and s�
j or �j and ��

j ) are given.
We will consider two types of approximating models:

(a) DjGj1j1 (i.e., e�
j are constants and in general, e�

j ¤ e�
i for i ¤ j ) and

(b) DjDj1j1 (i.e., e�
j and s�

j are constants).

The next theorem provides a bound for the deviation between the sequences w D
.w0;w1; : : : / and w� D .w�

1 ;w
�
2 ; : : : / in terms of the Prokhorov metric �.6 We

6See Example 3.3.3 and (3.3.18).
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denote by U D R
1 the space of all sequences with the metric

d.x; y/ D
1
X

iD0
2�i jxi � yi j Œx WD .x0; x1; : : : /; y WD .y0; y1; : : : /�;

which may take infinite values. Let X1 D X.R1/ be the space of all random se-
quences defined on a “rich enough” probability space .
;A;Pr/; see Remark 2.7.2.
Then the Prokhorov metric in X1 is given by

�.X; Y / WD inff" > 0 W Pr.X 2 A/ � Pr.Y 2 A"/C ";

8 Borel sets A � R
1g; (13.4.2)

where A" is the open "-neighborhood of A. Recall the Strassen–Dudley theorem
(see Corollary 7.5.2 of Chap. 7):

�.X; Y / D bK.X; Y / WD inffK.X; Y / W X; Y 2 X1; X dD X; Y
dD Y g; (13.4.3)

where K is the Ky Fan metric

K.X; Y / WD inff" > 0 W Pr.d.X; Y / > "/ < "g; X; Y 2 X1 (13.4.4)

(Example 3.4.2).
In stability problems for characterizations of "-independence the following

concept is frequently used.7 Let " > 0 and X D .X0;X1; : : : / 2 X1. The
components of X are said to be "-independent if

IND.X/ D �.X;X/ � ";

where the components Xi of X are independent and Xi

dD Xi (i � 0). The
Strassen–Dudley theorem gives upper bounds for IND.X/ in terms of the Ky Fan
metric K.X;X/.

Lemma 13.4.1. Let the approximating model be of the typeDjGj1j1. Assume that
the sequences e and s of the queueing model GjGj1j1 are independent. Then

�.w;w�/ � IND.s/C IND.s�/C
1
X

jD1
.�.ej ; e

�
j /C �.sj ; s

�
j //: (13.4.5)

Proof. By (13.2.1) and (13.4.1),

d.w;w�/ D
1
X

nD1
2�njwn � w�

n j

D
1
X

nD1
2�nj max.0; sn�1 � en�1; : : : ; .sn�1 � en�1/C � � � C .s0 � e0//

7See Kalashnikov and Rachev (1988, Chap. 4).
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� max.0; s�
n�1 � e�

n�1; : : : ; .s�
n�1 � e�

n�1/C � � � C .s�
0 � e�

0 //j

�
1
X

nD1
2�nj max.0; sn�1 � en�1; : : : ; .sn�1 � en�1/C � � � C .s0 � e0//

� max.0; sn�1 � e�
n�1; : : : ; .sn�1 � e�

n�1/C � � � C .s0 � e�
0 //j

C
1
X

nD1
2�nj max.0; sn�1 � e�

n�1; : : : ; .sn�1 � e�
n�1/C � � � C .s0 � e�

0 //

� max.0; s�
n�1 � e�

n�1; : : : ; .s�
n�1 � e�

n�1/C � � � C .s�
0 � e�

0 //j

�
1
X

nD1
2�n max.jen�1 � e�

n�1j; : : : ; jen�1 � e�
n�1j C � � � C je0 � e�

0 j/

C
1
X

nD1
2�n max.jsn�1 � s�

n�1j; : : : ; jsn�1 � s�
n�1j C � � � C js0 � s�

0 j/

�
1
X

nD1
2�n

n�1
X

jD0
.jej � e�

j j C jsj � s�
j j/

� d.e; e�/C d.s; s�/:

Hence, by the definition of the Ky Fan metric (13.4.4), we obtain K.w;w�/ �
K.e; e�/ C K.s; s�/. Next, using representation (13.4.3) let us choose independent
pairs .e"; e�

" /, .s"; s
�
" / (" > 0) such that �.e; e�/ > K.e"; e�

" / � ", �.s; s�/ >
K.s"; s�

" /� ", and e
dD e", e� dD e�

" , s
dD s", s� dD s�

" . Then by the independence of e
and s (resp. e� and s�), we have

�.w;w�/ D inffK.w0;w�
0 / W w0

dD w;w�
0

dD w�g
� inffK.e0; e�

0 /C K.s0; s�
0 / W .e0; s0/ dD .e; s/; .e�

0 ; s
�
0 /

dD .e�; s�/;

e0 is independent of s0; e is independent of s;

e�
0 is independent of s�

0 ; e
� is independent of s�g

� K.e"; e�
" /C K.s"; s�

" / � �.e; e�/C �.s; s�/C 2";

which proves that

�.w;w�/ � �.e; e�/C �.s; s�/: (13.4.6)

Next let us estimate �.e; e�/ in the preceding inequality. Observe that

K.X; Y / �
1
X

iD0
K.Xi ; Yi / (13.4.7)
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for any X; Y 2 X1. In fact, if K.Xi ; Yi / � "i and 1 > " D P1
iD0 "i , then

" >

1
X

iD0
Pr.jXi � Yi j > "i / �

1
X

iD0
Pr.2�i jXi � Yi j > "i /

� Pr

 1
X

iD0
2�i jXi � Yi j > "

!

:

Letting "i ! K.Xi ; Yi / we obtain (13.4.7). By (13.4.7) and �.e; e�/ D K.e; e�/,
we have

�.e; e�/ �
1
X

iD0
K.ei ; e�

i / D
1
X

iD0
�.ei ; e

�
i /: (13.4.8)

Next we will estimate �.s; s�/ on the right-hand side of (13.4.6). By the triangle
inequality for the metric � , we have

�.s; s�/ � IND.s/C IND.s�/C �.s; s�/; (13.4.9)

where the sequence s (resp. s�) in the last inequality consists of independent

components such that sj
dD sj (resp. s�

j

dD s�
j ). We now need the “regularity”

property of the Prokhorov metric,

�.X CZ; Y CZ/ � �.X; Y /; (13.4.10)

for any Z independent of X and Y in X1. In fact, (13.4.10) follows from the
Strassen–Dudley theorem (13.4.3) and the corresponding inequality for the Ky Fan
metric

K.X CZ; Y CZ/ � K.X; Y / (13.4.11)

for all X , Y , and Z in X1. By the triangle inequality and (13.4.10), we have

�

 1
X

iD0
Xi ;

1
X

iD0
Yi

!

�
1
X

iD0
�.Xi ; Yi / (13.4.12)

for all X; Y 2 X1, X D .X0;X1; : : : / and Y D .Y0; Y1; : : : / with
independent components. Thus �.s; s�/ � P1

jD0 �.sj ; s
�
j /, which together

with (13.4.6), (13.4.8), and (13.4.9) complete the proof of (13.4.5). ut
In the next theorem we will omit the restriction that e and s are independent,

but we will assume that the approximation model is of a completely deterministic
type DjDj1j1. (Note that for this approximation model e�

j and s�
j can be different

constants for different j .)

Lemma 13.4.2. Under the preceding assumptions, we have the following
estimates:
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�.w;w�/ D K.w;w�/ � �.�; ��/ �
1
X

jD0
�.�j ; �

�
j / D

1
X

jD0
K.�j ; ��

j /; (13.4.13)

�.w;w�/ �
1
X

jD0
.�.ej ; e

�
j /C�.sj ; s

�
j // D

1
X

jD0
.K.ej ; e�

j /CK.sj ; s�
j //: (13.4.14)

The proof is similar to that of the previous theorem.
Lemmas 13.4.1 and 13.4.2 transfer our original problem of estimating the

deviation between w and w� to a problem of obtaining sharp or nearly sharp upper
bounds for K.ej ; e�

j / D �.ej ; e
�
j / [resp. K.�j ; ��

j /], assuming that certain moment
characteristics of ej (resp. �j ) are given. The problem of estimating �.sj ; s

�
j /

in (13.4.5)8 reduces to estimating the terms IND.s/, IND.s�/, and �.ej ; e
�
j /.

IND.s/ and IND.s�/ can be estimated using the Strassen–Dudley theorem and
the Chebyshev inequalities. The estimates for �.ej ; e

�
j /, �.�j ; �

�
j / e

�
j , ��

j being
constants, are given in the next Lemmas 13.4.3–13.4.8

Lemma 13.4.3. Let ˛ > 0, ı 2 Œ0; 1�, and � be a nondecreasing continuous
function on Œ0;1/. Then the Ky Fan radius (with fixed moment�)

R D R.˛; ı; �/ WD maxfK.X; ˛/ W E�.jX � ˛j/ � ıg (13.4.15)

is equal to min.1;  .ı//, where  is the inverse function of t�.t/, t � 0.

Proof. By Chebyshev’s inequality, K.X; ˛/ �  .ı/ if E�.jX � ˛j/ � ı, and thus
R � min.1;  .ı//. Moreover,  .ı/ < 1 (otherwise, we have trivially that R D 1),
then by letting X D X0 C ˛, where X0 takes the values �", 0, " WD  .ı/ with
probabilities "=2, 1�", "=2, respectively, we obtain K.X; ˛/ D  .ı/, as is required.

ut
Using Lemma 13.4.3 we obtain a sharp estimate of K.�j ; ��

j / (��
j constant) if it

is known that E�.j�j � ��
j j/ � ı. However, the problem becomes more difficult if

one assumes that

�j 2 S��

j
."1j ; "2j ; fj ; gj /; (13.4.16)

where for fixed constants ˛ 2 R, "i � 0, and "2 > 0

S˛."1; "2; f; g/ WD fX 2 eX W jEf .X/� f .˛/j � "1; jEg.X/ � g.˛/j � "2g;
(13.4.17)

and eX is the set of real-valued RVs for which Ef .X/ and Eg.X/ exist.

8The problem was considered by Kalashnikov and Rachev (1988, Chap. 4) under different
assumptions such as s�

j being exponentially distributed and sj possessing certain “aging” or “lack
of memory” properties.
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Suppose that the only information we have on hand concerns estimates of the
deviations jEf .�j / � f .��

j /j and jEg.�j / � g.��
j /j. Here, the main problem is the

evaluation of the Ky Fan radius

D D D˛."1; "2; f; g/ D sup
X2S˛."1;"2;f;g/

K.X; ˛/ D sup
X2S˛."1;"2;f;g/

�.X; ˛/:

(13.4.18)
The next theorem deals with an estimate ofD˛."1; "2; f; g/ for the “classic” case

f .x/ D x; g.x/ D x2: (13.4.19)

Lemma 13.4.4. If f .x/ D x, g.x/ D x2 then

"
1=3
2 � D˛."1; "2; f; g/ � min.1; �/; (13.4.20)

where � D ."2 C 2j˛j"1/1=3.
Proof. By Chebyshev’s inequality for any X 2 S˛."1; "2; f; g/, we have
K3.X; ˛/ � EX2 � 2˛EX C ˛2 WD I . We consider two cases:

If ˛ > 0 then I � ˛2 C "2 � 2˛.˛ � "1/C ˛2 D �3.
If ˛ � 0 then I � 2˛2 C "2 � 2˛.˛ C "1/ D �3.

Hence the upper bound of D (13.4.20) is established.
Consider the RV X , which takes the values ˛ � ", ˛, ˛ C " with probabilities

p, q, p, .2p C q D 1/, respectively. Then EX D ˛, so that jEX � ˛j D 0 � "1.
Further, EX2 D ˛2 C 2"2p D "2 C ˛2 if we choose " D "

1=3
2 , p D "

1=3
2 =2. Then

FX.˛C "�0/�FX.˛� "/ D q D 1� "1=32 , and thus K.X; ˛/ � "
1=3
2 , which proves

the lower bound of D in (13.4.20). ut
Using Lemma 13.4.4 we can easily obtain estimates for D˛."1; "2; f; g/, where

f .x/ WD �C 	x C �x2 x; �; 	; � 2 R

and
g.x/ WD aC bx C cx2 x; a; b; c 2 R

are polynomials of degree two. That is, assuming c ¤ 0, we may represent f as
follows: f .x/ D A C Bx C Cg.x/, where A D � � �a=c, B D 	 � �b=c,
C D �=c.

Lemma 13.4.5. Let f and g be defined as previously. Assume c ¤ 0, and B ¤ 0.
Then

D˛."1; "2; f; g/ � D˛.e"1;e"2;ef ;eg/;

where

e"1 WD 1

jBj.jC j"2 C "1/; e"2 WD 1

jcj
�ˇ

ˇ

ˇ

ˇ

b

B

ˇ

ˇ

ˇ

ˇ

.jC j"2 C "1/C "2

�

;

ef .x/ D x; eg.x/ D x2:
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In particular,D˛."1; "2; f; g/ � .e"2 C 2j˛je"1/1=3 D .c1"2 C c2"1/
1=3, where

c1 D 1

jcjj	 � �bj.jb�j C j	 � �bj C 2j˛jj�cj/

and

c2 D
ˇ

ˇ

ˇ

ˇ

b

	 � �b

ˇ

ˇ

ˇ

ˇ

C 2j˛j:

Proof. First we consider the special case f .x/ D x and g.x/ D a C bx C cx2,
x 2 R, where a; b; c ¤ 0 are real constants. We prove first that

D˛."1; "2; f; g/ � D˛."1;e"2; f;eg/; (13.4.21)

wheree"2 WD .1=jcj/.jbj"1 C "2/ andeg.x/ D x2. Thus, by (13.4.20), we get

D˛."1; "2; f; g/ � .e"2 C 2j˛j"1/1=3: (13.4.22)

Since jEf .X/�f .˛/j D jEX �˛j � "1 and jEg.X/�g.˛/j D jb.EX �˛/C
c.EX2 � ˛2/j � "2, we have that jcjjEX2 � ˛2j � jbjjEX � ˛j C "2 � jbj"1 C "2.
That is, jEX2 � ˛2j �e"2, which establishes the required estimate (13.4.21).

Now we consider the general case of f .x/ D �C	xC �x2. From f .x/ D AC
BxCCg.x/ and the assumptions that jEf .X/�f .˛/j � "1 and jEg.X/�g.˛/j �
"2, we have jBjjEX�˛j � jEf .X/�f .˛/jCjC jjEg.X/�g.˛/j � "1CjC j"2, that
is, jEX�˛j �e"1. Therefore,D˛."1; "2; f; g/ � D˛.e"1; "2;ef ; g/, whereef .x/ D x.
Using (13.4.22) we have that D˛.e"1; "2;ef ; g/ � D˛.e"1;e"2;ef ;eg/, where

e"2 D 1

jcj .jbje"1 C "2/;

which by means of Lemma 13.4.4 completes the proof of Lemma 13.4.5. ut
The main assumption in Lemmas 13.4.3–13.4.5 was the monotonicity of �,

f , and g, which allows us to use the Chebyshev inequality. More difficult is the
problem of finding D˛."1; "2; f; g/ when f and g are not polynomials of degree
two. The case of

f .x/ D cosx and g.x/ D sin x;

where x 2 Œ0; 2��, is particularly difficult.

Remark 13.4.1. In fact, we will investigate the rate of the convergence of
K.Xn; ˛/ ! 0 (0 � Xn � 2�) as n ! 1, provided that E cosXn ! cos˛
and E sinXn ! sin ˛. In the next lemma, we show Berry–Essen-type bounds for
the implication

E exp.iXn/ ! exp.i˛/ ) K.Xn; ˛/ D �.Xn; ˛/ ! 0:
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In what follows, we consider probability measures 	 on Œ0; 2�� and let

M."/ D
�

	 W
ˇ

ˇ

ˇ

ˇ

Z

cos td	 � cos˛

ˇ

ˇ

ˇ

ˇ

� ";

ˇ

ˇ

ˇ

ˇ

Z

sin td	� sin ˛

ˇ

ˇ

ˇ

ˇ

� "

�

: (13.4.23)

We would like to evaluate the trigonometric Ky Fan (or Prokhorov) radius for
M."/ defined by

D D supf�.	; ı˛/ W 	 2 M."/g; (13.4.24)

where ı˛ is the point mass at ˛ and �.	; ı˛/ is the Ky Fan (or Prokhorov) metric

�.	; ı˛/ D inffr > 0 W 	.Œ˛ � r; ˛ C r�/ � 1 � rg: (13.4.25)

Our main result is as follows.

Lemma 13.4.6. Let fixed ˛ 2 Œ1; 2� � 1� and " 2 .0; .1=
p
2/.1 � cos 1//. We get

D as the unique solution of

D �D cosD D ".j cos˛j C j sin˛j/: (13.4.26)

Here we have that D 2 .0; 1/.
Remark 13.4.2. By (13.4.24), one obtains

D � Œ2".j cos˛j C j sin˛j/�1=3: (13.4.27)

From (13.4.26), (13.4.27) [and see also (13.4.28)] we have that D ! 0 as " ! 0.
The latter implies that �.	; ı˛/ ! 0, which in turn gives that 	

w�! ı˛, where ı˛
is the point mass at ˛. In fact, D converges to zero quantitatively through (13.4.24)
and (13.4.27), that is, the knowledge of D gives the rate of weak convergence of 	
to ı˛ (see also Lemma 13.4.7).

The proofs of Lemmas 13.4.6 and 13.4.7, while based on the solution of certain
moment problems (see Chap. 9), need more facts on the Kemperman geometric
approach for the solution of the general moment problem9 and therefore will be
omitted. For the necessary proofs see Anastassiou and Rachev (1992).

Lemma 13.4.7. Let f .x/ D cos x, g.x/ D sin x; ˛ 2 Œ0; 1/ or ˛ 2 .2� � 1; 2�/.
Define

D D D˛."; f; g/

D supfK.X; ˛/ W jE cosX � cos˛j � "; jE sinX � sin˛j � "g:
Let ˇ D ˛ C 1 if ˛ 2 Œ0; 1/, and let ˇ D ˛ � 1 if ˛ 2 .2� � 1; 2�/. Then

9See Kemperman (1968, 1987).
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D˛."; f; g/ � Dˇ.".cos 1C sin 1/; f; g/:

In particular, by (13.4.27),

D˛."; f; g/ � Œ2".cos 1C sin 1/.j cos˛j C j sin˛j/1=3 (13.4.28)

for any 0 � ˛ < 2� and " 2 .0; .1=p2/.1 � cos 1//.

Further, we are going to use (13.4.28) to obtain estimates for D˛."; f; g/, where
f .x/ D �C	 cosx C � sinx, x 2 Œ0; 2��, �, 	, � 2 R, and g.x/ D aC b cos xC
c sin x, x 2 Œ0; 2��, a, b, c 2 R. Assuming c ¤ 0 we have f .x/ D AC B cos x C
Cg.x/, where A D � � �a=c, B D 	 � �b=c, C D �=c.

Lemma 13.4.8. Let the trigonometric polynomials f and g be defined as previ-
ously. Assume c ¤ 0 and B ¤ 0. Then D˛."; f; g/ � D˛."�;ef ;eg/ for any
0 � ˛ < 2� , where

 D max

�

1;
1

jcj .jbj C 1j
�

and

� D max

�

1;
1

jBj.jC j C 1/

�

ef .x/ D cosx,eg.x/ D sin x. If

0 � " � 1

�
p
2
.1 � cos 1/;

then we obtain

D˛."; f; g/ � Œ2"�.cos 1C sin 1/.j cos˛j C j sin˛j/�1=3 (13.4.29)

for any 0 � ˛ < 2� .

The proof is similar to that of Lemma 13.4.5.
Now we can state the main result determining the deviation between the waiting

times of a deterministic and a random queueing model.

Theorem 13.4.1. (i) Let the approximating queueing model be of typeDjGj1j1.
Assume that the sequences e and s of the “real” queue of type GjGj1j1
are independent. Then the Prokhorov metric between the sequences of waiting
times of DjGj1j1 queue and GjGj1j1 queue is estimated as follows:

�.w;w�/ � IND.s/C IND.s�/C
1
X

jD1
.�.ej ; e

�
j /C �.sj ; s

�
j //: (13.4.30)
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(ii) Assume that the approximating model is of type DjDj1j1 and the “real”
queue is of type GjGj1j1. Then

�.w;w�/ � 2

1
X

jD1
�.�j ; �

�
j / (13.4.31)

and

�.w;w�/ � 2

1
X

jD1
.�.ej ; e

�
j /C �.sj ; s

�
j //: (13.4.32)

(iii) The right-hand sides of (13.4.30)–(13.4.32) can be estimated as follows: let
�.X;X�/ denote �.ej ; e

�
j / in (13.4.30) or �.�j ; �

�
j / in (13.4.31) or �.ej ; e

�
j /

(�.sj ; s�
j /) in (13.4.32) (note that X� is a constant). Then:

(a) If the function � is nondecreasing on Œ0;1/ and continuous on Œ0; 1� and
satisfies

E�.jX �X�j/ � ı � 1; (13.4.33)

then
�.X;X�/ � min.1;  .ı//; (13.4.34)

where  is the inverse function of t�.t/.
(b) If jEf .X/� f .X�/j � "1, jEg.X/ � g.X�/j � "2, where

f .x/ D �C 	x C �x2; x; �; 	; � 2 R;

g.x/ D ˛ C bx C cx2; x; a; b; c 2 R;

c ¤ 0, 	 ¤ �b=c, then for any "1 > 0 and "2 > 0

�.X;X�/ � .e"2 C 2jX�je"1/1=3;

where e"1 and e"2 are linear combinations of "1 and "2 defined as in
Lemma 13.4.5.

(c) If X 2 Œ0; 2�� a.e. and Ef .X/ � f .X�/j � ", jEg.X/ � g.X�/j � ",
where f .x/ D � C 	 cos x C � sin x, and g.x/ D a C b cosx C c sin x
for x 2 Œ0; 2��, a, b, c, �, 	, � 2 R, c ¤ 0, 	 ¤ �b=c, then

K.X;X�/ � Œ2"�.cos 1C sin 1/.j cosX�j C j sinX�j/�1=3;

where the constants  and � are defined as in Lemma 13.4.8.

Open Problem 13.4.1. First, one can easily combine the results of this section with
those of Kalashnikov and Rachev (1988, Chap. 5), to obtain estimates between the
outputs of general multichannel and multistage models and approximating queueing
models of typesGjDj1j1 andDjGj1j1. However, it is much more interesting and
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difficult to obtain sharp estimates for �.e; e�/, assuming that e and e� are random
sequences satisfying

jE.ej � e�
J /j � "1j ; jEfj .jej j/� Efj .je�

j j/ � "2j :

Here, even the case fj .x/ D x2 is open (Chap. 9).

Open Problem 13.4.2. It is interesting to obtain estimates for `p.w;w�/, (0 < p �
1), where `p D bLp (Sects. 13.2 and 13.3).
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Chapter 14
Optimal Quality Usage

The goals of this chapter are to:

• Discuss the problem of optimal quality usage in terms of a multidimensional
Monge–Kantorovich problem,

• Provide conditions for optimality and weak optimality in the multidimensional
case,

• Derive an upper bound for the minimal total losses when they can be represented
in terms of the `1 metric.

Notation introduced in this chapter:

Notation Description

‚.�; �/ Collection of admissible plans
��.�/ Total loss of consumption quality
‚.�; �/ Collection of weakly admissible plans
@f .x/ Subdifferential of f at x
�.P1; P2/ First absolute pseudomoment
�s.P1; P2/ sth difference pseudomoment

14.1 Introduction

In this chapter, we discuss the problem of optimal quality usage as a multidi-
mensional Monge–Kantorovich problem. We begin by stating and interpreting the
one-dimensional and the multidimensional problems. We provide conditions for
optimality and weak optimality in the multivariate case for particular choices of
the cost function. Finally, we derive an upper bound for the minimal total losses for
a special choice of the cost function and compare it to the upper bound involving
the first difference pseudomoment.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 14, © Springer Science+Business Media, LLC 2013
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14.2 Optimality of Quality Usage and the Monge–
Kantorovich Problem

The quality of a product is usually described by a collection of its characteristics
x D .x1; : : : ; xm/, wherem is a required number of quality characteristics and xi is
the real value of the i th characteristic. The quality of all produced items of a given
type is described by a probability measure �.A/, A 2 Bm, where, as before, Bm

is the Borel �-algebra sets in R
m. The measure �.A/ represents the proportion of

items with quality x satisfying x 2 A. On the other hand, the usage (consumption)
of all produced items can be represented by another probability measure �.B/, B 2
Bm, where �.B/ describes the necessary consumption product for which the quality
characteristics satisfy x 2 B . We call �.A/ the production quality measure and
�.B/ the consumption quality measure A;B 2 Bm, and assume that �.Rm/ D
�.Rm/ D 1. Clearly, it happens often that �.A/ ¤ �.A/ at least for some A 2 Bm.

Following the formulation of the Monge–Kantorovich problem discussed in
Sect. 5.2 in Chap. 5, we introduce the loss function �.x; y/ defined for all x 2 R

m

and y 2 R
m and taking positive values whenever an item with quality x is used

in place of an item with required quality y. Finally, we propose the notion of a
distribution plan for production quality [with given measure �.A/] to satisfy the
demand for consumption [with given measure �.B/]. We define for any distribution
plan (or plan for short) a nonnegative Borel measure �.A;B/ on the direct product
R
m � R

m D R
2m. The measure �.A;B/ indicates that part of produced items with

quality x 2 A that is intended to satisfy a required level of consumption of items
with quality y 2 B . The plan �.A;B/ is called admissible if it satisfies the balance
equation

�.A;Rm/ D �.A/; �.Rm;B/ D �.B/; 8A;B 2 Bm: (14.2.1)

In reality the balance equations express the fact that any produced item will be
consumed and any demand for an item will be satisfied.

Denote by ‚.�; �/ the collection of all admissible plans. For a given plan � 2
‚.�; �/ the total loss of consumption quality is defined by the following integral:

�.�/ WD ��.�/ WD
Z

R2m

�.x; y/�.dx; dy/: (14.2.2)

�� is said to be the optimal plan for consumption quality if it satisfies the
relationship

��.�
�/ Db��.�; �/ WD inf

�2‚.�;�/ �.�/: (14.2.3)

Relations (14.2.1) express the balances between the production quality measure
�.A/, the consumption quality measure �.B/, and the distribution plan �.A;B/.
It assumes that complete information on the marginals� and � is available when the
plan is constructed. In most practical cases, the information about production and
consumption quality concerns only the set of distributions of xi s (i D 1; : : : ; m).
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In this case, it is assumed that the balance equations can be expressed in terms of the
corresponding one-dimensional marginal measures. This leads to the formulation of
the multidimensional Kantorovich problem.1 If we denote the i th marginal measure
of production quality by �i.Ai / and the j th marginal measure of the consumption
quality by �j .Bj /, then the following relations hold:

�i .Ai/ D �.Ri�1 � Ai � Rm�i /; Ai 2 B1;

�j .Bj / D �.Rj�1 � Bj � Rm�j /; Bj 2 B1:

We say a distribution plan �.A;B/ is weakly admissible when it satisfies the
conditions

�.Ri�1 � Ai � Rm�i ;Rm/ D �i.Ai /; i D 1; : : : ; m; (14.2.4)

�.Rm;Rj�1 � Bj � R
m�j / D �j .Bj /; j D 1; : : : ; m: (14.2.5)

Denote by ‚.�1; : : : ; �mI �1; : : : ; �m/ the collection of all weakly admissible
plans. Obviously,

‚.�; �/ � ‚.�1; : : : ; �mI �1; : : : ; �m/: (14.2.6)

A distribution plan‚o is called weakly optimal if it satisfies the relation

�.�o/ D inf
�2‚

�.�/; (14.2.7)

where �.�/ is defined by (14.2.2) for a given loss function �.x; y/. The inclusion
in (14.2.6) means that �.�o/ � �.��/, where �o and �� are determined by (14.2.3)
and (14.2.7). Therefore, �.�o/ is an essential lower bound on the minimal total
losses.

First we will evaluate �.��/ and determine ��. We consider two types of loss
functions, �.x; y/, when the item with quality x is used instead of an item with
required quality y.

The first type has the following form:

�.x; y/ D a.x/C b.x; y/; (14.2.8)

where a.x/ is the production cost of an item with quality x and b.x; y/ D
bo.x; y/ C bo.y; x/, in which bo.x; y/ is the consumer’s expenses resulting from
replacing the required item with quality y by a product with quality x. We can
assume that b.x; y/ D 0 for all x D y and b.x; y/ � 0, a.x/ � 0, 8x 2 R

m.

1See version (VI) of the Monge–Kantorovich problem in Sect. 5.2 and, in particular, (5.2.36).
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From (14.2.3) and (14.2.8)

��.�
�/ WD inf

�2‚.�;�/

�Z

R2m

Œa.x/C b.x; y/��.dx; dy/
�

D
Z

Rm

a.x/�.dx/C inf
�2‚.�;�/

Z

R2m

b.x; y/�.dx; dy/ DW I1 C I2:

(14.2.9)

Here

I1 WD
Z

Rm

a.x/�.dx/ (14.2.10)

represents the expected (complete) production price of items with quality measure
�, whereas

I2 WD inf
�2‚.�;�/

Z

R2m

b.x; y/�.dx; dy/ (14.2.11)

represents the minimal (expected) means of a consumer’s expenses from exchanging
the required product for consumption with quality � by a produced item with quality
�, under its optimal distribution among consumers, according to plan ��. Since I1
in (14.2.10) is completely determined by the measure �, the only problem is the
evaluation of I2.

The second type of loss function that is of interest has the form

�.x; y/ D H.d.x; y//; (14.2.12)

where H.t/ is a nondecreasing function and d is a metric in R
m, characterizing the

deviation between the production quality x and the required consumption quality y.
The function H.t/ is defined for all t � 0 and represents the user’s expenses as a
function of the deviation d.x; y/. Notice that the function b.x; y/ in (14.2.11) may
also be written in the form (14.2.12), so without loss of generality we may assume
that � has the form (14.2.12).

The dual representation for b�� (14.2.3) is given by Corollary 5.3.1, i.e., if
the loss function �.x; y/ is given by (14.2.12) where H is convex and KH WD
supt<1ŒH.2t/=H.t/� < 1 [see (2.4.3)], thenb�� is a minimal distance with dual
representation

b��.�; �/ D sup

(

Z

Rm

f d�C
Z

Rm

gd� W f; g 2 LipRm;

f .x/C g.y/ � H.d.x; y//I x; y 2 R
m

)

; (14.2.13)

where
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LipRm WD
�

f W Rm ! R
1 W kf k1 D sup

x2Rm
jf .x/j <1

sup
x;y2Rm

jf .x/ � f .y/j=d.x; y/ <1
)

:

By the Cambanis–Simons–Stout formula [see (8.2.26) in Chap. 8 in the case of
m D 1 and d.x; y/ D jx � yj], the minimal total losses can be expressed by

b��.�; �/ D ��.��/ D
Z 1

0

H.jF�1.x/ �G�1.x/j/dx; (14.2.14)

where F.x/ D �..�1; x�/ and G.x/ D �..�1; x�/ are the distribution
functions of the production quality and the required quality characteristics for
usage, respectively. The functionsF �1.x/ andG�1.x/ are their generalized inverses
defined by F�1.x/ WD supft W F.t/ � xg. Furthermore, the optimal distribution
plan is given by

��..�1; x� � .�1; y�/ D min.F.x/;G.y//: (14.2.15)

Equality (14.2.15) essentially means that if F.x/ is a continuous DF, then the
optimal correspondence between the item of quality x and the item with required
quality y is given by

y D G�1.F.x//: (14.2.16)

The last formula follows immediately from (14.2.14), (14.2.15) since the mini-
mal distance

��.�
�/ D inffEH.jX � Y j/ W FX D F;FY D Gg (14.2.17)

is equal to EH.jX��Y �j/, where Y � D G�1.F.X�// and the joint distribution of
X�, Y � is given by ��. Thus, the case ofm D 1 is solved for any � given by (14.2.2).
However, (14.2.16) holds in a more general situation when � is a quasiantitone
function (see Definition 7.4.1, Theorem 7.4.2, and Remark 7.4.1 in Chap. 7).

The next theorem deals with the special case where �.x; y/ is kx � yk2 and k � k
is the Euclidean distance in R

m. Let � and � be two probability measures on Bm

such that
Z

Rm

kxk2.�C �/.dx/ <1:

Recall that the pair of m-dimensional vectors .X�; Y �/ with joint distribution ��
and marginal distributions � and � is optimal if

��.�
�/ D EkX� � Y �k2 D inffEkX � Y k2 W PrX D �;PrY D �g: (14.2.18)
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In the next theorem, we describe the necessary and sufficient condition for a pair
.X�; Y �/ to be optimal. To this end, we recall the definition of a subdifferential.2

For a lower semicontinuous convex (LSC) function f on R
m, let f � denote the

conjugate function

f �.y/ WD sup
x2Rm
fhx; yi � f .x/g; (14.2.19)

where hx; yi WD Pm
iD1 xiyi , x D .x1; : : : ; xm/, y D .y1; : : : ; ym/, and denote the

subdifferential of f in x by

@f .x/ D fy 2 R
m W f .z/ � f .x/ � hz� x; yi; z 2 R

mg: (14.2.20)

The elements of @f .x/ are called subgradients of f at x. Then it holds that for all
x, y

f .x/C f �.y/ � hx; yi (14.2.21)

with equality if and only if y 2 @f .x/.
Theorem 14.2.1. .X�; Y �/ is optimal if for some LSC function f

Y � 2 @f .X�/ .Pr a.s./: (14.2.22)

Remark 14.2.1. Note that we can consider only the case where the means m� WD
fR

Rm
xi�.dx/; i D 1; : : : ; mg and m� are zero vectors with no loss of generality.

Simply note that if X and Y are R
m-valued RVs with distributions PrX D �,

PrY D �, 	 D X �m�, and 
 D Y �m� , then

EkX � Y k2 D Ek	 � 
k2 C km� �m�k2: (14.2.23)

Proof. We begin with

EkX � Y k2 D EkXk2 C EkY k2 � 2EhX; Y i: (14.2.24)

Therefore, problem (14.2.18) is equivalent to finding .X�; Y �/ such that

EhX�; Y �i D supfEhX; Y i W PrX D �;PrY D �g: (14.2.25)

By the duality theorem,3 it follows that

supfEhX; Y i W PrX D �;PrY D �g

D
Z

kxk2.�C �/.dx/� inffEkX � Y k W PrX D �;PrY D �g

2See, for example, Rockafellar (1970) and Borwein and Lewis (2010).
3See (14.2.13), (14.2.24), and Theorem 8.2.1 in Chap. 8.
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D
Z

kxk2.�C �/.dx/� sup

(

Z

gd�C
Z

hd� W g; h 2 LipRm;

and 8x; y 2 R
m; g.x/C h.y/ � kx � yk2

)

� inf

(

Z

egd�C
Z

ehd� W
Z

jegjd� <1;
Z

jehjd� <1;

eg.x/Ceh.y/ � hx; yi
)

� supfEhX; Y i W PrX D �;PrY D �g: (14.2.26)

Here, the last inequality follows from the “trivial” part of the duality theorem, and
therefore the last two inequalities are valid with equality signs.

Now, let PrX� D �, PrY � D �, and assume that Y � 2 @f .X�/ (Pr-a.s.) for an
LSC function f . Then for any other RVs X and Y with distributions � and � we
have

EheX;eY i � E.f .eX/C f �.eY // D E.f .X�/C f �.X�// D EhX�; Y �i:
Therefore, (14.2.25) holds. ut
Remark 14.2.2. Condition (14.2.18) is also necessary.

Sketch of the proof. Let, conversely, hX�; Y �i be a solution of (14.2.25). Then,
by (14.2.26),

supfEhX; Y i W PrX D �;PrY D �g

D inf

�Z

gd�C
Z

hd� W g.x/C h.y/

� hx; yi;
Z

jgjd�C
Z

jhjd� <1i
�

: (14.2.27)

Note that the supremum in (14.2.27) is attained [see Corollary 5.3.1 and (14.2.26)].
Moreover, one could see that the infimum in (14.2.26) is also attained (see proof
of Theorem 5.3.1).4 Suppose f .x/ and g.y/ are optimal, i.e., EhX�; Y �i D
R

gd�C R hd� and g.x/C h.y/ � hx; yi. Then g�.y/ D supxfhx; yi � g.x/g �
h.y/, and thus .g; g�/ is also optimal. In the same way, defining f D g�� we
see that hx; yi � f .x/ C f �.y/ and also f is an LSC function. This implies
that hX�; Y �i D f .X�/ C f �.Y �/ (Pr-a.s.) and therefore, by (14.2.21), that
Y � 2 @f .X�/ (Pr-a.s.).

4See also Kellerer (1984, Theorem 2.21) and Knott and Smith (1984, Theorem 3.2).
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Remark 14.2.3. Ifm D 1 andF ,G are DFs of� and �, then, as we saw by (14.2.14)
[with H.t/ D t2], the optimal pair X�, Y � is given by X� D F �1.V /, Y � D
G�1.V /, where V is uniform on .0; 1/. Defining �.x/ WD G�1 ı F.x/ and f .x/ D
R x

0
�.y/dy, f is convex and Y D G�1.V / 2 @.F �1.V //. Thus, (14.2.14) is a

consequence of Theorem 14.2.1.

Remark 14.2.4. For a symmetric positive semidefinite (m � m) matrix T , define
f .x/ D 1

2
hx; T xi and g.y/ D h 1

2
y; T �1yi. Then f .x/ C g.T x/ D hx; T xi.

Therefore, if � D � ı T �1, where T �1 denotes the More–Penrose inverse, then the
pair .X�; TX�/ is optimal. This leads to the explicit expression for ��.��/ (14.2.14)
when� and � are Gaussian measures on R

m with meansm� andm� and nonsingular
covariance matrices †� and †� .

Corollary 14.2.1 (Olkin and Pukelheim 1982). In the Gaussian case, where �
and � are normal laws with meansm� andm� and covariance matrices†� and†� ,

��.�
�/ D km� �m�k2 C tr.†�/C tr.†�/� 2 tr.†1=2� †�†

1=2
� /1=2: (14.2.28)

Proof. We can assume thatm� D m� D 0 [see (14.2.22)]. Applying Remark 14.2.4,
we have that the pair .X�; TX�/, with

T D †1=2� .†1=2� †�†
1=2
� /�1=2; †1=2� (14.2.29)

is optimal. Hence, by (14.2.29), EhX�; TXi D tr.†1=2� †�†
1=2
� /1=2 is the maximal

possible value for EhX; Y i with PrX D � and PrY D �. ut
Thus, if both production quality measure� and the consumption quality measure

� are Gaussian, then the optimal plan for consumption quality �� is determined by
the joint distribution of .X�; TX�/, where T is given by (14.2.29).

To determine ��, we need to have complete information on the measures � and �.
It is much more likely that we can have only the one-dimensional distributions �i
and �j [see (14.2.4), (14.2.5)], i.e., we are dealing with the set of weakly admissible
plans �.�1; : : : ; �mI �1; : : : ; �m/ and would like to determine the weakly optimal
plan �o and evaluate �.�o/ [see (14.2.7)].

We make use of the multidimensional Kantorovich theorem (Sect. 5.3) to obtain
a dual representation for �.�o/. As in (14.2.13), suppose the cost function � is given
by (14.2.12), whereH is convex andKH <1. Then, by Theorem 5.3.1, there exists
a weakly optimal plan �o for which the minimal value of the total loss function is

��.�
o/ D sup

fi ;gj2C�

0

@

m
X

iD1

Z

R

fi .x/�i .dx/C
m
X

jD1

Z

R

gj .y/�j .dy/

1

A ; (14.2.30)

where C� denotes the collection of all functions fi .xi /, gj .yj / on R satisfying the
constraints
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Lip.fi / WD sup jfi .x/ � fi .y/j=jx � yj <1; Lip.gj / <1; (14.2.31)

and
m
X

i;jD1
Œfi .xi /C gj .yj /� < �.x; y/; 8x; y 2 R

m: (14.2.32)

Moreover, by Theorem 7.4.2, we can obtain explicit representations for �o and
��.�

o/ for any cost function � that is quasiantitone (Definition 7.4.1). Let Fi denote

the DFs of �i and Gi the DFs of �i . Define the random variables
ı
Xi D F�1

i .V /;
ı
Y j D G�1

j .V /, i; j D 1; : : : ; m, and the random vectors
ı
X D .

ı
X1; : : : ;

ı
Xm/;

ı
Y D .

ı
Y 1; : : : ;

ı
Y m/, where F�1

i .x/, G�1
j .x/ are the inverses of the distribution

functions Fi .x/, Gj .x/, respectively, and V is uniform on Œ0; 1�.

Theorem 14.2.2. For any cost function � W R2m ! R that is quasiantitone, the
weak distribution plan �o with DF Fo given by

Fo.x1; : : : ; xmIy1; : : : ; ym/ D min.F1.x1/; : : : ; Fm.xm/;G1.y1/; : : : ; Gm.ym//

(14.2.33)

is optimal. Moreover, in this case the minimal total cost is given by

��.�
o/ D E�. ı

X;
ı
Y / D

Z 1

0

�.F�1
1 .t//; : : : ; F�1

m .t/; G�1
1 .t/; : : : ; G�1

m .t//dt:

(14.2.34)

For example, let � be the following metric in R
m for x D .x1; : : : ; xm/, y D

.y1; : : : ; ym/:

�.x; y/ D 2max.x1; : : : ; xmIy1; : : : ; ym/� 1

m

m
X

iD1
.xi C yi /

[see also (7.4.19)]. Then, by Theorem 14.2.2 and (14.2.30), �o with DF Fo is an
optimal plan and

��.�
o/ D

Z 1

�1
1

n

n
X

iD1
.Fi .u/CGi.u//

�2minŒF1.u/; : : : ; Fn.u/; G1.u/; : : : ; Gn.u/�du:

14.3 Estimates of Minimal Total Losses ��.��/

Consider the multidimensional case where the quality vector x D .x1; : : : ; xm/

has m > 1 one-dimensional characteristics. We derive an upper bound for ��.��/
[see (14.2.3)] in the special case where the loss function has the form
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�.x; y/ D K
m
X

iD1
jxi � yi j; x; y 2 R

m; x WD .x1; : : : ; xm/; y WD .y1; : : : ; ym/:
(14.3.1)

Remark 14.3.1. In this particular case,

��.�
�/ D K`1.�; �/ WD K sup

�ˇ

ˇ

ˇ

ˇ

Z

Rm

ud.�� �/
ˇ

ˇ

ˇ

ˇ

W u 2 Lipb1:1.R
m/

�

; (14.3.2)

where `1 is the minimal metric with respect to the L1-distance

L1.X; Y / D EkX � Y k1; X; Y 2 X.Rm/; (14.3.3)

in which kx � yk1 WDPm
iD1 jxi � yi j; x; y 2 R

m. See (3.3.2), (3.4.3), and (5.3.18)
for additional details.

Remark 14.3.2. Dobrushin (1970) called `1 the Vasershtein (Wasserstein) distance.
In our terminology, `1 is the Kantorovich metric (Example 3.3.2). The problem
of bounding `1 from above also arises in connection with the sufficient conditions
implying the uniqueness of the Gibbs random fields; see Dobrushin (1970, Sects. 4
and 5).

By (14.3.2), we need to find precise estimates for `1 in the space P.Rm/ of all
laws on .Rm; k � k1/. The next two theorems provide such estimates and in certain
cases even explicit representations of `1.

We suppose that P1; P2 2 P.Rm/ have densities p1 and p2, respectively.

Theorem 14.3.1. (i) The following inequality holds:

`1.P1; P2/ � ˛1.P1; P2/; (14.3.4)

with

˛1.P1; P2/ WD
Z

Rm

kxk1
ˇ

ˇ

ˇ

ˇ

Z 1

0

t�m�1.p1 � p2/.x=t/dt
ˇ

ˇ

ˇ

ˇ

dx:

(ii) If
Z

Rm

kxk1d.P1 C P2/ <1; (14.3.5)

and if a continuous function g W Rm ! R
1 exists with derivatives @g=@xi ,

i D 1; : : : ; m, defined almost everywhere (a.e.) and satisfying

@g

@xi
.x/ D sgn

�

xi

Z 1

0

t�m�1.p1 � p2/.x=t/dt
�

a.e. i D 1; : : : ; m; (14.3.6)

then (14.3.4) holds with the equality sign.

Proof. (i) It is easy to see that the constraint set for
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`1.P1; P2/ D sup

(

ˇ

ˇ

ˇ

ˇ

Z

Rm

ud.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W u W Rm ! R; bounded

ju.x/� u.y/j � kx � yk; x; y 2 R
m

)

(14.3.7)

coincides with the class of continuous bounded functions u [u 2 Cb.U /] that
have partial derivatives u0

i defined a.e. and satisfying the inequalities ju0
i .x/j � 1

a.e., i D 1; : : : ; m. Now, using the identity

u.x/ D u.0/C
m
X

iD1
xi

Z 1

0

u0
i .tx/dt;

passing on from the coordinates t , x to the coordinates t 0 D t , x0 D tx, and
denoting these new coordinates again by t , x, one obtains

`1.P1; P2/ D sup

( ˇ

ˇ

ˇ

ˇ

ˇ

Z

Rm

m
X

iD1
u0
i .x/xi

�Z 1

0

t�m�1.p1 � p2/.x=t/dt
�

dx

ˇ

ˇ

ˇ

ˇ

ˇ

W

u 2 Cb.Rm/; ju0
i j � 1; : : : ; ju0

mj � 1 a.e.

)

: (14.3.8)

The estimate (14.3.4) follows obviously from here.
(ii) If the moment condition (14.3.5) holds, then, by Corollary 6.2.1,

`1.P1; P2/ D sup

(

ˇ

ˇ

ˇ

ˇ

Z

Rm

ud.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W u 2 C.Rm/;

ju.x/� u.y/j � kx � yk 8x; y 2 R
m

)

D sup

(

ˇ

ˇ

ˇ

ˇ

Z

Rm

ud.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W

u 2 C.Rm/; ju0
i j � 1 a.e.; i D 1; : : : ; m

)

; (14.3.9)

where C.Rm/ is the space of all continuous functions on R
m.

Then, in (14.3.8), Cb.Rm/ may also be replaced by C.Rm/. It follows
from (14.3.6) and (14.3.8) that the supremum in (14.3.8) is attained by u D g,
and hence

`1.P1; P2/ D ˛.P1; P2/: (14.3.10)

The proof is complete. ut
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Next we give simple sufficient conditions assuring equality (14.3.10). Denote

J.P1; P2I x/ WD
Z 1

0

t�m�1.p1 � p2/.x=t/dt:

Corollary 14.3.1. If the moment condition (14.3.5) holds and J.P1; P2I x/ � 0 a.e.
or J.P1; P2I x/ � 0 a.e., then equality (14.3.10) takes place.

Proof. Indeed, one can take g.x/ WD kxk1 in Theorem 3.3.1 (ii) if
J.P1; P2I x/ � 0 a.e. and g.x/ D �kxk1 if J.P1; P2I x/ � 0 a.e. ut
Remark 14.3.3. The inequality J.P1; P2I x/ � 0 a.e. holds, for example, in the
following cases:

(a) 0 < � � �: p1.x/ D Weib�.x/ WD
m
Q

iD1
˛i�.�xi /

˛i�1 exp.�.�xi /˛i /, ˛i > 0,

and p2.x/ D Weib�.x/ are constructed assuming the vector components are
independent and follow a Weibull distribution.

(b) 0 < � � �: p1.x/ D Gam�.x/ WD
m
Q

iD1
�˛i x

˛i�1
i .�.˛i //

�1 exp.��xi /, ˛i > 0,

and p2.x/ D Gam�.x/ are constructed assuming the vector components are
independent and follow a gamma distribution.

(c) � � � > 0: p1.x/ D Norm�.x/ WD
m
Q

iD1
.1=�
p
2/ expŒ�.x2i =2�

2
/� and

p2.x/ D Norm�.x/ are constructed assuming the vector components are
independent and follow a normal distribution.

Theorem 14.3.2. (i) The inequality

`1.P1; P2/ � ˛2.P1; P2/ (14.3.11)

holds with

˛2.P1; P2/ WD
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Z t

�1
q1.x.1//dx1

ˇ

ˇ

ˇ

ˇ

dt

C
m
X

iD2

Z

Ri�1

 

Z 0

�1

ˇ

ˇ

ˇ

ˇ

Z t

�1
qi .x.i//dxi

ˇ

ˇ

ˇ

ˇ

dt

C
Z 1

0

ˇ

ˇ

ˇ

ˇ

Z 1

t

qi .x.i//dxi

ˇ

ˇ

ˇ

ˇ

dt

!

dx1 � � � dxi�1; (14.3.12)

where

x.i/ WD .x1; : : : ; xi /;

qi .x.i// WD
Z

Rm�i

.p1 � p2/.x1; : : : ; xm/dx1; : : : ; dxm; i D 1; : : : ; m � 1;

qm.x.m// WD .p1 � p2/.x1; : : : ; xm/:
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(ii) If (14.3.5) holds and if a continuous function h W R
m ! R

1 exists with
derivatives h0

i , i D 1; : : : ; m, defined a.e. and satisfying the conditions

h0
1.t; 0; : : : ; 0/ D sgnŒF11.t/ � F21.t/�;

h0
2.x1; t; 0; : : : ; 0/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

sgn
Z t

�1
q2.x.2//dx2; if t 2 .�1; 0�; x1 2 R

1;

� sgn
Z 1

t

q2.x.2//dx2; if t 2 .0;C1/; x1 2 R
1;

h0
m.x1; : : : ; xm�1; t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

sgn
Z t

�1
qm.x.m//dxm; if t 2 .�1; 0�;

x1; : : : ; xm�1 2 R
1;

� sgn
Z 1

t

qm.x.m//dxm; if t 2 .0;C1/;
x1; : : : ; xm�1 2 R

1;

then (14.3.11) holds with the equality sign. Here Fji stands for the DF of the
projection .TiPj / of Pj over the i th coordinate.

Proof. (i) Using the formulae

qi .x.i// D
Z 1

�1
qiC1.x.iC1//dxiC1; i D 1; : : : ; m � 1;

Z 1

�1
q1.x.1//dx1 D

Z

Rm

.p1 � p2/.x/dx D 0;

and applying repeatedly the identity

Z 1

�1
a.t/b.t/dt D

Z 1

�1
a.0/b.t/dt�

Z 0

�1
a0.t/

�Z t

�1
b.s/ds

�

dt

C
Z 1

0

a0.t/
�Z 1

t

b.s/ds

�

dt

for a.t/Du.x1; : : : ; xi�1; t; : : : ; 0/, b.t/Dqi .x1; : : : ; xi�1; t/, iD1; : : : ; m, one
obtains

`1.P1; P2/ D sup

( ˇ

ˇ

ˇ

ˇ

ˇ

�
Z

1

�1

u0

1.t; 0; : : : ; 0/

Z t

�1

q1.x.1//dx1dt

C
m
X

iD2

Z

Ri�1

 

�
Z 0

�1

u0

i .x1 : : : :; xi�1; t; : : : ; 0/

Z t

�1

qi .x.i//dxidt
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C
Z

1

0

u0

i .x1; : : : ; xi�1; t; : : : ; 0/

Z

1

t

qi .x.i//dxidt

!

dx1 : : : dxi�1

ˇ

ˇ

ˇ

ˇ

ˇ

W u2Cb.Rm/; ju0

1j�1; : : : ; ju0

mj�1 a.e.

)

; (14.3.13)

which obviously implies (14.3.11).
(ii) In view of (14.3.5), Cb.Rm/ in (14.3.13) may be replaced by C.Rm/. Then the

function u D h yields the supremum on the right-hand side of (14.3.13), and
hence

`1.P1; P2/ D ˛2.P1; P2/: (14.3.14)

ut
Remark 14.3.4. The bounds (14.3.4) and (14.3.14) are of interest by themselves.
They give two improvements of the following bound5:

`1.P1; P2/ � �.P1; P2/;

where

�.P1; P2/ WD
Z

Rm

kxk1jp1.x/ � p2.x/jdx

is the first absolute pseudomoment. Indeed, one can easily check that

˛i .P1; P2/ � �.P1; P2/; i D 1; 2:

Remark 14.3.5. Consider the sth-difference pseudomoment6

�s.P1; P2/ D sup

(

ˇ

ˇ

ˇ

ˇ

Z

Rm

ud.P1 � P2/
ˇ

ˇ

ˇ

ˇ

W u W Rm ! R
1;

ju.x/� u.y/j � ds.x; y/
)

; s > 0; (14.3.15)

where

ds.x; y/ WD kQs.x/ �Qs.y/k; Qs W Rm ! R
m; (14.3.16)

Qs.t/ WD tktks�1:
Since

5See Zolotarev (1986, Sect. 1.5).
6See Case D in Sect. 4.4.
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�.P1; P2/ D `1.P1 ıQ�1
s ; P2 ıQ�1

s /; (14.3.17)

then by (14.3.4) and (14.3.11) we obtain the bounds

�s.P1; P2/ � ˛i .P1 ıQ�1
s ; P2 ıQ�1

s /; i D 1; 2; (14.3.18)

which are better than the following one7

�s.P1; P2/ � �.P1 ıQ�1
s ; P2 ıQ�1

s /: (14.3.19)
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Part IV
Ideal Metrics



Chapter 15
Ideal Metrics with Respect to Summation
Scheme for i.i.d. Random Variables

The goals of this chapter are to:

• Discuss the question of stability in the �2 test of exponentially under different
contamination mechanisms,

• Describe the notion of ideal probability metrics for summation of independent
and identically distributed random variables,

• Provide examples of ideal probability metrics and discuss weak convergence
criteria,

• Derive the rate of convergence in the general central limit theorem in terms of
metrics with uniform structure.

Notation introduced in this chapter:

Notation Description

�r Zolotarev ideal metric of order r
Var Total variation metric, Var D 2�

` Uniform metric between densities
� Uniform metric between characteristic functions
�r Weighted version of �-metric
�m;p Lp -version of �m
��;r Smoothing version of `
��;r Smoothing version of Var
�r Special version of ��;r with � having ˛-stable distribution
�r Special version of ��;r with � having ˛-stable distribution

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 15, © Springer Science+Business Media, LLC 2013
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15.1 Introduction

The subject of this chapter is the application of the theory of probability metrics
to limit theorems arising from summing independent and identically distributed
(i.i.d.) random variables (RVs). We describe the notion of an ideal metric – a
metric endowed with certain properties that make it suitable for studying a particular
problem, in this case, the rate of convergence in the corresponding limit theorems.

We begin this chapter with a section on the robustness of the �2 test of
exponentiality, which serves as an introduction to the general topic. The question
of stability is discussed in the context of different contamination mechanisms.

The section on ideal metrics for sums of independent RVs defines axiomatically
ideal properties and then introduces various metrics satisfying them. The section
also describes relationships between those metrics, conditions under which the
metrics are finite, and proves convergence criteria under weak convergence of
probability measures.

Finally, we discuss rates of convergence in the central limit theorem (CLT) in
terms of metrics with uniform structure. Ideal convolution metrics play a central
role in the proofs. Rates of convergence are provided in terms of Var, �, `, and �.

15.2 Robustness of �2 Test of Exponentiality

Suppose that Y is exponentially distributed with density (PDF) fY .x/ D
.1=a/ exp.x=a/, (x � 0; a > 0). To perform hypothesis tests on a, one makes
use of the fact that, if Y1; Y2; : : : ; Yn are n i.i.d. RVs, each with PDF fY , then
2
Pn

iD1 Yi=a � �22n. In practice, the assumption of exponentiality is only an
approximation; it is therefore of interest to enquire how well the �22n distribution
approximates that of 2

Pn
iD1 Xi=a, where X1;X2; : : : ; Xn are i.i.d. nonnegative

RVs with common mean a, representing the “perturbation,” in some sense, of an
exponential RV with the same mean. The usual approach requires one either to make
an assumption concerning the class of RVs representing the possible perturbations
of the exponential distribution or to identify the nature of the mechanism causing
the perturbation.

(A) The case where the X belong to an aging distribution class. A nonnegative
RV X with DF F is said to be harmonic new better than used in expectation
(HNBUE) if

R1
x F .u/du � a exp.�x=a/ for all x � 0, where a D E.X/ and

F D 1 � F . It is easily seen that if X is HNBUE, then moments of all orders
exist. Similarly, X is said to be harmonic new worse than used in expectation
(HNWUE) if

R1
x
F .u/du � a exp.�x=a/ for all x � 0, assuming that a is

finite. The class of HNBUE (HNWUE) distributions include all the standard
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“aging” (“antiaging”) classes – IFR, IFRA, NBU, and NBUE (DFR, DFRA,
NWU, and NWUE).1

It is well known that if X is HNBUE with a D EX and �2 D varX , then X
is exponentially distributed if and only if a D � . To investigate the stability of this
characterization, we must select a metric �.X; Y / D �.FX; FY / in the DF space
F.R/ such that

(a) � guarantees the convergence in distribution plus convergence of the first two
moments;

(b) � satisfies the inequalities

�1.ja � � j/ � �.X;E.a// � �2.ja � � j/;

where X 2 HNBUE, EX D a, �2 D varX , �1, and �2 are some continuous,
increasing functions with �i .0/ D 0, i D 1; 2, and E.a/ denotes an exponential
variable with a mean of a.

Clearly, the most appropriate metric � should satisfy (a) and (b) with �1 � �2.
Such a metric is the so-called Zolotarev �2-metric

�2.X; Y / WD �2.FX ; FY / D sup
f 2F2

jE.f .X/� f .Y //j; (15.2.1)

where EX2 < 1, EY 2 < 1, and F2 is the class of all functions f having almost
everywhere (a.e.) the second derivative f 00 and jf 00j � 1 a.e. To check (a) and
(b) for � D �2, first notice that the finiteness of �2 implies 1 > �2.X; Y / �
supa>0 jE.aX/�E.aY /j, i.e., EX D EY . Secondly, if EX D EY , then �2.X; Y /

admits a second representation:

�2.X; Y / D
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Z x

�1
.FX.t/ � FY .t//dt

ˇ

ˇ

ˇ

ˇ

dx: (15.2.2)

In fact, by Taylor’s theorem or integrating by parts,

�2.X; Y / D sup
f 2F2

ˇ

ˇ

ˇ

ˇ

Z 1

�1
f .t/d.FX.t/ � FY .t//

ˇ

ˇ

ˇ

ˇ

D sup
f 2F2

ˇ

ˇ

ˇ

ˇ

Z 1

�1
f 00.x/

Z x

�1
.FX.t/ � FY .t//dt

ˇ

ˇ

ˇ

ˇ

dx:

Now use the isometric isomorphism between L�
1 - and L1-spaces to obtain equal-

ity (15.2.2).2

1See Barlow and Proschan (1975, Chap. 4) and Kalashnikov and Rachev (1988, Chap. 4) for the
necessary definitions.
2See, for example, Dunford and Schwartz (1988, Theorem IV.8.3.5).
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Using both representations for �2, in the next lemma we show that � D �2
satisfies (a).

Lemma 15.2.1. (i) In the space X2.R/ of all square integrable RVs,

1
2
jEX2 � EY 2j � �2.X; Y / (15.2.3)

and

L.X; Y / � Œ4�2.X; Y /�
1=3; (15.2.4)

where L is the Lévy metric (2.2.3) in Chap. 2. In particular, if Xn, X 2 X2.R/,
then

�2.Xn;X/ ! 0 )
�

Xn ! X in distribution
EX2

n ! EX2:
(15.2.5)

(ii) Given X0 2 X2.R/, let X2.R; X0/ be the space of all X 2 X2.R/ with EX D
EX0. Then for any X; Y 2 X2.R; X0/

2�2.X; Y / � �2.X; Y /; (15.2.6)

where � is the second pseudomoment

�2.X; Y / D 2

Z 1

�1
jxjjFX.x/� FY .x/jdx: (15.2.7)

In particular, for Xn;X 2 X2.R; X0/

�

Xn ! X in distribution
EX2

n ! EX2
) �2.Xn;X/ ! 0: (15.2.8)

Proof. (i) Clearly, representation (15.2.1) implies (15.2.3). To prove (15.2.4), let
L.X; Y / > " > 0; then there exists z 2 R such that either

FX.z/� FY .z C "/ > " (15.2.9)

or FY .z/ � FX.z C "/ > ". Suppose (15.2.9) holds; then set

f0

�

z C "

2
C h

�

WD
(

��

1 � 2jhj
"

�

C

�2

� 1

)

sgnh; (15.2.10)

where .�/C D max.0; �/. Then f0.x/ D 1 for x � z, f0.x/ D �1 for x > z C "

and jf0j � 1. Since kf 00
0 k1 WD ess sup jf 00.x/j D 8"�2, we have

�2.X; Y / � kf 00
0 k�11

ˇ

ˇ

ˇ

ˇ

Z

.f0.x/C 1/d.FX.x/ � FY .x//

ˇ

ˇ

ˇ

ˇ

� ."2=8/

�Z z

�1
.f0.x/C1/dFX.x/�

Z 1

zC"
.f0/x/C1/dFY .x/

�

�"3=4:

Letting " ! L.X; Y / implies (15.2.4).
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(ii) Using representation (15.2.2) and EX D EY one obtains (15.2.6). Clearly,

�2.X; Y / D `1.X jX j; Y jY j/; (15.2.11)

where `1 is the Kantorovich metric `1.X; Y / D R1
�1 jFX.x/ � FY .x/jdx [see

also (4.4.39) and (14.3.17)]. For any Xn and X with EjXnj C EjX j < 1 we have,
by Theorem 6.3.1, that

`1.Xn;X/ ! 0 ”
�

Xn ! X in distribution;
EjXnj ! EjX j; (15.2.12)

which, together with (15.2.11), completes the proof of (ii). ut
Thus �2-convergence preserves the convergence in distribution plus convergence

of the second moments, and so requirement (a) holds. Concerning property (b), we
use the second representation of �2, (15.2.2), to get

�2.X; Y / D
Z 1

0

ˇ

ˇ

ˇ

ˇ

Z 1

x

F X.t/dt � a exp.�x=a/
ˇ

ˇ

ˇ

ˇ

dx

D
Z 1

0

�

a exp.�x=a/ �
Z 1

x

F X.t/dt

�

dx

D 1

2
.a2 � �2/ for X being HNBUE; Y WD E.a/: (15.2.13)

Now if one studies the stability of the preceding characterization in terms of a
“traditional” metric as the uniform one

�.X; Y / WD sup
x2R

jFX.x/ � FY .x/j; (15.2.14)

then one simply compares �2 with �. That is, by the well-known inequality between
the Lévy distance L and the Kolmogorov distance �, we have

�.X; Y / �
�

1C sup
x

fX.x/

�

L.X; Y / (15.2.15)

if fX D F 0
X exists. Thus, by (15.2.4) and (15.2.15),

�.X; Y / �
�

1C sup
t

fcX .t/

�

Œ4�2.cX; cY /�
1=3

D .c2=3 CMXc
�1=3/Œ4�2.X; Y /1=3 for any c > 0;

whereMX D supt fX.t/. Minimizing the right-hand side of the last inequality with
respect to c we obtain

�.X; Y / � 3M
2=3
X .�2.X; Y //

1=3: (15.2.16)
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Thus, for any X 2 HNBUE with EX D a, varY D �2

�.X;E.a// � 3.˛=2/1=3; ˛ D 1 � �2=a2: (15.2.17)

Remark 15.2.1. Note that the order 1=3 of ˛ is precise [see Daley (1988) for an
appropriate example].

Next, using the “natural” metric �2, we derive a bound on the uniform distance
between the �2

2n distribution and the distribution of 2
Pn

iD1 Xi=a, assuming that X
is HNBUE. Define Xi D .Xi � a/=a and Y i D .Yi � a/=a (i D 1; 2; : : : ; n),
and write Wn D 2

Pn
iD1 Xi=a, W n D Pn

iD1 Xi=
p
n, Zn D 2

Pn
iD1 Yi=a, and

Zn D Pn
iD1 Y i=

p
n. Let fZn denote the PDF of Zn, and let Mn D supx fZn.x/.

Then by (15.2.16),

�.W n;Zn/ � 3M2=3
n Œ�2.W n;Zn/�

1=3:

Now we use the fact that �2 is the ideal metric of order 2 (see further Sect. 15.3), i.e.,
for any vectors fXigniD1 and fYigniD1 with independent components and constants
c1; : : : ; cn

�2

 

n
X

iD1
ciXi ;

n
X

iD1
ciYi

!

�
n
X

iD1
jci j2�2.Xi ; Yi /: (15.2.18)

Remark 15.2.2. Since �2 is a simple metric, without loss of generality, we may
assume that fXig and fYig are independent. Then (15.2.18) follows from single
induction arguments, the triangle inequality, and the following two properties: for
any independentX , Y , and Z and any c 2 R

�.X CZ; Y CZ/ � �.X; Y / (regularity) (15.2.19)

and
�.cX; cY / D c2�.X; Y / (homogeneity of order 2). (15.2.20)

(See Definition 15.3.1 subsequently.)

Thus, by (15.2.18), �2.W n;Zn/ � �.X; Y /=a2, and finally the required
estimate is

�.Wn;Zn/ � 3

21=3
M2=3
n Œ1 � .�=a/2�1=3 (15.2.21)

and it is a straightforward matter to show that

Mn D
p
n.n � 1/n�1 � expŒ�.n � 1/�

.n � 1/Š : (15.2.22)
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Expression (15.2.22) may be simplified by using the Robbins–Stirling inequality3

nne�n.2�n/1=2 expŒ1=.12nC 1/� < nŠ < nne�n.2�n/1=2 exp.1=12n/

to give the following simple bound:

Mn <

�

n

2�.n � 1/
�1=2

expŒ�1=.12n� 11/�: (15.2.23)

Further, if X is HNWUE, a similar calculation shows that �2.X; Y / D 1
2
.�2 � a2/,

assuming that �2 is finite. In summary, we have shown that if X is HNBUE or
HNWUE, then

�.Wn;Zn/ � 3

21=3
M2=3
n Œ1 � .�=a/2�1=3; (15.2.24)

whereMn can be estimated by (15.2.23).
It follows from (15.2.22) that if X is HNBUE or HNWUE, and if the coefficient

of variation ofX is close to unity, then the distribution of 2
Pn

iD1 Xi=a is uniformly
close to the �22n distribution.

(B) The case where X is arbitrary: contamination by mixture. In practice, a
“perturbation” of an exponential RV does not necessarily yield an HNBUE
or HNWUE variable, in which case the bound (15.2.24) will not hold. If we
make no assumptions concerningX , then it is necessary to make an assumption
concerning the “mechanism” by which the exponential distribution is “per-
turbed.” Further, we will deduce bounds for the three most common possible
“mechanisms”: contamination by mixture, contamination by an additive error,
and right-censoring.

Suppose that an exponential RV is contaminated by an arbitrary nonnegative
RV with distribution function H , i.e., FX.t/ D .1 � "/ exp.�t=	/ C "H.t/.
Then a D .1 � "/	C "h, where h D R1

0 tdH.t/. It is assumed that " > 0 is
small. Now, since Y D E.a/,

�2.X; Y / D
Z 1

0

ˇ

ˇ

ˇ

ˇ

Z 1

x

ŒF X.t/� exp.�t=a/�dt
ˇ

ˇ

ˇ

ˇ

dx�
Z 1

0

t jFX.t/ � ".�t=a/jdt

� .1 � "/

Z 1

0

t j exp.�t=	/ � exp.�t=a/jdt

C"
Z 1

0

t jH.t/ � exp.�t=a/jdt

� .1 � "/j	2 � a2j C ".b=2C a2/;

�

where b D
Z 1

0

t2dH.t/

�

D "Œjh� 	j.	C a/C b=2C a2�:

3See, for example, Erdös and Spencer (1974, p. 17).
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Thus, �2.X; Y / D O."/, and so from (15.2.16) it follows that 
.Wn;Zn/ D
O."1=3/.

(C) The case where X is arbitrary: contamination by additive error. Suppose now

that an exponential RV is contaminated by an arbitrary additive error, i.e., X
dD

Y	 C V , V is an arbitrary RV, and Y	 is an exponential RV independent of V
with mean 	 D a �E.V /. Consider the metric �2 (15.2.7). For any N > 0 we
simply estimate �2 by the Kantorovich metric `1,

1
2
�2.X; Y / D

Z

jt j jFX.t/ � FY .t/jdt

� N`1.X; Y /CN�ıŒE.jX j2Cı/C E.jY j2Cı/�;

and hence the least upper bound of �2.X; Y / obtained by varyingN is

�2.X; Y / � 2.1C 1=ı/Œ`1.X; Y /�
ı=.1Cı/.ıˇ/1=.1Cı/; (15.2.25)

where ˇ D E.jX j2Cı/C E.jY j2Cı/. By the triangle inequality,

`1.X; Y / D `1.Y	 C V; Ya/ � `1.Y	; Ya/

� `1.V; 0/C
Z 1

0

j exp.�x=	/ � exp.�x=a/jdx

D EjV j C jEV j � 2EjV j: (15.2.26)

It follows from (15.2.25) and (15.2.26) that

�2.X; V / � 2.1C 1=ı/Œ2E.jV j/�ı=.1Cı/.ıˇ/1=.1Cı/: (15.2.27)

Clearly, from (15.2.27) we see that if EjV j is close to zero, then �2.X; Y /

is small. But �2.X; Y / � 2�2.X; Y / [see (15.2.6)], and so from (15.2.16) it
follows that ifEjV j is small, then the uniform distance between the distribution
of 2

Pn
iD1 Xi=a and the �22n distribution is small.

(D) The case where X is arbitrary: right-censoring. Finally, suppose that X D
Y	 ^ N , where N is a nonnegative RV independent of Y	

dD E.	/, so that
a D E.Y	 ^N/. Now, for � > 0

�2.X; Y / � 1
2
�2.X; Y / D 1

2
�2.Y	 ^N; Ya/

D
Z �

0

t j exp.�t=a/ � exp.�t=	/F N .t/jdt

C
Z 1

�

t j exp.�t=a/ � exp.�t=	/F N .t/jdt:
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It can easily be shown that
Z �

0

t j exp.�t=a/ � exp.�t=	/F N .t/jdt � j	2 � a2j C 	2FN .�/

and also that
Z 1

�

t j exp.�t=a/ � exp.�t=	/F N .t/jdt

� a.�C a/ exp.��=a/C 	.�C 	/ exp.��=	/:
Hence, for any � > 0

2�2.X; Y / � j	2 � a2j C 	2FN .�/C 2�.�C �/ exp.��=�/; � D max.a; 	/:
(15.2.28)

For fixed � the value of FN .�/ is small if N is big enough. Thus (15.2.28),

together with (15.2.16), gives an estimate of �2.X; Y / as N
d�! 1. Finally,

by �2.W n;Zn/ � �2.X; Y /=a
2 and

�.Wn;Zn/ D �.W n;Zn/ � 3M2=3
n Œ�2.W n;Zn/�

1=3;

it follows that the distribution of 2
Pn

iD1 Xi=a is uniformly close to the �22n
distribution.

The derivation of the estimates for �.Wn;Zn/ is just an illustrative example of
how one can use the theory of probability metrics. Clearly, in this simple case one
can obtain similar results by traditional methods. However, to study the stability
of the characterization of multivariate distributions, the rate of convergence in the
multivariate CLT, and other stochastic problems of approximation type, one should
use the general relationships between probability distances, which will considerably
simplify the task.

15.3 Ideal Metrics for Sums of Independent Random
Variables

Let .U; k � k/ be a complete separable Banach space equipped with the usual algebra
of Borel sets B.U /, and let X WD X.U / be the vector space of all RVs defined
on a probability space .;A;Pr/ and taking values in U . We will choose to work
with simple probability metrics on the space X instead of the space P.U /.4 We
will show that certain convolution metrics on X may be used to provide exact rates
of convergence of normalized sums to a stable limit law. They will play the role
of ideal metrics for the approximation problems under consideration. Traditional
metrics for the rate of convergence in the CLT are uniform-type metrics. Having

4See Sect. 2.5 in Chap. 2 and Sect. 3.3 in Chap. 3.



344 15 Ideal Metrics with Respect to Summation Scheme for i.i.d. Random Variables

exact estimates in terms of the ideal metrics we will pass to the uniform estimates
using the Bergström convolution method. The rates of convergence, which hold
uniformly in n, will be expressed in terms of a variety of uniform metrics on X.

Definition 15.3.1 (Zolotarev). A p. semimetric � W X � X ! Œ0;1� is called an
ideal (probability) metric of order r 2 R if for any RVs X1, X2, Z 2 X, and any
nonzero constant c the following two properties are satisfied:

(i) Regularity: �.X1 CZ;X2 CZ/ � �.X1;X2/, and
(ii) Homogeneity of order r: �.cX1; cX2/ D jcjr�.X1;X2/.

When � is a simple metric (see Sect. 3.3 in Chap. 3), i.e., its values are
determined by the marginal distributions of the RVs being compared; then it is
assumed in addition that the RV Z is independent of X1 and X2 in condition (i).
All metrics � in this section are simple.5

Remark 15.3.1. Zolotarev (1976a,b)6 showed the existence of an ideal metric of a
given order r � 0, and he defined the ideal metric

�r .X1;X2/ WD supfjE.f .X1/ � f .X2//j W
jf .m/.x/ � f .m/.y/j � kx � ykˇg; (15.3.1)

where m D 0; 1; : : : and ˇ 2 .0; 1� satisfy m C ˇ D r , and f .m/ denotes the mth
Fréchet derivative of f for m � 0 and f .0/ D f .x/. He also obtained an upper
bound for �r (r integer) in terms of the difference pseudomoment �r , where for
r > 0

�r .X1;X2/

WD supfjE.f .X1/� f .X2//j W jf .x/ � f .y/j � kxkxkr�1 � ykykr�1kg
[see (4.4.40) and (4.4.42)]. If U D R, kxk D jxj, then [see (4.4.43)]

�r .X1;X2/ WD r

Z

jxjr�1jFX1.x/ � FX2.x/jdx; r > 0; (15.3.2)

where FX denotes the DF for X .

In this section, we introduce and study two ideal metrics of a convolution type
on the space X. These ideal metrics will be used to provide exact convergence rates
for convergence to an ˛-stable RV in the Banach space setting. Moreover, the rates
will hold with respect to a variety of uniform metrics on X.

Remark 15.3.2. Further, in this and the next section, for each X1;X2 2 X we write
X1CX2 to mean the sum of independent RVs with laws PrX1 and PrX2 , respectively.

5Recent publications on applications include Hein et al. (2004) and Sençimen and Pehlivan (2009).
6See Zolotarev (1986, Chap. 1).
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For any X 2 X, pX denotes the density of X , if it exists. We reserve the letter Y˛
(or Y ) to denote a symmetric stable RV with parameter ˛ 2 .0; 2�, i.e., Y˛

dD �Y˛ ,

and for any n D 1; 2; : : : , X 0
1 C � � �X 0

n

dD n1=˛Y˛ , where X 0
1; X

0
2; : : : ; X

0
n are i.i.d.

RVs with the same distribution as Y˛. If Y˛ 2 X.R/, then we assume that Y˛ has the
characteristic function

�Y .t/ D expf�jt j˛g; t 2 R:

For any f W U ! R

kf kL WD sup
x¤y

jf .x/ � f .y/j
kx � yk

denotes the Lipschitz norm of f , kf k1 the essential supremum of f , and when
U D R

k , kf kp denotes the Lp norm,

kf kpp WD
Z

Rk

jf .x/jpdx; p � 1:

Letting X , X1, X2; : : : denote i.i.d. RVs and Y˛ denote an ˛-stable RV we will
use ideal metrics to describe the rate of convergence,

X1 C � � � CXn

n1=˛
w�! Y˛; (15.3.3)

with respect to the following uniform metrics on X (
w�! stands for the weak

convergence).
Total variation metrics7

� .X1;X2/ WD sup
A2B.U /

j PrfX1 2 Ag � PrfX2 2 Agj;

WD supfjEf .X1/ �Ef .X2/j W f W U ! R is measurable and

for any x; y 2 B , jf .x/ � f .y/j � I.x; y/ where I.x; y/ D 1

if x ¤ y and 0 otherwiseg; X1;X2 2 X.U /; (15.3.4)

and

Var.X1;X2/ WD supfjEf .X1/� Ef .X2/j W f W U ! R is measurable and

kf k1 � 1g
D 2� .X1;X2/; X1;X2 2 X.U /: (15.3.5)

7See Lemma 3.3.1, (3.4.18), and (3.3.13) in Chap. 3.
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In X.Rn/, we have Var.X1;X2/ WD R jd.FX1 � FX2/j.
Uniform metric between densities: [pX denotes the density for X 2 X.Rk/]

`.X1;X2/ WD ess sup
x

jpX1.x/ � pX2.x/j: (15.3.6)

Uniform metric between characteristic functions:

�.X1;X2/ WD sup
t2R

j�X1.t/ � �X2.t/j X1;X2 2 X.R/; (15.3.7)

where �X denotes the characteristic function of X . The metric � is topologically
weaker than Var, which is itself topologically weaker than ` by Schené’s theorem.8

We will use the following simple metrics on X.R/.
Kolmogorov metric:

�.X1;X2/ WD sup
x2R

jFX1.x/ � FX2.x/j: (15.3.8)

Weighted �-metric:

�r .X1;X2/ WD sup
t2R

jt j�r j�X1.t/ � �X2.t/j: (15.3.9)

Lp-version of �m:

�m;p.X1;X2/ WD supfEf .X1/� f .X2/j W kf .mC1/kq � 1g;
1=pC 1=q D 1; m D 0; 1; 2; : : : (15.3.10)

If �m;p.X1;X2/ < 1, then9

�m;p.X1;X2/ D
	

	

	

	

Z x

�1
.x � t/m
mŠ

d.FX1.t/ � FX2.t//
	

	

	

	

p

:

Kantorovich `p-metric:

`pp.X1;X2/ WD sup

(

Z

f dFX1 C
Z

gdFX2 W kf k1 C kf kL � 1;

kgk1 C kgkL < 1; f .x/C g.y/ � kx � ykp; 8x; y 2 R

)

; p � 1 (15.3.11)

[see (3.3.11) and (3.4.18)].

8See Billingsley (1999).
9See Kalashnikov and Rachev (1988, Chap. 3), Sect. 8.3, and further Lemma 18.2.1.
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Now we define the ideal metrics of order r�1 and r , respectively. Let � 2 X.Rk/

and �
dD �� , and define for every r > 0 the convolution (probability) metric

��;r .X1;X2/ WD sup
h2R

jhjr`.X1 C h�;X2 C h�/; X1;X2;2 X.Rk/: (15.3.12)

Thus, each RV � generates a metric ��;r , r > 0. When � 2 X.U /, we will also
consider convolution metrics of the form

��;r .X1;X2/ WD sup
h2R

jhjr Var.X1 C h�;X2 C h�/; X1;X2 2 X.U /: (15.3.13)

Lemmas 15.3.1 and 15.3.2 below show that ��;r and ��;r are ideal of order r � 1

and r , respectively. In general, ��;r and ��;r are actually only semimetrics, but this
distinction is not important in what follows and so we omit it (see Sects. 2.4 and 2.5
in Chap. 2). When � is a symmetric ˛-stable RV, in place of ��;r and ��;r we will
write �˛;r and �˛;r , or simply �r when it is understood.

The remainder of this section describes the special properties of the ideal
convolution (or smoothing) metrics ��;r and ��;r . We first verify ideality.

Lemma 15.3.1. For all � 2 X and r > 0, ��;r is an ideal metric of order r � 1.

Proof. IfZ does not depend uponX1 andX2, then `.X1CZ;X2CZ/ � `.X1;X2/,
and hence ��;r .X1 CZ;X2 CZ/ � ��;r .X1;X2/. Additionally, for any c ¤ 0

��;r .cX1; cX2/ D sup
h2R

jhjr`.cX1 C h�; cX2 C h�/

D sup
h2R

jchjr `.cX1 C ch�; cX2 C ch�/ D jcjr�1��;r .X1;X2/: ut
The proof of the next lemma is analogous to the previous one.

Lemma 15.3.2. For all � 2 X and r > 0, ��;r is an ideal metric of order r .

We now show that both ��;r and ��;r are bounded from above by the difference
pseudomoment whenever � has a density that is smooth enough.

Lemma 15.3.3. Let k 2 N
C WD f0; 1; 2; : : : g, and suppose that X; Y 2 X.R/

satisfy EXj D EY j , j D 1; : : : ; k � 2. Then for every � 2 X.R/ with a density g
that is k � 1 times differentiable

��;k.X1;X2/ � kg.k�1/k1
.k � 1/Š

�k�1.X1;X2/: (15.3.14)

Proof. In view of the inequality10

10See Zolotarev (1986, Chap. 3) and Kalashnikov and Rachev (1988, Theorem 10.1.1).
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�k�1.X1;X2/ � 1

.k � 1/Š
�k�1.X1;X2/; (15.3.15)

it suffices to show that

��;k.X1;X2/ � �k�1.X1;X2/: (15.3.16)

However, with H.t/ D FX1.t/ � FX2.t/ we have

��;k.X1;X2/ D sup
h2R

jhjk sup
x2R

1

jhj
ˇ

ˇ

ˇ

ˇ

Z

g
�x � y

h

�

dH.y/

ˇ

ˇ

ˇ

ˇ

D sup
h2R

jhjk�1 sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

H.y/g.1/
�x � y

h

� 1

h
dy

ˇ

ˇ

ˇ

ˇ

D sup
h2R

jhjk�2 sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

g.1/
�x � y

h

� 1

h
dH.�1/.y/

ˇ

ˇ

ˇ

ˇ

:::

D sup
h2R

jhj sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

g.k�1/
�x � y

h

� 1

h
H.�kC2/.y/dy

ˇ

ˇ

ˇ

ˇ

; (15.3.17)

where

F �k
X .x/ WD

Z x

�1
.x � t/k
kŠ

dFX.t/: (15.3.18)

Therefore, by (15.3.10) and �k�1 D �k�2;1, we have

��;k.X1;X2/ � kg.k�1/k1
Z

jH.2�k/.y/jdy D kg.k�1/k1�k�1.X1;X2/: ut

Similarly to Lemma 15.3.3, one can prove a slightly better estimate.

Lemma 15.3.4. For every � 2 X.R/ with a density g that is m times differentiable
and for all X1;X2 2 X.R/

��;r .X1;X2/ � C.m; p; g/�m�1;p.X1;X2/; (15.3.19)

where r D mC 1=p, m 2 N
C, and

C.m; p; g/ WD kg.m/kq; 1=p C 1=q D 1: (15.3.20)

Proof. For any r > 0 and X1, X2, H.t/ D FX1.t/ � FX2.t/ we have, using
integration by parts [see (15.3.17)] and Hölder’s inequality

��;r .X1;X2/ D sup
h>0

hr sup
x2R

jpX1Ch� .x/ � pX2Ch� .x/j
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D sup
h>0

hr�m�1 sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

g.m/
�x � y

h

�

H.1�m/.y/dy
ˇ

ˇ

ˇ

ˇ

� sup
h>0

hr�m�1 sup
x2R

�Z
ˇ

ˇ

ˇg.m/
�x � y

h

�ˇ

ˇ

ˇ

q

dy

�1=q

kH.1�m/kp

D C.m; p; g/kH.1�m/kp:

By Kalashnikov and Rachev (1988, Theorem 10.2.1), �m�1:p.X1;X2/ < 1
implies �m�1;p.X1;X2/ D kH.1�m/kp , completing the proof of the lemma. ut
Lemma 15.3.5. Under the hypotheses of Lemma 15.3.4, we have

��;r .X1;X2/ � C.r; g/�r .X1;X2/; (15.3.21)

where C.r; g/ is a finite constant, r 2 N
C.

The proof is similar to the proof of Lemma 15.3.4 and left to the reader.

Lemma 15.3.6. 11 Let m 2 N
C, and suppose E.Xj

1 � X
j
2 / D 0, j D 0; 1; : : : ; m.

Then, for p 2 Œ1;1/,

�m;p.X1;X2/ �

8

ˆ

<

ˆ

:

�
1=p
1 .X1;X2/; if m D 0;

�.1C 1=p/

�.r/
�r .X1;X2/; if m D 1; 2; : : : ; r D mC 1=p:

(15.3.22)
Also, for r D mC 1=p,

�m;p.X1;X2/ � �r .X1;X2/:

Lemmas 15.3.4–15.3.6 describe the conditions under which ��;r (resp. ��;r ) is
finite. Thus, by (15.3.19) and (15.3.22), we have that for r > 1

8

<

:

E.X
j
1 � X

j
2 / D 0; j D 0; 1; : : : ; m � 1;

r WD mC 1=p;

�r�1.X1;X2/ < 1;

) ��;r .X1;X2/ < 1; (15.3.23)

for any � with density g such that kg.m�1/kq � 1, 1=pC 1=q D 1. In particular, if
� is ˛-stable, then

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

xj d.FX1 � FX2/.x/ D 0; j D 0; 1; : : : ; m � 1;

r WD mC 1=p;

�r�1.X1;X2/ < 1;

) �˛;r .X1;X2/ < 1:

(15.3.24)

11See Kalashnikov and Rachev (1988, Sect. 3, Theorem 10.1).
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Similarly,
8

ˆ

ˆ

<

ˆ

ˆ

:

Z

xj d.FX1 � FX2/.x/ D 0; j D 0; 1; : : : ; r � 1;
r 2 N

C;
�r .X1;X2/ < 1;

) �˛;r .X1;X2/ < 1:

(15.3.25)

We conclude our discussion of the ideal metrics �˛;r and �˛;r by showing that
they satisfy the same weak convergence properties as do the Kantorovich distance
`p and the pseudomoments �r .

Theorem 15.3.1. Let k 2 N
C, 0 < ˛ � 2, and Xn, U 2 X.R/ with EXj

n D EU j ,
j D 1; : : : ; k � 2, and EjXnjk�1 C EjU jk�1 < 1. If k is odd, then the following
expressions are equivalent as n ! 1:

(i) �˛;k.Xn; U / ! 0.

(ii) (a) Xn
w�! U and (b) EjXnjk�1 ! EjU jk�1.

(iii) `k�1.Xn; U / ! 0.
(iv) �k�1.Xn; U / ! 0.
(v) �˛;k�1.Xn; U / ! 0.

Proof. We note that (ii) ” (iii) follows immediately from Theorem 8.3.1
with c.x; y/ D jx � yjk�1 or from (8.3.21) to (8.3.24) and `k�1 D bLk�1. Also,
(ii) ” (iv) follows from the three relations12

`1.X; Y / D �1.X; Y / D
Z

R

jFX.x/ � FY .x/jdx

�r .X; Y / D �1.X
"r ; Y "r /

for any r > 0 and X"r D jX jr sgnX , and13

`1.X
"r
n ; U

"r / ! 0 ” x"r
n

w�! U "r and EjX"r
n j ! EjU "r j:

Finally, (iv) ) (i) by (15.3.24) and (iv) ) (v) by (15.3.25).
Thus the only new results here are the implications (i) ) (ii) and (v) ) (ii).
Now (i) ) (ii) (a) follows easily from Fourier transform arguments since the

Fourier transform of g never vanishes. Similarly, if (v) holds, then Xn C Y˛
w�!

U C Y˛, and thus (ii) (a) follows. To prove (i) ) (ii) (b), we need the following
estimate for �˛;k.X;U /.

12See Corollary 5.5.1 and Theorem 6.2.1.
13See Theorem 6.4.1 or Theorem 8.3.1 with c.x; y/ D jx � yj.
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Claim 3. Let 0 < ˛ � 2, and consider the associated metric �r WD �r;˛ . For all k
there is a constant ˇ WD ˇ.˛; k/ < 1 such that for all X;U 2 X.R/

�k.X;U / � ˇ

ˇ

ˇ

ˇ

ˇ

Z

R

F
.2�k/
X .z/� F

.2�k/
U .z/dz

ˇ

ˇ

ˇ

ˇ

: (15.3.26)

Here F .2�k/ is as in (15.3.18).

Proof of claim. Integration by parts yields

�k.X;U / D sup
h2R

jhjk sup
x2R

jpXChY .x/ � pUChY .x/j; .Y WD Y˛/

D sup
h2R

jhjk sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

phY .z/dH.x � z/

ˇ

ˇ

ˇ

ˇ

; .H WD FX � FU /

D sup
h2R

jhjk sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

H.2�k/.x � z/p.k�1/
hY .z/dz

ˇ

ˇ

ˇ

ˇ

: (15.3.27)

Now, 2�phY .z/ D R

exp.�i tz/ exp.�jht j˛/dt , and differentiating phY .z/ k � 1

times gives (settinget D th)

2�jhkp.k�1/
hY .z/j D

ˇ

ˇ

ˇ

ˇ

hk
Z

.it/k�1 exp.�itz � jht j˛/dt
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

hk
Z �

i
et

h

�k�1
exp.�ietz=h� jet j˛/d

�

et

h

�

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

.iet/k�1 exp.�ietz=h � jet j˛/det
ˇ

ˇ

ˇ

ˇ

:

Since

ˇ WD ˇ.˛; k/ WD 1

2�

Z

jt jk�1 exp.�jt j˛/dt < 1;

we obtain

lim
h!1 jhkp.k�1/

hY .z/j D 1

2�

ˇ

ˇ

ˇ

ˇ

Z

lim
h!1.it/

k�1 exp.itz=h � jt j˛/dt
ˇ

ˇ

ˇ

ˇ

D ˇ:

Now we multiply both sides of (15.3.27) by ˇ�1. Since ˇ and �k�1.X;U / are both
finite,

ˇ�1�k.X;U / � ˇ�1 sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

H.2�k/.x � z/ lim
h!1hkp

.k�1/
hY .z/dz

ˇ

ˇ

ˇ

ˇ
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D sup
x2R

ˇ

ˇ

ˇ

ˇ

Z

H.2�k/.x � z/dz

ˇ

ˇ

ˇ

ˇ

D ˇ

ˇH.2�k/.z/dz
ˇ

ˇ ;

which proves the claim.
Now, using equality of the first k � 2 moments and applying (15.3.26) to Xn

and U yields

ˇ�1�k.Xn; U / �
ˇ

ˇ

ˇ

ˇ

Z 1

�1
.z � t/k�2

.k � 2/Š
Hn.dt/dz

ˇ

ˇ

ˇ

ˇ

; .Hn WD FXn � FU /

D
ˇ

ˇ

ˇ

ˇ

Z 0

�1
.	/dt C

Z 1

0

.	/dt
ˇ

ˇ

ˇ

ˇ

WD jI1 C I2j: (15.3.28)

To estimate I1 and I2, we first note that, since

Z

R

.z � t/k�2Hn.dt/ D E.z �Xn/k�2 � E.z � U /k�2 D 0;

we obtain

Z z

�1
.z � t/k�2

.k � 2/Š
Hn.dt/ D �

Z 1

z

.z � t/k�2

.k � 2/Š
Hn.dt/

D .�1/k�1
Z 1

z

.t � z/k�2

.k � 2/Š Hn.dt/: (15.3.29)

Thus by (15.3.29) and Fubini’s theorem, we obtain

I2 D .�1/k�1
Z 1

0

Z 1

z

.t � z/k�2

.k � 2/Š Hn.dt/dz

D .�1/k�1
Z 1

0

Z t

0

.t � z/k�2

.k � 2/Š
dzHn.dt/ D

Z 1

0

.�t/k�1

.k � 1/ŠHn.dt/: (15.3.30)

Another application of Fubini’s theorem gives

I1 D
Z 0

�1

Z 0

t

.z � t/k�2

.k � 2/Š
dzHn.dt/ D

Z 0

�1
.�1/k�1

.k � 1/ŠHn.dt/: (15.3.31)

Combining (15.3.29)–(15.3.31) gives

ˇ�1�k.Xn; U / �
ˇ

ˇ

ˇ

ˇ

Z

.�t/k�1

.k � 1/Š
Hn.dt/

ˇ

ˇ

ˇ

ˇ

D 1

.k � 1/Š jE.X
k�1
n � U k�1/j;
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which gives the desired implication (i) ) (ii) (b).
To prove (v) ) (ii) (b), we integrate by parts to obtain

�k.Xn; U / �
Z

R

jpXnCY .x/ � pUCY .x/jdx

D
Z

R

ˇ

ˇ

ˇ

ˇ

Z

p
.k/
Y .x � z/

Z z

�1
.z � t/k�1

.k � 1/Š
dHn.t/dz

ˇ

ˇ

ˇ

ˇ

dx

�
ˇ

ˇ

ˇ

ˇ

“

p
.k/
Y .x � z/dx

Z z

�1
.z � t/k�1

.k � 1/Š
dHn.t/dz

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

“ z

�1
.z � t/k�1

.k � 1/Š
dHn.t/dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

p
.k/
Y .x/dx

ˇ

ˇ

ˇ

ˇ

:

By (15.3.28) to (15.3.31), we obtain

�k.Xn; U / �
ˇ

ˇ

ˇ

ˇ

Z

p
.k/
Y .x/dx

ˇ

ˇ

ˇ

ˇ

jE.Xk
n � U k/j;

showing (v) ) (ii) (b) and completing Theorem 15.3.1. ut

15.4 Rates of Convergence in the CLT in Terms of Metrics
with Uniform Structure

First, we develop rates of convergence with respect to the Var-metric defined in
(15.3.5). We suppose that X;X1;X2; : : : denotes a sequence of i.i.d. RVs in X.U /,
where U is a separable Banach space. Y 2 X.U / denotes a symmetric ˛-stable RV.
The ideal convolution metric �r WD �˛;r [see (15.3.13) with � D Y ] will play a
central role. Our main theorem is as follows.

Theorem 15.4.1. Let Y be an ˛-stable RV. Let r D sC1=p > ˛ for some integer s
and p 2 Œ1;1/, a D 1=2r=˛A, and A WD 2.2.r=˛/�1 C 3r=˛/. If X 2 X.U / satisfies

�0 WD �0.X; Y / WD max.Var.X; Y /; �˛;r .X; Y // � a; (15.4.1)

then for any n � 1

Var
�

X1 C � � � CXn

n1=˛
; Y

�

� A.a/�0n
1�r=˛ � 2�r=˛n1�r=˛: (15.4.2)

Remark 15.4.1. A result of this type was proved by Senatov (1980) for the case
U D R

k , s D 3, and ˛ D 2 via the �r metric (15.3.1). We will follow Senatov’s
method with some refinements.
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Before proving Theorem 15.4.1, we need a few auxiliary results.

Lemma 15.4.1. For any X1;X2 2 X.U / and � > 0

Var.X1 C �Y;X2 C �Y / � ��r�r .X1;X2/: (15.4.3)

Proof. Since Y and (�Y ) have the same distribution,

�r .X1;X2/ D sup
h>0

hr Var.X1 C hY;X2 C hY /;

and thus

Var.X1 C hY;X2 C hY / � h�r sup
h>0

hr Var.X1 C hY;X2 C hY /

D h�r�r .X1;X2/: ut

Lemma 15.4.2. For any X1;X2; U; V 2 X.U / the following inequality holds:

Var.X1 C U;X2 C U / � Var.X1;X2/Var.U; V /C Var.X1 C V;X2 C V /:

Proof. By the definition in (15.3.5) and the triangle inequality,

Var.X1 C U;X2 C U / D supfjEf .X1 C U / �Ef .X2 C U /j W kf k1 � 1g

D sup

� ˇ

ˇ

ˇ

ˇ

Z

f .u/.PrX1CU � PrX2CU /.du/

ˇ

ˇ

ˇ

ˇ

W kf k1 � 1




� sup

� ˇ

ˇ

ˇ

ˇ

Z

f .x/.PrX1 � PrX2/.dx/

ˇ

ˇ

ˇ

ˇ

W kf k1 � 1




C Var.X1 C V;X2 C V /;

where

f .x/ WD
Z

f .u/.PrU � PrV /.du � x/ D
Z

f .u C x/.PrU � PrV /.du/;

in which PrX denotes the law of the U -valued RV X . Since kf k1 � 1,

kf k1 D sup
x2U

ˇ

ˇ

ˇ

ˇ

Z

f .u C x/.PrU � PrV /.du/

ˇ

ˇ

ˇ

ˇ

� Var.U; V /; by (15.3.5)

and thus

sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f .x/.PrX1 � PrX2/.dx/

ˇ

ˇ

ˇ

ˇ

W kf k1 � 1
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is bounded by

� sup

�ˇ

ˇ

ˇ

ˇ

Z

U

g.x/.PrX1 � PrX2.dx/

ˇ

ˇ

ˇ

ˇ

W kgk1 � Var.U; V /



D Var.X1;X2/Var.U; V /: ut

We now proceed to the proof of Theorem 15.4.1. Throughout the proof,
Y1; Y2; : : : denote i.i.d. copies of Y .

Proof. We proceed by induction; for n D 1 the assertion of the theorem is trivial.
For n D 2 the assertion follows from the inequality

Var
�

X1 CX2

21=˛
; Y

�

D Var
�

X1 CX2

21=˛
;
Y1 C Y2

21=˛

�

D Var.X1 CX2; Y1 C Y2/

� 2Var.X1; Y2/ � A.a/�02
1�r=˛

since A.a/ � 2r=˛. A similar calculation holds for n D 3. Suppose now that the
estimate

Var
�

X1 C � � � CXj

j 1=˛
; Y

�

� A.a/�0j
1�r=˛ (15.4.4)

holds for all j < n. To complete the induction, we only need to show that (15.4.4)
holds for j D n.

Thus assuming (15.4.4), we have by (15.4.1)

Var
�

X1 C � � � CXj

j 1=˛
; Y

�

� A.a/a D 2�r=˛: (15.4.5)

For any integer n � 4 and m D Œn=2�, where Œ�� denotes integer part, the triangle
inequality gives

V WD Var
�

X1 C � � � CXn

n1=˛
; Y

�

D Var
�

X1 C � � � CXn

n1=˛
;
Y1 C � � � C Yn

n1=˛

�

� Var
�

X1 C � � � CXm

n1=˛
C XmC1 C � � � CXn

n1=˛
;

Y1 C � � � C Ym

n1=˛
C XmC1 C � � � CXn

n1=˛

�

C Var
�

Y1 C � � � C Ym

n1=˛
C XmC1 C � � � CXn

n1=˛
;

Y1 C � � � C Ym

n1=˛
C YmC1 C � � � C Yn

n1=˛

�

:
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Hence, by Lemma 15.4.2,

V � I1 C I2 C I3; (15.4.6)

where

I1 WD Var
�

X1 C � � � CXm

n1=˛
;
Y1 C � � � C Ym

n1=˛

�

Var
�

XmC1 C � � � CXn

n1=˛
;
YmC1 C � � � C Yn

n1=˛

�

;

I2 WD Var
�

X1 C � � � CXm

n1=˛
C YmC1 C � � � C Yn

n1=˛
;

Y1 C � � � C Ym

n1=˛
C YmC1 C � � � C Yn

n1=˛

�

;

and

I3 WD Var
�

Y1 C � � � C Ym

n1=˛
C XmC1 C � � � CXn

n1=˛
;

Y1 C � � � C Ym

n1=˛
C YmC1 C � � � C Yn

n1=˛

�

:

We first estimate I1. By (15.4.5),

I1 � 2�r=˛A.a/�0.n �m/1�r=˛ � 1
2
A.a/�0n

1�r=˛: (15.4.7)

To estimate I2 and I3, we will use Lemma 15.4.1 and the relation

Y1 C � � � C Yn

n1=˛
dD Y1: (15.4.8)

Thus, by (15.4.8), Lemma 15.4.1, and the fact that �r is ideal of order r , we deduce

I2 D Var
�

X1 C � � � CXn

n1=˛
C
�n �m

n

�1=˛

Y;
Y1 C � � � C Ym

n1=˛
C
�n �m

n

�1=˛

Y

�

�
�n �m

n

��r=˛
�r

�

X1 C � � � CXm

n1=˛
;
Y1 C � � � C Ym

n1=˛

�

� 2r=˛m�r

�

X1

n1=˛
;
Y1

n1=˛

�

� 2.r=˛/�1n1�r=˛�r .X1; Y1/: (15.4.9)
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Analogously, we estimate I3 by

I3 D Var
�

X1 C � � � CXn�m
n1=˛

C
�m

n

�1=˛

Y;
Y1 C � � � C Yn�m

n1=˛
C
�m

n

�1=˛

Y

�

�
�m

n

��r=˛
�r

�

X1 C � � � CXn�m
n1=˛

;
Y1 C � � � C Yn�m

n1=˛

�

� 3r=˛n1�r=˛�r .X1; Y1/: (15.4.10)

Taking (15.4.6), (15.4.7), (15.4.9), and (15.4.10) into account, we obtain

V � �

1
2
A.a/C 2r=˛�1 C 3r=˛

�

�0n
1�r=˛ � A.a/�0n

1�r=˛

since A.a/=2 D 2.r=˛/�1 C 3r=˛. ut
Further, we develop rates of convergence in (15.3.3) with respect to the �

metric (15.3.7). Our purpose here is to show that the methods of proof for
Theorem 15.4.1 can be easily extended to deduce analogous results with respect
to �. The metric �r (15.3.9) will play a role analogous to that played by �r in
Theorem 15.4.1.

Theorem 15.4.2. Let Y be an ˛-stable RV in X.R/. Let r > ˛, b WD 1=2r=˛B ,
and B WD max.3r=˛; 2Cr.2.r=˛/�1 C 3r=˛//, where Cr WD .r=˛e/r=˛. If X 2 X.R/
satisfies

�r WD �r .X; Y / WD maxf�.X; Y /;�r .X; Y /g � b; (15.4.11)

then for all n � 1

�

�

X1 C � � � CXn

n1=˛
; Y

�

� B�rn
1�r=˛ � 2�r=˛n1�r=˛: (15.4.12)

Remark 15.4.2. When comparing conditions (15.4.1) and (15.4.11), it is useful to
note that the metric � is topologically weaker than Var, i.e., Var.Xn; Y / ! 0

implies �.Xn; Y / ! 0 but the converse is not true. Also, if r D m C ˇ, m D
0; 1; : : : , ˇ 2 .0; 1�, then [see (15.3.1) and (15.3.9)],

�r � Cˇ�r ; (15.4.13)

where Cˇ D supt jt j�ˇj1 � eit j.
Proof of inequality (15.4.13). By the definitions of �r and �r , we have

�r .X; Y / WD sup
t2R

jE.ft .X/� ft .Y //j;
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where ft .x/ WD t�r exp.itx/ and

�r .X; Y / WD supfjE.f .X/� f .Y /j W f W R ! C;

andjf .m/.x/ � f .m/.y/j � jx � yjˇg;

where r D mC ˇ, m D 0; 1; : : : , and ˇ 2 .0; 1�. For any t 2 R

f
.m/
t .x/ D t�ˇim exp.itx/;

and thus

jf .m/
t .x/ � f .m/

t .y/j
jsjˇ D jt j�ˇj exp.itx/ � exp.ity/j

jsjˇ D jt j�ˇj1 � exp.its/j
jsjˇ ;

where s WD x � y. We observe that for anyDr > 0

Dr�r .X; Y / D supfjE.f .X/� f .Y //j W jf .m/.x/ � f .m/.y/j � Dr jx � yjˇg

and

sup
x;y2R

jf .m/
t .x/ � f .m/

t .y/j
jx � yjˇ � sup

s2R
jst j�ˇj1 � exp.its/j WD Cˇ:

A simple calculation shows that Cˇ < 1, and this completes the proof of
inequality (15.4.13). ut

Finally, we note that since �m.X; Y / WD supfjE.f .X/ � f .Y //j W jf .mC1/.x/j
� 1 a.e.g and since jf .mC1/

t .x/j D jimC1 exp.itx/j D 1, we obtain �m � �m.

Remark 15.4.3. One may show that for r 2 N
C the metric �r has a convolution-

type structure. In fact, with a slight abuse of notation,

�r .FX1; FX2/ D �.FX1 
 pr ; FX2 
 pr/;
where pr.t/ D .t r=rŠ/I.t>0/ is the density of an unbounded positive measure on the
half-line Œ0;1/.

The proof of Theorem 15.4.2 is very similar to that of Theorem 15.4.1 and uses
the following auxiliary results, which are completely analogous to Lemmas 15.4.1
and 15.4.2. We leave the details to the reader to complete the proof of Theo-
rem 15.4.2.

Lemma 15.4.3. For any X1;X2 2 X.R/, � > 0, and r > ˛

�.X1 C �Y;X2 C �Y / � Cr�
�r�r .X1;X2/;

where Cr WD .r=˛e/r=˛.
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Proof. We have

�.X1 C �Y;X2 C �Y / WD sup
t2R

j�X1.t/ � �X2.t/j��Y .t/

D sup
t2R

j�X1.t/ � �X2.t/j expf�j�t j˛g

� sup
t2R

j�t j�r j�X1.t/ � �X2.t/j sup
u>0

ur exp.�u˛/

D Cr�
�r�r .X; Y /

since Cr D supu>0 ur exp.�u˛/ by a simple computation. ut
Lemma 15.4.4. For any X1;X2;Z;W 2 X.R/ the following inequality holds:

�.X1 CZ;X2 CZ/ � �.X1;X2/�.Z;W /C �.X1 CW;X2 CW /:

Proof. From the inequality

j�X1CZ.t/ � �X2CZ.t/j � j�X1.t/ � �X2.t/j j�Z.t/ � �W .t/j
C j�X1.t/ � �X2.t/j j�W .t/j

we obtain the desired result. ut
Finally, we develop convergence rates with respect to the `-metric defined

in (15.3.6), and thus we naturally restrict our attention to the subset X� of X.Rk/
of RVs with densities. Let X;X1;X2; : : : denote a sequence of i.i.d. RVs in X� and
Y D Y˛ denote a symmetric ˛-stable RV. The ideal convolution metrics �r WD �˛;r
and �r WD �˛;r (i.e., � D Y ) will play a central role.

Theorem 15.4.3. Let Y be a symmetric ˛-stable RV in X.Rk/. Let r D mC1=p >

˛ for some integer m and p 2 Œ1;1/, a WD 1=2r=˛A, A WD 2.2r=˛�1 C 3.rC1/=˛/,
andD WD 31=˛2r=˛. If X 2 X� satisfies

(i)
�.X; Y / WD max.`.X; Y /;�˛;r .X; Y // � a; (15.4.14)

(ii)

�0.X; Y / WD max.Var.X; Y /; �˛;r .X; Y // � 1

A.a/D
;

then

`

�

X1 C � � � CXn

n1=˛
; Y

�

� A.a/�.X; Y /n1�r=˛: (15.4.15)

Remark 15.4.4. (a) Conditions (i) and (ii) guarantee `-closeness (of order n1�r=˛)
between Y and the normalized sums n�1=˛.X1 C � � � CXn/.

(b) From Lemmas 15.3.3, 15.3.5, and 15.3.6 we know that �˛;rC1.X; Y / and
�˛;r .X; Y /, r D m � 1C 1=p, m D 1; 2; : : : can be approximated from above
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by the r th difference pseudomoment �r wheneverX and Y share the same first
.m � 1/ moments [see (15.3.23)–(15.3.25)]. Thus conditions (i) and (ii) could
be expressed in terms of difference pseudomoments, which of course amounts
to conditions on the tails of X .

To prove Theorem 15.4.3, we need a few auxiliary results similar in spirit to
Lemmas 15.4.1 and 15.4.2.

Lemma 15.4.5. Let X1;X2 2 X.Rk/. Then

`.X1 C �Y;X2 C �Y / � ��r�r .X1;X2/:

Proof. `.X1 C �Y;X2 C �Y / � ��r �r `.X1 C �Y;X2 C �Y / � ��r�r .X1;X2/.
ut

Lemma 15.4.6. For any (independent) X; Y;U; V 2 X�.Rk/ the following in-
equality holds:

`.X C U; Y C U / � `.X; Y /Var.U; V /C `.X C V; Y C V /:

Proof. Using the triangle inequality we obtain

`.X C U; Y C U /

D sup
x2Rk

ˇ

ˇ

ˇ

ˇ

Z

.pX.x � y/ � pY .x � y// PrfU 2 dyg
ˇ

ˇ

ˇ

ˇ

� sup
x2Rk

ˇ

ˇ

ˇ

ˇ

Z

.pX.x � y/ � pY .x � y//.P rfU 2 dyg � PrfV 2 dyg/
ˇ

ˇ

ˇ

ˇ

C sup
x2Rk

ˇ

ˇ

ˇ

ˇ

Z

.pX.x � y/ � pY .x � y// PrfV 2 dyg
ˇ

ˇ

ˇ

ˇ

� `.X; Y /Var.U; V /C `.X C V; Y C V /: ut

To prove Theorem 15.4.3, one only needs to use the method of proof for
Theorem 15.4.1 combined with the preceding two auxiliary results. The complete
details are left to the reader. A more general theorem will be proved in the next
section (Theorem 16.3.2).

The foregoing results show that the “ideal” structure of the convolution metrics
�r and �r may be used to determine the optimal rates of convergence in the general
CLT. The rates are expressed in terms of the uniform metrics Var, �, and ` and hold
uniformly in n under the sufficient conditions (15.4.1), (15.4.11), and (15.4.14),
respectively. We have not explored the possible weakening of these conditions or
even their possible necessity.

The ideal convolution metrics �r and �r are not limited to the context of
Theorems 15.4.1–15.4.3; they can also be successfully employed to study other
questions of interest. For example, we only mention here that �r can be used to prove
a Berry–Esseen type of estimate for the Kolmogorov metric � given in (15.3.8).
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More precisely, if X;X1;X2; : : : denotes a sequence of i.i.d. RVs in X.R/ and
Y 2 X.R/ a symmetric ˛-stable RV, then for all r > ˛ and n � 1

�

�

X1 C � � � CXn

n1=˛
; Y

�

� C�˛;r .X; Y /n
1�r=˛ C C maxf�.X; Y /; �˛;1.X; Y /; �1=.r�˛/˛;r .X; Y /gn�1=˛;

(15.4.16)

where C is an absolute constant. Whenever �˛;1.X; Y / < 1 and �˛;r .X; Y / < 1,
we obtain the right order estimate in the Berry–Esseen theorem in terms of the
metric �˛;r .

Thus, metrics of the convolution type, especially those with the ideal structure,
are appropriate when investigating sums of independent RVs converging to a stable
limit law. We can only conjecture that there are other ideal convolution metrics,
other than those explored in this section, that might furnish additional results in
related limit theorem problems.14
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Chapter 16
Ideal Metrics and Rate of Convergence
in the CLT for Random Motions

The goals of this chapter are to:

• Define ideal probability metrics in the space of random motions,
• Provide examples of ideal probability metrics and describe their basic properties,
• Derive the rate of convergence in the general central limit theorem in terms of

the corresponding metrics with uniform structure.

Notation introduced in this chapter:

Notation Description

M.d/ Group of rigid motions on R
d

SO(d ) Special orthogonal group in R
d

g D .y; u/ Element of M.d/
g1 ı g2 Convolution of two motions
H˛ D .Y˛; U˛/ ˛-stable random motion

16.1 Introduction

The ideas developed in Chap. 15 are discussed in this chapter in the context of
random motions defined on R

d . We begin by defining the corresponding ideal
probability metrics and discuss their basic properties, which are similar to their
counterparts in Chap. 15. Finally, we provide results for the rate of convergence
in the general central limit theorem (CLT) for random motions in terms of the
following metrics with uniform structure: �, Var, and `.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 16, © Springer Science+Business Media, LLC 2013
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16.2 Ideal Metrics in the Space of Random Motions

Let M.d/ be the group of rigid motions on R
d , i.e., the group of one-to-one

transformations of R
d to R

d that preserves the orientation of the space and the
inner product. M.d/ is known as the Euclidean group of motions of d -dimensional
Euclidean space. Letting SO.d/ denote the special orthogonal group in R

d , any
element g 2 M.d/ can be written in the form g D .y; u/, where y 2 R

d represents
the translation parameter and u 2 SO.d/ is a rotation about the origin. Note that
for all x 2 R

d , g.x/ D y C ux. If gi D .yi ; ui /, 1 � i � n, then the product
g.n/ D g1 ıg2ı� � �ıgn has the form g.n/ D .y.n/; u.n//, where u.n/ D u1; : : : ; un
and y.n/ D y1Cu1y2C� � �Cu1 � � � un�1yn. For any c 2 R and g D .y; u/ 2M.d/,
define cg D .cy; u/.

Next, let .�;F ;Pr/ be a probability space on which is defined a sequence of
i.i.d. random variables (RVs) Gi , i � 1, with values in M.d/. A. natural problem
involves finding the limiting distribution (i.e., CLT) of the product G1 ı � � � ı Gn,
which leads to the notion of ˛-stable random motion. The definition of an ˛-stable
random motion resembles that for a spherically symmetric ˛-stable random vector,
that is,H˛ is an ˛-stable random motion if for any sequence of i.i.d. random motions

Gi , with G1
dD H˛ ,

H˛
dD n�1=˛.G1 ı � � � ıGn/ for any n � 1; and

H˛
dD uHa; for any u 2 SO.d/: (16.2.1)

Baldi (1979) proved that H˛ D .Y˛; U˛/ is an ˛-stable random motion if and only
if Y˛ has a spherically symmetric ˛-stable distribution on R

d and U˛ is uniformly
distributed on SO.d/. Henceforth, we write H˛ D .Y˛; U˛/ to denote an ˛-stable
random motion. In this section, we will be interested in the rate of convergence of
i.i.d. random motions to a stable random motion.1 First we shall define and examine
the properties of ideal metrics related to this particular approximation problem.

Let X.M.d// be the space of all random motions G D .Y; U / on .�;F ;Pr/,
Y 2 X.Rd / the space of all d -dimensional random vectors, and U 2 X.SO.d// the
space of all random “rotations” in R

d . X�.Rd / denotes the subspace of X.Rd / of
all RVs with densities: X�.M.d// is defined by X�.Rd / � X.SO.d//.

Define the total variation distance between elements G and G� of X.M.d// by

Var.G;G�/ WD sup
x2Rd

Var.G.x/;G�.x//; (16.2.2)

where for X and Y in X.Rd /

Var.X; Y / WD 2 supfj PrfX 2 Ag � PrfY 2 Agj; A 2 B.Rd /g;
in which B.Rd / denotes the Borel sets in R

d [see (15.3.5)].

1See Rachev and Yukich (1991).
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Let � 2 X.Rd / have a spherically symmetric ˛-stable distribution on R
d . As in

Sect. 15.3, define smoothing metrics associated with the Var and ` distances

�r .X; Y / WD sup
h2R
jhjr Var.X C h�; Y C h�/; X; Y 2 X.Rd / (16.2.3)

and

�r .X; Y / WD sup
h2R
jhjr `.X C h�; Y C h�/; X; Y 2 X�.Rd /; (16.2.4)

where `.X; Y /, X; Y 2 X�.Rd /, is the ess sup norm distance between the densities
pX and pY of X and Y , respectively, that is,

`.X; Y / WD ess sup
y2Rd

jpX.y/� pY .y/j (16.2.5)

[see (15.3.6), (15.3.12), and (15.3.13)].
Next, extend the definitions of �r and �r to X.M.d// and X�.M.d//, respec-

tively,

�r .G1;G2/ WD sup
x2Rd

�r .G1.x/;G2.x//; G1;G2 2 X.M.d//; (16.2.6)

and

�r .G1;G2/ WD sup
x2Rd

�r .G1.x/;G2.x//; G1;G;2 X�.M.d//: (16.2.7)

As in Chap. 15, �r and �r will play important roles in establishing rates of
convergence in the integral and local CLT theorems. Zolotarev’s �r metric defined
by (15.3.1) on X.Rd / is similarly extended in X.M.d//

�r .G1;G2/ WD sup
x2Rd

�r .G1.x/;G2.x//: (16.2.8)

The following two theorems record some special properties of �r and �r , which
are proved by exploiting their ideality on X.Rd / (Lemmas 15.3.1 and 15.3.2).

Theorem 16.2.1. �r is an ideal metric on X�.M.d// of order r�1, i.e., �r satisfies
the following two conditions:

(i) Regularity: �r .G1 ıG;G2 ıG/ � �r .G1;G2/ and

�r .G ıG1;G ıG2/ � �r .G1;G2/

for any G1 and G2 that are independent of G;
(ii) Homogeneity: �r .cG1; cG2/ � jcjr�1�r .G1;G2/ for any c 2 R.

Proof. The proof rests upon two auxiliary lemmas. ut
Lemma 16.2.1. For any independentG 2 X�.M.d//, Y1; Y2 2 X�.Rd /

�r .G.Y1/; G.Y2// � �r .Y1; Y2/: (16.2.9)
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Proof of Lemma 16.2.1. By definition of �r and the regularity of `, we have for
G WD .Y; U /

�r .G.Y1/; G.Y2// D sup
x2R
jhjr `.G.Y1/C h�;G.Y2/C h�/

D sup
x2R
jhjr `.Y C UY1 C h�; Y C UY2 C h�/

� sup
x2R
jhjr `.UY1 C h�; UY2 C h�/: (16.2.10)

Next, we show `.UY1; UY2/ � `.Y1; Y2/ for any independent U2X.SO.d//. To
see this, notice that

`.UY1; UY2/ � sup
x2Rd

sup
u2SO.d/

jpuY1 .x/� puY2.x/j

D sup
u2SO.d/

sup
zDuıx2Rd

j.pY1 � pY2/.x1.z1; : : : ; zd /; : : : ; xd .z1; : : : ; zd //j

�
ˇ

ˇ

ˇ

ˇ

@x1 � � � @xd
@z1 � � � @zd

ˇ

ˇ

ˇ

ˇ

:

Since the determinant of the Jacobian equals 1,

`.UY1; UY2/ � `.Y1; Y2/: (16.2.11)

Combining (16.2.10) and (16.2.11) and using U�1� dD � , where UU�1 D I , we
have

�r .G.Y1/; G.Y2// � sup
h2R
jhjr`.U.Y1 C hU�1�/; U.Y2 C hU�1�//

� sup
h2R
jhjr`.Y1 C hU�1�; Y2 C hU�1�/ D �r .Y1; Y2/: ut

Lemma 16.2.2. If G1, G2, and Y are independent, then

�r .G1.Y /;G2.Y // � sup
x2Rd

�r .G1.x/;G2.x//: (16.2.12)

Proof of Lemma 16.2.2. We have for Gi D .Yi ; Ui /
�r .G1.Y /;G2.Y // D sup

h2R
jhjr`.Y1 C U1Y C h�; Y2 C U2Y C h�/

D sup
h2R
jhjr sup

x2Rd
jpY1CU1YCh� .x/ � pY2CU2YCh� .x/j

D sup
h2R
jhjr sup

x2Rd

ˇ

ˇ

ˇ

ˇ

Z

Rd

�Z

pY1Ch� .x � u1y/ Pr.U1 2 du1/
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�
Z

pY2Ch�.x � u2y/ Pr.U2 2 du2/

�

Pr.Y 2 dy/

ˇ

ˇ

ˇ

ˇ

� sup
h2R
jhjr sup

y2Rd
sup
x2Rd

ˇ

ˇ

ˇ

ˇ

Z

pY1Ch� .x � u1y/ Pr.U1 2 du1/

�
Z

pY2Ch�.x � u2y/ Pr.U2 2 du2/

ˇ

ˇ

ˇ

ˇ

D sup
y2Rd

sup
h2R
jhjr sup

x2Rd
jpY1Ch�CU1y.x/� pY2Ch�CU2y.x/j

D sup
y2Rd

�r .G1.y/;G2.y//:

ut
Now we can prove property (i) of the theorem. By (16.2.9),

�r .G ıG1;G ıG2/ D sup
x2Rd

�r .G ıG1.x/;G ıG2.x//

� sup
x2Rd

�r .G1.x/;G2.x// D �r .G1;G2/:

Similarly, by (16.2.12),

�r .G1 ıG;G2 ıG/ D sup
x2Rd

�r .G1 ıG.x/;G2 ıG.x//

� sup
x2Rd

�r .G1.x/;G2.x// D �r .G1;G2/;

which completes the proof of the regularity property. To prove the homogeneity,
observe that by the ideality of �r on X.Rd /,

�r .cG1; cG2/ D sup
x2Rd

�r .cY1 C U1x; cY2 C U2x/

D sup
x2Rd

�r

�

c

�

Y1 C U1
�

1

c
x

��

; c

�

Y2 C U2
�

1

c
x

���

D jcjr�1�r .G1;G2/: ut

Theorem 16.2.2. �r is an ideal metric on X.M.d// of order r .

The proof is similar to that of the previous theorem.
The usefulness of ideality may be illustrated in the following way. If � is ideal of

order r on X�.M.d//, then for any sequence of i.i.d. random motionsG1, G2; � � � it
easily follows that

�.n�1=˛.G1 ı � � � ıGn/;H˛/ � n1�.r=˛/�.G1;H˛/ (16.2.13)
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is a “right order” estimate for the rate of convergence in the CLT. Estimates such as
these will play a crucial role in all that follows.

The next result clarifies the relation between the ideal metrics �r , �r , and �r . It
shows that upper bounds for the rate of the convergence problem, when expressed
in terms of �r , are necessarily weaker than bounds expressed in terms of either �r

or �r (as in Theorems 16.3.1 and 16.3.2 below).

Theorem 16.2.3. For any G1 and G2 2 X.M.d//

�r .G1;G2/ � C1.r/�r�1.G1;G2/; r � 1; (16.2.14)

and
�r .G1;G2/ � C2.r/�r .G1;G2/; r � 0; r � integer; (16.2.15)

where Ci.r/ is a constant depending only on r .

The proof follows from the similar inequalities between �r , �r , and �r in the
space X.Rd / (Sect. 15.3 and Lemmas 15.3.4–15.3.6). As far as the finiteness of
�r .G1;G2/ is concerned, we have that the condition

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

0�i1;:::;id�d

i1C���CidDj

Z

Rd

y
i1
1 ı � � � ı yidd .Pr.G1.x/ 2 dy/� Pr.G2.x/ 2 dy//

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

(16.2.16)
for all x 2 R

d , j D 0; 1; : : : ; m, mC ˇ D r , ˇ 2 .0; 1�, m-integer, implies

�r .G1;G2/ �
1

�.1C r/ Varr .G1;G2/; (16.2.17)

where the metric Varr is the rth absolute pseudomoment in X.M.d//, that is,

Varr .G1;G2/ WD sup
x2Rd

Z

kykr j PrG1.x/� PrG2.x/ j.dy/: (16.2.18)

16.3 Rates of Convergence in the Integral and Local
CLTs for Random Motions

Let G1;G2; : : : be a sequence of i.i.d random motions and H˛ an ˛-stable random
motion. We seek precise order estimates for the rate of convergence

n�1=˛.G1 ı � � � ıGn/! H˛ (16.3.1)
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in terms of Kolmogorov’s metric �, Var, and ` distances on X.M.d//. Here, the
uniform (Kolmogorov’s) metric between random motions G and G� is defined by

�.G;G�/ WD sup
x2Rd

�.G.x/;G�.x//; (16.3.2)

where �.X; Y / is the usual Kolmogorov distance between the d -dimensional
random vectorsX and Y in X.Rd /, that is,

�.X; Y / WD sup
A2C
j PrfX 2 Ag � PrfY 2 Agj; (16.3.3)

in which C denotes the convex Borel sets in R
d . Recall that the total variation metric

Var in X.M.d// is defined by (16.2.2) and ` in X�.M.d// is given by

`.G;G�/ WD sup
x2Rd

`.G.x/;G�.x// (16.3.4)

[see (16.2.5)].
The first result obtains rates with respect to �. Here and henceforthC denotes an

absolute constant whose value may change from line to line.
The next theorem establishes the estimates of the uniform rate of convergence in

the integral CLT for random motions.

Theorem 16.3.1. Let r > ˛, and set � WD �.G1;H˛/ and �r WD �r .G1;H˛/ WD
maxf�; 	r ; 	1=.r�˛/˛ g. Then,

�.n�1=˛.G1 ı � � � ıGn/ � C.	rn1�r=˛ C �rn�1=˛/: (16.3.5)

Proof. As in Sect. 15.4, it is helpful to first establish three smoothing inequalities

for � and Var. Throughout, recall that H˛ has components Y˛ (
dD �) and U˛ , and

let H˛ denote the projection of H˛ on R
d . The purpose of the next lemma is to

transfer the problem of estimating the �-distance between two random motions to
the same problem involving smoothed random motions. Here and in what follows,
G ı eG means that G ı eG is a random motion whose distribution is a convolution of
the distributions of G and eG. ut

Lemma 16.3.1. For any G and G� in X.M.d// and ı > 0

�.G;G�/ � C�.ıH˛ ıG; ıH˛ ıG�/C Cı; (16.3.6)

where C is an absolute constant.

Proof of Lemma 16.3.1. The required inequality is a slight extension of the
smoothing inequality in X.Rd /:2

�.X; Y / � C�.X C ı�; Y C ı�/C Cı X; Y 2 X.Rd /; (16.3.7)

2See Paulauskas (1974, 1976), Zolotarev (1986, Lemma 5.4.2), and Bhattacharya and Ranga Rao
(1976, Lemma 12.1).
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where � is a spherically symmetric ˛-stable random vector independent ofX and Y
and C is a constant depending upon ˛ and d only. By (16.3.7), we have

�.G;G�/ D sup
x2Rd

�.Y C Ux; Y � C U �x/

� C sup
x2Rd

�.ı� C Y C Ux; ı� C Y � C U �x/C Cı

D C�.ıH˛ ıG; ıH˛ ıG�/C Cı: ut
The next estimate is the analog of Lemma 15.4.1 and will be used several times

in the proof.

Lemma 16.3.2. Let G;eG 2 X.M.d//, 
i � 0, i D 1; 2; 
˛ WD 
˛1 C 
˛2 ; eH˛
dD

H˛ . For any r > 0

Var.
1H˛ ıG ı 
2eH˛; 
1H˛ ı eG ı 
2eH˛/ � 
�r�r .G;eG/: (16.3.8)

Proof of Lemma 16.3.2. Let eH˛ WD .eY ˛; eU˛/, G WD .Y; U /, and eG WD .eY ; eU /.
Then, by the definition of the Var metric,

Var.
1H˛ ıG ı 
2eH˛; 
1H˛ ı eG ı 
2eH˛/

D sup
x

Var.
1H˛ ıG ı .
2eY ˛ C eU˛x/; 
1H˛ ı eG ı .
2eY ˛ C eU˛x//

D sup
x

Var.
1H˛.Y C U
2;eY ˛ C UeU˛x/; 
1H˛.eY C eU
2eY ˛ C UeU˛x//

D sup
x

Var.
1Y˛ C U˛.Y C U
2eY ˛/C U˛UeU˛x; 
1Y˛

CU˛.eY C eU
2eY ˛/C U˛eUeU˛x/

D sup
x

Var.
1Y˛ C U˛Y C 
2eY ˛ C U˛UeU˛x; 
1Y˛

CU˛eY C 
2eY C U˛UeU˛x/:

Using 
1Y˛ C 
2eY ˛ dD 
Y˛, the right-hand side equals

sup
x

Var.
Y˛ C U˛.Y C UeU˛x/; 
Y˛ C U˛.eY C eUeU˛x//

� 
�r sup
x

sup
h2R
j
hjr Var.h
Y˛ C U˛.Y C UeU˛x/; h
Y˛ C U˛.eY C eUeU˛x//

D 
�r sup
x

�r .U˛.Y C UeU˛x/; U˛.eY C eUeU˛x//

D 
�r sup
x

�r .Y C UeU˛x;eY C eUU˛x//
D 
�r�r .G;eG/;

by definition of �r , and since Var (and hence �r ) is invariant with respect to
rotations. ut

The third and final lemma may be considered as the analog of Lemma 15.4.2.
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Lemma 16.3.3. For any G�
1 , G�

2 , eG1, eG2 in X.M.d// and 
 � 0
�.
H˛ ıG�

1 ı eG1; 
H˛ ıG�
1 ı eG2/ � �.G�

1 ; G
�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

C�.
H˛ ıG�
2 ı eG1; 
H˛ ıG�

2 ı eG2/:

(16.3.9)

Also,

�.
H˛ ıG�
1 ı eG1; 
H˛ ıG�

2 ı eG1/ � �.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

C�.
H˛ ıG�
1 ı eG2; 
H˛ ıG�

2 ı eG2/

and

Var.
H˛ ıG�

1 ı eG1; 
eH˛ ıG�

2 ı eG1/ � Var.G�

1 ; G
�

2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

CVar.
H˛ ıG�

1 ı eG2; 
H˛ ıG�

2 ı eG2/:

(16.3.10)

Proof. We will prove only (16.3.9). The proof of the other two inequalities is
similar. We have

�.
H˛ ıG�
1 ı eG1; 
H˛ ıG�

1 ı eG2/

D �.G�
1 ı 
H˛ ıG1;G�

1 ı 
H˛ ıG2/

D sup
x2Rd

sup
A2C

ˇ

ˇ

ˇ

ˇ

Z

M.d/

PrfG�
1 ı g.x/ 2 Ag.
H˛ ı eG1 � 
H˛ ı eG2/dg

ˇ

ˇ

ˇ

ˇ

� sup
x2Rd

sup
A2C

ˇ

ˇ

ˇ

ˇ

ˇ

Z

PrfG�
1 ı g.x/ 2 Ag

� PrfG�
2 ı g.x/ 2 Ag/.
H˛ ı eG1 � 
H˛ ı eG2/dg

ˇ

ˇ

ˇ

ˇ

ˇ

C sup
x2Rd

sup
A2C

ˇ

ˇ

ˇ

ˇ

Z

PrfG�
2 ı g.x/ 2 Agf
H˛ ı eG1 � 
H˛ ı QG2/dg

ˇ

ˇ

ˇ

ˇ

� �.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/C�.G�

2 ı 
H˛ ı eG1;G
�
2 ı 
H˛ ı eG2/

D �.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/C�.
H˛ ıG�

2 ı eG1; 
H˛ ıG�
2 ı eG2/:

ut
On the basis of these three lemmas, Theorem 16.3.1 may now be proved.

The proof uses induction on n. First, note that for a fixed n0 and n � n0, the
estimate (16.3.5) is an obvious consequence of the hypotheses. Thus, let n � n0
and assume that for any j < n

�.j�1=˛.G1 ı � � � ıGj /;H˛/ � B.	rj 1�r=˛ C �rj�1=˛/; (16.3.11)
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where B is an absolute constant.

Remark 16.3.1. We will use the main idea behind Senatov (1980, Theorem 2),
where the case ˛ D 2 is considered and rates of convergence for CLT of random
vectors in terms of �r are investigated.

Set m D Œn=2� and

ı WD Amax.�1.G1;H˛/; �
1=.r�˛/
r .G1;H˛//n

�1=˛; (16.3.12)

where A is a constant to be determined later. Note that ı � A�rn�1=˛ , which will be
used in the sequel.

Let G0
1, G

0
2; � � � be a sequence of i.i.d. random motions with G0

i

dD H˛ . By the
definition of symmetric ˛-stable random motion and Lemma 16.3.1, it follows that

�.n�1=˛.G1 ı � � � ıGn/;H˛/

D �.n�1=˛.G1 ı � � � ıGn/; n�1=˛.G0
1 ı � � � ıG0

n//;

� C�.ıH˛ ı n�1=˛.G1 ı � � � ıGn/; ıH˛ ı n�1=˛.G0
1 ı � � � ıG0

n//C Cı:
(16.3.13)

If the triangle inequality is applied m times, then the first term in (16.3.13) is
bounded by

�.ıH˛ ı n�1=˛G1 ı � � � ı n�1=˛Gn; ıH˛ ı n�1=˛G1 ı � � � ı n�1=˛Gn�1 ı n�1=˛G0
n/

C
m
P

jD1
�.ıH˛ ı n�1=˛G1 ı � � � ı n�1=˛Gn�j ı n�1=˛G0

n�jC1 ı � � � ı n�1=˛G0
n;

ıH˛ ı n�1=˛G1 ı � � � ı n�1=˛Gn�j�1 ı n�1=˛G0
n�j ı � � � ı n�1=˛G0

n/

C�.ıH˛ ı n�1=˛G1 ı � � � ı n�1=˛Gn�m�1 ı n�1=˛G0
n�m ı � � � ı n�1=˛G0

n;

ıH˛ ı n�1=˛G0
1 ı � � � ı n�1=˛G0

n/

WD A1 C A2 C A3:
(16.3.14)

Next, using Lemma 16.3.3, A1 and A2 may be bounded as follows:

A1 � �.n�1=˛G1 ı � � � ı n�1=˛Gn�1; n�1=˛G0
1 ı � � � ı n�1=˛G0

n�1/

�Var.ıH˛ ı n�1=˛Gn; ıH˛ ı n�1=˛G0
n/

C�.ıH˛ ı n�1=˛G0
1 ı � � � ı n�1=˛G0

n�1 ı n�1=˛Gn;

ıH˛ ı n�1=˛G0
1 ı � � � ı n�1=˛G0

n/

DW I1 C I 0
3: (16.3.15)

Similarly,
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A2 �
m
X

jD1
�.n�1=˛.G1 ı � � � ıGn�j�1/; n�1=˛.G0

1 ı � � � ıG0
n�j�1//

�Var.ıH˛ ı n�1=˛Gn�j ı n�1=˛G0
n�jC1 ı � � � ı n�1=˛G0

n;

ıH˛ ı n�1=˛G0
n�j ı n�1=˛G0

n�jC1 ı � � � ı n�1=˛G0
n/

C
m
X

jD1
�.ıH˛ ı n1=˛G0

1 ı � � � ı n�1=˛G0
n�j�1 ı n�1=˛Gn�j ı � � � ı n�1=˛G0

n;

ıH˛ ı n�1=˛.G0
1 ı � � � ıG0

n//

WD I2 C I 00
3 : (16.3.16)

Combining (16.3.13)–(16.3.16) and letting I3 D I 0
3 C I 00

3 , I4 WD A3 yields

�.n�1=˛.G1 ı � � � ıGn/;H˛/ � C.I1 C I2 C I3 C I4/C Cı: (16.3.17)

Next, Lemma 16.3.2 will be used to successively estimate each of the quantities
I1, I2, I3, and I4.

By the induction hypothesis, Lemma 16.3.2 (with 
1 D 
 D ı and 
2 D 0

there), and the ideality of �r , it follows that

I1 � B.	r .n� 1/1�r=˛ C �r .n � 1/1�r=˛/	1.n�1=˛G1; n�1=˛
eG1/=ı

� C.B=A/.	rn1�r=˛ C �rn1�r=˛/ (16.3.18)

by definition of ı.
To estimate I2, apply the induction hypothesis again, Lemma 16.3.2 [with 
1 D

ı, 
2 D .j=n/1=˛], the ideality of �r , and the definition of ı to obtain

I2 D
m
X

jD1
�.n�1=˛.G1 ı � � � ıGn�j�1/; n�1=˛.G0

1 ı � � � ıG0
n�j�1//

Var.ıH˛ ı n�1=˛Gn�j ı .j=n/1=˛H˛; ıH˛ ı n�1=˛G0
n�j ı .j=n/1=˛H˛/

� B.	r.n �m/1�r=˛ C �r .n �m/�1=˛/
m
X

jD1

1

.ı˛ C j=n/r=˛ �r .n
�1=˛G1; n�1=˛G0

1/

� B.	rn1�r=˛ C �rn�1=˛/
1
X

jD1
	r=.A

˛	˛=.r�˛/r C j /r=˛

� B.	nn1�r=˛ C �rn�1=˛/C.A˛	˛=.r�˛/r /1�.r=˛/	r
� CB.	rn1�r=˛ C �rn�1=˛/=A˛�r ; (16.3.19)
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where C again denotes some absolute constant.
To estimate

I3 D
m
X

jD0
�.ıH˛ ı n�1=˛.G0

1 ı � � � ıG0
n�j�1 ıGn�j ıG0

n�jC1 ı � � � ıG0
n/

ıH˛ ı n�1=˛.G0
1 ı � � � ıG0

n//;

use 2� < Var, Lemma 16.3.2 [with 
1 D ..n � j � 1/=.n� 1//1=˛, 
2 D .j=.n �
1//1=˛, and 
 D 1], and the ideality of �r to obtain

I3 �
m
X

jD0
�r

 

�

n � j � 1
n � 1

�1=˛

H˛ ı .n � 1/�1=˛Gn�j ı
�

j

n � 1
�1=˛

H˛ ;

�

n � j � 1
n � 1

�1=˛

H˛ ı .n� 1/1=˛G0
n�j ı

�

j

n � 1
�1=˛

H˛

!

�
m
X

jD0
�r ..n � 1/�1=˛G1; .n � 1/�1=˛G0

1/

� n1�r=˛	r ; (16.3.20)

where it is assumed that n0 is chosen such that .n=.n� 1//r=˛ � 2.
Similarly, using Lemma 16.3.2 with 
1 D 0 and 
2 D 1, we may bound I4

I4 � �.m�1=˛.G1 ı � � � ıGn�m�1/ ım�1=˛.G0
n�m ı � � � ıG0

n/;

m�1=˛.G0
1 ı � � � ıG0

n�m�1 ım�1=˛.G0
n�m ı � � � ıG0

n//

D �.ıH˛ ım�1=˛.G1 ı � � � ıGn�m�1/ ıH˛;

ıH˛ ım�1=˛.G0
1 ı � � � ıG0

n�m�1/ ıH˛/

� Var.m�1=˛.G1 ı � � � ıGn�m�1/ ıH˛;m
�1=˛.G0

1 ı � � � ıG0
n�m�1/ ıH˛/

� �r .m
�1=˛.G1 ı � � � ıGn�m�1/;m�1=˛.G0

1 ı � � � ıG0
n�m�1//

� m�r=˛.n �m � 1/�r .G1;G0
1/ � 2r=˛n1�r=˛	r ; (16.3.21)

since we may assume that ..n�m� 1/=n/.n=m/r=˛ is bounded by 2r=˛ for n � n0.
Finally, combining estimates (16.3.17)–(16.3.21) and the definition of ı yields

�.n�1=˛.G1 ı � � � ıGn/;H˛/ � C.I1 C I2 C I3 C I4/C Cı
� C.A�1 C A˛�r /B.	rn1�r=˛ C �rn�1=˛/

CC	rn1�r=˛ C CA�rn�1=˛:
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Choosing the absolute constant A such that C.A�1 C A˛�r / � 1
2

shows, for
sufficiently large B ,

�.n�1=˛.G1 ı � � � ıGn/;H˛/ � B.	rn1�r=˛ C �rn�1=˛/;

completing the proof of Theorem 16.3.1. ut
The main theorem in the second part of this section deals with uniform rates

of convergence in the local limit theorem on M.d/ (see further Theorem 16.3.2).
Again, ideal smoothing metrics play a considerable role. More precisely, if fGig D
fYi ; Uigi�1 are i.i.d. random motions and G1.x/ has a density pG1.x/ for any X 2
R
d , then ideal metrics are used to determine the rate of convergence in the limit

relationship
`.n�1=˛.G1 ı � � � ıGn/;H˛/! 0; (16.3.22)

where ` is determined by (16.2.5) and (16.3.4).
The result considers rates in (16.3.22) under hypotheses on 	r WD �r .G1;H˛/,

` WD `.G1;H˛/, and �r WD �r .G1;H˛/, where

�r .G1;H˛/ WD sup
x2Rd

sup
h2R
jhjr`.G1.x/C h�;H˛ C h�/

D sup
x2R
jhjr`..hH˛/ ıG1; .hH˛/ ıH˛/ (16.3.23)

andH˛ WD .Y˛; I / denotes, as before, the projection of H˛ on R
d .

The proof of the next theorem depends heavily upon the ideality of �r and �r .
As in the proof of Theorem 16.3.1, ideality is first used to establish some critical
smoothing inequalities. The first smoothing inequality provides a rate of conver-
gence in (16.3.1) with respect to the Var-metric and could actually be considered a
companion lemma to the main result. The proof of the next lemma is similar to that
of Theorem 15.4.1 and is thus omitted.

Lemma 16.3.4. Let r > ˛ and

Kr WD Kr.G1;H˛/ WD maxfVar.G1;H˛/; �r .G1;H˛/g � a;

where a�1 WD 21Cr=˛.2.r=˛/�1 C 3r=˛/. If A WD 2.2.r=˛/�1 C 3r=˛), then

Var.n�1=˛.G1 ı � � � ıGn/;H˛/ � AKrn
1�r=˛:

The next estimate, the companion to Lemma 16.3.2, is the analog of
Lemma 15.4.5. The proof is similar to that of Lemma 16.3.2 and will be omitted.

Lemma 16.3.5. Let G1;G2 2 X.M.d//, 
i > 0, i D 1; 2; 
˛ D 
˛1 C 
˛2 , eH˛
dD

H˛ . For all r > 0

`.
1H˛ ıG1 ı 
2eH˛; 
1H˛ ıG2 ı 
2eH˛/ � 
r�1�r .G1;G2/ (16.3.24)
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and

`.
1eH˛ ıG1
2eH˛; 
1H˛ ıG2 ı 
2eH˛/ � 
r�1�r .G1;G2/: (16.3.25)

The following smoothing inequality may be considered the analog of
Lemma 15.4.6. Only (16.3.27) is used in the sequel.

Lemma 16.3.6. Let G�
1 ; G

�
2 ;
eG1;eG2 2 X.M.d// and 
 � 0. Then

`.
H˛ ıG�
1 ı eG1; 
H˛ ıG�

1 ı eG2/ � `.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

C`.
H˛ ıG�
2 ı eG1; 
H˛ ıG�

2 ı eG2/

(16.3.26)

and

`.
H˛ ıG�
1 ı eG1; 
H˛ ıG�

2 ı eG1/ � `.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

C`.
H˛ ıG�
1 ı eG2; 
H˛ ıG�

2 ı eG2/:

(16.3.27)

Proof. Since H˛ ıG D G ıH˛ , we see that `.
H˛ ı G�
1 ı eG1; 
H˛ ı G�

2 ı eG2/

equals

`.G�
1 ı 
H˛ ı eG1;G

�
1 ı 
H˛ ı eG2/

D sup
x2Rd

ess sup
z2Rd

jpG�

1 ı
H˛ıeG1.x/.z/ � pG�

1 ı
H˛ıeG2.x/.z/j

D sup
x

ess sup
z

ˇ

ˇ

ˇ

ˇ

Z

M.d/

pG�

1 ıg.x/.z/ŒPr.
eH˛ ı eG1 2 dg/� Pr.
H˛ ıG2 2 d/�

ˇ

ˇ

ˇ

ˇ

D sup
x

ess sup
z
jpG�

1 ıg.x/.z/ � pG�

2 ıg.x/.z/j
Z

M.d/

j Pr.
H˛ ı eG1 2 dg/

� Pr.
H˛ ı eG2 ı dg/j C `.
H˛ ıG�
2 ı eG1; 
H˛ ıG�

2 ı eG2/

� `.G�
1 ; G

�
2 /Var.
H˛ ı eG1; 
H˛ ı eG2/

C`.
H˛ ıG�
2 ı eG1; 
H˛ ıG�

2 ı eG2/:

This proves (16.3.26); (16.3.27) is proved similarly. ut
With these three smoothing inequalities, the main result may now be proved.

Theorem 16.3.2. Let the following two conditions hold:


r.G1;H˛/ WD maxf`.G1;H˛/;�rC1.G1;H˛/g <1 (16.3.28)

and

Kr WD Kr.G1;H˛/ WD maxfVar.G1;H˛/; �r .G1;H˛/g � 1=DA; (16.3.29)
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where r > ˛, A WD 2.2.r=˛/�1C 3r=˛/ andD WD 2.3�1C.rC1/=˛/. Then

`.n�1=˛.G1 ı � � � ıGn/;H˛/ � A
r.G1;H˛/n
1�r=˛: (16.3.30)

Proof. Let G0
1; G

0
2; : : : be a sequence of i.i.d. random motions with G0

i

dD H˛ . Now
(16.3.30) holds for n D 1; 2 and 3. Let n > 3.

Suppose that for all j < n

`.j�1=˛.G1 ı � � � ıGj /;H˛/ � A
rj 1�r=˛: (16.3.31)

To complete the induction proof, it only remains to show that (16.3.31) holds for
j D n. By (16.3.27) with 
 D 0 and m D Œn=2�,

`.n�1=˛.G1 ı � � � ıGn/; n�1=˛.G0
1 ı � � � ıG0

n//

is bounded by

� `..n�1=˛.G1 ı � � � ıGm/ ı n�1=˛.GmC1 ı � � � ıGn/;
n�1=˛.G0

1 ı � � � ıG0
m/ ı n�1=˛.GmC1 ı � � � ıGn//

C`.n�1=˛.G0
1 ı � � � ıG0

m/ ı n�1=˛.GmC1 ı � � � ıGn/;
n�1=˛.G0

1 ı � � � ıG0
m/ ı n�1=˛.G0

mC1 ı � � � ıG0
n//

� `.n�1=˛.G1 ı � � � ıGm/; n�1=˛.G0
1 ı � � � ıG0

m/;

Var.n�1=˛.GmC1 ı � � � ıGn/; n�1=˛.G0
mC1 ı � � � ıG0

n//

C`..n�1=˛.G1 ı � � � ıGm/ ı n�1=˛.G0
mC1 ı � � � ıG0

n/;

n�1=˛.G0
1 ı � � � ıG0

m/ ı n�1=˛.G0
mC1 ı � � � ıG0

n//

C`..n�1=˛.G0
1 ı � � � ıG0

m/ ı n�1=˛.GmC1 ı � � � ıGn/;
n�1=˛.G0

1 ı � � � ıG0
m/ ı n�1=˛.G0

mC1 ı � � � ıG0
n//

WD I1 C I2 C I3:

As in the proof of Lemma 16.3.4, it may be shown via Lemma 16.3.5 that

I2 C I3 � .2.r=˛/�1 C 3r=˛/�rC1n1�r=˛ � 1
2
A
rn

1�r=˛:

It remains to estimate I1. By the homogeneity property `.X; Y / D c`.cX; cY / and
the induction hypothesis, the first factor in I1 is bounded by

.n=m/1=˛`.m�1=˛.G1 ı � � � ıGm/;H˛/ � .n=m/1=˛A
rm1�r=˛

� 3.rC1/=˛�1A
rn1�r=˛:
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By Lemma 16.3.4, the second factor in I1 is bounded by

Var.n�1=˛.GmC1 ı � � � ıGn/; n�1=˛.G0
mC1 ı � � � ıG0

n//

� AKr.n �m/1�r=˛
� AKr � D�1:

Hence, I1 � 1
2
A
rn

1�r=˛ . Combining this with the displayed bound on I1 C I2
shows that

`.n�1=˛.G1 ı � � � ıGn/;H˛/ � A
rn1�r=˛
as desired. ut

Conditions (16.3.28) and (16.3.29) in Theorem 16.3.2 and the conditions 	r D
�r .G1;H˛/ < 1 and �r D �r .G1;H˛/ < 1 in Theorem 16.3.1 can be examined
via Theorem 16.2.3 and estimate (16.2.16).
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Chapter 17
Applications of Ideal Metrics for Sums of i.i.d.
Random Variables to the Problems of Stability
and Approximation in Risk Theory

The goals of this chapter are to:

• Formulate and analyze the mathematical problem behind insurance risk theory,
• Consider the problem of continuity and provide a solution based on ideal

probability metrics,
• Consider the problem of stability and provide a solution based on ideal probabil-

ity metrics.

Notation introduced in this chapter:

Notation Description

N.t/ Number of claims up to time t
X.t/ Total amount of claims

17.1 Introduction

In this chapter, we present applications of ideal probability metrics to insurance risk
theory. First, we describe and analyze the mathematical framework. When building a
model, we must consider approximations that lead to two main issues: the problem
of continuity and the problem of stability. We solve the two problems using the
techniques of ideal probability metrics.

17.2 Problem of Stability in Risk Theory

When using a stochastic model in insurance risk theory, one must consider the
model as an approximation of real insurance activities. The stochastic elements
derived from these models represent an idealization of real insurance phenomena

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 17, © Springer Science+Business Media, LLC 2013
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under consideration. Hence the problem arises of establishing the limits in which
one can use our ideal model. The practitioner must know the accuracy of our
recommendations, which have resulted from our investigations based on the ideal
model.

Mostly one deals with real insurance phenomena including the following main
elements: input data (epochs of claims, size of claims, . . . ) and, resulting from these,
output data (number of claims up to time t , total claim amount . . . ).

In this section we apply the method of metric distances to investigate the
“horizon” of widely used stochastic models in insurance mathematics. The main
stochastic elements of these models are as follows.

(a) Model input elements: the epochs of the claims, denoted by T0 D 0, T1; T2; : : : ,
where fWi D Ti � Ti�1; i D 1; 2; : : : g is a sequence of positive RVs, and the
sequences of claim sizes X0 D 0, X1;X2; : : : , where Xn is the claim occurring
at time Tn.

(b) Model output elements: the number of claims up to time t

N.t/ D supfn W Tn � tg; (17.2.1)

and the total claim amount at time t

X.t/ D
N.t/
X

iD0
Xi : (17.2.2)

In particular, let us consider the problem of calculating the distribution of X.t/.
Teugels (1985) writes that it is generally extremely complicated to evaluate the
compound distribution Gt.x/ of X.t/

Gt .x/ D
1
X

nD1
Pr
n

n
X

iD1
Xi � xjN.t/ D n

o

PrfN.t/ D ng

C PrfN.t/D 0g; x � 0: (17.2.3)

This forces one to rely on approximations, even in the case when the sequences fXig
and fWi g are independent and consist of i.i.d. RVs.

Here, using approximations means that we investigate ideal models that are
rather simple but nevertheless close in some sense to the real (disturbed) model. For
example, as an ideal model we can consider eW i D eT i � eT i�1, i D 1; 2; : : : , to be
independent with a common simple distribution (e.g., an exponential). Moreover,
one often supposes that the claim sizes eXi in the ideal model are i.i.d. and
independent of eW i .

We consider eW i and eXi as input elements for our ideal model. Correspondingly,
we define

eN.t/ D supfn W eT n � tg; (17.2.4)

eX.t/ D
eN.t/
X

iD0
eXi (17.2.5)
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as the output elements of our ideal model, related to the output elements N.t/ and
X.t/ of the real model. More concretely, our approximation problem can be stated
in the following way: if the input elements of the ideal and real models are close to
each other, then can we estimate the deviation between the corresponding outputs?
Translating the concept of closeness in a mathematical way one uses some measures
of comparisons between the characteristics of the random elements involved.

In this section, we confine ourselves to investigating the sketched problems when
the sequences fXig and fWig have i.i.d. components and are mutually independent.
Then we can state our mathematical problem in the following way.

PR I. Let �, �, � be simple probability metrics on X.R/, i.e., metrics in the
distribution function space.1 Find a function  W Œ0;1/� Œ0;1/ ! Œ0;1/,
nondecreasing in both arguments, vanishing, and continuous at the origin
such that for every ", ı > 0

�.W1; eW 1/ < "

�.X1; eX1/ < ı

�

) �.X.t/;eX.t// �  ."; ı/: (17.2.6)

The choice of � is dictated by the user, who also wants to be able to check
the left-hand side of (17.2.6). For this reason, the next stability problem is
relevant.

PR II. Find a qualitative description of the "-neighborhood (resp. ı-neighborhood)
of the set of ideal model distributions F

eW 1
(resp. F

eX1
).

17.3 Problem of Continuity

In this section we consider PR I as described in (17.2.6). Usually, in practice, the
metric � is chosen to be the Kolmogorov (uniform) metric,

�.X; Y / D sup
x2R

jFX.x/ � FY .x/j: (17.3.1)

Moreover, we will choose � D � D �r , where

�r .X; Y / D r

Z

R

jxjr�1jFX.x/ � FY .x/jdx; r > 0; (17.3.2)

is the difference pseudomoment.2 The usefulness of �r will follow from the
considerations in the next section, where PR II is treated. The metric �r metrizes the

1As before, we will write �.X; Y /, �.X; Y /, �.X; Y / instead of �.FX ; FY /, �.FX ; FY /,
�.FX ; FY /.
2See Case D in Sect. 4.4 of Chap. 4.
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weak convergence, plus the convergence of the r th absolute moments in the space
of RVs X with EjX jr < 1, i.e.,3

�r .Xn;X/ ! 0 ”
(

Xn
w�! X

EjXnjr ! EjX jr as n ! 1:

Also, note that
�r .X; Y / D �1.X jX jr�1; Y jY jr�1/: (17.3.3)

First, let us simplify the right-hand side of (17.2.6). Using the triangle inequality
we get

�.X.t/; eX.t// D �

0

@

N.t/
X

iD0
Xi ;

eN.t/
X

iD0
eXi

1

A

� �

0

@

N.t/
X

iD0
Xi ;

N.t/
X

iD0
eXi

1

AC �

0

@

N.t/
X

iD0
eXi;

eN.t/
X

iD0
eXi

1

A

WD I1 C I2: (17.3.4)

AssumingH.t/ D EN.t/ to be finite, we have

I1 D �

0

@

N.t/
X

iD0
eXi;

N.t/
X

iD0
Xi

1

A D �

0

@

1

H.t/

N.t/
X

iD0
Xi ;

1

H.t/

N.t/
X

iD0
eXi

1

A : (17.3.5)

From this expression we are going to estimate I1 from above, by �r .X1; eX1/. This
will be achieved in two steps:

1. Estimation of the closeness between the RVs

Z.t/ D 1

H.t/

N.t/
X

iD0
Xi ; eZ.t/ D 1

H.t/

N.t/
X

iD0
eXi; (17.3.6)

in terms of an appropriate (ideal for this purpose) metric.
2. Passing from the ideal metric to � and �r , respectively, via inequalities of the type

�1.�/ � ideal metric � �2.�r / (17.3.7)

for some nonnegative, continuous functions �i W Œ0;1/ ! Œ0;1/ with �i.0/ D
0, �i .t/ > 0 if t > 0, i D 1; 2.

3See Theorems 5.5.1 and 6.4.1 in Chaps. 5 and 6, respectively.
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Considering the first step, we choose �m;p (m D 0; 1; : : : ; p � 1) as our ideal
metric, where �m;p.X; Y / is given by (15.3.10). The metric �m;p is ideal of order
r D m C 1=p, i.e., for each X , Y , Z, with Z independent of X and Y and every
c 2 R,4

�m;p.cX CZ; cY CZ/ � jcjr�m;p.X; Y /: (17.3.8)

These and other properties of �m;p will be considered in the next chapter.5

Lemma 17.3.1. Let fXig and feXig be two sequences of i.i.d. RVs, and let
N.t/ be independent of the sequences fXig, feXi g and have finite moment
H.t/ D EN.t/ < 1. Then,

�m;p.Z.t/; eZ.t// � H.t/1�r�m;p.X1; eX1g; (17.3.9)

where r D mC 1=p.

Proof. The following chain of inequalities proves the required estimate.

�m;p.Z.t/;
eZ.t//

(a)

� H.t/�r�m;p

0

@

N.t/
X

iD0
Xi ;

N.t/
X

iD0
eXi

1

A

(b)

� H.t/�r
1
X

kD1
Pr.N.t/ D k/�m;p

 

k
X

iD1
Xi ;

k
X

iD1
eXi

!

(c)

� H.t/�r
1
X

kD1
Pr.N.t/ D k/

k
X

iD1
�m;p.Xi ;

eXi/

D H.t/�r
1
X

kD1
k Pr.N.t/ D k/�m;p.X1;

eX1/

D H.t/�r�m;p.X1;eX1/:

4See Definition 15.3.1 in Chap. 15.
5More specifically, see Lemma 18.2.2.
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Here (a) follows from (17.3.8) with Z D 0 and c D H.t/�1. Inequality (b) results
from the independence ofN.t/with respect to fXig, feXi g. Finally, (c) can be proved
by induction using the triangle inequality and (17.3.8) with c D 1. ut

The obtained estimate (17.3.9) is meaningful if �m;p.X1; eX1/ � 1. This implies,
however, that6

Z

R

xj d.FX1.x/ � F
eX1
.x// D 0; for j D 0; 1; : : : ; m: (17.3.10)

Let us now find a lower bound for �m;p.Z.t/;eZ.t// in terms of �.7

Lemma 17.3.2. If Y has a bounded density pY , then

�.X; Y / �
�

1C sup
x2R

pY .x/

�

.cm;p�m;p.X; Y //
1=.rC1/; (17.3.11)

where

cm;p D .2mC 2/Š.2mC 3/1=2

.mC 1/Š.3 � 2=p/1=2 :

Proof. To prove (17.3.11), we use similar estimates between the Lévy metric L D
L1 [see (4.2.3)] and �m;p . For any RVs X and Y 8

L.X; Y /rC1 � cm;p�m;p.X; Y /: (17.3.12)

Next, since the density of Y exists and is bounded, we have

�.X; Y / �
�

1C sup
x2R

pY .x/

�

L.X; Y /; (17.3.13)

which implies (17.3.11). ut
In addition, let us remark that �0;1 D � and �0;1 D �1. So, combining

Lemmas 15.3.6, 17.3.1, and 17.3.2, we prove immediately the following lemma.

Lemma 17.3.3. Let fXig, feXi g be two sequences of i.i.d. RVs and let N.t/ be
independent of fXig, feXi g with H.t/ D EN.t/ < 1. Suppose that

�r .X1; eX1/ < 1

6Indeed, if (17.3.10) fails for some j D 0; 1; : : : ; m, then �m;p.X1;eX1/ � supc>0 jE.cXj
1 �

xeX
j
1 /j D C1.

7An upper bound for �m;p.X1;eX1/ in terms of �r (r D mC 1=p) is given by Lemma 15.3.6.
8See Kalashnikov and Rachev (1988, Theorem 3.10.2).
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and
Z

xj d.FX1.x/ � F
eX1
.x// D 0; j D 0; 1; : : : ; m; (17.3.14)

for some r D mC 1=p � 1 (m D 1; 2; : : : ; 1 � p < 1). Moreover, let eZ.t/ [see
(17.3.6)] have a bounded density p

eZ.t/. Then

I1 D �

0

@

N.t/
X

iD0
Xi ;

N.t/
X

iD0
eXi

1

A �  1.�r.X1; eX1//

WD .1C supp
eZ.t/.x//.cm;p�2.�r .X1;

eX1///
1=.1Cr/H.t/.1�r/=.1Cr/;

(17.3.15)

where

�2.�r / D

8

ˆ

ˆ

<

ˆ

ˆ

:

�
1=p
1 ; m D 0; 1 � p < 1;

�.1C p�1/
�.r/

�r ; m > 0; 1 � p < 1:

(17.3.16)

Now, going back to (17.3.4), we need also to estimate

I2 D �

0

@

N.t/
X

iD0
eXi ;

eN.t/
X

iD0
eXi

1

A

from above by some function,  2, say, of �r .W1; eW 1/.

Lemma 17.3.4. Let fWig, feW i g be two sequences of i.i.d. positive RVs, both
independent of feXi g. Suppose thatH.t/ D EN.t/ < 1, eH.t/ D EeN.t/ < 1,

�.eW 1/ D sup
k

sup
x

p
k�1=2

Pk
iD1eW i

.x/ < 1; �r .W1; eW 1/ < 1; (17.3.17)

and
Z 1

0

xj d.FW1.x/ � F
eW 1
.x// D 0; j D 0; 1; : : : ; m; (17.3.18)

for some r D mC 1=p.� 2/ .m D 1; 2; : : : ; 1 � p < 1/. Finally, let F
eX1
.a/ < 1

8a > 0, and EeX1 < 1. Then

I2 D �

0

@

N.t/
X

iD0
eXi ;

eN.t/
X

iD0
eXi

1

A �  2.�r .W1; eW 1//

WD .1C �.eW 1//�r .W1; eW 1/
1=.rC1/
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C inf
a>0

f2.cm;p.1C �.eW 1//�2.�r .W1; eW 1///
1=.1Cr/	

eX1;r
.a/

Ca�1EeX1 max.H.t/; eH.t//g; (17.3.19)

where �2 is given by (17.3.16) and

	
eX1;r

.a/ WD
1
X

kD1
k.1�r=2/.1Cr/F k

eX1
.a/:

Remark 17.3.1. The normalization k�1=2 of the sum
Pk

iD1 eW 1 in (17.3.17) comes
from the quite natural assumption that the eW is – the claim’s interarrival times for
the ideal model – are in the domain of attraction of the normal law. Actually, this
case will be considered in the next section. However, for example, if we need to
approximate Wi s with eW i s, where eW i are in the normal domain of attraction of
symmetric ˛-stable distribution with ˛ < 2, then we should use the normalization
k�1=2 in (17.3.17).

Remark 17.3.2. Note that if �r .W1; eW 1/ tends to zero, then the right-hand side
of (17.3.19) also tends to zero since, for each a > 0, 	

eX1;r
.a/ < 1.

Proof of Lemma 17.3.4. By the independence of N.t/ and eN.t/ with respect to
feXi g, we find that, for every a > 0,

I2 D sup
0�x�a

ˇ

ˇ

ˇ

ˇ

ˇ

1
X

kD1
ŒPr.N.t/ D k/ � Pr.eN.t/ D k/
Pr

 

k
X

iD1
eXi � x

!ˇ

ˇ

ˇ

ˇ

ˇ

C sup
x>a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

0

@

N.t/
X

iD1
eXi > x

1

A � Pr

0

@

eN.t/
X

iD1
eXi > x

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Cj Pr.N.t/ D 0/� Pr.eN.t/ D 0/j DW J1;a C J2;a C J3:

Estimating J1;a we get

(a)

J1;a �
1
X

kD1

 ˇ

ˇ

ˇ

ˇ

ˇ

Pr

 

k
X

iD1
Wi � T

!

� Pr

 

k
X

iD1
eW i � t

!ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

Pr

 

kC1
X

iD1
Wi � t

!

� Pr

 

kC1
X

iD1
eW i � t

!ˇ

ˇ

ˇ

ˇ

ˇ

!

Pr

�

max
iD1;:::;k

eXi � x

�

�
1
X

kD1

(

�

 

k
X

iD1
Wi ;

k
X

iD1
eW i

!

C �

 

kC1
X

iD1
Wi ;

kC1
X

iD1
eW i

!)

F k
X1
.a/I
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(b)

�
1
X

kD1
.cm;p�2.�r .W1; eW 1///

1=.1Cr/

�fk.1�r=2/.1Cr/ C .k C 1/.1�r=2/.1Cr/g.1C �.eW 1//F
k

eX1
.a/

� 2.1C �.eW 1//.cm;p�2.�r .W1; eW 1///
1=.1Cr/	

eX1;r
.a/:

Inequality (a) follows from

Pr.N.t/ D k/ D Pr

 

k
X

iD1
Wi � t

!

� Pr

 

kC1
X

iD1
Wi � t

!

:

We derived (b) from Lemmas 17.3.2 and 15.3.6 [see also (17.3.16) and
(17.3.17)]. Furthermore, one finds with Chebyshev’s inequality that

J2;a � max

0

@Pr

0

@

N.t/
X

iD1
eXi > a

1

A ;Pr

0

@

eN.t/
X

iD1
eXi > a

1

A

1

A

� a�1.EX1/max.H.t/; eH.t//:

Inequality (15.3.22) can be extended in the case m D 1, p D 1 (so �0;1 D �) to

�.W1; eW 1/ �
�

1C sup
x

P
eW 1
.x/

�

�r .W1; eW 1/
1=.rC1/: (17.3.20)

By virtue of (17.3.13), we see that to prove (17.3.20), it is enough to show the
following estimate.

Claim 3. For any nonnegative RVs X and Y

L.X; Y / � �r .X; Y /
1=.1Cr/: (17.3.21)

Indeed, if the Lévy metric L.X; Y / is greater than " 2 .0; 1/, then there is x0 � 0

such that jFX.x/ � FY .x/j � " 8x 2 Œx0; x0 C "
. Thus

�r .X; Y / � r

Z x0C"

x0

xr�1jFX.x/ � FY .x/jdx � "rC1:

Letting " ! L.X; Y / proves the claim. Finally, since J3 � �.W1; eW 1/, the lemma
follows. ut

We can conclude with the following theorem, which follows immediately by
combining (17.3.4) and Lemmas 17.3.3 and 17.3.4.
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Theorem 17.3.1. Under the conditions of Lemmas 17.3.3 and 17.3.4,

�.X.t/; eX.t// �  .�r .W1; eW 1/;�r .X1; eX1//

DW  1.�r .X1; eX1//C  2.�r .W1; eW 1//;

where  1 (resp.  2) is given by (17.3.15) (resp. (17.3.19)).

The preceding theorem gives us a solution to PR I [see (17.2.6)] with � D � D
�r , and � D � under some moment conditions (see Lemmas 17.3.3 and 17.3.4).

17.4 Stability of Input Characteristics

To solve PR II (Sect. 17.2), we will investigate the conditions on the real input
characteristics that imply �.W1; eW 1/ < " and �.X1;eX1/ < ı for � D � D
�r [see (17.2.6)]. We consider only r D 2 and qualitative conditions on the
distribution of W1, implying �2.W1; eW 1/ < ". One can follow the same idea to
check �r .W1; eW 1/ < ", r ¤ 2, and �r .X1;eX1/ < ı. We will characterize the input
ideal distribution FW1 supposing that the real FW1 belongs to one of the so-called
aging classes of distributions9

IFR � IFRA � NBU � NBUE � HNBUE: (17.4.1)

These kinds of quantitative conditions on FW1 are quite natural in an insurance risk
setting.10 For example, FW1 2 IFR if and only if the residual lifelength distribution
Pr.W1 � x C t jW1 > t/ is nondecreasing in t for all positive x.

The preceding assumption leads in a natural way to the choice of an exponential
ideal distribution in view of the characterizations of the exponential law given in the
next lemma, Lemma 17.4.1. Moreover, we emphasize here the use of the NBUE and
HNBUE classes as we want to impose the weakest possible conditions on the real
(unknown) FW1 . Let us recall the definitions of these classes.

Definition 17.4.1. LetW be a positive RV with EW < 1, and denote F D 1�F .
Then FW 2 NBUE if

Z 1

t

F W .u/du � .EW /FW .t/; 8t > 0; (17.4.2)

and FW 2 HNBUE if

Z 1

t

F W .u/du � .EW / exp.�t=EW /; 8t > 0: (17.4.3)

9See Sect. 15.2 in Chap. 15.
10See Barlow and Proschan (1975) and Kalashnikov and Rachev (1988).
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Lemma 17.4.1. (i) If FW 2 NBUE andmi D EW i < 1, i D 1; 2; 3, then

FW .t/ D exp.�t=m1/ iff ˛ WD m2
1 C m2

2
� m3

3m1

D 0: (17.4.4)

(ii) If FW 2 HNBUE andmi D EW i < 1, i D 1; 2, then

FW .t/ D exp.�t=m1/ iff ˇ WD 2 � m2

m2
1

D 0: (17.4.5)

The only if parts of Lemma 17.4.1 are obvious. The iff parts result from the
following estimates of the stability of exponential law characterizations (i) and (ii) in
Lemma 17.4.1. Further, denoteE.�/, an exponentially distributed RV, by parameter
� > 0.

Lemma 17.4.2. (i) If FW 2 NBUE andmi D EW i < 1, i D 1; 2; 3, then

�2.W;E.�// � 2˛ C 2j��2 �m2
1j: (17.4.6)

(ii) If FW 2 HNBUE andmi D EW i < 1, i D 1; 2, then

�2.W;E.�// � C.m1;m2/ˇ
1=8 C 2j��2 �m2

1j; (17.4.7)

where

C.m1;m2/ D 8
p
6m1.

p
m2 Cm1

p
2/: (17.4.8)

Proof. (i) The proof of the first part relies on the following claim concerning the
stability of the exponential law characterizations in the class NBU. Let us recall
that if FW has a density, then FW 2 NBU if the hazard rate function hW .t/ D
F 0
W .t/=FW .t/ satisfies

hW .t/ � h D hW .0/; 8t � 0: (17.4.9)

Claim. Let FW 2 NBU and �i D �i.W / D EW i < 1, i D 1; 2. Then

Z 1

0

t jF 0
W .t/ � h exp.ht/jdt � �1 � h�2 C h�1: (17.4.10)

Proof of the claim. By (17.4.9), it follows that H.t/ D hF W .t/ � F 0
W .t/ is a

nonpositive function on Œ0;1/. Clearly,

FW .t/ D exp.�ht/
�

1C
Z t

0

H.u/ exp.hu/du

�

:

Hence
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Z 1

0

t jF 0
W .t/ � h exp.�ht/jdtD

Z 1

0

t

ˇ

ˇ

ˇ

ˇ

h exp.�ht/
Z t

0

H.u/ exp.hu/du�H.t/
ˇ

ˇ

ˇ

ˇ

dt

�
Z 1

0

ht exp.�ht/
Z t

0

jH.u/j exp.hu/dudt C
Z 1

0

t jh.t/jdt

D �
Z 1

0

�Z 1

0

ht exp.ht/dt

�

H.u/ exp.hu/du �
Z 1

0

tH.t/dt:

Integrating by parts in the first integral and replacingH.t/ by hFW .t/�F 0
W .t/

we obtain the required inequality (17.4.10).

Now, continuing the proof of Lemma 17.4.2 (i), note that FW 2 NBUE implies
FW � 2 NBU, where FW �.t/ D m�1

1

R t

0
F W .u/du, t � 0. Also

�2.W;E.m
�1
1 // D 2m1

Z 1

0

t jF 0
W �.t/ � hW �.0/ exp.�t=hW �.0//jdt;

(17.4.11)
where

hW �.0/ D m�1
1 ; EW � D m2=2m1; (17.4.12)

and

E.W �/2 D m3=3m1: (17.4.13)

Using claim (17.4.11)–(17.4.13), we get

1

2
�2.W;E.m

�1
1 / � m2

2
� m3

3m1

Cm2
1: (17.4.14)

On the other hand, for each � > 0 one easily shows that

�2.E.�/;E.m
�1
1 // D 2jm2

1 � ��2j: (17.4.15)

From (17.4.14) and (17.4.15), using the triangle inequality, (17.4.6) follows.
(ii) To derive (17.4.7), we use the representation of �2 as a minimal metric: for any

two nonnegative RVs X and Y with finite second moment11

�2.X; Y / D inffEjeX2 � eY 2j W eX dD X;eY
dD Y g: (17.4.16)

Similarly,12

11Apply Theorem 8.2.2 of Chap. 8 with c.x; y/ D jx�yj and the representation (17.3.3). See also
Remark 7.2.3.
12Apply Theorem 8.2.2 of Chap. 8 with c.x; y/ D jx � yj2.
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`2.X; Y / D
�Z 1

0

jF�1
X .t/ � F�1

Y .t/j2dt
�1=2

D inff.E.eX � eY /2/1=2 W eX dD X;eY
dD Y g: (17.4.17)

By Holder’s inequality, we obtain that

EjeX2 � eY 2j � .E.eX � eY /2/1=2..EeX2/1=2 C .EeY 2/1=2:

Hence, by (17.4.16) and (17.4.17),

�r .X; Y / � `2.X; Y /..EX
2/1=2 C .EY 2/1=2/: (17.4.18)

In Kalashnikov and Rachev (1988, Lemma 4.2.1), it is shown that for W 2
NBUE

`2.W;E.m
�1
1 // � 8

p
6m1ˇ

1=8: (17.4.19)

By (17.4.18) and (17.4.19), we now get that

�2.W;E.m
�1
1 // � C.m1;m2/ˇ

1=8: (17.4.20)

The result in (ii) is a consequence of (17.4.15) and (17.4.20). ut
Remark 17.4.1. Note that the term j��2 � m2

1j in (17.4.6) and (17.4.7) is zero if
we choose the parameter � in our ideal exponential distribution FW to be m�1

1 , and
hence the if parts of Lemma 17.4.1 follow.

Reformulating Lemma 17.4.2 toward our original problem PR II, we can state
the following theorem.

Theorem 17.4.1. Let eW
dD E.�/. Then

�2.W; eW / � "; (17.4.21)

where " D 2˛ C 2j��2 �m2
1j if FW 2 NBUE, and

" D C.m1;m2/ˇ
1=8 C 2j��2 �m2

1j

if FW 2 HNBUE.

Remark 17.4.2. In the case whereFW belongs to IFR, IFRA, or NBU, the preceding
estimate (17.4.21) can be improved using more refined estimates than (17.4.19).13

13See Kalashnikov and Rachev (1988, Lemma 4.2.1).
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The preceding results concerning PR I and PR II lead to the following recom-
mendations:

(i) One checks if FW1 belongs to some of the classes in (17.4.1). There are
statistical procedures for checking that FW1 2 HNBUE.14

(ii) If, for example, FW1 2 HNBUE, then one computesm1 D EW1, m2 D EW2,
and ˇ D 2 � m2=m

2
1. If ˇ is close to zero, then we can choose the ideal

distribution F
eW .x/ D 1 � exp.x=m1/. Then the possible deviation between

FW1 and F
eW 1

in �2-metric is given by Theorem 17.4.1:

�2.W1; eW 1/ � C.m1;m2/ˇ
1=8 D ": (17.4.22)

(iii) In a similar way, choose F
eX1

and estimate the deviation

�2.X1; eX1/ � ı: (17.4.23)

(iv) Compute the approximating compound Poisson distribution F
P
eN.t/
iD1eX1

.15 Then

the possible deviation between the real compound distribution FPN.t/
iD1 X1

the

ideal F
P
eN.t/
iD1 X1

in terms of the uniform metric is16

�

0

@

N.t/
X

iD1
Xi ;

eN.t/
X

iD1
eXi

1

A �  ."; ı/: (17.4.24)

If FW does not belong to any of the classes in (17.4.1), then one can
compute the empirical distribution function bF .N/

W1
.�; !/ based on N observations

W1;W2; : : : ;WN . Choosing � > 0 [or F
eW 1
.x/ D 1 � exp.��x/] such that

E�2.bF
.N/
W1
; F
eW 1
/ < ", we get that

�2.FW1; FeW 1
/ < "C E�2.bF

.N/
W1
; F
eW 1
/: (17.4.25)

Dudley’s theorem17 implies that the second term on the right-hand side of
(17.4.25) can be estimated by some function �.N /, tending to zero as N ! 1.

14See Basu and Ebrahimi (1985) and the references therein for testing whether FW1 belongs to the
aging classes.
15See Teugels (1985).
16See Theorem 17.3.1.
17See Kalashnikov and Rachev (1988, Theorems 4.9.7 and 4.9.8).
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Chapter 18
How Close Are the Individual and Collective
Models in Risk Theory?

The goals of this chapter are to:

• Describe individual and collective models in insurance risk theory,
• Define stop-loss probability metrics and discuss their properties,
• Provide estimates of the distance between individual and collective models in

terms of stop-loss metrics.

Notation introduced in this chapter:

Notation Description

F1 � F2 Convolution of distribution functions
S ind Aggregate claim in individual model
S coll Aggregate claim in collective model
dm Stop-loss metric of order d
dm;p Lp-version of dm

18.1 Introduction

The subject of this chapter is individual and collective models in insurance risk
theory and how ideal probability metrics can be employed to calculate the distance
between them. We begin by describing stop-loss distances and their properties.
We provide a Berry–Esseen-type theorem for the convergence rate in the central
limit theorem (CLT) in terms of stop-loss distances using the general method of ideal
probability metrics. Finally, we consider approximations in risk theory by means of
compound Poisson distributions and estimate the distance between the individual
and the collective models using stop-loss metrics of different orders.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 18, © Springer Science+Business Media, LLC 2013
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18.2 Stop-Loss Distances as Measures of Closeness Between
Individual and Collective Models

In Chaps. 16 and 17, we defined and used an ideal metric of order r D m C
1=p > 0,

�m;p.X; Y / D supfjEf .X/� Ef .Y /j W kf .mC1/kq � 1g; (18.2.1)

m D 0; 1; 2; : : : , p 2 Œ1;1�, 1=p C 1=q D 1. The dual representation of
�1;1.X; Y / gives for any X and Y with equal means

�1;1.X; Y / D sup
x2R

ˇ

ˇ

ˇ

ˇ

Z 1

x

.x � t/d.FX.t/ � FY .t//

ˇ

ˇ

ˇ

ˇ

; (18.2.2)

where FX stands for the distribution functions (DF) of X .
The distance �1;1.X; Y / in (18.2.2) is well known in risk theory as the stop-

loss metric1 and is used to measure the distance between the so-called individual
and collective models. More precisely, let X1; : : : ; Xn be independent real-valued
variables with DFs Fi , 1 � i � n, of the form

Fi D .1 � pi/E0 C piVi ; 0 � pi � 1: (18.2.3)

Here E0 is the one-point mass DF concentrated at zero and Vi is any DF on R. We
can, therefore, write Xi D CiDi , where Ci has a DF Vi , Di is Bernoulli distributed
with success probability pi , and Ci and Di are independent. Then

S ind WD
n
X

iD1
Xi D

n
X

iD1
CiDi (18.2.4)

has a DF F D F1 � � � � � Fn, where � denotes the convolution of DFs.
The notation S ind comes from risk theory,2 where S ind is the so-called aggregate

claim in the individual model. Each of n policies leads with (small) probability pi
to a claim amount Ci with DF Vi .

Consider approximations of S ind by compound Poisson distributed random
variables (RVs)

S coll WD
N
X

iD1
Zi ; (18.2.5)

where fZi g are i.i.d., Zi
dD V (i.e., Zi has DF V ), N is Poisson distributed with

parameter� and fZi g, andN are independent. The empty sum in (18.2.5) is defined

1See Gerber (1981, p. 97).
2See Gerber (1981, Chap. 4).
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to be zero. In risk theory, S coll is referred to as a collective model. The usual choice
of V and � in a collective model is3

� D e� WD
n
X

iD1
pi ; V D eV WD

n
X

iD1

pi

�
Vi D

n
X

iD1

pi

�
FCi : (18.2.6)

This choice leads to the following representation of S coll:

S coll D
n
X

iD1
S coll
i : (18.2.7)

Here, S col
i D PN

jD1 Zij , Ni
dD P.pi / (i.e., Poisson distribution with parameter pi ),

Zij
dD Vi , and Ni , Zij are independent (i.e., one approximates each summand Xi

by a compound Poisson distributed RV S coll
i ).

Our further objective is to replace the usual choice (18.2.6) in the compound

Poisson model by a scaled model, i.e., we choose Zij
dD uiCi , � D Pn

iD1 �i ,
with scale factors ui and with �i such that the first two moments of S ind and S coll

coincide.

Remark 18.2.1. In the usual collective model (18.2.6),

ES ind D
n
X

iD1
piECi D ES coll; (18.2.8)

and if qi D 1 � pi , then4

Var.S ind/ D
n
X

iD1
pi Var.Ci /C

n
X

iD1
piqi .ECi/

2

< Var.S coll/ D
n
X

iD1
pi .Var.Ci //C

n
X

iD1
pi .ECi/

2: (18.2.9)

To compare the scaled and individual models, we will use several distances well
known in risk theory. Among them is the stop-loss metric of orderm

dm.X; Y / WD sup
t

ˇ

ˇ

ˇ

ˇ

Z 1

t

.x � t/m

mŠ
d.FX.x/ � FY .x//

ˇ

ˇ

ˇ

ˇ

D sup
t

.1=mŠ/jE.X � t/mC � E.Y � t/mCj; m 2 N WD f1; 2; : : : g; .�/C
WD max.�; 0/: (18.2.10)

3See Gerber (1981, Sect. 1, Chap. 4).
4See Gerber (1981, p. 50).
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This choice is motivated by risk theory and allows us to estimate the difference
of two stop-loss premiums.5

We will also consider the Lp-version of ds , namely,

dm;p.X; Y / WD
�Z

jDm.t/jpdt

�1=p

; 1 � p < 1;

dm;1.X; Y / WD dm.X; Y /; (18.2.11)

where

Dm.t/ WD Dm;X;Y .t/ WD .1=mŠ/.E.X � t/mC � E.Y � t/mC/: (18.2.12)

The rest of this section is devoted to the study of the stop-loss metrics dm
and dm;p .

Lemma 18.2.1. If E.Xj � Y j / D 0, 1 � j � m, then

dm.X; Y / D �m;1.X; Y /;

jE.X � Y /j < d1.X; Y / �
Z

jFX.x/ � FY .x/jdx;
(18.2.13)

and

dm;p.X; Y / D �m;p.X; Y /: (18.2.14)

Proof. We will prove (18.2.13) only. The proof of (18.2.14) is similar.
Here and in what follows, we use the notation

H0.t/ WD H.t/ WD FX.t/ � FY .t/ (18.2.15)

and

H1.t/ WD
Z 1

t

H.u/duHk.t/ WD
Z 1

t

Hk�1.u/du for k � 2: (18.2.16)

Claim 1. (a) If xH.x/ ! 0 for x ! 1, then for k D 1; : : : ; m

Dm.t/ D � 1

.m � 1/Š

Z 1

t

.x � t/m�1H.x/dx

D � 1

.m � k/Š

Z 1

t

.x � t/m�kHk�1.x/dx

D �Hm.t/: (18.2.17)

(b) jEX � EY j � d1.X; Y / � R1
�1 jH.x/jdx.

5See Gerber (1981, p. 97) for s D 1.
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The proof of (a) follows from repeated partial integration, and (b) follows
from (a).

Claim 2. If f is .mC1/-times differentiable,E.Xj �Y j / exists, 1 � j � m, and
f .X/ and f .Y / are integrable, then

E.f .X/� f .Y // D
m
X

jD0

f .j /.0/

j Š
E.Xj � Y j /C .�1/mC1

Z 0

�1
Dm.t/f

.mC1/.t/dt

C
Z 1

0

Dm.t/f
.mC1/.t/dt (18.2.18)

and

E.f .X/ � f .Y // D
Z

R

Dm.t/f
.mC1/.t/dt D .�1/mC1

Z

R

Dm.t/f
.mC1/.t/dt;

(18.2.19)

where

Dm.t/ WD Dm;X;Y .t/ WD .1=mŠ/.E.t � X/mC � E.t � Y /mC/ s � 1: (18.2.20)

The proof of (18.2.18) follows from the Taylor series expansion,

E.f .X/�f .Y //D
Z

R

f .x/dH.x/

D
Z

R

�

f .0/C� � �Cxm

mŠ
f .m/.0/C

Z x

0

.x�t/m
mŠ

f .mC1/.t/dt
�

dH.x/

D
m
X

jD0

f .j /.0/

j Š
E.Xj � Y j /C

Z 0

�1
.�1/mC1Dm.t/f

.mC1/.t/dt

C
Z 1

0

Dm.t/f
.mC1/.t/dt:

To prove (18.2.19), observe that if E.Xj � Y j / is finite, 1 � j � m, then

Dm.t/ D .1=mŠ/

m
X

jD0

 

m

j

!

E.Xj � Y j /.�t/m�j C .�1/mC1Dm.t/: (18.2.21)

Now (18.2.19) follows from (18.2.18) and (18.2.21), and thus the proof of
Claim 2 is completed.

It is known that for a function h on R with

khk1 D ess sup
x2R

jh.x/j
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the following dual representation holds:6

khk1 D sup

�Z

h.t/g.t/dt W kgk1 � 1

�

: (18.2.22)

Recall that

�m;1.X; Y / WD supfjE.f .X/� f .Y //j W f 2 Fmg; (18.2.23)

where Fm WD ff W R1 ! R
1; f .mC1/ exists and kf .mC1/k1 < 1g.

Thus (18.2.19), (18.2.22), and (18.2.23) imply

�m;1.X; Y / D sup
f 2Fm

ˇ

ˇ

ˇ

ˇ

Z

Dm.t/f
.mC1/.t/dt

ˇ

ˇ

ˇ

ˇ

D kDmk1 D kDmk1 D dm.X; Y /:

ut
The next lemma shows that the moment condition in Lemma 18.2.1 is necessary

for the finiteness of �m;1.7

Lemma 18.2.2. (a) �m;1.X; Y / < 1 implies that

E.Xj � Y j / D 0 1 � j � m: (18.2.24)

(b) �m;1 is an ideal metric of order m, i.e., �m;1 is a simple probability metric
such that

�m;1.X CZ; Y CZ/ � �m;1.X; Y /

for Z independent of X , Y and8

�m;1.cX; cY / D jcjm�m;1.X; Y /; for c 2 R: (18.2.25)

(c) For independent X1; : : : ; Xn and Y1; : : : ; Yn and for ci 2 R the following
inequality holds:

�m;1

 

n
X

iD1
ciXi ;

n
X

iD1
ciYi

!

�
n
X

iD1
jci jm�m;1.Xi ; Yi /: (18.2.26)

6See, for example, Dunford and Schwartz (1988, Sect. IV.8) and Neveu (1965).
7See condition (17.3.10) for �m;p in Chap. 17.
8See Definition 15.3.1 in Chap. 15.
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Proof. (a) For any a > 0 and 1 � j � m, fa.x/ WD axj 2 Fm, and therefore

�m;1.X; Y / � sup
a>0

ajE.Xj � Y j /j;

i.e., E.Xj � Y j / D 0.
(b) Since for z 2 R and f 2 Fm, fz.x/ WD f .x C z/ 2 Fm, the first part follows

from conditioning onZ D z. For the second part note that for c 2 R
1 W f 2 Fm

if and only if jcj�mfc 2 Fm with fc.x/ D f .cx/.
Finally, (c) follows from (b) and the triangle inequality for �m;1. ut
The proof of the next lemma is similar.

Lemma 18.2.3. (a) dm is an ideal metric of orderm.
(b) For X1; : : : ; Xn independent, Y1; : : : ; Yn independent, and ci > 0

dm

 

n
X

iD1
ciXi ;

n
X

iD1
ciYi

!

�
n
X

iD1
cmi dm.Xi ; Yi /: (18.2.27)

(c) dm.X C a; Y C a/ D dm.X; Y / for all a 2 R.
(d) If EX D EY D �, �2 D Var.X/ D Var.Y /, then with eX D .X � �/=� ,

eY D .Y � �/�

dm.eX;eY / D ��mdm.X; Y /: (18.2.28)

Recall the definition of the difference pseudomoment of orderm:

�m.X; Y / WD m

Z 1

�1
jxjm�1jH.x/jdx: (18.2.29)

In the next lemma, we prove that the finiteness of dmC1 implies the moment
condition (18.2.24).

Lemma 18.2.4. (a) If X; Y � 0 a.s., E.Xj � Y j / exists and is finite, 1 � j � m,
and dm.X; Y / < 1, then E.Xj � Y j / D 0, 1 � j � m � 1.

(b) If dm.X; Y / < 1 and �m.X; Y / < 1, thenE.Xj �Y j / D 0, 1 � j � m�1.

Proof. (a) From (18.2.16) we obtain for t � 0

.m � 1/ŠDm.t/

D
Z 1

t

.x � t/m�1H.x/dx

D
Z 1

0

.x � t/m�1H.x/dx
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D
m�1
X

jD0
.�t/m�1�j

�Z 1

0

xjH.x/dx

�

 

m � 1
j

!

D
m�1
X

jD0

 

m � 1

j

!

.�t/m�j�1 E.Y jC1 �XjC1/
j C 1

:

Since dm.X; Y / D supt Dm.t/ < 1, all coefficients of the foregoing
polynomial for j D 0; : : : ; m � 2 must be zero.

(b) By dm.X; Y / < 1

mŠdm.X; Y / D sup
x2R

ˇ

ˇ

ˇ

ˇ

Z 1

x

.t � x/m�1

.m � 1/Š H.t/dt
ˇ

ˇ

ˇ

ˇ

< 1;

and thus

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m�1
X

jD0

 

m � 1
j

!

.�x/m�1�j
Z 1

x

tjH.t/dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

< 1: (18.2.30)

Further, by �m.X; Y / < 1 [see (18.2.29)],

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

tm�1H.t/dt
ˇ

ˇ

ˇ

ˇ

� .1=m/�m.X; Y / < 1:

Thus,

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m�2
X

jD0

 

m � j
j

!

.�x/m�2�j
Z 1

x

tjH.t/dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0: (18.2.31)

Since

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

tm�2H.t/dt
ˇ

ˇ

ˇ

ˇ

� 1

m � 1�m�1.X; Y / � 2C .1=m/�m.X; Y / < 1;

by (18.2.31), we have

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m�3
X

jD0

 

m � 1
j

!

.�x/m�3�j
Z 1

x

tjH.t/dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0: (18.2.32)

Similarly to (18.2.31) and (18.2.32), we obtain

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m�k
X

jD0

 

m � 1

j

!

.�x/m�k�j
Z 1

x

tjH.t/dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0 (18.2.33)
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for all k D 2; : : : ; m. In the case where k D m, we have

0 D lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

H.t/dt

ˇ

ˇ

ˇ

ˇ

D lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

tdH.t/

ˇ

ˇ

ˇ

ˇ

; (18.2.34)

and thus E.X � Y / D 0. Set k D m � 1 in (18.2.33); then

0 D lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

.�x/
Z 1

x

H.t/dt C .m� 1/

Z 1

x

tH.t/dt

ˇ

ˇ

ˇ

ˇ

: (18.2.35)

By (18.2.34) and �m.X; Y / < 1,

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

x

Z 1

x

H.t/dt

ˇ

ˇ

ˇ

ˇ

D lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

x

Z x

�1
H.t/dt

ˇ

ˇ

ˇ

ˇ

� lim sup
x!�1

Z x

�1
jt jjH.t/jdt D 0: (18.2.36)

Combining (18.2.35) and (18.2.36) implies

lim sup
x!�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

tH.t/dt

ˇ

ˇ

ˇ

ˇ

D 0;

and hence E.X2 � Y 2/ D 0. In the same way we get E.Xj � Y j / D 0 for all
j D 1; : : : ; m � 1. ut

We next establish some relations between the different metrics considered so far.
We use the notation �m WD �m;1 for the Zolotarev metric.9

Lemma 18.2.5. (a) If X; Y � 0 a.s, E.Xj � Y j / is finite, 1 � j � m, and
dm.X; Y / < 1, then

dm.X; Y / � .1=mŠ/maxfjE.Xm � Y m/j;�m.X; Y /g: (18.2.37)

(b) dm.X; Y / � dm�1;1.X; Y / if xsH.x/ �!
x!1 0,

�m;1.X; Y / � �m.X; Y / if �m;1.X; Y / < 1; (18.2.38)

dm;p.X; Y / D �m;p.X; Y / � �mC1=p.X; Y / if 1 � p < 1;

and �m;p.X; Y / < 1:

9See (15.3.1) in Chap. 15.
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(c) If E.Xj � Y j / D 0, 1 < j � m, then

dm.X; Y / D �m;1.X; Y / � .1=mŠ/�m.X; Y /: (18.2.39)

(d) �m.X; Y / � EjX jX jm�1 � Y jY jm�1j � EjX jm C EjY jm.

Proof. (a) For t � 0 it follows from (18.2.16) that

.m � 1/ŠjDm.t/j D
ˇ

ˇ

ˇ

ˇ

Z 1

t

.x � t/m�1H.x/dx
ˇ

ˇ

ˇ

ˇ

�
Z 1

t

.x � t/m�1jH.x/jdx

�
Z 1

0

xm�1jH.x/jdx D .1=m/�m.X; Y /:

For t � 0 it follows from Lemma 18.2.4 (a) that

.m � 1/ŠDm.t/ D
Z 1

t

.x � t/m�1H.x/dx D
Z x

0

.x � t/m�1H.x/dx

D .1=m/E.Y m � Xm/:

(b) From (18.2.16) it follows that if xmH.x/ ! 0, then

dm.X; Y / D sup
t

jDm.t/j D sup
t

jHm.t/j D sup
t

ˇ

ˇ

ˇ

ˇ

Z 1

t

Hm�1.u/du

ˇ

ˇ

ˇ

ˇ

� sup
t

Z 1

t

jDm�1.u/jdu D dm�1;1.X; Y /:

If E.Xj � Y j / D 0, 1 � j � m, then �m;1.X; Y / D dm.X; Y / �
dm�1;1.X; Y / D �m.X; Y /. The relation �m;p.X; Y / � �mC1=p.X; Y / follows
from the inequality

jf m.x/ � f m.y/j � kf .m1/kqjx � yj1=p � jx � yj1=p

for any function f with kf .mC1/kq � 1 and 1=pC 1=q D 1.
(c) By (b) and Lemma 18.2.1,

dm.X; Y / D �m;1.X; Y / � �m.X; Y /: (18.2.40)

Further, by (18.2.14) with p D 1,

�m.X; Y / D
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

.t � x/m
mŠ

dH.t/

ˇ

ˇ

ˇ

ˇ

dx: (18.2.41)
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By the assumption E.Xj � Y j / D 0, j D 1; : : : ; m,

�m.X; Y /D
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Z 1

x

.t � x/m�1

.m � 1/Š H.t/dt
ˇ

ˇ

ˇ

ˇ

dx

D
Z 1

0

ˇ

ˇ

ˇ

ˇ

Z 1

x

.t�x/m�1

.m�1/Š H.t/dt
ˇ

ˇ

ˇ

ˇ

dxC
Z 0

�1

ˇ

ˇ

ˇ

ˇ

Z x

�1
.x�t/m�1

.m�1/Š H.t/dt
ˇ

ˇ

ˇ

ˇ

dx

�
Z 1

0

Z 1

x

.x � t/m�1

.m�1/Š jH.t/jdtdxC
Z 0

�1

Z x

�1
.x�t/m�1

.m�1/Š jH.t/jdtdx

D .1=mŠ/�m.X; Y /:

(d) Clearly, for any X and Y 10

�1.X; Y / D
Z 1

�1
jFX.x/ � FY .x/jdx � EjX � Y j:

Now use the representation

�m.X; Y / D �1.X jX jm�1; Y jY jm�1/

to complete the proof of (d). ut
The next relations concern the uniform metric

�.X; Y / WD sup
x2R

jFX.x/ � FY .x/j; (18.2.42)

the stop-loss distance dm defined in (18.2.10), and the pseudomoment �m.X; Y /

defined in (18.2.29).

Lemma 18.2.6. (a) If X has a bounded Lebesgue density fX , jfX.t/j � M , then

dm.X; Y / � K.m/.1CM/�m�1�.X; Y /mC1; (18.2.43)

where K.m/ D .mC 1/
p
3

.2mC 2/Š
p
2mC 3

.

(b) If for some ı > 0, emı WD E.jX jmCı C jY jmCıj/ < 1, then

�m.X; Y / � 2

�

ıemı

2m

�

.�.X; Y //d=.mCd/mC ı

ı
: (18.2.44)

Proof. (a) We first apply Lemma 18.2.1, dm D �m;1. Then Lemma 17.3.2
completes the proof of (18.2.43).

10See, for example, (6.5.11) in Chap. 6.
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(b) For ˛ > 0 and � D �.X; Y /

�m.X; Y / D m

Z 1

�1
jxjm�1jH.x/jdx

� m

Z ˛

�˛
jxjm�1jH.x/jdx C EjX jmfjX j > ˛g C EjY jmfjY j > ˛g

� 2�˛m C emı

˛ı
DW f .˛/:

Minimizing f .˛/ we obtain (18.2.44). ut
Remark 18.2.2. Estimate (18.2.44), combined with (18.2.39), shows that

dm.X; Y / � .2=mŠ/

�

ıemı

2m

�m=.mCı/
.�.X; Y //ı=.mCı/mC ı

m
;

if �m;1.X; Y / < 1: (18.2.45)

Under the assumption of a finite-moment-generating function, this can be improved
to �.X; Y /flog.�.X; Y //g˛ for some ˛ > 0.

An important step in the proof of the precise rate of convergence in the CLT, the
so-called Berry–Esseen-type theorems, is the smoothing inequality.11 For the stop-
loss metrics there are some similar inequalities that also lead to Berry–Esseen-type
theorems.

Lemma 18.2.7 (Smoothing inequality).

(a) Let Z be independent of X and Y , �m;1.X; Y / < 1; then for any " > 0 the
following inequality holds:

dm.X; Y / � d.X C "Z; Y C "Z/C 2
"m

mŠ
EjZjm: (18.2.46)

(b) If X , Y , Z, W are independent, xmH.x/ ! 0, x ! 1, then

dm.X CZ; Y CZ/ � 2dm.Z;W /� .X; Y /C dm.X CW;Y CW /

(18.2.47)

and

dm.X CZ; Y CZ/ � 2dm.X;Z/� .W;Z/C dm.X CW;Z CW /;

(18.2.48)

where � is the total variation metric [see (15.3.4)].

11See Lemmas 16.3.1 and 16.3.3 and (16.3.7).



18.2 Stop-Loss Distances as Measures of Closeness 407

Proof. (a) From Lemmas 18.2.3 and 18.2.5

dm.X; Y / � dm.X;X C "Z/C dm.X C "Z; Y C "Z/C dm.Y C "Z; Y /

� dm.X C "Z; Y C "Z/C 2dm.0; "Z/

� dm.X C "Z; Y C "Z/C 2
"m

mŠ
�m.0;Z/

D dm.X C "Z; Y C "Z/C 2
"m

mŠ
EjZjm:

(b) dm.X CZ; Y CZ/

D 1

.m � 1/Š
sup
x

ˇ

ˇ

ˇ

ˇ

Z 1

x

.t � x/m�1.FXCZ.t/ � FYCZ.t//dt
ˇ

ˇ

ˇ

ˇ

D 1

.m � 1/Š
sup
x

ˇ

ˇ

ˇ

ˇ

Z 1

x

�Z 1

�1
.t � x/m�1FZ.t � u/d.FX.u/� FY .u//

�

dt

ˇ

ˇ

ˇ

ˇ

� 1

.m � 1/Š
sup
x

ˇ

ˇ

ˇ

ˇ

Z 1

x

�Z 1

�1
.t � x/m�1fFZ.t � u/� FW .t � u/gdH.u/

�

dt

ˇ

ˇ

ˇ

ˇ

C 1

.m � 1/Š sup
x

ˇ

ˇ

ˇ

ˇ

Z 1

x

�Z 1

�1
.t � x/m�1FW .t � u/dH.u/

�

dt

ˇ

ˇ

ˇ

ˇ

�
Z 1

�1
dm.Z;W /jdH.u/j C dm.X CW;Y CW /

D 2dm.Z;W /� .X; Y /C dm.X CW;Y CW /:

Inequality (18.2.48) is derived similarly. ut
From the smoothing inequality we obtain the following relation between d1

and dm.

Lemma 18.2.8. If E.Xj � Y j / D 0, 1 � j � m, then

d1.X; Y / � �m.dm.X; Y //1=m; (18.2.49)

where

�m WD K
1=m
m

�

2K2

m � 1
�.m�1/=m

m; Km WD
Z

jHm�1.x/j 1p
2�

exp.�x2=2/dx;

in which Hm is the Hermite polynomial of order m, K1 D 1, K2 D .2=�/1=2.
In particular,

d1.X; Y / � .4=
p
�/.d2.X; Y //1=2: (18.2.50)
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Proof. Let Z be a N.0; 1/-distributed RV independent of X , Y . Then for " > 0

from (18.2.46)

d1.X; Y / � d1.X C "Z; Y C "Z/C 2".2=�/1=2: (18.2.51)

With W WD "Z it follows from Lemma 18.2.1 that12

d1.X CW;Y CW / D supfjE.f .X CW /� f .Y CW //jI kf .2/k1 � 1g
D supfjE.gf .X/ � gf .Y /jI kf .2/k1 � 1g;

where

gf .t/ WD
Z 1

�1
f .x/fW .x � t/dx D f � fW .t/; fW WD F 0

W :

The derivatives of gf have the following representation:

g
.m/

f .t/ D .�1/m
Z 1

�1
f .x/F

.m/
W .x � t/dx D .�1/m

Z 1

�1
f .x C t/f

.m/
W .x/dx

D .�1/m�1
Z 1

�1
f .1/.x C t/f

.m�1/
W .x/dx

and

g
.mC1/
f .t/ D .�1/m�1

Z 1

�1
f .2/.x C t/f

.m�1/
W .x/dx D .�1/m�1f .2/ � f .m�1/

W .t/:

For the L1-norm we therefore obtain

kg.m�1/
f k1 D

Z

jg.mC1/
f .t/jdt D kf .2/ � f .m�1/

W k1

� kf .2/k1kf .m�1/
W k1 � 1

"m�1 kf .m�1/
W k1 D 1

"m�1Km:

Therefore, from Lemma 18.2.1,

d1.X C "Z; Y C "Z/ D �1;1.X C "Z; Y C "Z/ � 1

"m�1Kmdm.X; Y /:

(18.2.52)

From the smoothing inequality (18.2.46) we obtain

d1.X; Y / � 1

"m�1Kmdm.X; Y /C 2K2":

Minimizing the right-hand side with respect to ", we obtain (18.2.49). ut

12See (18.2.13).
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Lemma 18.2.9. Let Z be independent of X and Y with Lebesgue density fZ .

(a) If C3;Z WD kf .3/
Z k1 < 1, then

� .X CZ;V CZ/ � 1

2
C3;Zd2;1.X; Y /: (18.2.53)

(b) If Cs;Z WD kf .s/
Z k1 < 1, and if �m;1.X; Y / < 1, then form � 1

dm.X CZ; Y CZ/ � Cs;Z�mCs.X; Y /: (18.2.54)

Proof. (a) With H.t/ D FX.t/ � FY .t/,

2�.X CZ; Y CZ/

D
Z

jfXCZ.x/ � fYCZ.x/jdx D
Z

R

ˇ

ˇ

ˇ

ˇ

Z

R

fZ.x � t/dH.t/

ˇ

ˇ

ˇ

ˇ

dx

D
Z

R

ˇ

ˇ

ˇ

ˇ

Z

R

H.t/f 0
Z.x�t/dt

ˇ

ˇ

ˇ

ˇ

dx D
Z

R

ˇ

ˇ

ˇ

ˇ

Z

R

f 0
Z.x�t/d

�Z 1

x

H.u/du

�ˇ

ˇ

ˇ

ˇ

dx

D
Z

R

ˇ

ˇ

ˇ

ˇ

Z

R

�Z 1

x

H.u/du

�

f 00
Z .x � t/dt

ˇ

ˇ

ˇ

ˇ

dx

�
Z

R

Z

R

ˇ

ˇ

ˇ

ˇ

Z 1

x

.u � x/
1Š

H.u/du

ˇ

ˇ

ˇ

ˇ

jf .3/
Z .x � t/dtdx

D 1

2
C3;Z

Z

R

jE.X � t/2C �E.Y � t/2Cjdt D C3;Zd2;1.X; Y /:

(b) If Cs;Z D kf .s/
Z k1 < 1 and �m;1.X; Y / < 1, then by (18.2.38), similarly to

(a), we get13

dm.X CZ; Y CZ/ � �m.X CZ; Y CZ/ � Cs;Z�mCs.X; Y /: ut

Theorem 18.2.1. Let fXng be i.i.d., set EX1 D 0, EX2
1 D 1, and Sn D

n�1=2 n
P

iD1
Xi , and let Y be a standard normal RV. Then, form D 1; 2,

dm.Sn; Y / � C.m/maxfdm;1.X1; Y /;d3;1.X; Y /gn�1=2; (18.2.55)

13See Zolotarev (1986, Theorem 1.4.5) and Kalashnikov and Rachev (1988, Chap. 3, p. 10,
Theorem 10).
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where C.m/ is an absolute constant, and

d3.Sn; Y / � d3.X1; Y /n�1=2: (18.2.56)

Proof. Inequality (18.2.56) is a direct consequence of Lemma 18.2.3(b). The proof
of (18.2.55) is based on Lemmas 18.2.3, 18.2.5, 18.2.7, and 18.2.9 and follows step
by step the proof of Theorem 16.3.1. ut
Remark 18.2.3. In terms of �s metrics, a similar inequality is given by Zolotarev
(1986, Theorem 5.4.7):

�1.Sn; Y / < 11:5max.�1.X1; Y /�3.X1; Y //n
�1=2: (18.2.57)

Open Problem 18.2.1. Regarding the right-hand side of (18.2.55), one
could expect that the better bound should be C.m/maxfdm.X1; Y /, d3;1.X1; Y /g
n�1=2. Is it true that for m D 1; 2, p 2 .1;1�,

dm;p.Sn; Y / � C.m; p/maxfdm;p.X1; Y /;d3;1.X1; Y /gn�1=2‹ (18.2.58)

What is a good bound for C.m; p/ in (18.2.58)?

18.3 Approximation by Compound Poisson Distributions

We now consider the problem of approximation of the individual model S ind D
Pn

iD1 Xi D Pn
iD1 CiDi by a compound model, i.e., by a compound Poisson

distributed RV14

S coll D
N
X

iD1
Zi

dD
n
X

iD1
S coll
i ; S coll

i D
Ni
X

jD1
Zij :

Choose Zij
dD uiCi and Ni to be Poisson .�i /-distributed. Then N is Poisson

.�/.N
dD P.�//, � D Pn

iD1 �i , and

FZj D
n
X

iD1

�i

�
Fui Ci : (18.3.1)

We choose�i , ui in such a way that the first two moments of S coll
i coincide with the

corresponding moments of Xi .

14See (18.2.3), (18.2.4), and (18.2.5).
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Lemma 18.3.1. Let ai WD ECi , bi WD EC2
i , and define

�i WD pibi

bi � pia2i
; ui WD pi

�i
D bi � pia2i

bi
: (18.3.2)

Then

ES coll
i D EXi D piai and Var.S coll

i / D Var.Xi/ D pibi � .piai /2: (18.3.3)

Proof. Since Ni
dD P.�i / and Zij

dD uiCi , we obtain EZij D ui ai , EZ2
ij D u2i bi ,

ES coll
i D E

Ni
X

jD1
Zij D �iuiai D piai D EXi;

and

Var.Xi/ D pibi � .piai /
2 D pi .bi � pia

2
i / D p2i bi

�i
D �iu

2
i bi D .ENi/EZ

2
ij

D Var.S coll
i /: ut

So in contrast to the “usual” choice (18.2.6) of � D e� and 	 D e	, we use a
scaling factor ui and �i such that the first two moments agree. We see that

�i > pi for pi > 0 (18.3.4)

and ui < 1.

Theorem 18.3.1. Let �i , ui be as defined in (18.3.2); then

d1.S ind; S coll/ � 4p
�

 

n
X

iD1
pibi

!1=2

;

d2.S ind; S coll/ �
n
X

iD1
pibi : (18.3.5)

Proof. By (18.2.50), we have d1.S ind; S coll/ � .4=
p
�/ (d2.S ind; S coll/1=2. Now

d2.S ind; S coll/ D d2

 

n
X

iD1
Xi ;

n
X

iD1
S coll
i

!

�
n
X

iD1
d2.Xi ; S coll

i /
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by Lemma 18.2.3. By Lemma 18.2.5 (b) and (d), it follows that

d2.Xi ; S coll
i / � 1

2
.EX2

i C E.S coll
i /2/ D EX2

i D pibi : ut

Remark 18.3.1. Note that in our model, d2.S ind; S coll/ D 1
2

supt jE.S ind � t/2C �
E.S coll � t/2Cj is finite. In view of Lemma 18.2.4, this is not necessarily true for the
usual model. By Lemma 18.2.2, the �2;1-distance between S ind and S coll is infinite
in the usual model, while �2;1.S ind; S coll/ D d2.S ind; S coll/ is finite in our scaled
model determined by (18.3.1)–(18.3.3). Moreover, the d3-metric for the usual model
is infinite, as follows from Lemma 18.2.4. This indicates more stability in our new
scaled approximation.

We will next consider the special case where fXigi�1 are i.i.d. For this purpose
we will use a Berry–Esseen-type estimate for d1.15 In the next theorem, we use the
following moment characteristic:


3.X; Y / WD max..EjeX j C EjY j/; 1
3
.EjeX j3 CEjY j3//; eX WD X � EX

Var.X/
:

Theorem 18.3.2. If fXig are i.i.d. with a D EC1, �2 D Var.C1/, p D Pr.Di D 1/,
then

d1.S ind; S coll/ � 11:5Œp�2 C p.1 � p/a2�1=2

 


3.X1; Y /C 
3

 

N1
X

iD1
Ci ; Y

!!

;

(18.3.6)

where Y has a standard normal distribution and N1
dD P.�1/.

Proof. By the ideality of d1 (Lemma 18.2.3),

d1.S ind; S coll/ D d1

 

n
X

iD1
Xi ;

n
X

iD1
S coll
i

!

D .nVar.X1//1=2d1

 

1p
n

n
X

iD1
eXi ;

1p
n

n
X

iD1
Yi

!

;

where Yi WD .eS coll
i /. By the triangle inequality, (18.2.57), and Lemma 18.2.5 (c),

d1

 

1p
n

n
X

iD1
eXi ;

1p
n

n
X

iD1
Yi

!

� �1

 

1p
n

n
X

iD1
eXi ; Y

!

C �1

 

1p
n

n
X

iD1
Yi ; Y

!

15See Theorem 18.2.1 and Remark 18.2.2.
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� 11:5fmax.�1.eX1; Y /;d2;1.eX1; Y //

C max.�1.Y1; Y /;d2;1.Y1; Y //gn�1=2;

where �1 D �1 D �1;1 is the first difference pseudomoment [see (18.2.29)]. With

�1.eX1; Y / � EjeX1j C EjY j; d2;1.eX1; Y / � 1
2
.EjeX1j3 C jEjY j3/;

and similarly for the second term, we get

max.�1.Y1; Y /;d2;1.Y1; Y // � 
3.Y1; Y / � 
3

 

N1
X

iD1
Ci ; Y

!

: ut

The next theorem gives a better estimate for d1.S ind; S coll/ when pi are relatively
small.

Theorem 18.3.3. Let �i , ui be as in (18.3.2), and let Ci � 0 a.s.; then for
any�i >1

d1.S coll; S ind/ �
n
X

iD1
p2i 
i ; (18.3.7)

where 
i WD ai C�ivi C max.�iaivi ; 2aievi C .1C�iaivipi /ui /, vi WD a2i =bi �
1=pi , pivi � 1 ���1

i , andevi WD a2i =.bi � pia2i /.
Proof. Since d1 is an ideal metric, for the proof it is enough to establish16

d1.S coll
i ; Xi / � p2i 
i : (18.3.8)

We will omit the index i in what follows. Since the first moments of S ind and
S coll are the same, jD1;S coll;X .t/j determined by (18.2.12) admits the form

jD1;S coll;X .t/j D
ˇ

ˇ

ˇ

ˇ

Z t

�1
.t � x/.dFS coll.x/ � dFX.x//

ˇ

ˇ

ˇ

ˇ

:

Further, we will consider only the case where t > 0 since the case where t < 0 can
be handled in the same manner using the preceding equality. For t > 0

jD1;S coll;X .t/j WD
ˇ

ˇ

ˇ

ˇ

Z 1

t

.x � t/.dFS coll.x/ � dFX.x//

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

1
X

kD1

�k

kŠ
exp.��/

Z 1

t

.x � t/dF �k
uC .x/ � p

Z 1

t

.x � t/dFC .x/

ˇ

ˇ

ˇ

ˇ

ˇ

� I1 C I2;

16See (18.2.4), (18.2.7), and (18.2.26).
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where

I1 WD
ˇ

ˇ

ˇ

ˇ

� exp.��/
Z 1

t

.x � t/dFuC .x/ � p
Z 1

t

.x � t/dFC .x/
ˇ

ˇ

ˇ

ˇ

(18.3.9)

and

I2 WD
1
X

nD2

�k

kŠ
exp.��/

Z 1

t

.x � t/dF �k
uC .x/:

Since u D p=�, it follows that

I2 �
1
X

kD2

�k

kŠ
exp.��/kua D � exp.��/ua.exp.�/� 1/ � ua�2 D pa�:

(18.3.10)
Using � D pb=.b � pa2/ D p=.1� pa2=b/ we obtain

p � � � p

�

1C�
a2p

b

�

I (18.3.11)

therefore,

I2 � pa� � pap

�

1C�
a2p

b

�

D p2a C�
a2p3

b
: (18.3.12)

For the estimate of I1 we use FC WD 1 � FC to obtain

I1 D
ˇ

ˇ

ˇ

ˇ

� exp.��/
Z 1

t

F uC .x/dx � p
Z 1

t

F C .x/dx

ˇ

ˇ

ˇ

ˇ

:

Since, by (18.3.11), u D p=� � 1 and, therefore, F uC .x/ � FC .x/, we obtain

� exp.��/
Z 1

t

F uC .x/dx � p

Z 1

t

F C .x/dx

� p

�

1C�
a2p

b

�

exp.�p/
Z 1

t

F C .x/dx � p
Z 1

t

F C .x/dx

� �

�

a2

b

�

p2.EC/ D �
a3p2

b
: (18.3.13)

On the other hand, by (18.3.11), exp.��/ � 1�� � 1�p.1C�a2p=b/, implying

AWDp
Z 1

t

F C .x/dx � � exp.��/
Z 1

t

F uC .x/dx
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�p
Z 1

t

F C .x/dx � p

�

1 � p ��
a2p2

b

�Z 1

t

F uC .x/dx

�p
�Z 1

t

F C .x/dx �
Z 1

t

F uC .x/dx

�

C p2
�

1C�
a2p

b

�

ua:

(18.3.14)

Now, since

u D p=� D .b � pa2/
b

D 1 � pa2

b
;

then

p

�Z 1

t

F C .x/dx �
Z 1

t=u
FC .y/dy

�

C p2
�

a2

b

�Z 1

t=u
F C .x/dx

� p

Z t=u

t

F C .x/dx C p2a3

b
� pF C .t/t

�

1

u
� 1

�

C p2a3

b

� pa

�

1

u
� 1

�

C p2a3

b
� 2p2

a3

b � pa2
: (18.3.15)

Thus, by (18.3.14) and (18.3.15),

A � 2p2
a3

b � pa2 C p2
�

1C�
a2p

b

�

au: (18.3.16)

Estimates (18.3.16) and (18.3.14) imply

I1 � max

�

�
a3p2

b
; 2p2

a3

b � pa2
C ap2

�

1C�
a2p

b

�

u

�

D ap2 max

�

�
a2

b
; 2

a2

b � pa2
C u C�

a2u

b
p

�

: (18.3.17)

Thus the required bound (18.3.7) follows from (18.3.12) and (18.3.17). ut
Remark 18.3.2. From the regularity of d1 it follows that

d1.S coll; S ind/ �
n
X

iD1
d1.S coll

i ; Xi/

�
n
X

iD1
.ES coll

i C EXi/ D 2

n
X

iD1
aipi : (18.3.18)

Clearly, for small pi estimate (18.3.7) is a refinement of the preceding bound.
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We next give a direct estimate for d2 and use the relation between d2 and d1 to
obtain an improved estimate for d1 for pi not too small.

Theorem 18.3.4. Let Ci � 0 a.s., and let �i and ui be as in (18.3.2). Then

d2.S ind; S coll/ � 1

2

n
X

iD1
p2i 


�
i ; (18.3.19)

where


�
i WD bi C 3a2i C�ia

2
i C 2evi b

2
i C biu

2
i C�iaipi ; (18.3.20)

and�i ,evi are defined as in Theorem 18.3.3. Moreover,

d1.S ind; S coll/ � .4=
p
�/

 

n
X

iD1
p2i 


�
i

!1=2

: (18.3.21)

Proof. Again, it is enough to consider d1.S coll
i ; Xi /, and we will omit the index i .

Then, for t > 0,
ˇ

ˇ

ˇ

ˇ

Z 1

t

.x � t/2d.FS coll.x/ � FX.x//
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

1
X

kD1

�k

kŠ
exp.��/

Z 1

t

.x � t/2dF �k
uC .x/� p

Z 1

t

.x � t/2dFC .x/

ˇ

ˇ

ˇ

ˇ

ˇ

� I1 C I2; (18.3.22)

where

I1 WD
ˇ

ˇ

ˇ

ˇ

� exp.��/
Z 1

t

.x � t/2dFuC .x/ � p

Z 1

t

.x � t/2dFC .x/

ˇ

ˇ

ˇ

ˇ

and

I2 WD
1
X

kD2

�k

k1
exp.��/

Z 1

t

.x � t/2dF �k
uC .x/:

Since u D p=�, we obtain

I2 �
1
X

kD2

�k

kŠ
exp.��/E

 

k
X

iD1
uCi

!2

D u2
1
X

kD2

�k

kŠ
exp.��/.kb C k.k � 1/a2/

D u2b� exp.��/.exp.�/� 1/C u2a2�2 exp.��/ exp.�/ � u2.b C a2/�2

D p2.b C a2/: (18.3.23)
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Furthermore, from the fact that uC � C and (18.3.11),

1

2
I1 D

ˇ

ˇ

ˇ

ˇ

� exp.��/
Z 1

t

.x � t/F uC .x/dx � p
Z 1

t

.x � t/F C .x/dx

ˇ

ˇ

ˇ

ˇ

DW jAj (18.3.24)

and

A � p

�

1C�
a2p

b

�Z 1

t

.x � t/F C .x/dx � p

Z 1

t

.x � t/F C .x/dx

� 1

2
�a2p2: (18.3.25)

On the other hand, by � � p, exp.��/ � 1�� � 1�p.1C�.a2=b/p/, it follows
that

�A � p

Z 1

t

.x � t/F C .x/dx � p
�

1 � p ��a
2p2

b

�Z 1

t

.x � t/F uC .x/dx

� p

�Z 1

t

.x � t/F C .x/dx �
Z 1

t

.x � t/F uC .x/dx

�

Cp2
�

1C�
a2p

b

�

u2b=2

and
Z 1

t

.x � t/F C .x/dx �
Z 1

t

.x � t/F uC .x/dx

D
Z 1

t

xF C .x/dx �
Z 1

t

xF uC .x/dx C
Z 1

t

t .F uC .x/ � FC .x//dx

�
Z 1

t

xF C .x/dx �
Z 1

t=u
yF C .y/u

2dy

�
Z 1

t

xF C .x/dx �
Z 1

t=u
yF C .y/

�

1 � pa2

b

�2

dy

D
Z t=u

t

xF C .x/dx C
�

2pa2

b

�Z 1

t

xF C .x/dx

� t

u
FC .t/

�

t

u
� t
�

C
�

2pa2

b

�

b

2

� b.1� u/

u2
C .pa2/ D b2pa2

.b � pa2/2 C pa2:



418 18 How Close Are the Individual and Collective Models in Risk Theory?

Thus,

�A � b2p2a2

.b � pa2/2
C p2a2 C p2

�

1C �a2p

b

�

bu2

2
:

So we obtain

I1 � max

�

�a2p2;
2b2p2a2

.b � pa2/2 C 2p2a2 C p2
�

1C �a2p

b

�

bu2
�

;

which, together with (18.3.23), implies (18.3.19).
Equation (18.3.21) is a consequence of (18.3.19) and (18.2.50). ut
As a corollary, we obtain an estimate for

V2.S
ind; S coll/ WD sup

t

j Var..S ind � t/C/� Var..S coll � t/C/j:

Corollary 18.3.1.

V2.S ind; S coll/ � 2

n
X

iD1
p2i 


�
i C

 

n
X

iD1
p2i 
i

!

2

n
X

iD1
piai ;

where 
�
i is defined by (18.3.20) and 
i is the same as in (18.3.7).

Proof.

V2.S
ind; S coll/

� sup
t

jE.S coll�t/2C�E.S ind � t/2CjC sup
t

j.E.S coll � t/C/2�.E.S ind � t/C/2j

� 2d2.S coll; S ind/C d1.S ind; S coll/ sup
t

.E.S coll � t/C CE.S ind � t/C/

� 2d2.S coll; S ind/C d1.S ind; S coll/.ES coll C ES ind/

� 2

n
X

iD1
p2i 


�
i C

 

n
X

iD1
p2i 
i

!

2

n
X

iD1
piai :

The last inequality follows from (18.3.19) and (18.3.7). ut
Remark 18.3.3. One could try to find the RV fZij gj�1 (not necessarily scaled
versions of Xi ) such that the first k moments of S coll

i coincide with those of Xi .
For this purpose (omitting the index i ) let �X.s/ D EsX denote the generating
function of X . Then, for Y D PN

jD1 Zj , a compound Poisson distributed RV with
N , Poisson P.�/, we have �Y .s/ D �N .�Z.s//, where �Z WD �Z1 .

Now, for the Poisson RVN we obtain the factorial moments �.k/N .1/ D EN.N �
1/ � � � .N�kC1/ D �k . Denote the factorial moments by bk WD EX.X�1/ � � � .X�
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k C 1/, ak WD EZ.Z � 1/ � � � .Z � k C 1/. This implies EY D �
.1/
Y .1/ D �a1,

EY.Y�1/ D �
.2/
Y .1/ D �2a21C�a2,EY.Y �1/.Y�2/ D �

.3/
Y .1/ D �3a1a2C�a3.

Thus, we obtain the equations

�
.1/
Y .1/ D �a1 D b1;

�
.2/
Y .1/ D �2a21 C �a2 D b2;

�
.3/
Y .1/ D �3a31 C 3�2a1a2 C �a3 D b3;

and so on; that is,

�a1 D b1; �a2 D b2�b21; �a3 D b3 �b31 �3b1.b2 �b21/ D b3 �3b1b2C2b31;

and so on. In contrast to the scaled model, where we have two free parameters �
and u, here we have more nearly free parameters. These equations can easily be
solved, but one must find solutions � > 0 such that fai g are factorial moments
of a distribution. In our case where X D CD, this is seen to be possible for p
small. With � D p=� we obtain for the first three moments Ai of Z W A1 D �c1,
A2 D �.c2 C 2c1 � pc1/, and A3 D �.c3 � O.p//, where ci are the corresponding
moments of C . For p small A1, A2, A3 is a moment sequence. For an example
concerning the approximation of a binomial RV by compound Poisson distributed
RVs with three coinciding moments and further three moments close to each other,
see Arak and Zaitsev (1988, p. 80). They used the closeness in this case to derive
the optimal bounds for the variation distance.

By Lemmas 18.2.5 (c) and (d) and 18.2.8, it follows that if one can match the
first s moments of Xi and S coll

i , then

d1.S ind; S coll/ � �s.ds.S ind; S coll//1=s � �s

"

1

sŠ

n
X

iD1
.EjXi js C EjS coll

i js/
#1=s

:

(18.3.26)

This implies that in the case of EjXi js C EjS coll
i js � C , we have the order n1=s as

n ! 1 and, in particular, the finiteness of the ds distance.
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Chapter 19
Ideal Metric with Respect to Maxima Scheme
of i.i.d. Random Elements

The goals of this chapter are to:

• Introduce max-ideal and max-smoothing metrics and derive rates of convergence
in the max-stable limit theory of random vectors in terms of the Kolmogorov
metric,

• Provide infinite-dimensional analogs to the convergence rate theorems for
random vectors,

• Discuss probability metrics that are ideal with respect to both summation and
maxima.

Notation introduced in this chapter:

Notation Description

_;^ “Max” and “min” operators
�r Weighted Kolmogorov metric
M.x/ Equals min1�i�m jx.i/j for x WD .x.1/; : : : ; x.m//

� Kolmogorov metric with weight function M.x/
� Weighted metric between the logarithms of distribution functions
B Separable Banach space
Lr ŒT � Lr -space of measurable functions on T
X Sequence of random processes Sn; s � 1

C Sequence of constants satisfying normalizing conditions
Y Sequence of i.i.d. max-stable processes
Lp;r Lp on X.Lr ŒT �/
`p;r Minimal metric with respect to Lp;r
�p;r Weighted version of Ky Fan metric
�p;r Minimal metric with respect to �p;r
�p;r Weighted version of Prokhorov metric
�p;r Compound max-ideal metric

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 19, © Springer Science+Business Media, LLC 2013
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19.1 Introduction

In this chapter, we discuss the problem of estimating the rate of convergence in
limit theorems arising from the maxima scheme of independent and identically
distributed (i.i.d.) random elements. The chapter is divided into three parts.

We begin with an extreme-value theory of random vectors. We introduce max-
ideal and max-smoothing metrics, specifically designed for the maxima scheme,
which play a role in the theory similar to the role of the corresponding counterparts
in the scheme of summation discussed in Chap. 15. Using the universal methods
of the theory of probability metrics, we derive convergence rates in the max-stable
limit theorem in terms of the Kolmogorov metric.

Next, we consider the rate of convergence to max-stable processes. We provide
infinite-dimensional analogs of the convergence rate theorems for random vectors
(RVs).

Finally, we consider probability metrics that are ideal with respect to both
summation and maxima, the so-called doubly ideal metrics. This question is
interesting for the theory of probability metrics itself. It turns out that such metrics
exist; the order of ideality, however, is bounded by 1.

19.2 Rate of Convergence of Maxima of Random Vectors
Via Ideal Metrics

Suppose X1;X2; : : : ; Xn are i.i.d. RVs in R
m with a distribution function (DF)

F . Define the sample maxima as Mn D .M
.1/
n ; : : : ;M

.m/
n /, where M

.i/
n D

max1�j�n X.i/
j . For many DFs F there exist normalizing constants a.i/n > 0,

b
.i/
n 2 R (n � 1, 1 < i � m) such that

 

M
.1/
n � b.1/n
a
.1/
n

; : : : ;
M

.m/
n � b.m/n

a
.m/
n

!

dH) Y; (19.2.1)

where Y is an RV with nondegenerate marginals. The DFH of Y is said to be a max-
extreme value DF. The marginals Hi of H must be one of the three extreme value
types �˛.x/ D exp.�x�˛/, (x � 0, ˛ > 0), ˛.x/ D �˛.�x�1/, orƒ.x/ D �1.ex/.
Moreover, necessary and sufficient conditions on F for convergence in (19.2.1) are
known.1

Throughout we will assume that the limit DF H of Y in (19.2.1) is simple max-
stable, i.e., each marginal Y .i/ has DF Hi.x/ D �1.x/ D exp.�x�1/ (x � 0). Note
that if Y1; Y2; : : : are i.i.d. copies of Y , then

1See, for example, Resnick (1987a) and references therein.
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1

n

�

max
1�j�n Y

.i/
j ; : : : ; max

1�j�n Y
.m/
j

�

dH) Y:

In this section, we are interested in the rate of convergence in (19.2.1) with
respect to different “max-ideal” metrics.2 In the next section, we will investigate
similar rate-of-convergence problems but with respect to compound metrics and
their corresponding minimal metrics.

Definition 19.2.1. A probability metric � on the space X WD X.Rn/ of RVs is
called a max-ideal metric of order r > 0 if, for any RVs X , Y , Z 2 X and positive
constant c, the following two properties are satisfied:

(i) Max-regularity: �.X1 _ Z;X2 _ Z/ � �.X1;X2/, where x _ y WD .x.1/ _
y.1/; : : : ; x.m/ _ y.m// for x; y 2 R

m, _ WD max.
(ii) Homogeneity of order r : �.cX1; cX2/ D cr�.X1; Y2/.
If � is a simple p. metric, i.e., �.X1;X2/ D �.PrX1;PrX2/, it is assumed that Z is
independent of X and Y in (i).

The preceding definition is similar to Definition 15.3.1 in Chap. 15 of an ideal
metric of order r w.r.t. the summation scheme. Taking into account the metric
structure of the convolution metrics ��;r and ��;r ,3 we can construct in a similar
way a max-smoothing metric .e�r / of order r as follows: for any RVs X 0 and X 00 in
X, and Y being a simple max-stable RV, define

e�r .X
0; X 00/ D sup

h>0

hr�.X 0 _ hY;X 00 _ hY /

D sup
h>0

hr sup
x2Rm
jFX 0.x/ � FX 00.x/jFY .x=h/; (19.2.2)

where � is the Kolmogorov metric in X,

�.X 0; X 00/ D sup
x2Rm
jFX 0.x/ � FX 00.x/j: (19.2.3)

Here and in what follows in this section, X 0 _ X 00 means an RV with DF
FX 0.x/FX 00.x/.

Lemma 19.2.1. The max-smoothing metrice�r is max-ideal of order r > 0.

The proof is similar to that of Lemma 15.3.1 and is thus omitted.
Another example of a max-ideal metric is given by the weighted Kolmogorov

metric

2See Maejima and Rachev (1997) for a discussion of the convergence rates in the multivariate
max-stable limit theorem.
3See (15.3.12) and (15.3.13).



424 19 Ideal Metric with Respect to Maxima Scheme of i.i.d. Random Elements

�r .X
0; X 00/ WD sup

x2Rm
M r.x/jFX 0.x/ � FX 00.x/j; (19.2.4)

whereM.x/ WD min1�i�m jx.i/j for x WD .x.1/; : : : ; x.m//.
Lemma 19.2.2. �r is a max-ideal metric of order r > 0.

Proof. The max-regularity property follows easily from jFX 0_Z.x/�FX 00_Z.x/j �
jFX 0.x/�FX 00.x/j for anyZ independent ofX 0 andX 00. The homogeneity property
is also obvious. ut

Next we consider the rate of convergence in (19.2.1) with a.i/n D 1=n and
b
.i/
n D 0 by means of a max-ideal metric �. In the sequel, for any X we write
eX WD n�1X .

Lemma 19.2.3. Suppose X1;X2; : : : are i.i.d. RVs, Mn WD Wn
iD1 Xi , Y is simple

max-stable, and �r is a max-ideal simple p. metric of order r > 1. Then

�r.fMn; Y / � n1�r�r .X1; Y /: (19.2.5)

Proof. Take Y1; Y2; : : : to be i.i.d. copies of Y , Nn WD Y1 _ � � � _ Yn. Then

�r.fMn; Y / D �r.fMn; eNn/ (by the max-stability of Y )

D n�r�r .Mn;Nn/ (by the homogeneity property)

� n�r
n
X

iD1
�r.Xi ; Yi /

D n1�r�r .X1; Y /:

The inequality follows from the triangle inequality and max-regularity of �r . ut
By virtue of Lemmas 19.2.1–19.2.3, we have that for r > 1 and n!1

e�r .X1; Y / <1)e�r .fMn; Y / � n1�re�r .X1; Y /! 0 (19.2.6)

and

�r .X1; Y / <1) �r .fMn; Y / � n1�r�r .X1; Y /! 0: (19.2.7)

The last two implications indicate that the right order of the rate of the uniform
convergence �.fMn; Y / ! 0 should be O.n1�r / provided that �r .X1; Y / < 1 or
�r .X1; Y / <1. The next theorem gives the proof of this statement for 1 < r � 2.

Theorem 19.2.1. Let r > 1.

(a) If

e�r .X1; Y / <1; (19.2.8)
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then

�.fMn; Y / � A.r/Œe�rn1�r C �n�1�! 0 as n!1: (19.2.9)

In (19.2.9), the absolute constant A.r/ is given by

A.r/ WD 2Œc1.4r C 2r/ _ c1c24.3=2/er _ c2.4c14er=.r � 1//1=.r�1/�; (19.2.10)

where c1 WD 1C4e�2m, c2 WD mc1,er WD 1_.r�1/, ande�r , k are the following
measures of deviation of FX 0 from FY ,

� WD max.	;e�1;e�r=.r�1/r /; 	 WD �.X1; Y /;

e�1 WD e�1.X1; Y /; e�r WDe�r .X1; Y /: (19.2.11)

(b) If �r .X1; Y / <1, then

�.fMn; Y / � B.r/Œ	r n1�r C 
 n�1�! 0 as n!1; (19.2.12)

where

B.r/ WD .1 _K1 _Kr _K1=.r�1/
r /A.r/; Kr WD .r=e/r ; (19.2.13)

and


 WD max.	; 	1; 	1=.r�1/r /; 	 WD �.X1; Y /;

	1 WD �1.X1; Y /; 	r WD �r .X1; Y /: (19.2.14)

Remark 19.2.1. Since the simple max-stable RV Y is concentrated on R
mC, then

�.fMn; Y / D �

  

n
_

iD1
eXi

!

C
; Y

!

D �

 

n�1
n
_

iD1
.Xi/C; Y

!

; (19.2.15)

where .x/C WD ..x.1//C; : : : ; .x.m//C/, .x.i//C WD 0_ x.i/. Therefore, without loss
of generality we may considerXi as being nonnegative RVs. Thus, subsequently we
assume that all RVs X under consideration are nonnegative.

Similar to the proof of Theorem 16.3.1, the proof of the preceding theorem is
based on relationships between the max-ideal metrics �r and �r and the uniform
metric �. These relationships have the form of max-smoothing-type inequalities;
see further Lemmas 19.2.4–19.2.7. Recall that in our notations X 0 _ X 00 means
maximum of independent copies of X 0 and X 00. The first lemma is an analog of
Lemma 16.3.1 concerning the smoothing property of stable random motion.
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Lemma 19.2.4 (Max-smoothing inequality). For any ı > 0

�.X; Y / < c1�.X _ ıY; Y _ ıY /C c2ı; (19.2.16)

where

c1 D 1C 4e�2m; c2 D mc1: (19.2.17)

Proof. Let L.X 0X 00/ be the Lévy metric,

L.X 0; X 00/ D inff" > 0 W FX 0.x�"e/�" � FX 00.x/ � FX 0.xC"e/C"g; (19.2.18)

in Xm D X.RmC/, e D .1; 1; : : : ; 1/ 2 R
m.4 ut

Claim 1. If c1 is given by (19.2.17), then

�.X; Y / � .1C c1/L.X; Y /: (19.2.19)

Since FY .i/ .t/ D exp.�1=t/, t > 0, it is easy to see that

�.X; Y / �
0

@1C
m
X

jD1
sup
t>0

�

d

dt
FY .j / .t/

�

1

AL.X; Y /

D .1C 4e�2m/L.X; Y /;

which proves (19.2.19).

Claim 2. For any X 2 Xm and a simple max-stable RV Y

L.X; Y / � �.X _ ıY; Y _ ıY /C ım; ı > 0: (19.2.20)

Proof of Claim 2. Let L.X; Y / > � . Then there exists x0 2 R
mC [i.e., x0 � 0, i.e.,

x
.i/
0 � 0, i D 1; : : : ; m] such that

jFX.x/ � FY .x/j > �; for any x0 � x � x0 C �e: (19.2.21)

By (19.2.21) and the Hoeffding–Fréchet inequality

FY .x/ � max
�

0;
Pm

jD1FY .j / .x/ �mC 1
�

;

we have that

4See Example 4.2.3 in Chap. 4.
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jFX.x0 C �e/ � FY .x0 C �e/jFıY .x0 C �e/

� �FıY .�e/ D �FY
��

ı
e
�

� �
0

@

m
X

jD1
FY .j /.�=ı/�mC 1

1

A

D �
0

@

m
X

jD1
exp.�ı=�/�mC 1

1

A � �.m.1� ı=�/�mC 1/ D � �mı:

Therefore, �.X_ıY; Y _ıY / � ��ım. Letting � ! L.X; Y /we obtain (19.2.20).
Now, the inequality in (19.2.16) is a consequence of Claims 1 and 2. ut
The next lemma is an analog of Lemmas 16.3.2 and 15.4.1.

Lemma 19.2.5. For any X 0; X 00 2 Xm

�.X 0 _ ıY;X 00 _ ıY / � ı�r
e�r .X

0; X 00/ (19.2.22)

and

�.X 0 _ ıY;X 00 _ ıY / � Krı
�r�r .X 0; X 00/; (19.2.23)

where

Kr WD .r=e/r : (19.2.24)

Proof of Lemma 19.2.5. Inequality (19.2.22) follows immediately from the defini-
tion ofe�r [see (19.2.2)]. Using the Hoeffding–Fréchet inequality

FY .x/ � min
1�i�mFY .i/ .x

.i// D min
1�i�m expf�1=x.i/g (19.2.25)

we have

�.X 0 _ ıY;X 00 _ ıY / D sup
x2Rn

FıY .x/jFX 0.x/ � FX 00.x/j

� sup
x2Rm

min
1�i�m exp.�ı=x.i//jFX 0.x/ � FX 00.x/j

D sup
x2Rm

min
1�i�m

��

ı

x.i/

�r

exp

�

� ı

x.i/

��

�
�

ı

x.i/

��r
jFX 0.x/ � FX 00.x/j

� Kr sup
x2Rm

min
1�i�m

�

ı

x.i/

��r
jFX 0.x/ � FX 00.x/j

D Krı
�r�r .X 0; X 00/;

which proves (19.2.23). ut
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Lemma 19.2.6. For any X 0 and X 00

e�r .X
0; X 00/ � Kr�r .X

0; X 00/: (19.2.26)

Proof. Apply (19.2.23) and (19.2.2) to get the preceding inequality. ut
Lemma 19.2.7. For any independent RVs X 0, X 00, Z, W 2 Xm

�.X 0 _Z;X 00 _Z/ � �.Z;W /�.X 0; X 00/C �.X 0 _W;X 00 _W /: (19.2.27)

Proof. For any x 2 R
m

FZ.x/jFX 0.x/ � FX 00.x/j
� jFZ.x/ � FW .x/jjFX 0.x/ � FX 00.x/j C FW .x/jFX 0.x/ � FX 00.x/j;

which proves (19.2.27). ut
The last lemma resembles Lemmas 15.4.2 and 15.4.4 dealing with smoothing for

sums of i.i.d. Now we are ready for the proof of the theorem.

Proof of Theorem 19.2.1.

(a) Let Y1; Y2; : : : be a sequence of i.i.d. copies of Y , Nn WD
N
W

iD1
Yi . Hence

�.fMn; Y / D �.fMn; eNn/: (19.2.28)

By the smoothing inequality (19.2.16),

�.fMn; eNn/ � c1�.fMn _ ıY; eNn _ ıY /C c2ı: (19.2.29)

Consider the right-hand side of (19.2.29), and obtain for n � 2

�.fMn _ ıY; eNn _ ıY /

�
mC1
X

jD1
�

0

@

j�1
_

iD1
eY i _

n
_

iDj
eXi _ ıY;

j
_

iD1
eY i _

n
_

iDjC1
eXi _ ıY

1

A

C�

0

@

mC1
_

jD1
eY j _

n
_

jDmC2
eXj _ ıY;

mC1
_

jD1
eY j _

n
_

jDmC2
eY j _ ıY

1

A ;

(19.2.30)

where m is the integer part of n=2 and
W0
jD1 WD 0. By Lemma 19.2.7, we can

estimate each term on the right-hand side of (19.2.30) as follows:
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�

0

@

j�1
_

iD1
eY i _

n
_

iDj
eXi _ ıY;

j
_

iD1
eY i _

n
_

iDjC1
eXi _ ıY

1

A

� �

0

@

n
_

iDjC1
eXi ;

n
_

iDjC1
eY i

1

A�

 

j�1
_

iD1
eY i _ eXj _ ıY;

j
_

iD1
eY i _ ıY

!

C�

0

@

j�1
_

iD1
eY i _ eXj _ ıY _

n
_

iDjC1
eY i ;

j
_

iD1
eY i _ ıY _

n
_

iDjC1
eY i

1

A :

(19.2.31)

Combining (19.2.28)–(19.2.31) and using Lemma 19.2.7, again we have

�

0

@

n
_

jD1
eXj ; Y

1

A � c1.I1 C I2 C I3 C I4/C c2ı; (19.2.32)

where

I1 WD �

 

n
_

iD2
eXi ;

n
_

iD2
eY i

!

�.eX1 _ ıY;eY 1 _ ıY /;

I2 WD
mC1
X

jD2
�

0

@

n
_

iDjC1
eXi ;

n
_

iDjC1
eY i

1

A�

 

j�1
_

iD1
eY i _ eXj _ ıY;

j
_

iD1
eY i _ ıY

!

;

I3 WD
mC1
X

jD1
�

 

eXj _
n
_

iDmC2
eY i ;eY j _

n
_

iDmC2
eY i

!

;

and

I4 WD �

0

@

mC1
_

jD1
eY j _

n
_

jDmC2
eXj ;

mC1
_

jD1
eY j _

n
_

jDmC2
eY j

1

A :

Take n � 3. We estimate I3 by making use of Lemmas 19.2.1 and 19.2.5,

I3 �
mC1
X

jD1
e�r .eXj ;eY j /

�

n �m � 1
n

��r
�

mC1
X

jD1
e�r .eXj ;eY j /4

r

� .mC 1/n�r
e�r .X1; Y1/4

r � 4rn1�r �r : (19.2.33)
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In the same way, we estimate I4,

I4 �e�r
0

@

n
_

jDmC2
eXj ;

n
_

jDmC2
eY j

1

A

�

mC 1
n

��r

� 2r.n �m/n�r
e�r .X1; Y1/ � 2rn1�re�r : (19.2.34)

Set

ı WD Amax.e�r ;e�1=.r�1/r /n�1; (19.2.35)

where A > 0 will be chosen later. Suppose that for all k < n

�

0

@k�1
k
_

jD1
Xj ; k

�1
k
_

jD1
Yj

1

A ;� A.r/.e�rk1�r C �k�1/; (19.2.36)

whereevr D e�r .X1; Y /, � D �.X1; Y / D max.	;e�1;e�
1=.r�1/
r / [see (19.2.11)]. Here

A.r/ is an absolute constant to be determined later. For k D 1 the inequality in
(19.2.36) holds with A.r/ � 1. For k D 2

�

0

@2�1
2
_

jD1
Xj ; 2

�1
2
_

jD1
Yj

1

A � 2�.X1; Y2/;

which means (19.2.36) is valid with A.r/ � 4 _ 2r .
Let us estimate I1 in (19.2.32). By (19.2.22), (19.2.35), and (19.2.36),

I1 � A.r/.e�r.n � 1/1�r C �.n � 1/�1/e�1.n�1X1; n�1Y1/
1

Ae�1n�1

�
�

3

2

�.r�1/_1
A.r/

A
.e�rn

1�r C �n�1/:

Similarly, we estimate I2:

I2 D
mC1
X

jD2
�

 

.n � j /�1
n�j
_

iD1
Xi ; .n � j /�1

n�j
_

iD1
Yi

!

�

��

j � 1
n
C ı

�

Y _ eXj ;

�

j � 1
n
C ı

�

Y _ eY j
�

�
mC1
X

jD2
A.r/.e�r.n � j /1�r C �.n � j /�1/ e�r .

eXj ;eY j /
�

j � 1
n
C ı

�r
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�
mC1
X

jD2
A.r/.e�r .n �m � 1/1�r C �.n �m � 1/�1/ n�r

e�r .X1; Y /

n�r .j � 1C ın/r

� A.r/.4r�1e�rn1�r C 4�n�1/
1
X

jD2

�r

.j � 1C A�1=.r�1/r /r

� 4.r�1/_1 1

r � 1
A.r/

Ar�1
.e�rn

1�r C �n�1/:

Now we can use the preceding estimates for I1 and I2 and combine them with
(19.2.33)–(19.2.35) and (19.2.32) to get

�

0

@

n
_

jD1
eXj ; Y

1

A �
 

c1

�

3

2

�
er

.1=A/C c14er 1

r � 1
1

Ar�1

!

A.r/e�rn
1�r C �n�2/

Cc2.4r C 2r/e�rn1�r C c2A�n�1; er WD max.1; r � 1/:

Now choose A D max

 

4c1.3=2/
er ;

�

4c14
er

1

r � 1
�1=.r�1/!

. Then

�

0

@

n
_

jD1
eXj ; Y

1

A � 1

2
A.r/.e�rn

1�r C �n�1/

C.c1.4r C 2r/ _ c2A/.e�rn1�r C �n�2/:

Finally, letting 1
2
A.r/ WD c1.4r C 2r/ _ c2A completes the proof. ut

(b) By (a) and Lemma 19.2.6,

�

0

@

n
_

jD1
eXj ; Y

1

A � A.r/ŒKr	rn
1�r Cmax.	;K1	r ;K

1=.r�1/
r 	r /n

�1�

� .1 _K1 _Kr _K1=.r�1/
r /A.r/Œ	rn

1�r C 
 n�1�: ut

Further, we will prove that the order O.n1�r / of the rate of convergence in
(19.2.9) and (19.2.12) is precise for any r > 1 under the conditions e�r < 1
or �r < 1. Moreover, we will investigate more general tail conditions than
	r D �r .X1; Y / <1.

Let  W Œ0;1/ ! Œ0;1/ denote a continuous and increasing function. Let us
consider the metrics � and � defined by
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� .X
0; X 00/ WD sup

x2Rm
C

 .M.x/jFX 0.x/ � FX 00.x/j; X 0; X 00 2 Xm;

and5

� .X
0; X 00/ WD sup

x2Rm
C

 .M.x//j logFX 0.x/� logFX 00.x/j;

and recall that M.x/ WD minfx.i/ W i D 1; : : : ; mg, x 2 R
mC.

We will investigate the rate of convergence in fMn

dH) Y , assuming that either
� .X1; Y / < 1 or � .X1; Y / < 1. Obviously, � .X1; Y / < 1 implies that for

each i , � .X
.i/
1 ; Y

.i// WD supf .x/jFi .x/� �1.x/j W x 2 RCg � � .X1; Y / <1,

where Fi is the DF of X.i/
1 . We also define

e	 WD maxf� .X.i/
1 ; Y

.i// W i D 1; : : : ; mg;

and whenever � .X
.i/
1 ; Y

.i// WD supf .x/j logFi .x/ � log�1.x/j W x 2
RCg < 1, we also define

e� WD maxf� .X
.i/
1 ; Y

.i// W i D 1; : : : ; kg:

In the proofs of the results below, we will often use the following inequalities. Since
H.x/ WD Pr.Y � x/ � Hi.x

.i// WD Pr.Y .i/ � x.i// D �1.x.i// for each i , we have

H.x/ � �1.M.x//: (19.2.37)

For a; b > 0 we have

nja � bjmin.an�1; bn�1/ � jan � bnj � nja � bjmax.an�1; bn�1/ (19.2.38)

and

min.a; b/
ˇ

ˇ

ˇlog
a

b

ˇ

ˇ

ˇ � ja � bj � max.a; b/
ˇ

ˇ

ˇlog
a

b

ˇ

ˇ

ˇ : (19.2.39)

Theorem 19.2.2. Assume that

g.a/ WD sup
x�0

�1.xa/

 .x/

is finite for all a � 0. For n � 2 define R.n/ WD ng.1=.n� 1//.
(i) If 	 WD � .X1; Y / < 1 and e� < 1, then for all n � 2, �.fMn; Y / �

R.n/
 , where 
 WD max.	 expe� ; 1C expe� /.

5See the definition of �r provided in (19.2.4).
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(ii) If 	 <1, then

lim sup
n!1

1

R.n/
�.fMn; Y / � 
;

where 
 WD max.	 expe	 ; 1C expe	 /.
(iii) If 	 <1 and if there exists a sequence ın of positive numbers such that

lim
n!1

n

 .ın/
D lim

n!1
1

R.n/
�1

�

ın

n � 1
�

D 0;

then in (ii) 
 may be replaced by 	 .

Remark 19.2.2. (a) In Theorem 19.2.2, we normalize the partial maximaMn by n.
In Theorem 19.2.4 below, we prove a result in which other normalizations are
allowed.

(b) If Y is not simple max-stable but has marginals Hi D �˛i .x/ (˛i > 0), then,
by means of simple monotone transformations, Theorem 19.2.2 can be used to
estimate

�..M .1/
n n�1=˛1 ; : : : ;M .k/

n n�1=˛k /; Y /; where M.i/
n WD

n
_

jD1
X
.i/
j :

Proof of Theorem 19.2.2. Using (19.2.38) and H.x/ D Hn.nx/ we have

I WD jF n.nx/ �H.x/j � njF.nx/ �H.nx/jmax.F n�1.nx/;Hn�1.nx//;

where F is the DF of Xi . Let us consider I1 WD njF.nx/ � H.nx/jHn�1.nx//.
Using (19.2.37) we have

Hn�1.nx/ � �1
�

nM.x/

n � 1
�

:

Hence, I1 � ng.1=.n � 1// .nM.x//jF.nx/ �H.nx/j, and we obtain

I1 � R.n/	 : (19.2.40)

Next, consider I2 WD njF.nx/�H.nx/jF n�1.nx/, and let ın denote a sequence of
positive numbers to be determined later. Observe that for each i and u � ın we have

j logFi .u/� log�1.u/j � 1

 .ın/
sup
u�ın

 .u/

ˇ

ˇ

ˇ

ˇ

log
Fi .u/

�1.u/

ˇ

ˇ

ˇ

ˇ

DW 1

 .ın/
�.i/n ;

so that

Fi .u/ � �1.u/ exp
1

 .ın/
�.i/n :
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If nxi � ın, then for each i we obtain

F n�1.nx/ � F n�1
i .nxi / � �n�1

1 .nxi / exp
n � 1
 .ın/

�.i/n : (19.2.41)

This implies that

I2 � R.n/ .nxi /jF.nx/ �H.nx/j exp
n � 1
 .ın/

�.i/n :

Choosing i such that xi D M.x/, it follows that

I2 � R.n/	 exp
n � 1
 .ın/

�.i/n : (19.2.42)

On the other hand, if nxi � ın for some index i , we have I � F n
i .ın/ C �n1 .ın/.

Using (19.2.41) with nxi D ın, it follows that

I � �n�1
1 .ın/

�

1C exp
n � 1
 .ın/

�.i/n

�

: (19.2.43)

Using �n�1
1 .ın/ D �1

�

ın

n � 1
�

� �.ın/g.1=.n � 1// we obtain

I �  .ın/g.1=.n� 1//
�

1C exp
n � 1
 .ın/

�.i/n

�

: (19.2.44)

Proof of (i). Choose ın such that n � 1 �  .ın/ � n; since �.i/n � e� ,
inequalities (19.2.40), (19.2.42), and (19.2.44) yield

I �
�

R.n/	 expe� if nM.x/ � ın;
R.n/.1C expe� / if nM.x/ < ın:

This proves (i).

Proof of (ii). Again choose ın such that n � 1 �  .ın/ � n. Using (19.2.39) we
obtain

lim sup
n!1

�.i/n � 	 .X.i/
1 ; Y

.i// �e	 : (19.2.45)

Combining (19.2.40), (19.2.42), (19.2.44), and (19.2.45) we obtain the proof
of (ii).

Proof of (iii). Using the sequence ın satisfying the assumption of the theorem, it
follows from (19.2.40), (19.2.42), (19.2.43), and (19.2.45) that
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lim sup
n!1

1

R.n/
	.fMn; Y / � 	 ;

which completes the proof. ut
Suppose now that  is regularly varying with index r � 1,6 i.e., �.x/ � xrL.x/

as x !1 and L.x/ varying slowly,  2 RVr . We may assume that  0 is positive
and  0 2 RVr�1. In this case, g.a/ D �1.xa/= .x/, where x is a solution of
the equation x2 0.x/= .x/ D 1=a. It follows that xa ! 1=r as a ! 0 and,
hence, that g.a/ � K.r/1= .1=a/ (a ! 0), where K.r/ D .r=e/r . In particular,
if  .t/ D t r , then � D �r [see (19.2.4)] and both Theorem 19.2.1 (for 1 <
r � 2) and Theorem 19.2.2 (for any r > 1) state that �r .X1; Y / < 1 implies
�.fMn; Y / D O.n1�r /. Moreover, in Theorem 19.2.1 we obtain an estimate for
�.fMn; Y / [see (19.2.12)], which is uniform on n D 1; 2; : : : . The next theorem
shows that the condition �r .X1; Y / <1 is necessary for having rate O.n1�r / in the
uniform convergence �.fMn; Y /! 0 as n!1.

Theorem 19.2.3. Assume that  2 RVr , r � 1, and that lim
x!1 .x/=x D 1. Let

Y denote an RV with a simple max-stable DF H , and let X1;X2; : : : be i.i.d. with
common DF F . Then

(i) � .X1; Y / <1 holds if and only if lim sup
n!1

. .n/=n/�.fMn; Y / <1
and

(ii) If r > 1, then lim sup
M.x/!1

 .M.x//jF.x/ �H.x/j D 0 if and only if

lim
n!1

 .n/

n
�.fMn; Y / D 0:

Proof. (i) If � < 1, then the result is a consequence of Theorem 19.2.2. To
prove the “if” part, use inequality (19.2.38) to obtain

njF.x/ �H.x/jmin.F n�1.x/;Hn�1.x// � �.fMn; Y /:

Now, if M.x/ ! 1, then choose n such that n � M.x/ < n C 1; then
F n�1.x/ � F n�1.ne/ and Hn�1.x/ � Hn�1.ne/, and it follows that

 .M.x//jF.x/ �H.x/j �  .nC 1/
 .n/

. .n/=n/�.fMn; Y /

min.F n�1.ne;Hn�1.ne//
:

Since  .nC 1/ �  .n/ (n!1), it follows that

lim sup
M.x/!1

 .M.x//jF.x/ �H.x/j <1

and, consequently, that � .X1; Y / <1.

6See Resnick (1987a).
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(ii) If

lim
n!1

 .n/

n
�.fMn; Y / D 0;

then it follows as in the proof of (i) that lim supM.x/!1 .M.x//jF.x/ �
H.x/j D 0. To prove the “only if” part, choose A such that  .M.x//jF.x/ �
H.x/j � ", M.x/ � A.

Now we proceed as in the proof of Theorem 19.2.2: if M.nx/ � ın > A,
then we have

I1 � "� R.n/ I2 � "� R.n/ exp
n � 1
 .ın/

�.i/n :

If M.nx/ � ın, (19.2.43) remains valid. If we choose ın such that  .ın/ D ns
with 1 < s < r , then it follows that

lim
n!1

 .n/

n
�1

�

ın

n � 1
�

D lim
n!1

n

 .ın/
D 0

and, hence, that

lim sup
n!1

1

R.n/
�.fMn; Y / � "� :

Now let " # 0 to obtain the proof of (ii). ut
Remark 19.2.3. (a) In a similar way one can prove that 	 <1 holds if and only

if for each marginal

lim sup
n!1

 .n/

n
�

 

M
.i/
n

n
; Y .i/

!

<1:

(b) If  .0/ D 0, if  is 0-regularly varying ( 2 ORV , i.e., for any x >

0, lim supt!1  .xt/= .t/ < 1), and if lim supx!1. .x/=x/ D 1.
Theorem 19.2.3 (i) remains valid. To prove this assertion, we only prove that
lim supa!1  .a/g.1=a/ <1. Indeed, since  is increasing, we have  .a/ �
 .x/ if a � x, and since  2 ORV , we have  .a/ < A.a=x/˛ .x/ if x �
a � x0 for some positive numbers x0, A, and ˛. Using supp�0 p˛�1.1=p/ <1
we obtain

lim sup
a!1

 .a/g.1=a/ D lim sup
a!1

sup
x�0

 .a/�1.x=a/

 .x/
<1:

Remark 19.2.4. Up to now, we have normalized all partial maxima by n�1 and have
always assumed that the limit DF H of Y in (19.2.1) is simple max-stable. We can
remove these restrictions as follows. For simplicity we analyze the situation in R.
Assume that H.x/ is a simple max-stable and that there exists an increasing and
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continuous function r W Œ0;1/ ! Œ0;1/ with an inverse s such that for the DF F
of X we have

F.r.x// D H.x/ (19.2.46)

or, equivalently,

F.x/ D H.s.x//: (19.2.47)

For a sequence an of positive numbers to be determined later, it follows from
(19.2.47) that

Pr.Mn � anx/ D F n.anx/ D Hn.s.a; x// D H
�

s.anx/

n

�

:

For a > 0 we obtain

jF n.anx/ �H.x˛/j D
ˇ

ˇ

ˇ

ˇ

�1

�

s.anx/

n

�

� �1.x˛/
ˇ

ˇ

ˇ

ˇ

: (19.2.48)

If s 2 RV˛ (or, equivalently, r 2 RV1=˛) and if we choose an D r.n/, then it follows
that (19.2.1) holds, i.e.,

lim
n!1F n.anx/ D H.x˛/: (19.2.49)

If s is regularly varying, then we expect to obtain a rate of convergence that results
in (19.2.49). We quote the following result from the theory of regular variation
functions.

Lemma 19.2.8 (Omey and Rachev 1991). Suppose h 2 RV� (� > 0) and that h
is bounded on bounded intervals of Œ0;1/. Suppose 0 � p 2 ORV and such that

A1.x=y/
 � p.x/

p.y/
� A2.x=y/� ; for each x � y � x0

for some constants Ai > 0, x0 2 R, � < � and  2 R. If for each x > 0

lim sup
t!1

h.t/

t�p.t/

ˇ

ˇ

ˇ

ˇ

h.tx/

h.t/
� x�

ˇ

ˇ

ˇ

ˇ

<1; (19.2.50)

then

lim sup
t!1

h.t/

t�p.t/
sup
x�0

ˇ

ˇ

ˇ

ˇ

�1

�

h.tx/

h.t/

�

� �1.x�/
ˇ

ˇ

ˇ

ˇ

<1: (19.2.51)

If s satisfies the hypothesis of Lemma 19.2.8 (with an auxiliary function p and
� D ˛), then take h.t/ D s.t/ D n, t D an, in (19.2.51) to obtain

lim sup
n!1

n

a˛np.an/
sup
x�1

ˇ

ˇ

ˇ

ˇ

�1

�

s.anx/

n

�

� �1.x˛/
ˇ

ˇ

ˇ

ˇ

<1:

Combining these results with (19.2.48), we obtain the following theorem.
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Theorem 19.2.4. Suppose H.x/ D �1.x/, and assume there exists an increasing
and continuous function r W Œ0;1/! Œ0;1/ with an inverse s such that F.r.x// D
H.x/.

(a) If s 2 RV˛ (˛ > 0), then limn!1 PrfMn � anxg D H.x˛/, where an D r.n/.
(b) If s 2 RV˛ with a remainder term as in (19.2.50), then

lim sup
n!1

n

a˛np.an/
�.Mn=an; Y˛/ <1;

where Y˛ has DF H.x˛/.

19.3 Ideal Metrics for the Problem of Rate of Convergence
to Max-Stable Processes

In this section, we extend the results on the rate of convergence for maxima
of random vectors developed in Sect. 19.2 by investigating maxima of random
processes. In the new setup, we need another class of ideal metrics simply because
the weighted Kolmogorov metrics �r and � 

7 cannot be extended to measure the
distance between processes (see Open problem 4.4.1 in Chap. 4).

Let B D .Lr ŒT �; k � kr /, 1 � r � 1, be the separable Banach space of all
measurable functions x W T ! R (T is a Borel subset of R) with finite norm kxkr ,
where

kxkr D
�Z

T

jx.t/jrdt
� 1=r

; 1 � r <1; (19.3.1)

and if r D 1, L1.T � is assumed to be the space of all continuous functions on a
compact subset T with the norm

kxk1 D sup
t2T
jx.t/j: (19.3.2)

Suppose X D fXn; n � 1g is a sequence of (dependent) random variables taking
values in B. Let C be the class of all sequences C D fcj .n/I j; n D 1; 2; : : : g
satisfying the conditions

c1.n/ > 0; cj .n/ > 0; j D 1; 2; : : : ;
1
X

jD1
cj .n/ D 1: (19.3.3)

For any X and C define the normalized maxima eXn WD W1
jD1 cj .n/Xj , where

W WD max and X
0
n.t/ WD

W1
jD1 cj .n/Xj .t/, t 2 T .

7See the definition in (19.2.4) and Theorems 19.2.1 and 19.2.2.
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In the previous section we considered a special case of the sequence cj .n/,
namely, cj .n/ D 1=n for j � n and cj .n/ D 0 for j > n, and that Xn were i.i.d.
random vectors. Here we are interested in the limit behavior of Xn in the general
setting determined previously. To this end, we explore an approximation (denoted
by Y n) of Xn with a known limit behavior. More precisely, let Y D fYn; n � 1g be
a sequence of i.i.d. RVs, and define Y n DW1

jD1 cj .n/Yj . Assuming that

Y n
dD Y1; for any C 2 C; (19.3.4)

we are interested in estimates of the deviation between Xn and Y n. The RV Y1
satisfying (19.3.4) is called a simple max-stable process.

Example 19.3.1 (de Haan 1984). Consider a Poisson point process on RC � Œ0; 1�
with intensity measure .dx=x2/dy. With probability 1 there are denumerably many
points in the point process. Let f�k; �kg, k D 1; 2; : : : , be an enumeration of the
points in the process. Consider a family of nonnegative functions fft .�/; t 2 T g
defined on Œ0; 1�. Suppose for fixed t 2 T the function ft .�/ is measurable and
R 1

0
ft .v/dv <1. We claim that the family of RVs Y.t/ WD supk�1 ft .�k/�k form a

simple max-stable process. Clearly, it is sufficient to show that for any C 2 C and
any 0 < t1 < � � � < tk 2 T the joint distribution of .Y.t1/; : : : ; Y.tk// satisfies the
equality

1
Y

jD1
Prfcj Y.t1/ � y1; : : : ; cj Y.tk/ � ykg

D PrfY.t1/ � y1; : : : ; Y.tk/ < ykg; where cj D cj .n/:
Now

1
Y

jD1
Prfcj Y.t1/ � y1; : : : ; cj Y.tk/ � ykg

D
1
Y

jD1
Prffti .�m/�m � yi=cj ; i D 1; : : : ; kI m D 1; 2; : : : g

D
1
Y

jD1
Prfthere are no points of the point process above the graph of

the function g.v/ D .1=cj /min
i<k

yi=fti .v/; v 2 Œ0; 1�g:

As a consequence, we can write

1
Y

jD1
Prfcj Y.t1/ � y1; : : : ; cj Y.tk/ � ykg

D
1
Y

jD1
exp

�

�
Z 1

0

�Z

fx>g.v/g
x�2dx

	

dv

�
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D
1
Y

jD1
exp

�

�
Z 1

0

�

cj max
i�k fti .v/=yi

�

dv

�

D exp

0

@

1
X

jD1
cj

�

�
Z 1

0

max
i�k

fti .v/=yidv

�

1

A

D exp

�

�
Z 1

0

�

max
i�k fti .v/=yi

�

dv

�

D PrfY.t1/ � y1; : : : ; Y.tk/ � ykg:

In this section, we seek the weakest conditions providing an estimate of the
deviation �.Xn; Y n/ with respect to a given compound or simple p. metric �. Such
a metric will be defined on the space X.B/ of all RVs X W .�;A;Pr/! .B;B.B/,
where the probability space .�;A;Pr/ is assumed to be nonatomic.8

Our method is based on exploring compound max-ideal metrics of order r > 0,
i.e., compound p. metrics �r satisfying9

�r.c.X1 _ Y /; c.X2 _ Y // � cr�r.X1;X2/; X1;X2; Y 2 X.B/; c > 0:

(19.3.5)

In particular, if the sequence X consists of i.i.d. RVs, then we will derive
estimates of the rate of convergence of Xn to Yi in terms of the minimal metric
b�r defined by10

b�r.X; Y / WD b�r.PrX;PrY /

WD inff�r.X 0; Y 0/ W X 0; Y 0 2 X.B/; X 0 dD X; Y 0 dD Y g: (19.3.6)

By virtue of �r -ideality, b�r is a simple max-ideal metric of order r > 0, i.e.,
(19.3.5) holds for Y independent of Xi .

We start with estimates of the deviation between Xn and Y n in terms of the Lp-
probability compound metric.11 For any r 2 Œ1;1� define

Lp;r .X; Y / WD ŒEkX � Y kpr �1=p; p � 1; (19.3.7)

L1;r .X; Y / WD ess sup kX � Y kr : (19.3.8)

Let

`p;r WD bLp;r : (19.3.9)

8See Sect. 2.7 and Remark 2.7.2 in Chap. 2.
9See Definition 19.2.1.
10See Definition 3.3.2 in Chap. 3.
11See Example 3.4.1 in Chap. 3 with d.x; y/ D kx � ykr .
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Let us recall some of the metric and topological properties of `p;r and
.P.B/; `p;r /. The duality theorem for the minimal metric w.r.t. Lp;r implies12

`pp;r .X; Y / D supfEf .X/C Eg.Y / W f W B! R; g W B! R;

kf k1 WD supfjf .x/j W x 2 Bg <1; kgk1 <1

Lip.f / WD sup
x¤y
jf .x/ � f .y/j
kx � ykr <1;Lip.g/ <1; f .x/C g.x/ � kx � ykr

for any x; y 2 Bg; for any p 2 Œ1;1/: (19.3.10)

Moreover, by Corollary 6.2.1 in Chap. 6, representation (19.3.10) can be refined
in the special case of p D 1:

`1;r .X; V / D supfjEf .X/� Ef .Y /j W f W B! R; kf k1 � 1;Lip.f / � 1g:

Corollary 7.5.2 and (7.5.15) in Chap. 7 give the dual form for `1;r ,

`1;r .X; Y / D inff" > 0 W …".X; Y / D 0g; (19.3.11)

where …e.X; Y / WD supfPrfX 2 Ag � PrfY 2 A"g W A 2 B.B/g and A" is the
"-neighborhood of A w.r.t. the norm k � kr .

If B D R, then `p D `p;r has the explicit representation

`p.X; Y / D
�Z 1

0

jF�1
X .x/ � F �1

Y .x/jpdx

	1=p

; 1 � p <1; (19.3.12)

`1.X; Y / D supfjF�1
X .x/ � F�1

Y .x/j W x 2 Œ0; 1�g; (19.3.13)

where F �1
X is the generalized inverse of the DF FX of X .13

As far as the `p-convergence in P.B/ is concerned, if � is the Prokhorov metric

�.X; Y / WD inff" > 0 W …".X; Y / < "g (19.3.14)

and !X.N / WD fEkXkpr I fkXkr > N gg1=p, N > 0, X 2 X.B/, then for any
N > 0, X; Y 2 X.B/

`p;r .X; Y / � 	.X; Y /C 2N	1=p.X; Y /C !X.N /C !Y .N /; (19.3.15)

`p;r .X; Y / � 	.X; Y /.pC1/=p; `1;r .X; Y / � 	.X; Y /; (19.3.16)

12See Corollary 5.3.2 in Chap. 5 and (3.3.12) in Chap. 3.
13See Corollary 7.4.2 and (7.5.15) in Chap. 7.
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and

!X.N / � 3.`p;r .X; Y /C !Y .N //: (19.3.17)

In particular, if EkXnkp C EkXkp <1, n D 1; 2; : : : , then14

`p;r .Xn;X/! 0 ” �.Xn;X/! 0 and lim
N!1 sup

n

!Xn.N / D 0: (19.3.18)

Define the sample maxima with normalizing constants cj .n/ by

Xn D
1
_

jD1
cj .n/Xj ; Y n D

1
_

jD1
cj .n/Yj : (19.3.19)

In the next theorem, we obtain estimates of the closeness between Xn and Y n in
terms of the metric Lp;r . In particular, if X and Y have i.i.d. components and Y1 is a
simple max-stable process [see (19.3.4)], then we obtain the rate of convergence of
Xn to Y1 in terms of the minimal metric `p;r . With this aim in mind, we need some
conditions on the sequences X, Y, and C [see (19.3.3)].

Condition 1. Let

ap.n/ WD
2

4

1
X

jD1
c
p
j .n/

3

5

p

; for p 2 .0;1/; p WD min.1; 1=p/; (19.3.20)

and

a1.n/ WD sup
j�1

cj .n/: (19.3.21)

Assume that

a˛.n/ <1 for some fixed ˛ 2 .0; 1/ and all n � 1;
a1.n/ D 1; 8n > 1; ap.n/! 0 as n!1; 8p > 1:

The main examples of C satisfying Condition 1 are the Cesàro and Abel
summation schemes.

Cesàro sum:

cj .n/ D
�

1=n; j D 1; 2; : : : ; n;
0; j D nC 1; nC 2; : : : ; (19.3.22)

ap.n/ D
�

n1�p for p 2 .0; 1�;
n�1C1=p for p 2 Œ1;1�: (19.3.23)

14See Lemma 8.3.1 and Corollary 8.3.1 in Chap. 8.



19.3 Ideal Metrics for the Problem of Rate of Convergence to Max-Stable Processes 443

Abel sum:

cj .n/ D .exp.1=n/� 1/ exp.�j=n/; j D 1; 2; : : : ; n D 1; 2; : : : ; (19.3.24)

ap.n/ D .1 � exp.�1=n//p=.1� exp.�p=n// � .1=p/n1�p
as n!1 for any p 2 .0; 1/;

ap.n/ D .1 � exp.�1=n/.1� exp.�p=n//�1=p � p�1=pn�1C1=p

as n!1 for any p 2 Œ1;1/;
ap.n/ D 1 � exp.�1=n/ � 1=n as n!1 for p D 1: (19.3.25)

The following condition concerns the sequences X and Y.

Condition 2. Let ˛ 2 .0; 1/ be such that a˛.n/ <1 [see (19.3.22)], and assume
that

sup
j�1

EjXj.t/j˛ <1 for any t 2 T; (19.3.26)

sup
j�1

EjYj .t/j˛ <1 for any t 2 T: (19.3.27)

Condition 2 is quite natural. For example, if Yj , j � 1, are independent copies
of a max-stable process,15 then all one-dimensional marginal DFs are of the form
exp.�ˇ.t/=x/, x > 0 (for some ˇ.t/ � 0), and hence (19.3.27) holds. In the
simplest m-dimensional case, T D ftkgmkD1 and Xj D fXj .tk/gmkD1 j > 1 are
i.i.d. RVs and as Yj D fYj .tk/gmkD1, j � 1, are i.i.d. RVs with a simple max-stable
distribution (Sect. 19.2). One can check that condition (19.3.26) is necessary to have
a rate O.n1�r / (r > 1) of the uniform convergence of the DF of .1=n/

Wn
jD1 Xj to

the simple max-stable distribution FY1 , see Theorem 19.2.3.

Theorem 19.3.1. (a) Let X, Y, and C satisfy Conditions 1 and 2. Let 1 < p � r �
1 and

Lp;r .Xj ; Yj / � Lp;r .X1; Y1/ <1; 8j D 1; 2; : : : (19.3.28)

Then

Lp;r .Xn; Y n/ � ap.n/Lp;r .X1; Y1/! 0 as n!1: (19.3.29)

(b) If X and Y have i.i.d. components, 1 < p � t � 1, and `p;r .X1; Y1/ < 1,
then

`p;r .Xn; Y n/ � ap.n/`p;r .X1; Y1/! 0 as n!1; (19.3.30)

where `p;r is determined by (19.3.10).

15See, for example, Resnick (1987a).
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In particular, if Y satisfies the max-stable property

Y n
dD Y1; (19.3.31)

then

`p;r .Xn; Y1/ � ap.n/`p;r .X1; Y1/! 0 as n!1: (19.3.32)

Proof. (a) Let 1 < p < r <1. By Conditions 1 and 2 and Chebyshev’s inequality,
we have

PrfXn.t/ > �g � ��˛a˛.n/ sup
j�1

EXj .t/
˛ ! 0 as �!1;

and hence

PrfXn.t/C Y n.t/ <1g D 1; for any t 2 T:
For any ! 2 � such that Xn.t/.!/C Y n.t/.!/ <1 we have

Xn.t/.!/ D
m
_

jD1
cj .n/Xj .t/.!/C "!.m/; lim

m!1 "!.m/ D 0;

Y n.t/ � .!/ D
m
_

jD1
cj .n/Yj .t/.!/C ı!.m/; lim

m!1 ı!.m/ D 0;

and hence

jXn.t/.!/ � Y n.t/.!/j

�
m
_

jD1
jcj .n/Xj .t/.!/ � cj .n/Yj .t/.!/j C j"!.m/j C jı!.m/j:

So, with probability 1,

jXn.t/ � Y n.t/j �
1
_

jD1
cj .n/jXj .t/ � Yj .t/j: (19.3.33)

Using the Minkowski inequality and the fact that p=r � 1 we obtain

Lp;r .Xn; Y n/ D
(

E

ˇ

ˇ

ˇ

ˇ

Z

T

jXn.t/ � Y n.t/jrdt
	p=r

) 1=p
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�

8

ˆ

<

ˆ

:

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

T

2

4

1
_

jD1
cj .n/jXj .t/ � Yj .t/j

3

5

r

dt

3

5

p=r
9

>

=

>

;

1=p

�

8

ˆ

<

ˆ

:

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

T

j
1
X

jD1
crj .n/jXj .t/ � Yj .t/jrdt

3

5

p=r
9

>

=

>

;

1=p

�
8

<

:

E

1
X

jD1
c
p
j .n/

�Z

T

jXj .t/ � Yj .t/jrdt
	p=r

9

=

;

1=p

� ap.n/Lp;r .X1; Y1/:
If p < r D 1, then

Lp;1.Xn; Y n/ �
8

<

:

E

2

4sup
t2T

1
_

jD1
cj .n/jXj .t/ � Yj .t/j

3

5

p9

=

;

1=p

�
(

E

1
X

iD1
c
p
j .n/ sup

t2T
jXj .t/ � Yj .t/j

) 1=p

�
1
X

iD1
cj .n/LP;1.X1; Y1/:

The statement for p D r D1 can be proved in an analogous way.
(b) By the definition of the minimal metric,16 we have

bLp;r .Xn; Y n/ D inffLp;r .eX;eY / W eX dD Xn;eY
dD Y ng

� inf

(

2

4

1
X

jD1

c
p
j .n/Lpp;r .eXj ;eY j /

3

5

1=p

W feXj ; j � 1g are i.i.d.;

feY j ; j � 1g are i.i.d.; .eXj ;eY j /
dD .eX1;eY 1/;eX1

dD X1;eY 1 dD Y1
)

� inf

8

ˆ

<

ˆ

:

2

4

1
X

jD1

c
p
j .n/Lpp;r .eX1;eY 1/

3

5

1=p

W eX1
dD X1;eY 1 dD Y1

9

>

=

>

;

D ap.n/bLp;r .X1; Y1/:

16See (19.3.6) and Sect. 7.2 in Chap. 7.
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By (19.3.9) and (19.3.10), we obtain (19.3.30).
Finally, (19.3.32) follows immediately from (19.3.30) and (19.3.31). ut

Corollary 19.3.1. Let fXj ; j � 1g and fYj ; j � 1g be random sequences with
i.i.d. real-valued components and FY1.x/ D expf�1=xg, x � 0. Then

`p

0

@

1
_

jD1
cj .n/Xj ; Y1

1

A � ap.n/`p.X1; Y1/; p 2 Œ1;1�; (19.3.34)

where the metric `p is given by (19.3.12) and (19.3.13). In particular, if, for some
1 < p � 1, `p.X1; Y1/ <1, then `p.

W1
jD1 cj .n/Xj ; Y1/! 0 as n!1.

Note that `p.X1; Y1/ < 1 for 1 < p < 1 may be viewed as a tail condition
similar to the condition �r .X1; Y1/ <1 (r > 1) in Theorem 19.2.1 (b).

Open Problem 19.3.1. It is not difficult to check that if EjXnjp C EjX jp < 1,
then, as n!1,

`p.Xn;X/ D
�Z 1

0

jF�1
Xn
.t/ � F�1

X .t/jpdt

� 1=p

! 0; (19.3.35)

provided that for some r > p

�r .Xn;X/ WD sup
x2R
jxjr jFXn.x/ � FX.x/j ! 0: (19.3.36)

Since on the right-hand side of (19.3.34) the conditions `p.X1; Y1/ < 1 and
EjY1jp D 1 imply EjX1jp D 1, it is a matter of interest to find necessary
and sufficient conditions for �r .Xn;X/ ! 0 (r > p), resp. `p.Xn;X/ ! 0, in
the case of Xn and X having infinite pth absolute moments, for example, under the
assumption `p.Xn; Y /C`p.X; Y / <1, p > 1, where Y is a simple max-stable RV.

Let 	 be the Prokhorov metric (19.3.14) in the space X.B; k � kr /. Using the
relationship between 	 and `p;r [see (19.3.16)], we get the following rate of
convergence of X.n/ to Y , under the assumptions of Theorem 19.3.1 (b).

Corollary 19.3.2. Suppose the assumptions of Theorem 19.3.1 (b) are valid and
that (19.3.31) holds. Then,

	.X.n/; Y1/ � ap.n/p=.1Cp/`p;r .X1; Y1/p=.1Cp/: (19.3.37)

The next theorem is devoted to a similar estimate of the closeness between Xn

and Yn, but now in terms of the compoundQ-difference pseudomoment


p;r .X; Y / D EkQpX �QpY k; p > 0; (19.3.38)
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where the homeomorphismQp on B is defined by17

.Qpx/.t/ D jx.t/jp sgnx.t/: (19.3.39)

Recall that the minimal metric �p;r D e
p;r admits the following form of Qp-
difference pseudomoment:18

�p;r .X; Y / D supfjEf .X/�Ef .Y /j W f W B! R; kf k1 <1;
jf .x/ � f .y/j � kQpx �Qpykr ; 8x; y 2 Bg; (19.3.40)

and if B D R, then �p;r DW �p is the pth difference pseudomoment

�p.X; Y / D p
Z 1

�1
jxjp�1jFX.x/ � FY .x/jdx

D
Z 1

�1
jFQpY .x/ � FQpY .x/jdx: (19.3.41)

Recall also that19

�p;r .X; Y / D `1;p.QpX;QpY / Db
p;r .X; Y /; 8X; Y 2 X.B/;

and thus, by (19.3.18), if EkXnkpr C EkXkpr <1, n D 1; 2; : : : , then

�p;r .Xn;X/! 0 ” 	.Xn;X/! 0 and EkXnkpr ! EkXkpr :

In the next theorem we relax the restriction 1 < p � r � 1 imposed in
Theorem 19.3.1.

Theorem 19.3.2. (a) Let Conditions 1 and 2 hold, p > 0, and 1=p < r � 1.
Assume that


p;r .Xj ; Yj / � 
p;r .X1; Y1/ <1; j D 1; 2; : : : : (19.3.42)

Then


p;r .Xn; Y n/ � ˛p.n/
p;r .X1; Y1/! 0 as n!1; (19.3.43)

where ˛p.n/ DP1
jD1 c

p
j .n/, p WD pmin.1; r/.

17See Example 4.4.3 and (4.4.41) in Chap. 4.
18See (4.4.42) and (4.4.43) in Chap. 4 and Remark 7.2.3 in Chap. 7.
19See Remark 7.2.3 in Chap. 7.
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(b) If X and Y consist of i.i.d. RVs, then �p;r .X1; Y1/ <1 implies

�p;r .Xn; Y n/ � ˛p.n/�p;r .X1; Y1/! 0 as n!1: (19.3.44)

Moreover, assuming that (19.3.31) holds, we have

�p;r .Xn; Y1/ � ˛p.n/�p;r .X1; Y1/! 0 as n!1: (19.3.45)

Proof. (a) By Conditions 1 and 2,

Pr

0

@

1
_

jD1
c
p
j .n/.QpXj /.t/C

1
_

jD1
c
p
j .QpYj /.t/ <1

1

A D 1:

Hence, as in Theorem 19.3.1, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Qp

0

@

1
_

jD1
cj .n/Xj

1

A .t/ �Qp

0

@

1
_

jD1
cj .n/Yj

1

A .t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
_

jD1
c
p
j .n/.QpXj /.t/ �

1
_

jD1
c
p
j .n/.QpYj /.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
1
_

jD1
c
p
j .n/j.QpXj /.t/ � .QpYj /.t/j:

Next, denoteer D min.1; 1=r/ and then


p;r .Xn; Y n/ D E

2

4

Z

T

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Qp

0

@

1
_

jD1

cj .n/Xj

1

A .t/ �Qp

0

@

1
_

jD1

cj .n/Yj

1

A .t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

dt

3

5

er

� E
2

4

1
X

jD1

Z

T

c
pr
j .n/j.QpXj /.t/ � .QpYj /.t/jrdt

3

5

er

�
1
X

jD1

c
prer
j .n/
p;r .Xj ; Yj / � ˛p.n/
p;r .X1; Y1/:

(b) Passing to the minimal metrics, as in Theorem 19.3.1 (b), we obtain (19.3.44)
and (19.3.45). ut

The next corollary can also be proved directly using Lemma 19.2.3, noting that
�p is a max-ideal metric of order p.



19.3 Ideal Metrics for the Problem of Rate of Convergence to Max-Stable Processes 449

Corollary 19.3.3. Let X and Y consist of i.i.d. real-valued RVs and
FY1.x/ D expf�1=xg, x � 0. Then

�p.Xn; Y1/ � ˛p.n/�p.X1; Y1/; p > 1; (19.3.46)

where ˛p.n/ DP1
jD1 c

p
j .n/ and �p is given by (19.3.41).

The main assumption in Corollary 19.3.3 is `p;r .X1; Y1/ < 1. To relax it, we
will consider a more refined estimate than (19.3.37). For this purpose we introduce
the following metric:

�p;r .X; Y / WD
�

sup
t>0

tp PrfkX � Y kr > tg
	1=.1Cp/

; p > 0; r 2 Œ1;1�: (19.3.47)

Lemma 19.3.1. For any p > 0, �p;r is a compound probability metric in X.B/.

Proof. Let us check the triangle inequality. For any ˛ 2 Œ0; 1� and any f > 0

PrfkX � Y kr > tg � PrfkX �Zkr > ˛tg C PrfkZ � Y kr > .1 � ˛/tg;

and hence �
pC1
p;r .X; Y / � ˛�p�

pC1
p;r .X;Z/ C .1 � ˛/�p�

pC1
p;r .Z; Y /. Minimizing

the right-hand side of the last inequality over all ˛ 2 .0; 1/, we obtain �p;r .X; Y / �
�p;r .X;Z/C �p;r .Z; Y /. ut

We will also use the minimal metric w.r.t. �p;r

�p;r .X; Y / WD b�p;r .X; Y /; p > 0: (19.3.48)

The fact that �p;r is a metric follows from Theorem 3.3.1 in Chap. 3.

Lemma 19.3.2. (a) Let

e!X.N / WD
�

sup
t>N

tp PrfkXkr > tg
	1=.1Cp/

; N > 0; X 2 X.B/; (19.3.49)

and

�p;r .X; Y / WD
�

sup
t>0

tp…t .X; Y /

	1=.1Cp/
; (19.3.50)

where …t is defined as in (19.3.11). Then for any N > 0 and p > 0

	 � �p;r � �p;r �
(

`
p=.1Cp/
p;r if p � 1;
`
1=.1Cp/
p;r if p � 1;

(19.3.51)

where `p;r , p < 1, is determined by (3.3.12) and (3.4.18) with d.x; y/ D
kx � ykpr :
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bLp.X; Y / D `p;r .X; Y / WD supfjEf .X/�Ef .Y /j W f W B! R bounded;

jf .x/ � f .y/j � kx � ykpr ; 8x; y 2 Bg:
Moreover,

e!X.N / � 2p=.1Cp/Œ�p;r .X; Y /Ce!Y .N=2/� (19.3.52)

and

�pC1
p;r .X; Y / � maxŒ	p.X; Y /; .2N /p	.X; Y /; 2p.e!

p
X.N /Ce!pY .N //�:

(19.3.53)

(b) In particular, if limN!1.e!Xn.N / C e!X.N // D 0, n � 1, then the following
statements are equivalent:

�p;r .Xn;X/! 0; (19.3.54)

�p;r .Xn;X/! 0; (19.3.55)

	.Xn;X/! 0 and lim
N!1 sup

n�1
e!Xn.N / D 0: (19.3.56)

Proof. Suppose 	.X; Y / > " > 0. Then …".X; Y / > " [see (19.3.14)], and thus
�p;r .X; Y / � ", which gives �p;r � 	. Using �p;r � �p;r and passing to the
minimal metric �p;r D b�p;r we get �p;r � �p;r . For p � 1, by Chebyshev’s

inequality, �p;r � Lp=.1Cp/p;r , which implies �p;r � `p=.1Cp/p;r . The case of p 2 .0; 1/
is handled in the same way, which completes the proof of (19.3.51).

The proof of (19.3.53) and (b) is similar to that of Lemma 8.3.1 and Theo-
rem 8.3.1.20 ut
Open Problem 19.3.2. The equality �p;r D �p;r may fail in general. The problem

of getting dual representation for �p;r similar to that of bLp;r [see (19.3.9) and
(19.3.10)] is open.

The main purpose of the next theorem is to refine the estimate (19.3.37) in
the case of r D 1. By Lemma 19.3.2 (b) and (19.3.18), we know that `p;1 is
topologically stronger than �p;1 D b�p;1. Thus, in the next theorem we will show
that it is possible to replace `p;1 with �p;1 on the right-hand side of inequality
(19.3.37) with r D 1.

Theorem 19.3.3. (a) Let Conditions 1 and 2 hold and X and Y be sequences of
RVs taking values in X.L1/ such that

�p;1.Xj ; Yj / � �p;1.X1; Y1/ <1; 8j � 1: (19.3.57)

20For additional details, see Kakosyan et al. (1988, Lemmas 2.4.1 and 2.4.2 and Theorem 2.4.1).
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Then,

�p;1.Xn; Y n/ � ˛1=.1Cp/p �p;1.X1; Y1/! 0 as n!1; (19.3.58)

where ˛p WD app , p > 1.

(b) If X and Y have i.i.d. components and Y n
dD Y1, then

�p;1.Xn; Y1/ � ˛1=.1Cp/p .n/�p;1.X1; Y1/: (19.3.59)

In particular,

	.Xn; Y1/ � ˛1=.1Cp/p �p;1.X1; Y1/

� ˛1=.1Cp/p `p;1.X1; Y1/p=.1Cp/: (19.3.60)

Proof. (a) By (19.3.2) and (19.3.33),

�1Cp
p;1.Xn; Y n/ � sup

u>0
up Pr

8

<

:

sup
t2T

1
_

jD1
jcj .n/Xj .t/ � cj .n/Yj .t/j > u

9

=

;

�
1
X

jD1
sup
u>0

up Pr

�

sup
t2T
jXj .t/ � Yj .t/j > u=cj .n/

�

D
1
X

jD1
c
p
j .n/�

1Cp
p;1.Xj ; Yj / � ˛p.n/�p;11C p.X1; Y1/:

(b) Passing to the minimal metrics in (19.3.58), similar to part (b) of Theo-
rem 19.3.1, we get (19.3.59). Finally, using inequality (18.2.52) we obtain
(19.3.60). ut

Further, we will investigate the uniform rate of convergence of the distributions
of maxima of random sequences. Here we assume that X WD fX;Xj ; j � 1g,
Y WD fY; Yj ; j � 1g are sequences of i.i.d. RVs taking on values in R

1C and

Xn WD
1
_

jD1
cj .n/Xj ; Y n WD

1
_

jD1
cj .n/Yj ; (19.3.61)

where the components Y .i/, i � 1, of Y follow an extreme-value distribution
FY .i/ .x/ D �1.x/ exp.�1=x/, x � 0.

In addition, we will consider C 2 C [see (19.3.3)] subject to the condition

˛p.n/ WD
1
X

jD1
c
p
j .n/! 0 as n!1 for any p > 1: (19.3.62)



452 19 Ideal Metric with Respect to Maxima Scheme of i.i.d. Random Elements

Denote a ı x WD .a.1/x.1/; a.2/x.2/; : : : /, bx WD .bx.1/; bx.2/; : : : / for any a D
.a.1/; a.2/; : : : / 2 R

1, x D .x.1/; x.2/; : : : / 2 R
1, b 2 R.

We will examine the uniform rate of convergence �.Xn; Y / ! 0 (as n ! 1)
where � is the Kolmogorov (uniform) metric

�.X; Y / WD supfjFX.x/ � FY .x/j W x 2 R
1g: (19.3.63)

Here, FX.x/ WD PrfT1
iD1ŒX.i/ � x.i/�g, and x D .x.1/; x.2/; : : : / is the DF of X .

Our aim is to prove an infinite-dimensional analog of Theorem 19.2.1 concerning
the uniform rate of convergence for maxima ofm-dimensional random vectors [see
(19.2.12)].

First, note that the assumption that the components X.k/
j of X are nonnegative

is not a restriction since �.Xn; Y / D �.
W1
jD1 cj .n/eXj ; Y /, where eX

.k/
j D

max.X.k/
j ; 0/, k � 1.21 As in (19.2.4), we define the weighted Kolmogorov

probability metric

�p.X; Y / WD supfMp.x/jFX.x/ � FY .x/j W x 2 R
1g; p > 0; (19.3.64)

whereM.x/ WD infi�1 jx.i/j, x 2 R
1.

First, we will obtain an estimate of the rate of convergence of Xn to Y in terms
�p, p > 1.22

Lemma 19.3.3. Let p > 1. Then

�p.Xn; Y / � ˛p.n/�p.X; Y /: (19.3.65)

Proof. For any x 2 R
1

Mp.x/jFXn.x/ � FY .x/j D Mp.x/jFXn.x/ � FY n.x/j

�
1
X

jD1
Mp.x/jFXj .x=cj .n// � FYj .x=cj .n//j � ˛p.n/�p.X; Y /:

ut
The problem now is how to pass from estimate (19.3.62) to a similar estimate for

�.Xn; Y /. We were able to solve this problem for the case of finite-dimensional ran-
dom vectors (Theorem 19.2.1). A close look at the proof of Theorem 19.2.1 shows
that in the infinite-dimensional case, the max-smoothing inequality (Lemma 19.2.4)
is not valid.23 Further, we will use relationships between �, �p , and other metric

21See Remark 19.2.1.
22See Lemmas 19.2.2 and 19.2.3 for similar results.
23The same is true for the summation scheme; see (16.3.7) in Chap. 16.
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structures that will provide estimates for �.Xn; Y / “close” to that on the right-hand
side of (19.3.62).

The next lemma deals with inequalities between �, �p , and the Lévy metric in the
space X1 D X.R1/ of random sequences. We define the Lévy metric as follows:

L.X; Y / WD inff" > 0 W FX.x � "e/� " � FY .x/ � FX.x C "e/C "g (19.3.66)

for all x 2 R
1, where e WD .1; 1; : : : /.

Open Problem 19.3.3. What are the convergence criteria for L, �, and �p in X1?
Since L, �, and �p are simple metrics, the answer to this question depends on the
choice of the norm

kxkp D
" 1
X

iD1
jx.i/jp

#1=p

; kxk1 D sup
1�i<1

jx.i/j

in the space of probability laws P.R1; k � kp/.
Lemma 19.3.4. (a) For any ˇ > 0, X; Y 2 X1

LˇC1.X; Y / � EkX � Y kˇ1; (19.3.67)

where kxk1 WD supi�1 jx.i/j,

L.X; Y / � �.X; Y /; (19.3.68)

and

LpC1.X; Y / � 2p�p.X; Y /: (19.3.69)

(b) If Y D .Y .1/; Y .2/; : : : / has bounded marginal densities pY .i/ , i D 1; 2; : : : ,
with Ai WD supx2R PY .i/ .x/ <1 and A WDP1

iD1 Ai , then

�.X; Y / � .1C A/L.X; Y /: (19.3.70)

Moreover, if X; Y 2 X1C D X.R1C / (i.e., X , Y have nonnegative components),
then

LpC1.X; Y / � �p.X; Y / (19.3.71)

and

�.X; Y / � ƒ.p/Ap=.1Cp/�1=.1Cp/p .X; Y /; p > 0; (19.3.72)

where

ƒ.p/ WD .1C p/p�p=.1Cp/: (19.3.73)
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Proof. (a) Inequalities (19.3.67) and (19.3.68) are obvious. The first follows from
Chebyshev’s inequality, the second from the definitions of L and �. One
can obtain (19.3.69) in the same manner as (19.3.70), which we will prove
completely.

(b) Let L.X; Y / < ". Further, for each x 2 R
1 and n D 1; 2; : : : , let xn WD

.x.1/; : : : ; x.n/;1;1; : : : /. Then FX.xn/ � FY .xn/ < " C FY .xn C "e/ �
FY .xn/ � "C ŒA1 C � � � C An�". Analogously,

FY .xn/� FX.xn/ � FY .xn/� FY .xn � "e/C " � "C ŒA1 C � � � CAn�":

Letting n!1, we obtain �.X; Y / < .1CA/", which proves (19.3.70).
Further, let L.Y; Y / > " > 0. Then there exists x0 2 R

1C such that jFX.x/�
FY .x/j > " for all x 2 Œx0; x0 C "e� [i.e., x.i/ 2 Œx.i/0 ; x.i/0 C "� for all i � 1].
Hence

�p.X; Y / � supfMp.x/" W x 2 Œx0; x0 C "e�g
� " inf

z2R1

C

sup
x2Œz;zC"e�

Mp.x/ D "1Cp:

Letting "! L.X; Y / we obtain (19.3.71).
By (19.3.70) and (19.3.71), we obtain

�.X; Y / < .1C A/�1=.1Cp/p .X; Y /: (19.3.74)

Next we will use the homogeneity of � and �p to improve (19.3.74). That is,
using the equality

�.cX; cY / D �.X; Y /; �p.cX; cY / D cp�p.X; Y /; c > 0; (19.3.75)

we have, by (19.3.74),

�.X; Y / �
�

1C 1

c
A

�

�1=.1Cp/p .cX; cY /

D .cp=.1Cp/ C c1=.1Cp/A/�1=.1Cp/p .X; Y /: (19.3.76)

Minimizing the right-hand side of (19.3.76) w.r.t. c > 0 we obtain (19.3.72).
ut

Theorem 19.3.4. Let � > 0 and a D .a.1/; a.2/; : : : / 2 R
1C be such that

A.a; �/ WD P1
kD1.a.k//1=� < 1. Then for any p > 1 there exists a constant

c D c.a; p; �/ such that

�.Xn; Y / � c˛p.n/1=.1Cp�/�p.a ıX; a ı Y /1=.1Cp�/: (19.3.77)
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Remark 19.3.1. In estimate (19.3.77) the convergence index ˛p.n/1=.1Cp�/ tends to
the correct one ˛p.n/ as � ! 0 (Lemma 19.3.3). The constant c has the form

c WD .1Cep/epep=.1Cep/ŒA.a; �/�.�/�ep=.1Cep/; (19.3.78)

whereep WD p� and

�.�/ WD � expŒ.1C 1=�/.ln.1C 1=�/� 1/�: (19.3.79)

Choosing a D a.�/ 2 R
1 such that .a.k//�1=��.�/ D k�� for any k � 1 and some

� > 1, one can obtain that c D c.a.�/; p; �/! 1 as � ! 0. However, in this case,
a.k/ D a.k/.�/!1 as � ! 0 for any k � 1, and hence �p.a ıX; a ı Y /!1 as
� ! 0.

Proof of Theorem 19.3.4. Denote

eXj WD a ıXj ; eY j WD a ı Yj ; pk.�/ WD sup
x�0

p.eY .i//1=� .x/; (19.3.80)

where pX.�/ means the density of a real-valued RV X . Using inequality (19.3.72),
we have that for anyep > � , i.e., p > 1,

�.Xn; Y / D �

0

@

1
_

jD1
cj .n/

1=�
eX
1=�
j ;eY

1=�
j

1

A

� ƒ.ep/

 1
X

kD1
pk.�/

!

�
1=.1Cep/
ep

0

@

1
_

jD1
cj .n/

1=�
eX
1=�
j ;eY 1=�

1

A ; (19.3.81)

whereƒ.ep/ is given by (19.3.73). Next we exploit Lemma 19.3.3 and obtain

�
ep

0

@

1
_

jD1
cj .n/

1=�
eX1=� ;eY 1=�

1

A �
ęp=� .n/�ep=� .

eXj ;eY j /: (19.3.82)

Now we can chooseep WD p� . Then, by (19.3.81) and (19.3.82),

�.Xn; Y / � ƒ.ep/
 1
X

kD1
pk.�/

!
ep=.1Cep/

˛p.n/
1=.1Cep/�p.eXj ;eY j /

1=.1Cep/:

(19.3.83)

Finally, note that since the components of Y have common DF �1, then pk.�/ D
.a.k//�1=��.�/, where �.�/ is given by (19.3.79). ut
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In Theorem 19.3.4, we have no restrictions on the sequence of C of normalizing
constants cj .n/ [see (19.3.3) and (19.3.62)]. However, the rate of convergence
˛p.n/

1=.1Cp�/ is close but not equal to the exact rate of convergence, namely, ˛p.n/.
In the next theorem, we impose the following conditions on C, which will allow

us to reach the exact rate of convergence.

(A.1) There exist absolute constants K1 > 0 and a sequence of integers m.n/,
n D 2; 3; : : : , such that

m.n/
X

jD1
cj .n/ � K1 �

1
X

jDm.n/C1
cj .n/ (19.3.84)

and m.n/ < n.
(A.2) There exist constants ˇ 2 .0; 1/, � � 0, "m.n/, and ıim.n/, i D 1; 2; : : : ,
n D 2; 3; : : : , such that

ciCm.n/ D "m.n/ci .n �m/C ıim.n/ (19.3.85)

and
( 1
X

iD1
jıim.n/jˇ

) 1=.1Cˇ/
� �˛p.n/ (19.3.86)

for all i D 1; 2; : : : , n D 2; 3; : : : , and m D m.n/ defined by (A.1).
(A.3) There exists a constant K2 such that

˛p.n �m.n// � K2˛p.n/: (19.3.87)

We will check now that the Cesàro sum (for any p > 1) satisfies (A.1) to (A.3).

Example 19.3.2. Cesàro sum [see (19.3.22)]. For any p � 1 we have
˛p.n/ D n1�p .

(A.1) Take m.n/ D Œn=2�, where Œa� means the integer part of a � 0. Then
(19.3.84) holds with K1 � 1

2
and, obviously,m.n/ < n.

(A.2) Equality (19.3.85) is valid with "m.n/ D .n �m/=n and ıim D 0. Hence,
� D 0 in (19.3.86).
(A.3) K2 WD 2p�1.

Theorem 19.3.5. Let Y be max-stable sequences [see (19.3.4)] and C satisfy (A.1)
to (A.3). Let a 2 R

1C be such that

A.a/ WD
1
X

iD1
1=a.i/ <1: (19.3.88)

Let p > 1, eX D a ıX , eY D a ı Y , and

�p WD �p.eX;eY / WD max.�1=.pC1/
p .eX;eY /;�p.eX;eY /; �ˇ/;
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where

�ˇ WD �fŒEkeXkˇ1�1=.1Cˇ/ C ŒEkeY kˇ1�1=.1Cˇ/g;
and ˇ; � are given by (A.2). Then there exist absolute constants A and B such that

�p � A) �.Xn; Y / � B�p˛p.n/: (19.3.89)

Remark 19.3.2. As appropriate pairs .A;B/ satisfying (19.3.89) one can take any
A and B such that A � C8.p; a/, B � C9.p; a/, where the constants C8 and C9 are
defined in the following way. Denote

C1.a/ WD 1C .2=e/2A.a/=K1; C2.a/ WD C1.a/.1CK2/; (19.3.90)

C3.a/ WD .2=e/2A.a/; C4.p; a/ WD .p=e/pB.a/�p; (19.3.91)

where B.a/ WD mini�1 a.i/ > 0 [see (19.3.88)],

C5.p; a/ WD 4C4.p; a/K�p
1 ; C6.p; a/ WD ƒ.p/

�

C3.a/

K1

�p=.1Cp/
; (19.3.92)

whereƒ.p/ is given by (19.3.73),

C7.p; a/ D ƒ.p/C3.a/p=.1Cp/;

C8.p; a/ WD .2C6.p; a/C2.a//�1�p; (19.3.93)

and

C9.p; d/ WD maxf1; C5.p; a/; C7.p; a/.1 _ ˛p.2//�p=.1Cp/g:
The proof of Theorem 19.3.5 is essentially based on the next lemma. In what

follows,X 0_X 00, for X 0; X 00 2 X.R1C /, always means a random sequence with DF
FX 0.x/FX 00.x/, x 2 R

1C , and eX means a ıX , where a 2 R
1C satisfies (19.3.88).

Lemma 19.3.5. (a) (�p is a max-ideal metric of order p > 0.) For any X 0, X 00,
Z 2 X.R1C / and c > 0, �p.cX

0; cX 00/ D cp�p.X
0; X 00/, p > 0, and

�p.X
0 _Z;X 00 _Z/ � �p.X

0; X 00/:

(b) (Max-smoothing inequality.) If Y is a simple max-stable sequence, then for any
X 0, X 00 2 X.R1C / and ı > 0

�.X 0 _ ıeY ;X 00 _ ıeY / � C4.p; a/ı�p�p.X
0; X 00/; (19.3.94)

�.X 0;eY / � C7.p; a/�1=.1Cp/p .X 0;eY /; (19.3.95)

where C4 and C7 are given in Remark 19.3.2.
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(c) For any X 0, X 00, U , V 2 X.R1C /

�.X 0 _ U;X 00 _ U / � �.X 0; X 00/�.U; V /C �.X 0 _ V;X 00 _ V /: (19.3.96)

Remark 19.3.3. Lemma 19.3.5 is the analog of Lemmas 15.3.2, 15.4.1, and 15.4.2
concerning the summation scheme of i.i.d. RVs.

Proof. (a) and (c) are obvious; see Lemmas 19.2.2 and 19.2.7.
(b). Let G.x/ WD exp.�1=x/, x � 0, and

C.p/ WD .p=e/p D sup
x>0

x�pG.x/: (19.3.97)

Then

F
eY .x=ı/ � min

i�1 Fa.i/Y .i/ .x
.i/=ı/ D min

i�1 G.x
.i/=a.i/ı/ � C.p/B.a/�pM.x/pı�p:

Hence, by (19.3.91) and (19.3.97), �.X 0_ıeY ;X 00_ıeY / � C4.p; a/ı�p�p.X
0; X 00/,

which proves (19.3.94). Further, by Lemma 19.3.4 [see (19.3.72)], we have

�.X 0;eY / � ƒ.p/
 

C.2/

1
X

iD1
1=a.i/

!p=.1Cp/
�p.X

0;eY /1=.1Cp/

D C7.p; a/�p.X
0;eY /1=.1Cp/: ut

Proof of Theorem 19.3.5. The main idea of the proof is to follow the max-Bergstrom
method as in Theorem 19.2.1 but avoiding the use of max-smoothing inequality
(19.2.16). If n D 1; 2, then by (19.3.95) and Lemma 19.3.4 we have

�.Xn; Y / � C7.p; a/�1=.1Cp/p

 1
_

iD1
ci .n/eXi ;eY i

!

� C7.p; a/˛p.n/1=.1Cp/�1=.1Cp/p .eX;
eY /:

Since �p � �
1=.1Cp/
p .eX;eY / and C7.p; a/˛p.n/1=.1Cp/ � B˛p.n/ for n D 1; 2, we

have proved (19.3.89) for any A and n D 1; 2.
We now proceed by induction. Suppose that

�

0

@

1
_

jD1
cj .k/eXj ; Y

1

A � B�p˛p.k/; 8k D 1; : : : ; n � 1: (19.3.98)

Let m D m.n/, n � 3, be given by (A.1). Then using the triangle inequality
we obtain
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�

0

@

1
_

jD1
cj .n/eXj ;eY

1

A � J1 C J2; (19.3.99)

where

J1 WD �

0

@

m
_

jD1
cj .n/eXj _

1
_

jDmC1
cj .n/eXj ;

m
_

jD1
cj .n/eY j _

1
_

jDmC1
cj .n/eXj

1

A

and

J2 WD �

0

@

m
_

jD1
cj .n/eY j _

1
_

jDmC1
cj .n/eXj ;eY

1

A :

Now we will use inequality (19.3.96) to estimate J1

J1 � J 0
1 C J 00

1 ; (19.3.100)

where

J 0
1 WD �

0

@

m
_

jD1
cj .n/eXj ;

m
_

jD1
cj .n/eY j

1

A�

0

@

1
_

jDmC1
cj .n/eXj ;

1
_

jDmC1
cj .n/eY j

1

A

and

J 00
1 WD �

0

@

m
_

jD1
cj .n/eXj _

1
_

jDmC1
cj .n/eY j ;

m
_

jD1
cj .n/eY j _

1
_

jDmC1
cj .n/eY j

1

A :

Let us estimate J 0
1. Since Y is a simple max-stable sequence,24

1
_

jDmC1
cj .n/eY j

dD a ı
0

@

1
X

jDmC1
cj .n/

1

A Y: (19.3.101)

Hence, by (19.3.101), (19.3.70), (A.1), and (A.2), we have

�

0

@

1
_

jDmC1
cj .n/eXj ;

1
_

jDmC1
cj .n/eY j

1

A

24See (19.3.3) and (19.3.4).
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�

0

B

@1C
�

2

e

�2 1
X

iD1

0

@a.i/
1
X

jDmC1
cj .n/

1

A

�11

C

AL

0

@

1
_

jD1
cjCm.n/eXj ;

1
_

jD1
cjCm.n/eY j

1

A

�C1.a/L
0

@

1
_

jD1
."m.n/j .n�m/Cıjm.n//eXj ;

1
_

jD1
."m.n/cj .n�m/Cıjm.n//eY j

1

A

�C1.a/
2

4L

0

@

1
_

jD1
."m.n/cj .n �m/C ıjm.n//eXj ;

1
_

jD1
"m.n/cj .n �m/eXj

1

A

C L

0

@

1
_

jD1
"m.n/cj .n �m/eXj ;

1
_

jD1
"m.n/cj .n �m/eY j

1

A

C L

0

@

1
_

jD1
"m.n/cj .n �m/eY j ;

1
_

jD1
."m.n/cj .n�m/C ıjm.n//eY j

1

A

3

5

DW C1.a/.I1 C I2 C I3/; (19.3.102)

where C1.a/ is given by (19.3.90). Let us estimate I1 using (A.2) and inequality
(19.3.67):

I1 �
8

<

:

E

1
_

jD1
k."m.n/cj .n �m/C ıjm.n//eXj � "m.n/cj .n �m/eXjkˇ1

9

=

;

1=.1Cˇ/

�
8

<

:

E

1
X

jD1
jıjmjˇkeXj kˇ1

9

=

;

1=.1Cˇ/

� �˛p.n/fEkeXkˇ1g1=.1Cˇ/: (19.3.103)

Analogously,

I3 � �˛p.n/fEkeY kˇ1g1=.1Cp/: (19.3.104)

To estimate I2, we use the inductive assumption (19.3.98), condition (A.3), and
(19.3.68):

I2 � �

0

@

1
_

jD1
"m.n/cj .n �m/eXj ;

1
_

jD1
"m.n/cj .n �m/eY j

1

A

� B�p˛p.n �m/ � K2B�p˛p.n/: (19.3.105)
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Hence, by (19.3.102)–(19.3.105) and (19.3.90), we have

�

0

@

1
_

jDmC1
cj .n/eXj ;

1
_

jDmC1
cj .n/eY j

1

A � C1.a/Œ�ˇ CK2B�p�˛a.n/

� C2.a/B�p˛p.n/: (19.3.106)

Next, let us estimate �.
Wm
jD1 cj .n/eXj ;

Wm
jD1 cj .n/eY j / in J 0

1. Since Y is a
simple max-stable sequence,25 we have

m
_

jD1
cj .n/eY j

dD
m
X

jD1
cj .n/eY : (19.3.107)

Thus, by (19.3.72), (19.3.92), and (A.1),

�

0

@

m
_

jD1
cj .n/eXj ;

m
_

jD1
cj .n/eY j

1

A

� ƒ.p/

2

6

4.2=e/
2

1
X

iD1

0

@a.i/
m
X

jD1
cj .n/

1

A

�13

7

5

p=.1Cp/

�p.eX; Y /
1=.1Cp/

� C6.p; a/�1=.1Cp/p � C6.p; a/A1=.1Cp/: (19.3.108)

Using the estimates in (19.3.106) and (19.3.108) we obtain the following bound
for J 0

1:

J 0
1 � C6.p; a/A1=.1Cp/C2.a/B�p˛p.n/ �

1

2
B�p˛p.n/: (19.3.109)

Now let us estimate J 00
1 . By (19.3.94), (19.3.101), (A.1), and (19.3.65), we have

J 00
1 � C4.p; a/�p

0

@

m
_

jD1
cj .n/eXj ;

m
_

jD1
cj .n/eY j

1

A

0

@

1
X

jDmC1
cj .n/

1

A

�p

� C4.p; a/K�p
1 �p˛p.n/: (19.3.110)

Analogously, we estimate J2 [see (19.3.99)]

25See (19.3.3) and (19.3.4).
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J2 � C4.p; a/�p
0

@

1
_

jDmC1
cj .n/eXj ;

1
_

jDmC1
cj .n/eY j

1

A

0

@

m
X

jD1
cj .n/

1

A

�p

� C4.p; a/K�p
1 �p˛p.n/: (19.3.111)

Since 2C4.p; a/K
�p
1 � B=2 (Remark 19.3.2),

J 00
1 C J2 �

1

2
B�p˛p.n/ (19.3.112)

by (19.3.110) and (19.3.111). Finally, using (19.3.99), (19.3.100), (19.3.109), and
(19.3.112) we obtain (19.3.98) for k D n. ut

In the case of the Cesàro sum (19.3.22), one can refine Theorem 19.3.5 following
the proof of the theorem and using some simplifications (Example 19.3.1). That is,
the following assertion holds.

Corollary 19.3.4. Let X , X1;X2; : : : be a sequence of i.i.d. RVs taking values
in R

1C . Let Y D .Y .1/; Y .2/; : : : / be a max-stable sequence26 with FY .i/ .x/ D
exp.�1=x/, x > 0. Let a 2 R

1C satisfy (19.3.88). Denote �p WD �p.eX;eY / WD
maxf�.eX;eY /;�p.eX;eY /g, eX WD a ı X , eY WD a ı Y . Then there exist constants C
andD such that

�p � C ) �

 

.1=n/

n
_

kD1
Xk; Y

!

� D�pn1�p: (19.3.113)

Remark 19.3.4. As an example of a pair .C;D/ that fulfills (19.3.113) one can
choose any .C;D/ satisfying the inequalities

CD.2
3
/p�1 � 1

2
; D � max.2p; 4C4.p; a/.2p�1 C 6p//;

where C4.p; a/ is defined by (19.3.91).

Remark 19.3.5. Let Z1;Z2; : : : be a sequence of i.i.d. RVs taking values in the
Hilbert space H D .R1; k � k2/ with EZ1 D 0 and covariance operator V. The
CLT in H states that the distribution of the normalized sums eZ;D n�1=2Pn

iD1 Zi
weakly tends to the normal distribution of an RV Z 2 X.H/ with mean 0 and
covariance operator V. However, the uniform convergence

�.F
eZn
; FZ/ WD sup

x2R1

jF
eZn
.x/ � FZ.x/j ! 1 n!1

26See (19.3.4).
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may fail.27 In contrast to the summation scheme, Theorem 19.3.5 shows that under
some tail conditions the distribution function of the normalized maximaXn of i.i.d.
RVs Xi 2 X.R1/ converges uniformly to the DF of a simple max-stable sequence
Y . Moreover, the rate of uniform convergence is nearly the same as in the finite-
dimensional case (Theorems 19.2.1 and 19.2.3). Furthermore, in our investigations
we did not assume that R1 had the structure of a Hilbert or even normed space.

Open Problem 19.3.4. Smith (1982), Cohen (1982), Resnick (1987b), and
Balkema and de Haan (1990) consider the univariate case .X;X1;X2; � � � 2 X.R//
of general normalized maxima28

�

 

an

n
_

iD1
Xi � bn; Y

!

� c.X1; Y /�X1.n/; n D 1; 2; : : : :

To extend results of this type to the multivariate case .X;X1;X2; � � � 2 X.B// using
the method developed here, one needs to generalize the notions of compound and
simple max-stable metrics29 by determining a metric �� in X.B/ such that for any
X1;X2; Y 2 X.B/ and c > 0

��.c.X1 _ Y /; c.X2 _ Y // � �.c/��.X1;X2/;
where � W Œ0;1/ ! Œ0;1/ is a suitably chosen regular-varying with nonnegative
index, strictly increasing continuous function, �.0/ D 0.

19.4 Double Ideal Metrics

The minimal bLp-metrics are ideal w.r.t. summation and maxima of order rp D
min.p; 1/. Indeed, by Definition 15.3.1 in Chap. 15 and Definition 19.2.1, the p-
average probability metrics30

Lp.X; Y / D .EkX � Y kp/min.1;1=p/; 0 < p <1;
L1.X; Y / D ess sup kX � Y k; X; Y 2 Xd WD X.Rd /; (19.4.1)

are compound ideal metrics w.r.t. the sum and maxima of random vectors, i.e., for
any X; Y;Z 2 Xd

Lp.cX CZ; cY CZ/ � jcjrpLp.X; Y /; c 2 R; (19.4.2)

27See, for example, Sazonov (1981, pp. 69–70).
28See also Theorem 19.3.4.
29See (19.3.5) and Lemma 19.3.5(a).
30See also Example 3.4.1 in Chap. 3.
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and

Lp.cX _Z; cY _Z/ � crpLp.X; Y /; c � 0; (19.4.3)

where x _ y WD .x.1/ _ y.1/; : : : ; x.d/ _ y.d//. Denote as before by bLp the
corresponding minimal metric, i.e,

bLp.X; Y / D inffLp.eX;eY /I eX dD X;eY dD Y g; 0 < p <1: (19.4.4)

Then, by (19.4.2) and (19.4.4), the ideality properties hold:

bL.cX CZ; cY CZ/ � jcjrpbL.X; Y /; c 2 R; (19.4.5)

and
bLp.cX _Z; cY _Z/ � crpbLp.X; Y /; c > 0; (19.4.6)

for any X; Y 2 Xd and Z independent of X and Y .31 In particular, if X1;X2; : : :
are i.i.d. RVs and Y.˛/ has a symmetric stable distribution with parameter ˛ 2 .0; 1/,
and p 2 .˛; 1�, then one gets from (19.4.2)

bLp

 

n�1=˛
n
X

iD1
Xi ; Y.˛/

!

� n1�p=˛bLp.X1; Y.˛//; (19.4.7)

which gives a precise estimate in the CLT under the only assumption that
bLp.X1; Y.˛// < 1. Note that bLp.X; Y / < 1 (0 < p � 1) does not imply the
finiteness of pth moments of kXk and kY k. For example, in the one-dimensional
case, d D 1,32

bL1.X; Y / D
Z

R

jFX.x/ � FY .x/jdx; X; Y 2 X1; (19.4.8)

and therefore, bL1.X1; Y.˛// < 1 is a tail condition on the DF FX implying
EjX1j D C1. Similarly, by (19.4.6), if Z.˛/ is ˛-max-stable distributed RV on
R
1 (i.e., FZ.˛/ WD exp.�x�˛/, x � 0), then for 0 < ˛ < p � 1

bLp

 

n�1=˛
n
_

iD1
Xi ; Z.˛/

!

� n1�p=˛bLp.X1;Z.˛//; (19.4.9)

for any i.i.d. RVs Xi .

31See, for example, Theorem 7.2.2 in Chap. 7.
32See Corollary 7.4.2 in Chap. 7.
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In this section we will investigate the following problems posed by Zolotarev
(1983, p. 300):

“It is known that there are ideal metrics or order s � 1 both in relation to the operation of
ordinary addition of random variables and in the relation to the operation max.X; Y /. Such
a metric of first order is the Kantorovich metric. ‘Doubly ideal metrics’ may be useful in
analyzing schemes in which both operations are present (schemes of this kind are actually
encountered in certain queueing systems). However, not a single ‘doubly ideal’ metric of
order s > 1 is known. The study of the properties of these doubly ideal metrics and those
of general type is an important and interesting problem.”33

We will prove that the problem of the existence of doubly ideal metrics of order
r > 1 has an essential negative answer. In spite of this, the minimal bLp-metrics
behave like ideal metrics of order r > 1 with respect to maxima and sums.34

First, we will show that bLp , in spite of being only a simple .rp;C/-ideal metric,
i.e., ideal metric of order rp w.r.t. a summation scheme,35 rp D min.1; p/, it acts as
an ideal .r;C/ metric of order r D 1C ˛ � ˛=p for 0 < ˛ � p � 2. We formulate
this result for Banach spaces U of type p. Let fYigi�1 be a sequence of independent
random signs,

P.Yi D 1/ D P.Yi D �1/ D 1=2:
Definition 19.4.1 (See Hoffman-Jorgensen 1977). For any p 2 Œ1; 2� a separable
Banach space .U; k � k/ is said to be of type p if there exists a constant C such that
for all n 2 N and x1; : : : ; xn 2 U

E
















n
X

iD1
Yixi
















p

� C
n
X

iD1
kxikp: (19.4.10)

The preceding definition implies the following condition:36 there exists A > 0

such that for all n 2 N WD f1; 2; : : : g and independent X1; : : : ; Xn 2 X.U / with
EXi D 0 and finite EkXikp the following relation holds:

E
















n
X

iD1
Xi
















p

� A
n
X

iD1
EkXikp: (19.4.11)

Remark 19.4.1. (a) Every separable Banach space is of type 1.
(b) Every finite-dimensional Banach space and every separable Hilbert space is of

type 2.
(c) Lq WD fX 2 X1 W EjX jq <1g is of the type p D min.2; q/ 8q � 1.

33The Kantorovich metric referred to by Zolotarev in the quote is (19.4.8) in this chapter.
34See Rachev and Rüschendorf (1992) for applications of double ideal metrics in estimating
convergence rates.
35See Definition 15.3.1.
36See Hoffman-Jorgensen and Pisier (1976).
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(d) `q WD
(

X 2 R
1; kxkqq WD

1
P

jD1
jx.j /jq <1

)

is of type p D min.2; q/, q � 1.

Theorem 19.4.1. If U is of type p, 1 � p � 2, and 0 < ˛ < p � 2, then for any
i.i.d. RVsX1; : : : ; Xn 2 X.U / with EXi D 0 and for a symmetric stable RV Y.˛/ the
following bound holds:

bLp

 

n�1=˛
n
X

iD1
Xi ; Y.˛/

!

� Bpn1=p�1=˛
bLp.X1; Y.˛//; (19.4.12)

where Bp is an absolute constant.

Proof. We use the following result of Woyczynski (1980): if U is of type p, then
for some constant Bp and any independentZ1; : : : ; Zn 2 X.U / with EZi D 0

E
















n
X

iD1
Zi
















q

� Bp
pE

 

n
X

iD1
kZikp

!q=p

; q � 1: (19.4.13)

Let Y1; : : : ; Yn 2 X.U / be independent, Yi
dD Y.˛/; then Zi D Xi � Yi , 1 � i � n

are also independent. Take Y.˛/ D n�1=˛Pn
iD1 Yi . Then, from (19.4.13) with q D p

it follows that

Lpp

 

n�1=˛
n
X

iD1
Xi ; Y.˛/

!

� Bp
p n

1�p=˛Lpp.X1; Y1/: (19.4.14)

Passing to the minimal metrics in the last inequality we establish (19.4.12). ut
From the well-known inequality between the Prokhorov metric 	 andbLp ,37

	pC1 � .bLp/p; p � 1; (19.4.15)

we immediately obtain the following corollary.

Corollary 19.4.1. Under the assumptions of Theorem 19.4.1,

	

 

n�1=˛
n
X

iD1
Xi ; Y.˛/

!

� Bp=.pC1/
p n.1�p=˛/=.pC1/

bLp.X1; Y.˛//p=.pC1/ (19.4.16)

for any p 2 Œ1; 2� and p > ˛.

Remark 19.4.2. For r D p 2 Œ1; 2� the rates in (19.4.16) and in Zolotarev’s estimate

37See (8.3.7) and (8.3.21) in Chap. 8.
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n�1=˛















n
X

iD1
X C i
















; kY.˛/k
!

� Cn.1�r=˛/=.rC1/�1=.rC1/r .X1; Y.˛//; (19.4.17)

where 0 � ˛ � r < 1 and C is an absolute constant, are the same. On the
right-hand side, �r is Zolotarev’s metric.38 A problem with the application of �r for
r > 1 in the infinite-dimensional case was pointed out by Bentkus and Rackauskas
(1985). In Banach spaces, the convergence w.r.t. �r , r > 1, does not imply weak
convergence. Gine and Leon (1980) showed that in Hilbert spaces �r does imply the
weak convergence, while by results of Senatov (1981) there is no inequality of the
type �r � c	a, a > 0, where c is an absolute constant. Under some smoothness
conditions on the Banach space, Zolotarev (1976) obtained the estimate39

	1Cr .kXk; kY k/ � C�r .X; Y /; (19.4.18)

where C D C.r/. Therefore, under these conditions, (19.4.17) follows from the
ideality of �r W �r .n

�1=˛Pn
iD1 Xi ; Y.˛//. It was proved by Senatov (1981) that the

order in (19.4.17) is the right one for r D 3, ˛ D 2, namely, n�1=8. The only known
upper estimate for �r applicable in the stable case is40

�r �
�.1C ˛/
�.1C r/ �r ; r D mC ˛; 0 < ˛ � 1; m 2 N; (19.4.19)

where

�r .X; Y / D
Z

kxkr j PrX � PrY j.dx/ (19.4.20)

is the r th absolute pseudomoment. So �r .X1; Y.˛// < 1 ensures the validity of
(19.4.17).

In contrast to the bound (19.4.17), which concerns only the distance between
the norms ofX and Y , estimate (19.4.16) concerns the Prokhorov distance 	.X; Y /

itself, which is topologically strictly stronger than	.kXk; kY k/ in the Banach space
setting and is more informative. Furthermore, it follows that41

bLpp.X; Y / � 2p�p.X; Y / � 2p�p.X; Y /; (19.4.21)

where �r , r > 0, is the r th difference pseudomoment,

�r .X; Y / D inffEdr.eX;eY /I eX dD X;eY dD Y g

38See (15.3.1) in Chap. 15.
39See Zolotarev (1976, Theorem 5).
40See Zolotarev (1978, Theorem 4).
41See Zolotarev (1978, p. 272).
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D supfjEf .X/� Ef .Y /j W f W U ! R bounded

jf .x/ � f .y/j � dr.x; y/; x; y 2 U g; (19.4.22)

and dr.x; y/ D kx kxkr�1 � y kykr�1k.42 Since the problem of whether
�r .X; Y / <1, E.X � Y / D 0 implies �r .X; Y / <1 is still open for 1 < r < 2,
the right-hand side of (19.4.16) seems to contain weaker conditions than the right-
hand side of (19.4.17).

Remark 19.4.3. If U D Lp [see Remark 19.4.1 (c)], then with an appeal to the
Burkholder inequality one can choose the constants Bp in (19.4.16) as follows:43

B1 D 1; Bp D 18p3=2=.p � 1/1=2; for 1 < p � 2: (19.4.23)

Remark 19.4.4. Let 1 � p � 2, let .E; E ; �/ be a measurable space, and define

`p;� WD fX W .E; E � .!;A! .R1;B1/ W kXkp;� <1g; (19.4.24)

where kXkp;� WD E.
R jX.t/jpd�.t//1=p; .`p;�; k � kp;�/ is a Banach space of

stochastic processes.44 Let X1; : : : ; Xn 2 X.`p;�/ with EXi D 0. Recall the
Marcinkiewicz–Zygmund inequality: if f�n; n > 1g are independent integrable RVs
with E�n D 0, then for every p > 1 there exist positive constants Ap and Bp such
that45
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: (19.4.25)

By the Marcinkiewicz–Zygmund inequality,
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d�.t/ �
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iD1
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i .t/

!p=2

d�.t/:

Since p � 2, we obtain from the Minkowski inequality
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n
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iD1
Xi
















p

p;�

� Bp
n
X

iD1
E

Z

jXi.t/jpd�.t/ D Bp
n
X

iD1
kXikpp;�;

42See Remark 7.2.3 in Chap. 7.
43See Chow and Teicher (1978, p. 396).
44It is identical to Lp for one-point measures �.
45See Shiryayev (1984, p. 469) and Chow and Teicher (1978, p. 367).
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i.e., `p;� is of type p, and therefore one can apply Theorem 19.4.1 and Corollary
19.4.1 to stochastic processes in `p;�.

For 0 < ˛ < 2p � 1 we have the following analog of Theorem 19.4.1 using
the same metric as in Sect. 19.3 (Lemma 19.3.2 and Theorem 19.3.3). Again, let
.U; k � k/ be of type p and let �p be the minimal metric w.r.t. the compound metric

�p.X; Y / WD
�

sup
t>0

tp PrfkX � Y k > tg
	1=.1Cp/

; p > 0:

Then the following bound for the Lp-distance between the normalized sums of
i.i.d. random elements in X D X.U / holds.

Theorem 19.4.2. Let X1; : : : ; Xn 2 X be i.i.d, let Y1; : : : ; Yn 2 X be i.i.d., and let
0 < ˛ < 2p < 1. Then

bLp

 

n�1=˛
n
X

iD1
Xi ; n

�1=˛
n
X

iD1
Yi

!

� Bpn1=2p�1=˛.�2p.X1; Y1//pC1=2; (19.4.26)

where Bp is an absolute constant.

Proof. We have
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Xi�n1=˛

n
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iD1
Yi
















p

D n�p=˛E
















n
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iD1
.Xi � Yi /
















p

� n�p=˛E
 

n
X

iD1
kXi � Yik

!p

� Bpn�p=˛pn
�

sup
c>0

c2 Pr.kX1 � Y1kp > c/
�1=2

DBpn�p=˛pn.�2p.X; Y //
pC1=2I

the last inequality follows from Pisier and Zinn (1977, Lemma 5.3). Passing to the
minimal metrics, (19.4.26) follows. ut
Remark 19.4.5. From the ideality of order p of bLp [see (19.4.5)] for 0 < p � 1

one obtains for 0 < ˛ < 2p � 1 the bound

bLp

 

n�1=˛
n
X

iD1
Xi ; n

�1=˛
n
X

iD1
Yi

!

� n1�p=˛bLp.X1; Y1/; (19.4.27)

and by the Holder inequality,
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bLp
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n
X

iD1
Xi ; n

�1=˛
n
X

iD1
Yi

!

� bL2p
 

n�1=˛
n
X

iD1
Xi ; n

�1=˛
n
X

iD1
Yi

!

� n1�2p=˛bL2p.X1; Y1/: (19.4.28)

Since .�2p.X1; Y1//
1C2p � bL2p.X1; Y1/ for p < 1=2 [see (19.3.51)], the

condition �2p.X1; Y1/ < 1 is weaker than the condition bL2p.X1; Y1/ < 1.
Comparing the estimates (19.4.27) and (19.4.26), it is clear that (19.4.26) has the
better order, .1 � p=˛ > 1 � 2p=˛ > .1=2p/� .1=˛//. However,

bLp.X1; Y1/ � 2�2p.X1; Y1/.pC1/=2; (19.4.29)

and thus the tail condition in (19.4.27) is weaker than that in (19.4.26). To prove
(19.4.29), it is enough to show that

bLp.X1; Y1/ � 2�2p.X1; Y1/
.pC1/=2: (19.4.30)

The last inequality follows from the bound

Edp.X1; Y1/ � T p C
Z 1

T

Pr.d.X1; Y1/ > t/ptp�1dt

� T p C .�2p.X1; Y1//
pC1T �p; T > 0;

after a minimization with respect to T .

Up to now we have investigated the ideal properties ofbLp w.r.t. the sums of i.i.d.
RVs. Next we will look at the max-ideality ofbLp , and this will lead us to the doubly

ideal properties ofbLp.
First, let us point out that there is no compound ideal metric of order r > 1 for

the summation scheme while compound max-ideal metrics of order r > 1 exist.

Remark 19.4.6. It is easy to see that there is no nontrivial compound ideal metric
� w.r.t. the summation scheme when r > 1 since the ideality (Definition 15.3.1)
would imply

�.X; Y / D �
�

X C � � � CX
n

;
Y C � � � C Y

n

�

� n1�r�.X; Y /; 8n 2 N;

i.e., �.X; Y / 2 f0;1g, 8X; Y 2 X.U /.
On the other hand, the following metrics are examples of compound max-ideal

metrics of any order. For U D R
1 and any 0 < p � 1 define for X; Y 2 X.R1/

�r;p.X; Y / D
�Z 1

�1
�
p
X;Y .x/jxjrp�1dx

�q

(19.4.31)
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and

�r;1.X; Y / D sup
x2R1
jxjr�X;Y .x/;

where q D min.1; 1=p/ and �X;Y .x/ D Pr.X � x < Y / C Pr.Y � x < X/. It
is easy to see that �r;p is a compound probability metric. Obviously, for any c > 0
the following relation holds:

�r;p.cX; cY / D
�Z 1

�1
�
p
X;Y .x=c/jxjrp�1dx

�q

D crpq�r;p.X; Y /;

and �r;1.cX; cY / D cr�r;1.X; Y /. Furthermore, from fX _Z � x < Y _Zg 	
fX � x < Y g, which can be established for any RVs X , Y , Z by considering
the different possible order relations between X , Y , Z, it follows that �r;p is a
compound max-ideal metric of order r.1 ^ p/ for 0 < p � 1 and 0 < r <1.

Note that �r;p is an extension of the metric ‚p defined in Example 3.4.3 in
Chap. 3; in fact, ‚p D �1;p . Following step by step the proof of Theorem 7.4.4 one
can see that the minimal metric b�r;p has the form of the difference pseudomoment

b�r;p.X; Y / D
�Z 1

�1
jFX.x/ � FY .x/jpjxjrp�1dx

�q

(19.4.32)

for p 2 .0;1/, and b�r;1.X; Y / D supx2R1 jxjr jFX.x/ � FY .x/j is the weighted
Kolmogorov metric �r [see (19.2.4)]. Thus, if Z.˛/ is an ˛-max-stable distributed
RV, then as in (19.2.5) and (19.4.9) we obtain

b�r;p

�

n�1=˛_Xi;Z.˛/

�

� n1�r�=˛
b�r;p.X1;Z.˛//;

where r� WD r.1 ^ p/.
Next we want to investigate the properties of the Lp-metrics w.r.t. maxima.46

Following the notations in Remark 19.4.4 we consider for 0 < � � 1 the Banach
space U D `�;� D fX W .E; E/ � .�;A/! .R1;B1/I kXk�;� <1g, where

kXk�;� WD E
�Z

jX.t/j�d�.t/

�1=��

for 0 < � <1; �� D 1 _ �;

and define, forX; Y 2 U , X _Y as the pointwise maximum, .X _Y /.t/ D X.t/_
Y.t/, t 2 E . Following the definition of a simple max-stable process [see (19.3.40)]
we call Z.˛/ an ˛-max-stable process if

Z.˛/
dD n�1=˛

n
_

iD1
Yi (19.4.33)

46See (19.4.1) and Example 3.4.1 in Chap. 3.
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for any n 2 N and the Yi are i.i.d. copies of Z.˛/.
The proof of the next lemma and theorem are similar to that in Theorem 19.4.1

and thus left to the reader.

Lemma 19.4.1. (a) For 0 < � � 1 and 0 < p � 1, Lp is a compound ideal
metric of order r D 1^p, with respect to a maxima scheme, i.e., (19.4.6) holds.

(b) If X1; : : : ; Xn 2 X.`�;�/ are i.i.d. and if Z.˛/ is an ˛-max-stable process, then
for r D 1 ^ p

bLp

 

n�1=˛
n
_

iD1
Xi ; Z.˛/

!

� n1�r=˛bLp.X1;Z.˛//: (19.4.34)

Estimate (19.4.34) is interesting for r � ˛ only; for 1 < p � � < 1 one can
improve it as follows (Theorem 19.3.1).

Theorem 19.4.3. Let 1 � p � � < 1; then for X1; : : : ; Xn 2 X.`�;�/ i.i.d. the
following relation holds:

bLp

 

n�1=˛
n
_

iD1
Xi ; Z.˛/

!

� n1=p�1=˛
bLp.X1;Z.˛//: (19.4.35)

Remark 19.4.7. (a) Comparing (19.4.35) with (19.4.34) we see that actually bLp
“acts” in this important case as a simple max-ideal metric of order ˛C1�˛=p.
For 1 < p it holds that 1=p� 1=˛ < 1� 1=˛, i.e., (19.4.35) is an improvement
over (19.4.34).

(b) An analog of Theorem 19.4.3 holds also for the sequence space `� 	 R
1

[Remark 19.4.1 (d)].

Now we are ready to investigate the question of the existence and construction
of doubly ideal metrics. Let U be a Banach space with maximum operation _.

Definition 19.4.2 (Double ideal metrics). A probability metric � on X.U / is
called

(a) .r; I/-ideal if � is compound .r;C/-ideal and compound .r;_/-ideal, i.e., for
any X1, X2, Y , and Z 2 X.U / and c > 0

�.X1 C Y;X2 C Y / � �.X1;X2/; (19.4.36)

�.X1 _Z;X2 _Z/ � �.X1;X2/; (19.4.37)

and

�.cX1; cX2/ D cr�.X1;X2/I (19.4.38)

(b) .r; II/-ideal if � is compound .r;_/-ideal and simple .r;C/-ideal, i.e.,
(19.4.36)–(19.4.38) hold with Y independent of Xi ;
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(c) .r; III/-ideal if � is simple .r;_/-ideal and simple .r;C/-ideal, i.e., (19.4.36)–
(19.4.38) hold with Y and Z independent of Xi .

Remark 19.4.8. In the preceding definition (c) the metric � can be compound
or simple. An example of a compound .1=p; III/-ideal metric is the ‚p-metric
(p � 1)47

‚p.X; Y / W D
�Z 1

�1
.Pr.X1�t<X2/C Pr.X2�t < X1//pdt

�1=p

; 1�p <1;

‚1.X; Y / WD sup
t2R1

.Pr.X1 � t < X2/C Pr.X2 � t < X1//:

Remark 19.4.9. Note that if � is an .r; II/-ideal metric, then one obtains for fXig
i.i.d., fX�

i g i.i.d.

Sk ID
k
X

iD1
Xi ; S

�
k WD

k
X

iD1
X�
i ; Zn WD n1=˛

n
_

kD1
Sk; Z

�
n WD n�1=˛

n
_

kD1
S�
k (19.4.39)

the estimate

�.Zn;Z
�
n / � n�r=˛�

 

n
_

kD1
Sk;

n
_

kD1
S�
k

!

� n�r=˛
n
X

kD1
�.Sk; S

�
k / � n�r=˛

n
X

kD1

k
X

jD1
�.Xj ;X

�
j /; (19.4.40)

and, hence, for the minimal metricb� we get

b�.Zn;Z
�
n / �

n.nC 1/
2

n�r=˛
b�.X1;X

�
1 / < n

2�r=˛
b�.X1;X

�
1 /; (19.4.41)

which gives us a rate of convergence if 0 < ˛ < r=2. Therefore, from the known
ideal metrics of order r � 1 one gets a rate of convergence for ˛ 2 .0; 1

2
/. It is

therefore of interest to study Zolotarev’s question for the construction of doubly
ideal metrics of order r > 1.

Remark 19.4.10. Lp , 0 < p < 1, is an example of a .1 ^ p; I/-ideal metric. We

saw in Remark 19.4.6 that there is no .r; I/-ideal metric for r > 1.bLp is .r; III/-ideal
metric of order r D min.1; p/.

We now show that Zolotarev’s question on the existence of an .r; II/- or an
.r; III/-ideal metric has essentially a negative answer.

47See (3.4.12) and (19.4.31).
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Theorem 19.4.4. Let r > 1, let the simple probability metric � be .r; III/-ideal on
X.R/, and assume that it satisfies the following regularity conditions.

Condition 1. If Xn (resp. Yn) converges weakly to a constant a (resp. b), then

lim
n!1�.Xn; Yn/ � �.a; b/: (19.4.42)

Condition 2. �.a; b/ D 0 ” a D b.
Then for any integrableX; Y 2 X.R/ the following holds: �.X; Y / 2 f0;1g.

Proof. If � is a simple .r;C/-ideal metric, then for integrable X; Y 2 X.R1/
the following holds: �..1=n/

Pn
iD1 Xi ; .1=n/

Pn
iD1 Yi / � n1�r�.X; Y /, where

.Xi ; Yi / are i.i.d. copies of .X; Y /. By the weak law of large numbers and
Condition 1, we have

�.EX;EY / � lim�

 

1

n

n
X

iD1
Xi ;

1

n

n
X

iD1
Yi

!

:

Assuming that �.X; Y / < 1, we have �.EX;EY / D 0, i.e., EX D EY

by Condition 2. Therefore, �.X; Y / < 1 implies that EX D EY . Therefore, by
�.X_a; Y _a/ � �.X; Y /, we have thatE.X_a/ D E.Y _a/ for all a 2 R

1, i.e.,
R a

�1 Pr.X < x/ � Pr.Y < x/dx D 0 for all a 2 R
1. Thus X

dD Y , and therefore
�.X; Y / D 0. ut
Remark 19.4.11. Condition 1 seems to be quite natural. For example, let F be a
class of nonnegative lower semicontinuous (LSC) functions on R

2 and � W Œ0;1/!
Œ0;1/ continuous, nondecreasing. Suppose � has the form of a minimal functional,

�.X; Y / D inf

(

�

 

sup
f 2F

Ef .eX;eY /

!

W eX dD X;eY dD Y
)

; (19.4.43)

with respect to a compound metric Ef .eX;eY / with a -structure.48 Then � is LSC

on X.R2/, i.e., .Xn; Yn/
w�! .X; Y / implies

lim inf
n!1 �.Xn; Yn/ � �.X; Y /; (19.4.44)

so Condition 1 is fulfilled. Actually, suppose lim infn!1 �.Xn; Yn/ < �.X; Y /.
Then for some subsequence fmg 	 N, �.Xn; Yn/ converges for some a < �.X; Y /.
For f 2 F the mapping hf W X.R2/ ! R, hf .X; Y / WD Ef .X; Y / is LSC.
Therefore, also �.supf 2F hf / is LSC and there exists a sequence .eXm;eY m/ with

48See (4.4.64) in Chap. 4.
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eXm
dD Xm, eY m

dD Ym such that �.Xm; Ym/ D �. sup
f 2F

hf .eXm;eY m//. The sequence

f�m WD Pr
eXm;eY m

gm�1 is tight. For any weakly convergent subsequence �mk with
limit �, obviously � has marginals PrX and PrY . Then for .eX;eY / with distribution �

a D lim inf
k

�.Xmk ; Ymk / D lim inf
k

E�

 

sup
f 2F

hf .eXmk ;
eY mk /

!

� E�
 

sup
f 2F

hf .eX;eY /

!

� �.X; Y /;

which contradicts our assumption. Therefore, (19.4.44) holds.

Despite the fact that .r; III/-ideal and, thus, .r; II/-ideal metrics do not exist, we
will show next that for 0 < ˛ � 2 the metrics Lp for 1 < p � 2 “act” as .r; II/-ideal
metrics in terms of the rate of convergence problem Lp.Zn;Z�

n / ! 0 (n ! 1),
where Zn and Z�

n are given by (19.4.39). The order of .r; II/-ideality is r D 2˛ C
1 � ˛=p > 2˛, and therefore we obtain a rate of convergence of n2�r=˛ [see below
(19.4.48)].

We consider first the case where fXig, fX�
i g in (19.4.39) are i.i.d. RVs in

.U; k � k/ D .`p; k � kp/, where for x D fx.j /g 2 `p, kxkp WD
�

P1
jD1 jx.j /jp

�1=p

[Remark 19.4.1 (d)]. For x; y 2 `p we define x _ y D fx.j / _ y.j /g.
Theorem 19.4.5. Let 0 � ˛ < p � 2, 1 � p � 2, and E.X1 � X�

1 / D 0; then for
Zn and Z�

n given by (19.4.39)

bLp.Zn;Z�
n / � .p=.p � 1//Bpn1=p�1=˛

bLp.X1;X�
1 /; (19.4.45)

where the constant Bp is the same as in the Marcinkiewicz–Zygmund inequality
(19.4.25). In the Hilbert space .`2; k � k2/ the following relation holds:

bL2.Zn;Z�
n / �

p
2n1=2�1=˛bL2.X1;X�

1 /: (19.4.46)

In particular, for the Prokhorov metric 	 we have

	.Zn;Z
�
n / � .p=.p � 1//p=.pC1/Bp=.pC1/

p n.1�p=˛/=.pC1/
bLp=.pC1/
p .X1;X

�
1 /:

(19.4.47)

Proof. Let .eXi ;eX
�
i / be independent pairs of random variables in X.`p/. Then for

eSk DPk
iD1 eXi , eS�

k D
Pk

iD1 eX�
i we have

Lpp

 

n�1=˛
n
_

kD1
eSk; n

�1=˛
n
_

iD1
eS�
k

!

D n�p=˛Lpp

 

n
_

kD1
eSk;

n
_

kD1
eS�
k

!
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D n�p=˛E

2

4

1
X

jD1

ˇ

ˇ

ˇ

ˇ

ˇ

n
_

kD1
eS
.j /

k �
n
_

iD1
eS

�.j /
k

ˇ

ˇ

ˇ

ˇ

ˇ

p
3

5

� n�p=˛E
1
X

jD1

n
_

kD1
jeS.j /k �eS�.j /

k jp

D n�p=˛
1
X

jD1
E

n
_

kD1
jeS.j /k �eS�.j /

k jp

� n�p=˛
1
X

jD1
.p=.p � 1//pEjeS.j /n �eS�.j /

n jp:

The last inequality follows from Doob’s inequality.49 Therefore, we can continue
applying the Marcinkiewicz–Zygmund inequality (19.4.25) with

� n�p=˛
1
X

jD1
.p=.p � 1//pBp

pE

"

n
X

iD1
.eX

.j /
i � eX�.j /

i /2

#p=2

� .p=.p � 1//pBp
pn

�p=˛
1
X

jD1

n
X

iD1
EjeX.j /

i � eX�.j /
i jp

D .p=.p � 1//pBp
pn

1�p=˛Lpp.eX1;eX
�
1 /I (19.4.48)

the last inequality follows from the assumption that p=2 � 1. Passing to the minimal
metrics we obtain (19.4.45) and (19.4.46). Finally, by means of 	pC1 � bLpp , we
obtain (19.4.47). ut

The same proof also applies to the Banach space `p;� [(19.4.24) and Theo-
rem 19.4.3].

Theorem 19.4.6. If 0 � ˛ < p � 2, 1 � p � 2, and X1; : : : ; Xn 2 X.`p;�/ are
i.i.d. and X�

1 ; : : : ; X
�
n 2 X.`p;�/ are i.i.d. such that E.X1 �X�

1 / D 0, then

bLp

 

n�1=˛
n
_

kD1
Sk; n

�1=˛
n
_

kD1
S�
k

!

� .p=.p � 1//Bpn1=p�1=˛
bLp.X1;X�

1 /

(19.4.49)
and

	.Z1;Z
�
n / � .p.p � 1//p=.1Cp/Bp=.1Cp/

p n.1�p=˛/=.pC1/
bLp=.pC1/
p .X1;X

�
1 /:

(19.4.50)

49See Chow and Teicher (1978, p. 247).
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For an application of Theorem 19.4.6 to the problem of stability for queueing
models, refer to Sect. 13.3 of Chap. 13.
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Chapter 20
Ideal Metrics and Stability of Characterizations
of Probability Distributions

The goals of this chapter are to:

• Describe the general problem of stability of probability distributions when a set
of assumptions characterizing them has been perturbed,

• Characterize and study the stability of the class of exponential distributions
through ideal probability metrics,

• Characterize the stability in de Finetti’s theorem,
• Provide as an example a characterization of stability of environmental processes.

Notation introduced in this chapter:

Notation Description

B.˛; ˇ/ Beta distribution with parameters ˛ and ˇ
�.p/ Gamma function
�.˛; �/ Gamma density with parameters ˛ and �
Sp;n;s ; Sp;n WD Sp;n;n p-spheres on R

n

kP �Qk Var.P;Q/
� Absolute continuity

20.1 Introduction

No probability distribution is a true representation of the probabilistic law of a given
random phenomenon: assumptions such as normality, exponentiality, and the like
are seldom if ever satisfied in practice. This is not necessarily a cause for concern
because many stochastic models characterizing certain probability distributions are
relatively insensitive to “small” violations of the assumptions. On the other hand,
there are models where even a slight perturbation of the assumptions that determine
the choice of a distribution will cause a substantial change in the properties of

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 20, © Springer Science+Business Media, LLC 2013
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the model. It is therefore of interest to investigate the invariance or stability of the
set of assumptions characterizing certain distributions by examining the effects of
perturbations of the assumptions.

There are several approaches to this problem. One is based on the concept of
statistical robustness,1 another makes use of information measures,2 and a third one
utilizes different measures of distance.3 It is this third approach that we adopt in
this book; it allows us to derive not merely qualitative results but also bounds on
the distance between a particular attribute of the ideal distribution, the theoretical
representation of the law of the physical random phenomenon under consideration,
and a perturbed distribution obtained from the ideal distribution by an appropriate
weakening of the assumptions.

This stability analysis is formalized as follows: given a specific ideal model,
we denote by U the class of all possible input distributions and by V the class of
all possible output distributions of interest. Let F W U ! V be a transformation
that maps U on V . For example, in the next section, U is the class of all distri-
bution functions (DFs) F on .0;1/ satisfying the moment-normalizing condition
R

xpdF.x/ D 1 for some positive p. For a given F 2 U , the output F.F / 2 V is
the set of distributions of random variables (RVs)

Xk;n;p WD
k
X

jD1
�
p
j

,

n
X

jD1
�
p
j ; 1 � k � n; n 2 N WD f1; 2; : : : g;

where �1; �2; : : : is a sequence of independent and identically distributed (i.i.d.) RVs
with DF F .

The characterization problem we are interested in is as follows: Does there exist
a (unique) DF F D Fp such that Xk;n;p has a beta B.k=p; .n� k/=p/-distribution
for any k � n, n 2 N?

It is well known that F1 is the standard exponential distribution and F2 is the
absolute value of a standard normal RV.4 Having a positive answer to the problem,
our next task is to investigate the stability of the characterization of the input
distribution Fp . The stability analysis may be described as follows: given " > 0, we
seek conditions under which there exist strictly increasing functions f1 and f2, both
continuous strictly increasing and vanishing at the origin, such that the following
two implications hold:

1See, for example, Hampel (1971), Huber (1977), Papantoni-Kazakos (1977), and Roussas (1972).
2See, for example, Akaike (1981), Csiszar (1967), Kullback (1959), Ljung (1978), and Wasserstein
(1969).
3See, for example, Zolotarev (1977a,b, 1983), Kalashnikov and Rachev (1985, 1986a,b, 1988),
Hernandez-Lerma and Marcus (1984), and Rachev (1989).
4See, for example, Cramer (1946, Sect. 18) and Diaconis and Freedman (1987).
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(a) Given a simple probability metric �1 on X.R/, (i) �1.eF p; Fp/ D �1.e�1; �1/ <

" implies (ii) sup
k;n

�1.eXk;n;p; Xk;n;p/ < f1."/.

In (ii), Xk;n;p is determined as previously where the �i are Fp-distributed
[and thus Xk;n;p has a B.k=p; .n � k/=p/-distribution]. Further, in (ii) the
RV eXk;n;p WD Pk

iD1e�
p
i =
Pn

iD1e�
p
i is determined by a “disturbed” sequence

e�1;e�2; : : : of i.i.d. nonnegative RVs with common DF eF p close to Fp in
the sense that (i) holds for some “small” " > 0.

Along with (a), we will prove the continuity of the inverse mapping F�1:

(b) Given a simple p. metric �2 on X.R/, the following implication holds:

sup
k;n

�2.eXk;n;p; Xk;n;p/ < " ) �2.eF p; Fp/ < f2."/:

If a small value of " > 0 yields a small value of f2."/ > 0, i D 1; 2; : : : , then
the characterization of the input distribution U 2 U (in our case U D Fp) can be
regarded as being relatively insensitive to small perturbations of the assumptions, or
stable. In practice, the principal difficulty in performing such a stability analysis is
in determining the appropriate metrics �i such that (a) and (b) hold. The procedure
we use is first to determine the ideal metrics �1 and �2. These are the metrics most
appropriate for the characterization problem under consideration. What is meant
by most appropriate will vary from characterization to characterization, but ideal
metrics have so far been identified for a large class of problems (Chaps. 15–18).
The detailed discussion of the preceding problem of stability will be given in
Sects. 20.2 and 20.3.

In Sect. 20.4, we will consider the stability of the input distributions. Here the
characterization problem arises from the soil erosion model developed by Todorovic
and Gani (1987) and its generalization.5 The outline of the generalized erosion
model is as follows. Let Y , Y1, Y2; : : : be an i.i.d. sequence of random variables;
Yi represents the yield of a given crop in the i th year. Let Z, Z1, Z2; : : : be,
independent of Y , a sequence of i.i.d. RVs; Zi represents the proportion of crop
yield maintained in the year i , Z1 < 1 corresponds to a “bad” year due to erosion,
and Zi > 1 corresponds to a “good” year in which rain comes at the right time.
Further, let � be a geometric RV independent of Y and Z representing a disastrous
event such as a drought. The total crop yield until the disastrous year is

G D
�
X

kD1
Yk

k
Y

iD1
Zi :

Now, the input distributions are U WD .FY ; FZ/ and the output distribution
V D F.U / is the law of G. In general, the description of the class of compound

5See Rachev and Todorovic (1990) and Rachev and Samorodnitsky (1990).
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distributions V.x/ D Pr.G � x/ is a complicated problem.6 Consider the simple
example of V being E.�/, i.e., exponential with parameter � > 0.7 Here, the input
U D .FY ; FZ/ consists of a constant Z D z 2 .0; 1/ and the mixture FY .x/ D
FY .x/ WD zE.�=p/ C .1 � z/.E.�=p/ � E.�z//, where p WD .1 C E�/�1 and �
stands for the convolution operator. Again, we can pose the problem of stability of
the exponential distribution E.�/ as an output of the characterization problem

U D .FY ; FZ/
F�! V D E.�/:

As in the previous example, the problem is to choose an ideal metric providing the
implication

�.Y �; Y / � "
�.Z�; z/ � ı

�

) �.FV � ; E.�// � �."; ı/;

where V � D F.FY � ; FZ� / and � is a continuous strictly increasing function in both
arguments on R

2C and vanishing at the origin.

20.2 Characterization of an Exponential Class
of Distributions fFp; 0 < p � 1g and Its Stability

Let �1; �2; : : : be a sequence of i.i.d. RVs with DF F satisfying the normalization
E�

p
1 D 1, 0 < p <1, and define

Xk;n;p WD
k
X

jD1
�
p
j

,

n
X

jD1
�
p
j ; 1 � k � n; n 2 N WD f1; 2; : : : ; g: (20.2.1)

Theorem 20.2.1. For any 0 < p <1 there exists exactly one distributionF D Fp
such that for all k � n, n 2 N, Xk;n;p has a beta distribution B.k=p; .n � k/=p/8.
Fp has the density

fp.x/ D p1�1=p

�.1=p/
exp

�

�x
p

p

�

; x � 0: (20.2.2)

Proof. Let the RVs f�igi2N have a common density fp . Then

6See the problem of stability in risk theory in Sect. 17.2 of Chap. 17.
7For the general case, see Sect. 20.4.
8The density of a beta distribution with parameters ˛ and ˇ is given by

�.˛ C ˇ/

�.˛/�.ˇ/
x˛�1.1� x/ˇ�1; 0 < x < 1:
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f�p1
.x/ D 1

p1=p�.1=p/
x�1C1=p exp.�x=p/; x � 0;

is the �.1=p; 1=p/-density. Recall that �.˛; �/-density is given by

1

�.�/
˛�x��1 exp.�˛x/; x � 0; � > 0; ˛ > 0:

The family of gamma densities is closed under convolutions, �.˛; �/ � �.˛; �/
D �.˛; �C �/,9and hence

Pk
iD1 �

p
i is �.1=p; k=p/-distributed.

The usual calculations show that

f	.x/ D B
�

k

p
;
n � k
p

�

x�1Ck=p

.x C 1/n=p ; x > 0;

where

	 WD

n
P

iD1
�
p
i

n
P

iDkC1
�
p
i

and

B

�

k

p
;
n � k
p

�

WD �.n=p/

�.k=p/�..n� k/=p/ :

This leads to the B.k=p; .n � k/=p/-distribution of Xk;n;p .10

On the other hand, assuming that X1;n;p has a B.1=p; .n�1/=p/-distribution for
all n 2 N, by the strong law of large numbers (SLLN), nX1;n;p ! �

p
1 a.s. Further,

the density of .nX1;n;p/1=p , given by

�

�

n

p

�

�

�

1

p

�

�

�

n � 1
p

� �
�

xp

n

��1C1=p �
1 � x

p

n

�.n�1/=p�1
p

n
xp�1;

converges pointwise to fp.x/ since

�p

n

�1=p
�

�

n

p

�

�

�

n � 1
p

� ! 1

as n!1.11 Thus, f�1 D fp , as required. ut

9See, for example, Feller (1971).
10See Cramer (1946, Sect. 18) for the case p D 2.
11See, for example, Abramowitz and Stegun (1970, p. 257).



484 20 Ideal Metrics and Stability of Characterizations of Probability Distributions

Remark 20.2.1. One simple extension is to the case wheree�1;e�2; : : : are i.i.d. RVs
on the whole real line satisfying the conditions Ee�1 D 0, Eje�1jp D 1. Then

Xk;n;p D Pk
jD1 je�j jp

.

Pn
jD1 je�j jp is B.k=p; .n � k/=p/-distributed if and only

if the density ef p of �1 satisfies ef p.x/ C ef p.�x/ D fp.jxj/. In this way, for
p D 2 one gets the normal distribution12 and for p D 1 the Laplace distribution.
Uniqueness can be obtained by the additional assumption of symmetry of F .

Remark 20.2.2. To obtain a meaningful result for p D 1, we must normalize
Xk;n;p in (20.2.1) by looking at the limit distribution of

X
1=p

k;n;p D

 

k
P

jD1
�
p
j

!1=p

 

n
P

jD1
�
p
j

!1=p

as p !1.

Let ˇ be a B.k=p; .n � k/=p/-distributed RV, and define 
k;n;p D ˇ1=p ; then

k;n;p has a density given by

f
k;n;p .x/ D B
�

k

p
;
n � k
p

�

pxk�1.1 � xp/.n�1/=p; 0 � x � 1:

By Theorem 20.2.1, �j are Fp-distributed if and only if X1=p

k;n;p

dD 
k;n;p.
Let 
k;n;1 be the weak limit of 
k;n;p as p !1, i.e.,

Pr.
k;n;1 � x/ D
8

<

:

n � k
n

xk; if 0 � x < 1
1; if x � 1:

(20.2.3)

Thus the preceding DF plays the role of a normalized B.k=p; .n � k/=p/-
distribution as p !1. Clearly, X1=p

k;n;p converges to

Xk;n;1 WD
k
_

iD1
�i

,

n
_

iD1
�i ;

�
_

�i WD max �i
�

; (20.2.4)

as p ! 1. Now, similarly to the case where p 2 .0;1/, we pose the following

question: does there exist a (unique) DF F1 of �1 such that Xk;n;1
dD 
k;n;1 for

any k � n, n 2 N?

12See Cramer (1946, Sect. 18).



20.2 Characterization of an Exponential Class of Distributions 485

Theorem 20.2.2. Let �1; �2; : : : be a sequences of positive i.i.d. RVs, and let F1
stand for a uniform distribution on Œ0; 1�. Then Xk;n;1 and 
k;n;1 are equally
distributed for any k � n, n 2 N, if and only if �1 is E1-distributed.

Proof. Assuming that �1 is F1-distributed, the DF of Xk;n;1 has the form Pr.X �
x.X _ Y //, where X and Y are independent with DFs FX.t/ D tk and FY .t/ D
tn�k , 0 � t � 1. Therefore, for 0 � x � 1

FXk;n;1.x/ D
Z x

0

Pr.t � x.t _ Y //dtk

D
Z x

0

Pr.t � xY; Y > t/dtk C
Z x

0

Pr.t � xt; T � t/dtk

DW I1.x/C I2.x/:
Now I1.x/ D Œ.n � k/=n�xk for x 2 Œ0; 1� and I2.x/ D 0 for 0 < x < 1, I2.1/ D
k=n. This implies that Xk;n;1 has a distribution given by (20.2.3).

On the other hand, if X1;n;1 WD �1
ıWn

iD1 �i has the same distribution as 
1;n;1,
then if we let n ! 1, the distribution of

Wn
iD1 �i converges weakly to 1, and

therefore the limit of FX1;n;1 D F
1;n;1 is F�1 D F1. ut
Theorems 20.2.1 and 20.2.2 show that the basic probability distributions –

exponential, normal, and uniform – correspond respectively to F1, F2, and F1 in
our characterization problem. Next, we will examine the stability of the exponential
class Fp , 0 < p � 1.

We now consider a disturbed sequencee�1;e�2; : : : of i.i.d. nonnegative RVs with
common DF eF p close to Fp in the sense that the uniform metric

� WD �.e�1; �1/ D �.eF p; Fp/ (20.2.5)

is close to zero.13 The next theorem says that the distribution of eXk;n;p D
Pk

iD1e�
p
i

.

Pn
iD1e�

p
i is close to the beta B.k=p; .n � k/=p/-distribution w.r.t. the

uniform metric. In what follows, c denotes absolute constants that may be different
in different places and c.: : : / denotes quantities depending only on the arguments
in parentheses.

Remark 20.2.3. In view of the comments at the beginning of the section, the choice
of the metric � as a suitable metric for the problem of stability is dictated by the
following observation. In the stability analysis of the characterization of the input
distribution Fp , we require the existence of simple metrics �1 and �2 such that14

�1.eF p; Fp/ � " ) sup
k;n

�1.eXk;n;p; Xk;n;p/ � f1."/ (20.2.6)

13Here, as before, �.X; Y / WD supx jFX.x/� FY .x/j.
14See (i) and (ii) in implications (a) and (b) in Sect. 20.1 of this chapter.
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and

sup
k;n

�2.eXk;n;p; Xk;n;p/ � " ) �2.eF p; Fp/ � f2."/: (20.2.7)

Clearly, we would like to select metrics �1 and �2 in such a way that as n!1,

�1.Xn; Yn/! 0 ” �2.Xn; Yn/! 0;

i.e., the �i generate the exact same uniformities15 and, in particular, �i metrize the
exact same topology in the space of laws. The ideal choice will be to find a metric
such that both (20.2.6) and (20.2.7) are valid with � D �1 D �2. The next two
theorems show that this choice is possible with � D �.

Theorem 20.2.3. For any 0 < p < 1 and fe�ig i.i.d. with Ee�p1 D 1 and emı WD
Ee�

.2Cı/p
1 <1 .ı > 0) we have

 WD sup
k;n

�.Xk;n;p;eXk;n;p/ � c.ı;emı; p/�
ı=.3.2Cı//: (20.2.8)

Proof. The proof follows the two-stage approach of the method of metric distances
(Fig. 1.1 in Chap. 1).

(a) First stage: solution of problem in terms of ideal metric (Claim 2).
(b) Transition from the ideal metric to the traditional metric (Claims 1, 2, and 4).

We start with the first claim.

Claim 1. The traditional metric � is a regular metric.16 In particular,

�.Xk;n;p; eXk;n;p/

� �

 

k
X

iD1
�
p
i ;

k
X

iD1
e�ip

!

C �

 

n
X

iDkC1
�
p
i ;

n
X

kC1
e�
p
i

!

� n�.�1;e�1/: (20.2.9)

To prove (20.2.9), observe that

Xk;n;p D X1

X1 CX2 ;
eXk;n;p D

eX1

eX1 C eX2

;

where X1 D Pk
iD1 �

p
i , X2 D Pn

iDkC1 �
p
i , eX1 D Pk

iD1e�
p
i , and eX2 D Pn

iDkC1e�
p
i .

Since �.t/ D t=.1C t/ is strictly monotone and Xk;n;p D �.X1=X2/, we have that

�.Xk;n;p; eXk;n;p/ D �

 

X1

X2
;
eX1

eX2

!

:

15See Dudley (2002, Sect. 11.7).
16See Definition 15.3.1(i) in Chap. 15.
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Choosing X�
1

dD X1, X�
1 independent of eX2, we obtain

�

 

X1

X2
;
eX1

eX2

!

� �

�

X1

X2
;
X�
1

eX2

�

C �

 

X�
1

eX2

;
eX1

eX2

!

D sup
x�0

ˇ

ˇ

ˇ

ˇ

Z 1

0

�

Pr

�

y

X2
� x

�

� Pr

�

y

eX2

� x
��

dFX1.y/

ˇ

ˇ

ˇ

ˇ

C sup
x�0

ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

0

"

Pr

�

X1

y
� x

�

� Pr

 

eX1

y
� x

!#

dF
eX2
.y/

ˇ

ˇ

ˇ

ˇ

ˇ

�
Z 1

0

sup
x�0

ˇ

ˇ

ˇP
�

X2 � y

x

�

� P
�

eX2 � y

x

�ˇ

ˇ

ˇ dFX1.y/

C
Z 1

0

sup
x�0
jP.X1 � xy/ � P.eX1 � xy/jdF

eX2
.y/

D �.X1;eX1/C �.X2;eX2/:

The second part of (20.2.9) follows from the regularity of �, i.e.,

�.X CZ; Y CZ/ � �.X; Y /

for Z independent of X , Y .

Claim 2. (Bound from above of the traditional metric � by the ideal metric �2). Let
n > p, E�p1 D Ee�p1 D 1, �2p WD Var.�p1 /,e�

2
p WD Var.e�p1 / <1. Then

�

 

n
X

iD1
�
p
i ;

n
X

iD1
e�
p
i

!

� 3�2=3p

�

2�
�

1 � p
n

���1=3
�
1=3
2

 

1p
n

n
X

iD1
Zi ;

1p
n

n
X

iD1
eZi

!

;

(20.2.10)

where

Zi WD �
p
i � 1
�p

; eZi WD
e�
p
i � 1
�p

;

and

�2.X; Y / WD
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Z x

�1
.FX.t/ � FY .t//dt

ˇ

ˇ

ˇ

ˇ

dx

is the Zolotarev �2-metric.17

17See (15.2.1) and (15.2.2) in Chap. 15.
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Proof. For any n D 1; 2; : : : the following relation holds:

�

 

n
X

iD1
�
p
i ;

n
X

iD1
e�
p
i

!

D �

 

1p
n

n
X

iD1
Zi ;

1p
n

n
X

iD1
eZi

!

:

From (15.2.16) we have

�.X; Y / � 3M2=3.�2.X; Y //
1=3; (20.2.11)

whereM D supx2R fX.x/ and the density of X is assumed to exist. We have

f1=
p
n
Pn
iD1 Zi

.x/ D �p
p
nfPn

iD1 �
p
i
.
p
n�px C 1/

and

f 0
Pn
iD1 �

p
i
.x/

D 1

pn=p�

�

n

p

�

��

n

p
� 1

�

x�2Cn=p exp.�x=p/ � 1

p
x�1Cn=p exp.�x=p/

�

D 0

if and only if .n=p/ � 1 D .1=p/x.
The sum

Pn
iD1 �

p
i is �.1=p; n=p/-distributed and, hence, for n > p the

following inequality holds:

fPn
iD1 �

p
i
.x/ � p.n�p/=p.�1C n=p/.n�p/=p exp.1 � n=p/

pn=p
�

n

p
� 1

�

"

�

n

p
� 1

�n=p�3=2
exp

�

� n
p
C 1

�

.2�/1=2

#

using �.z/ � zz�1=2e�z.2�/1=2:

This implies that

�p
p
nfPn

iD1 �
p
i
.x/ � �p

p
npn=p�1

pn=p
�

n

p
� 1

�1=2

.2�/1=2

D �p

�

2�
�

1 � p
n

���1=2
; (20.2.12)

and thus (20.2.11) and (20.2.12) together imply (20.2.10).
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Since the metric �2 is an ideal metric of order 2, we obtain the following claim.18

Claim 3. (Solution of estimation problem in terms of ideal metric �2).

�2

 

1p
n

n
X

iD1
Zi ;

1p
n

n
X

iD1
eZi ;

!

� �2.Z1;eZ1/: (20.2.13)

Claim 4. (Bound from above of ideal metric �2 by traditional metric �). If
mı <1, then

�2.Z1;eZ1/ � c.ı;emı; p/�
ı=.2Cı/: (20.2.14)

Proof. For RVs X , Y with E.X � Y / D 0 the following inequality holds:

�2.X; Y / �
Z 1

�1
jxjjFX.x/ � FY .x/jdx

� N2�.X; Y /C 1

2
EX2I fjX j > N g C 1

2
EY 2I fjY j > N g

� N2�.X; Y /C 1

2
N�ı.EjX j2 C ı C EjY j2 C ı/:

Minimizing the right-hand side over N > 0, we get (20.2.14).

Combining Claims 2–4 we get �

�

n
P

iD1
�
p
i ;

n
P

iD1
e�
p
i

�

� c.ı;emı; p/
ı=3.2Cı/ if

p=n<1. From Claim 1 we then obtain

�.Xk;n;p;eXk;n;p/ �

8

ˆ

ˆ

<

ˆ

ˆ

:

2p� if p � n

2
;

p�C c�ı=3.2Cı/ if p � k; p < n

2
;

c�ı=3.2Cı/ if p < k;

(20.2.15)

which proves (20.2.8). ut
Remark 20.2.4. Claim 1 of the proof of Theorem 20.2.3 also remains true for the
total variation metric � .19 But � seems to be the appropriate metric for this problem
since � is related to the ideal metric �2 of order 2 [see (20.2.11)], while the total
variation metric is too “strong” to be estimated from above by �2 or any other ideal
metric of order 2.

Open Problem 20.2.1. (Topological structure of metric space .F.R/; �/ of DFs
where � is an ideal metric of order r > 1). Consider the space Xr .X0/, r > 1, of
all RVs X such that EXj D EXj

0 , j D 0; 1; : : : ; Œr�, and EjX jr <1. Let � be an

18See (15.2.18) in Chap. 15.
19See (3.3.13) in Chap. 3.
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ideal metric of order r > 1 in X.X0/, i.e., � is a simple metric, and for any X , Y ,
and Z 2 Xr .X0/ (Z is independent of X and Y ) and any c 2 R

20

�.cX CZ; cY CZ/ � jcjr�.X; Y /:

What is the topological structure of the space of laws of X 2 Xr .X0/ endowed with
the metric �?

Theorem 20.2.3 implies the following result on qualitative stability:21

�1
w�! �1; mı <1 ) eXk;n

w�! Xk;n:

For the stability in the opposite direction we prove the following result.22

Theorem 20.2.4. For any 0 < p < 1 and any i.i.d. sequences f�ig, fe�ig with
E�

p
1 D Ee�p1 D 1 and �1,e�1 having continuous distribution functions, the following

relation holds:

�.�1;e�1/ � sup
k;n

�.Xk;n;p; eXk;n;p/: (20.2.16)

Proof. Denote Xi D �pi and eXi D eX
p
i . Then

sup
k;n

�

 

k
X

iD1
�
p
i

,

n
X

iD1
�
p
i ;

k
X

iD1
e�
p
i

,

n
X

iD1
e�
p
i

!

� sup
n

�

0

B

B

@

X1
n
P

iD1
Xi

;
eX1

n
P

iD1
eXi

1

C

C

A

D sup
n

�

0

B

B

B

@

X1

1

n

nC1
P

iD2
Xi

;
eX1

1

n

nC1
P

iD2
eXi

1

C

C

C

A

� �.X1; eX1/� lim
n!1 �

0

B

B

B

@

X1

1

n

nC1
P

iD2
Xi

; X1

1

C

C

C

A

� lim
n!1 �

0

B

B

B

@

eX1

1

n

nC1
P

iD2
eXi

; eX1

1

C

C

C

A

:

By the strong law of large numbers and the assumption EX1 D EeX1 D 1,

X1

1

n

nC1
P

iD2
Xi

! X1 a.s. and
eX1

1

n

nC1
P

iD2
eXi

! eX1 a.s. (20.2.17)

20See Remark 19.4.6 in Chap. 19.
21See (20.2.6) with �1 D �.
22See (20.2.7) with �2 D �.
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Since X1 and eX1 have continuous DFs, the convergence in (20.2.17) is valid w.r.t.
the uniform metric �. Hence supk;n �.Xk;n;p; eXk;n;p/ � �.X1; eX1/ D �.�1;e�1/,
as required. ut

Next we would like to prove similar results for the case p D 1 and eXk;n;1 D
Wk
iD1e�i

.

Wn
iD1e�i . In this case, the structure of the ideal metric is totally different.

Instead of �2, which is an ideal metric for the summation scheme, we will explore
the weighted Kolmogorov metrics �r , r > 0,23 which are ideal for the maxima
scheme.

We will use the following condition.

Condition 1. There exists a nondecreasing continuous function �.t/ D �
e�1
.t/ W

Œ0; 1�! Œ0;1/, �.0/ D 0 and such that

�.t/ � sup
1�t�x�1

.� logx/�1jF
e�1
.x/� xj:

Obviously Condition 1 is satisfied fore�1
dD �1, uniformly distributed on Œ0; 1�.

Let  .t/ D � log.1 � t/�.t/, and let  �1 be the inverse of  .

Theorem 20.2.5. (i) If Condition 1 holds and if F
e�1
.1/ D 1, then

 WD sup
k;n

�.Xk;n;1;eXk;n;1/ � c.� ı �1.�//1=2 where � WD �.�1;e�1/:

(ii) Ife�1 has a continuous DF, then � �.

Proof. (i) Claim 1. For any 1 � k � n the following inequality holds:

�.Xk;n;1;eXk;n;1/ � �

 

k
_

iD1
�i ;

k
_

iD1
e�i

!

C �

 

n
_

iDkC1
�i ;

n
_

iDkC1
e�i

!

: (20.2.18)

Proof. We use the representation

Xk;n;1 D X1

X1 _ X2 ;
eXk;n;1 D

eX1

eX1 _ eX2

;

where

X1 D
k
_

iD1
�i ; X2 D

n
_

iDkC1
�i ; eX1 D

k
_

iD1
e�i ; eX2 D

n
_

iDkC1
e�i :

23See (19.2.4) in Chap. 19.
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Following the proof of (20.2.9), since � is a simple metric, we may assume .X1;X2/
is independent of .eX1; eX2/. Thus, by the regularity of the uniform metric and its
invariance w.r.t. monotone transformations, we get

�.Xk;n;1;eXk;n;1/ D �

 

X1

X1 _ X2 ;
eX1

eX1 _ eX2

!

D �

 

1 _ X2
X1
; 1 _

eX2

eX1

!

� �

 

X2

X1
;
eX2

eX1

!

� �

 

X2

X1
;
eX2

X1

!

C �

 

eX2

X1
;
eX2

eX1

!

� �.X2;eX2/C �.X1;eX1/;

with the last inequality obtained by taking conditional expectations.

Claim 2. Let24

�� D ��.�1;e�1/ WD sup
0�x�1

.� logx/�1jF�1.x/ � Fe�1.x/j:

Then

�

 

n
_

iD1
�i ;

n
_

iD1
e�i

!

� cp��: (20.2.19)

Proof. Consider the transformation f .t/ D .� log t/�1=˛ (0 < t < 1). Then

�

 

n
_

iD1
�i ;

n
_

iD1
e�i

!

D �

 

f

 

n
_

iD1
�i

!

; f

 

n
_

iD1
e�i

!!

D �

 

n
_

iD1
Xi ;

n
_

iD1
eXi

!

;

(20.2.20)

where Xi D f .�i /, eXi D f .e�i /. Since X1 has extreme-value distribution with
parameter ˛, so does Zn WD n�1=˛Wn

iD1 Xi . The density of Zn is given by

FZn.x/ D
d

dx
exp.�x�˛/ D ˛x�˛�1 exp.�x�˛/;

and thus

Cn WD sup
x>0

fZn.x/ D ˛
�

˛ C 1
˛

�˛C1=˛
exp

�

�˛ C 1
˛

�

: (20.2.21)

Let �˛ be the weighted Kolmogorov metric

�˛.X; Y / D sup
x>0

x˛ jFX.x/ � FY .x/j (20.2.22)

24In fact, �
�

plays the role of ideal metric for our problem.
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(Lemma 19.2.2 in Chap. 19). Then by (19.3.72) and Lemma 19.3.4,

�.X; Y / � ƒ˛A
˛=.1C˛/�1=.1C˛/˛ .X; Y /; (20.2.23)

where ƒ˛ WD .1 C ˛/˛�˛.1C˛/ and A WD supx>0 F
0
Y .x/ (the existence of density

being assumed). Hence, by (20.2.20)–(20.2.23),

�

 

n
_

iD1
�i ;

n
_

iD1
e�i

!

D �.Zn;eZn/ � ƒ˛C
˛=.1C˛/
n �1=.1C˛/˛ .Zn;eZn/; (20.2.24)

where eZn D n�1=˛Wn
iD1 eXi . The metric �˛ is an ideal metric of order ˛ w.r.t. the

maxima scheme for i.i.d. RVs (Lemma 19.2.2) and, in particular,

�˛.Zn;eZn/ � �.X1; eX1/ D ��.�1;e�1/: (20.2.25)

From Condition 1 we now obtain the following claim.

Claim 3. �� � � ı  �1.�/.

Proof. For any 0 � t � 1 the following relation holds:

�� D max

(

sup
0�x�1�"

.� logx/�1jF�1.x/ � xj; sup
1�"�x�1

.� logx/�1jF�1.x/ � xj
)

� max..� log.1 � "//�1�; �."//: (20.2.26)

Choosing " by �."/ D .� log.1 � "//�1�, i.e., � D  ."/, one proves the claim.
From Claims 1–3 we obtain

�.Xk;n;p; eXk;n;p/ � min.n�; c.� ı  �1.�/1=2/; (20.2.27)

which proves (i).
(ii) For the proof of (ii) observe that FWn

iD1e�i
.x/ D F n

�i
! 1 for any x with

F
e�i
.x/ > 0. As in the proof of Theorem 20.2.4, we then obtain

sup
k;n

�

0

B

B

B

@

k
W

iD1
�i

n
W

iD1
�i

;

k
W

iD1
e�i

n
W

iD1
e�i

1

C

C

C

A

� lim sup
n

�

0

B

B

@

�1
n
W

iD1
�i

;
e�1
n
W

iD1
e�i

1

C

C

A

� �.�1;e�1/� lim
n

�

0

B

B

@

�1
n
W

iD1
�i

; �1

1

C

C

A

� lim
n

�

0

B

B

@

e�1
n
W

iD1
e�i

;e�1

1

C

C

A

D �.�1;e�1/

since �1 ande�1 have continuous DFs. ut



494 20 Ideal Metrics and Stability of Characterizations of Probability Distributions

Remark 20.2.5. In Theorem 20.2.5 (i) the constant c depends on ˛ > 0 [see
(20.2.23)]. Thus, one can optimize c by choosing ˛ appropriately in (20.2.22).

20.3 Stability in de Finetti’s Theorem

In this section, we apply the characterization of distributions Fp (0 < p � 1)25 to
show that the uniform distribution on the positive p-sphere Sp;n,

Sp;n WD
(

x D .x1; : : : ; xn/ 2 R
nC W

n
X

iD1
x
p
i D n

)

;

S1;n WD
(

x 2 R
nC W

n
_

iD1
xi D n

)

; (20.3.1)

has approximately independent Fp-distributed components.26 This will lead us
to the stability of the following de Finetti-type theorem. Let � D .�1; : : : ; �n/

be nonnegative RVs and Cn;p the class of �-laws with the property that given
Pn

iD1 �
p
i D s (for p D 1 given

Wn
iD1 �i D s), the conditional distribution of � is

uniform on Sp;n. Then, the joint distribution of i.i.d. �i with commonFp-distribution
is in the class Cn;p . Moreover, if P 2 P.R1C ) and for any n � 1 the projection
T1;2;:::;nP on the first n-coordinates belongs to Cn, then p is a mixture of i.i.d Fp-
distributed RVs (de Finetti’s theorem).

The de Finetti theorem will follow from the following stability theorem: if n
nonnegative RVs �i are conditionally uniform on Sp;n given

Pn
iD1 �

p
i D s (resp.

Wn
iD1 �i D s for p D 1), then the total variation metric � between the law of

.�1; : : : ; �k/ (k fixed, n large enough) and a mixture of i.i.d. Fp-distributed RV

.�1; : : : ; �k/ is less than const � k=n.

Remark 20.3.1. An excellent survey on de Finetti’s theorem is given by Diaconis
and Freedman (1987), where the cases p D 1 and p D 2 are considered in detail.

We start with another characterization of the exponential class of distributions
Fp (Theorem 20.2.1). Let

Sp;s;n WD
(

x 2 R
nC W

n
X

iD1
x
p
i D s

)

denote the p-sphere of radius s in R
nC, 0 < p < 1. The next two lemmas are

simple applications of the well-known formulae for conditional distributions.

25See (20.2.2) and Theorems 20.2.1 and 20.2.2.
26Rachev and Rüschendorf (1991) discuss the approximate independence of distributions on
spheres and their stability properties.



20.3 Stability in de Finetti’s Theorem 495

Lemma 20.3.1. Let �1; : : : ; �n be i.i.d. RVs with common DF Fp , where 0 < p <

1. Then the conditional distribution of .�1; : : : ; �n/ given
Pn

iD1 �
p
i D s, denoted by

Ps;p WD P.�1;:::;�n/jPn
iD1 �

p
i Ds;

is uniform on Sp;s;n.

Similarly, we examine the case p D 1; let �1; : : : ; �n be i.i.d. F1-distributed
[recall that F1 is the .0; 1/-uniform distribution]. Denote the conditional distribu-
tion of .�1; : : : ; �n/ given

Wn
iD1 �i D s by Ps;1 W DPr.�1;:::;�n/jWn

iD1 �iDs.

Lemma 20.3.2. Ps;1 is uniform on S1;s;n WD
˚

x 2 R
nC W

Wn
iD1 xi D s

	

for almost
all s 2 Œ0; 1�.

Now, using the preceding lemma, we can prove a stability theorem related to de
Finetti’s theorem for p D 1.

Let Pn;1
� for � > 0 be the law of .��1; : : : ; ��n/, and let Q.1/

n;s;k be the law of
.�1; : : : ; �k/, where � D .�1; : : : ; �n/ (n > k) is uniform on S1;s;n. In the next
theorem, we evaluate the deviation between Q.1/

n;s;k and Pk;1
s in terms of the total

variation metric

� .Q
.1/

n;s;k; P
k;1
s / WD sup

A2Bk
jQ.1/

n;s;k.A/� Pk;1
s .A/j;

where Bk is the �-algebra of Borel sets in R
k .

Theorem 20.3.1. For any s > 0 and 0 < k � n
� .Q

.1/

n;s;k; P
k;1
s / D k=n: (20.3.2)

Proof. We need the following invariant property of the total variation metric � .

Claim 1 (Sufficiency theorem). If T W Rn ! R is a sufficient statistic for P ,
Q 2 P.Rn/, then

� .P;Q/ D � .P ı T �1;Q ı T �1/: (20.3.3)

Proof. Take � D 1
2
.P C Q/ and let f WD dP=d�, g WD dQ=d�. Since T is

sufficient, then f D h1 ı T , g D h2 ı T , and

h1 D dP ı T �1

d� ı T �1 ; h2 D dQ ı T �1

d� ı T �1 :

Clearly, � .P ı T �1;Q ı T �1/ � � .P;Q/. On the other hand,

� .P;Q/ D sup
A2Bk

ˇ

ˇ

ˇ

ˇ

Z

A

.h1 ı T � h2 ı T /d�
ˇ

ˇ

ˇ

ˇ

� sup
A2Bk

ˇ

ˇ

ˇ

ˇ

Z

T ıA
.h1 � h2/d� ı T �1

ˇ

ˇ

ˇ

ˇ
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D sup
A2Bk

ˇ

ˇ

ˇ

ˇ

Z

T ıA

�

dP ı T �1

d� ı T �1 �
dQ ı T �1

d� ı T �1

�

d� ı T �1
ˇ

ˇ

ˇ

ˇ

� � .P ı T �1;Q ı T �1/;

which proves the claim.
Further, without loss of generality, we may assume s D 1 since

� .Q
.1/

n;s;k; P
k;1
s / D � .Pr.�1;:::;�k/=

Wn
iD1 �iDs ;Pr.s�1;:::;s�k// D � .Q

.1/

n;1;k; P
k;1
1 /

by the zero-order ideality of � .27 Let eQ be the law of �1 _ � � � _ �k

determined by Q
.1/

n;1;k , the distribution of .�1; : : : ; �k/, where the vector � D
.�1; : : : ; �k; �kC1; : : : ; �n/ is uniformly distributed on the simplex S1;1;n D
˚

x 2 R
nC W

W1
iD1 xi D 1

	

. Let eP be the law of �1 _ � � � _ �n, where �i s are i.i.d.

uniforms. Then with 
k;n;1 D Wk
iD1 �i

ıWn
iD1 �i , eQ D Pr
k;n;1 and eQ has a DF

given by (20.2.3). On the other hand, eP..�1; x�/ D xk , 0 � x � 1. Hence,

eQ D n � k
n

eP C k

n
ı1

is the mixture of eP and ı1, the point measure at 1. Consider the total variation
distance

� .Q
.1/

n;1;k; P
k;1
1 /D sup

A2Bk

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

 

.�1; : : :; �k/2A
ˇ

ˇ

ˇ

ˇ

ˇ

n
_

iD1
�iD1

!

� Pr..�1; : : : ; �k/ 2 A/
ˇ

ˇ

ˇ

ˇ

ˇ

:

We realize Qn;1;k is the law of �1=M; : : : ; �k=M , where M D Wn
iD1 �i , so eQ is

the law of max.�1=M; : : : ; �k=M/. By Claim 1,

� .Q
.1/

n;1;k; P
k;1
1 / D � .eQ;eP / D sup

A2Bk

ˇ

ˇ

ˇ

ˇ

n � k
n

eP .A/C k

n
ı1.A/� eP .A/

ˇ

ˇ

ˇ

ˇ

D k

n
sup
A2Bk
jı1.A/ � eP .A/j D k

n
;

as required. ut
Let Cn be the class of distributions of X D .X1; : : : ; Xn/ on RnC, which share

with the i.i.d. uniforms28 the property that, given M WD Wn
iD1 Xi D s, the

conditional joint distribution of X is uniform on S1;s;n. Clearly, Pn;1
s 2 Cn. As a

consequence of Theorem 20.3.1, we get the following stability form of de Finetti’s
theorem.

27See Definition 15.3.1 in Chap. 15.
28See Lemma 20.3.1.
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Corollary 20.3.1. If P 2 Cn, then there is a � such that for all k < n

kPk � P�kk � k=n; (20.3.4)

where Pk is the P -law of the first k-coordinates .X1; : : : ; Xk/ and P�k D
R

Pk;1
� �.ds/.

Proof. Define � D PrWn
iD1 Xi

; then Pk D
R

Q
.1/

n;s;k�.ds/, P�k D
R

Pk;1
s �.ds/, and

therefore � .Pk; P�k/ �
R

� .Q
.1/

n;s;k; P
k;1
s /�.ds/ D k=n. ut

In particular, one gets the de Finetti-type characterization of scale mixtures of
i.i.d. uniform variables.

Corollary 20.3.2. Let P be a probability on R
1C with Pn being the P -law of the

first n coordinates. Then P is a uniform scale mixture of i.i.d. uniform distributed
RVs if and only if Pn 2 Cn for every n.

Following the same method we will consider the case p 2 .0;1/. Let �1; �2; : : :
be i.i.d. RVs with DF Fp given by Theorem 20.2.1. Then, by Lemma 20.3.1, the

conditional distribution of .�1; : : : ; �n/ given
Pn

iD1 �
p
i D s isQ.p/

n;s;k , whereQ.p/

n;s;k is
the distribution of the first k coordinates of a random vector .�1; : : : ; �n/ uniformly
distributed on the p-sphere of radius s, denoted by Sp;s;n. Let Pn;p

� be the law of the

vector .��1; : : : ; ��n/. The next result shows that Q.p/

n;s;k is close to Pk;p

.s=n/1=p
w.r.t.

the total variation metric.

Theorem 20.3.2. Let 0 < p <1; then for k < n � p and k, n big enough,

� .Q
.p/

n;s;k; P
k;p

.s=n/1=p
/ � const� k=n: (20.3.5)

Proof. By the zero-order ideality of � ,

� .Q
.p/

n;s;k; P
k;p

.s=n/1=p
/ D sup

A2Bk
j Pr.�1; : : : ; �k/ 2 .A=�p1 C � � � C �pn D s/

� Pr...s=n/1=p�1; : : : ; .s=n/
1=p�k/ 2 A/j

D sup
A2Bk

ˇ

ˇ

ˇ

ˇ

ˇ

Pr...n=s/1=p�1; : : : ; .n=s/1=p�k/ 2 A/

.
n
X

iD1
..n=s/1=p�i /

p D n/ � Pr..�1; : : : ; �k/ 2 A/
ˇ

ˇ

ˇ

ˇ

ˇ

D � .Q
.p/

n;n;k; P
k;p
1 /:

Thus, it suffices to take s D n. Let eQk be the Q.p/

n;n;k-law of �p1 C � � � C �
p

k

and ePk be the Pk;p
1 -law of �p1 C � � � C �pk . Then � .Q

.p/

n;n;k; P
k;p
1 / D � .eQk;eP k/,

as in the proof of Theorem 20.2.1. By Lemma 20.3.1, we may consider Qn;n;k
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as the law of �1=R; : : : ; �k=R/, where Rp WD .1=n/
Pn

iD1 �
p
i . Thus, eQk is the

law of
Pk

iD1.�i =R/p D n
Pk

iD1 �
p
i

.


Pn
iD1 �

p
i

�

. Hence, as in the proof of

Theorem 20.2.1, eQk has a density

f .x/ D 1

n
B

�

k

p
;
n � k
p

�

�x

n

�.k=p/�1 �
1 � x

n

��1C.n�k/=p
;

B

�

k

p
;
n � k
p

�

WD
�

�

n

p

�

�

�

k

p

�

�

�

n � k
p

� (20.3.6)

for 0 � x � n and f .x/ D 0 for x > n. On the other hand, ePk has a gamma
.1=p; k=p/-density

g.x/ WD 1

pk=p�.k=p/
exp.�x=p/x�1Ck=p; for 0 � x � 1: (20.3.7)

By Scheffe’s theorem [see Billingsley (1999)],

� .eQk;ePk/ D
Z 1

0

jf .x/ � g.x/jdx

D 2

Z 1

0

max.0; f .x/ � g.x//dx

D
Z 1

0

max

�

0;
f .x/

g.x/
� 1

�

g.x/dx: (20.3.8)

By (20.3.6) and (20.3.7), f=g D Ah, where

A D
�p

n

�k=p

�

�

n

p

��

�

�

n � k
p

�

and

h.x/ D exp

�

x

p

�

�

1 � x
n

��1C.n�k/=p

for x 2 Œ0; n� and h.x/ D 0 for x > n. We have

logh.x/ D x

p
C .�1C .n� k/=p/ log

�

1 � x
n

�

and

@

@x
logh.x/ � 0
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if and only if x � k C p. Hence, if k C p � n, then

logh.x/ � k C p
p
C
�

n � k
p
� 1

�

log

�

1 � k C p
n

�

: (20.3.9)

We use the following consequence of the Stirling expansion of the gamma
function:29

�.x/ D exp.�x/xx 1=2.2�/1=2 exp.�=12x/; 0 � � < 1: (20.3.10)

This implies that

A D
� n

n � k
�.n�k/=pC1=2

exp

�

�k
p

�

e�

with

e� D exp

�

p

12

�

�1

n
� �2

n � k
��

� exp
� p

12n

�

and 0 � �i < 1. Hence,

Ah � e
� n

n � k
�.n�k/=pC1=2 �n � k � p

n

�.n�k/=p�1
e�

D e

�

n � k � p
n � k

�.n�k/=p
n

n � k � p
� n

n � k
�1=2

e�

D e
�

1 � p

n � k
�.n�k/=p n

n � k � p
�

1

1 � k=n
�1=2

e�:

We use the following estimate:

sup
0�x<a

ˇ

ˇ

ˇexp.�x/ �
�

1 � x
a

�aˇ
ˇ

ˇ � c=a (20.3.11)

with c WD sup0�x<a x exp.�x/ D 1=e, a > 1, implying that

ˇ

ˇ

ˇ

ˇ

e
�

1 � p

n � k
�.n�k/=p � 1

ˇ

ˇ

ˇ

ˇ

� p

n � k :

Furthermore, we use the estimates

�

1 � k
n

��1=2
� 1C k

2n
and e� � exp

� p

12n

�

� 1C p

12n
exp.1=12/

29See Abramowitz and Stegun (1970, p. 257).
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to obtain

Ah �
�

1C p

n � k
� n

n � k � p
�

1C k

n

��

1C p exp.1=12/

12n

�

;

implying that Ah� 1 is bounded by the right-hand side of (20.3.5). ut
Analogously to Corollary 20.3.1 and 20.3.2, we can state de Finetti’s theorem

(and its stable version) for the class Cn;p of distributions ofX1; : : : ; Xn, which share
with i.i.d. Fp-distributed RVs .�1; : : : ; �n/ the property that given

Pn
iD1 X

p
i D s, the

conditional joint distribution of X is uniform on the positive pth sphere Sp;s;n.

20.4 Characterization and Stability of Environmental
Processes

The objective of this section is the study of four stochastic models that take
into account the effect of erosion on annual crop production. More precisely,
we are concerned with the limit behavior of four recursive equations modeling
environmental processes:

S0 D 0; Sn
dD .Y C Sn�1/Z; (20.4.1)

M0 D 0; Mn
dD .Y _Mn�1/Z; (20.4.2)

G
dD .Y C ıG/Z; (20.4.3)

and

H
dD .Y _ ıH/Z; (20.4.4)

where the RVs on the right-hand sides of (20.4.1)–(20.4.4) are assumed to be
independent. Y , Z, S.�/, M.�/, G, and H are RVs taking on values in the Banach
space B D C.T / of continuous functions x on the compact set T with the usual
supremum norm kxk. For any x; y 2 B define the pointwise maximum and
multiplication: .x _ y/.t/ D x.t/ _ y.t/ and .x � y/.t/ D x.t/ � y.t/. Z in (20.4.2)
and (20.4.4) is assumed to be nonnegative, i.e., Z.t/ � 0 for all t 2 T . Finally,
ı D ı.d/ is a Bernoulli RV independent of Y , G, H , Z with success probability d .

Equation (20.4.1) arises in modeling the total crop yield over n years. That is,
consider a set of crop-producing areas At (t 2 T ), and denote by fYn.t/gn�1 the
sequence of annual yields. For fixed n, the real-valued RVs Yn.t/, t 2 T , are
dependent. Let Zn.t/ be the proportion of crop yield maintained in year n after
the environmental effect from the previous year: Zn.t/ < 1 corresponds to a “bad”
year, probably due to erosion, while Zn.t/ � 1 corresponds to a “good” year.
The RVs Zn are assumed to be i.i.d. and independent of fYng. Assuming that the
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crop-growing area At is subject to environmental effects, the resulting sequence of
annual yields is

Xn.t/ D Yn.t/
n
Y

iD1
Zi .t/: (20.4.5)

Let us denote by

Sn.t/ D
n
X

kD1
Xk.t/; n 2 N; (20.4.6)

the total crop yield over n years. Then, clearly, the process Sn satisfies the recursive
Eq. (20.4.1), where here and in what follows Y and Z are generic independent RVs

with Y
dD Y1 and Z

dD Z1, and independent of the Yi and Zi .
Analogously, the maximal crop yield over n years

Mn D
n
_

kD1
Xk (20.4.7)

has a distribution determined by (20.4.2).
Next we consider the situation where each year a disastrous event may occur with

probability 1 � d 2 .0; 1/. The year of the disaster is a geometric RV � D �.d/,
Pr.�.d/ D k/ D .1� d/dk�1, k 2 N. Thus, the total crop yield until the disastrous
year can be modeled by

G WD S� D
�
X

kD1
Xk

dD
1Cı�
X

kD1
Xk

dD X1 C ı
1C�
X

kD2
Xk

dD Y1Z1 C ı
1C�
X

kD2
Yk

k
Y

iD1
Zi

dD YZ C ıZ
1C�
X

kD2
Yk�1

k
Y

iD2
Zi

dD .Y C ıG/Z; (20.4.8)

i.e., G satisfies the recurrence (20.4.3). Analogously, the maximal crop yield until
the year of the disaster

H WD M� D
�
_

kD1
Xk (20.4.9)

satisfies (20.4.4).
Further, our goal is to prove that Sn has a limit S (a.s.) and S satisfies

S
dD .Y C S/Z: (20.4.10)

Similarly, the limit M of Mn in (20.4.2) satisfies

M
dD .Y _M/Z: (20.4.11)



502 20 Ideal Metrics and Stability of Characterizations of Probability Distributions

The problem is characterizing the set of solutions of (20.4.10), (20.4.11),
(20.4.3), and (20.4.4). Since the general solution seems to be difficult to obtain,
we will use appropriate approximations and evaluate the error involved in these
approximations.

Following the main idea of this book that each approximation problem has
natural (suitable, ideal) metrics in terms of which a problem can be solved easily
and completely, we choose Lp-metric and its minimal `p for our approximation
problem. Recall that X.B/ is the set of all random elements on a nonatomic
probability space f�;A;Prg with values in B and

Lp.X; Y / WD
8

<

:

.EkX � Y kp/p0

; if 0 <1; p0 D min.1; p�1/
PrfX ¤ Y g; if p D 0
ess sup kX � Y k; if p D1; X; Y 2 X.B/:

(20.4.12)

The corresponding minimal (simple) metric `p.X; Y / D `p.PrX ;PrY / is given by30

`p.X; Y / D inffLp.eX;eY /I eX;eY 2 X.B/; eX
dD X;eY dD Y g: (20.4.13)

In what follows we will need some analogs to the Lp-metric in the space X.B1/.
The space B1 is a Banach space with the usual supremum norm defined by kXk D
supfkXik W i � 1g, where X D .X1;X2; : : : /. Now, on X.B1/ we consider the
following metrics:

K.X; Y / D inff" > 0 W Pr.kX � Y k > "/ < "g (Ky Fan), (20.4.14)

Lp.X; Y / D .EkX � Y kp/1^p�1

for 0 < p <1; (20.4.15)

L0.X; Y / D PrfX ¤ Y g; and L1.X; Y / D ess sup kX � Y k:
Clearly, if Xn and X are random elements in X.B/, then Xn ! X (Pr-a.s.) if

and only if K.X�
n ; X

�/! 0, where X�
n WD .Xn;XnC1; : : : / and X� D .X;X; : : : /.

Similarly to the proof of Lemma 8.3.1 in Chap. 8, we have that if

Efsupn�1 kXnkpg C EkXkp <1
for some p 2 Œ1;1/, then as n!1,

Lp.X�
n ; X

�/! 0 if and only if Xn ! X (Pr-a.s.) and

E sup
m�n
kXmkp ! EkXkp: (20.4.16)

In both limit cases p D 0, p D1,

Lp.X�
n ; X

�/! 0) Xn ! X (Pr-a.s.): (20.4.17)

30The basic properties of `p-metrics were summarized in Chap. 19; see (19.3.9)–(19.3.18).
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Theorem 20.4.1. (a) (Existence of limit S ). Suppose that fYngn2N � X.B/ is an
i.i.d. sequence with Np.Y / <1, where 0 � p � 1, and

Np.Y / WD Lp.Y; 0/ D `p.Y; 0/ D
8

<

:

ŒEkY k�min.1;1=p/; 0 < p <1;
ess sup kY k; p D 1;
Pr.Y ¤ 0/; p D 0:

(20.4.18)

Assume also that fZngn2N � X.B/ is an i.i.d. sequence independent of
fYngn2N such that Np.Z/ < 1. Given Sn by (20.4.6), there exists S such that
Sn ! S (Pr-a.s.). Moreover, S satisfies (20.4.10) with Y , Z, and S mutually
independent.

(b) (Rate of convergence of Sn to S ). Let p 2 Œ0;1�, Np.Y / <1, and Np.Z/ <
1. Assume that the laws of Sn and S are specified by (20.4.1) and (20.4.10),
respectively. Then,

`p.Sn; S/ � Nn
p .Z/

Np.Y /

1 �Np.Z/ : (20.4.19)

Proof. (a) For any k; n 2 N, 1 � p <1,

Lp.S�
n ; S

�
nC1/ D Lp..Sn; SnC1; : : : /; .SnCk; SnCkC1; : : : //

D
0

@Emax
m�n













mCk
X

iDm
Yi

i
Y

jD1
Zj













p1

A

1=p

�
X

i�n

0

@EkYikp
i
Y

jD1
kZj kp

1

A

1=p

D Np.Y /.Np.Z//n=.1 �Np.Z//:

On the other hand, the space of all sequencesX with EkXkp <1 is complete
with respect to Lp and, thus, S� D .S; S; : : : / exists. Finally, notice that
Lp.S�

n ; S
�/ � .Np.Z//n Np.Y /=.1�Np.Z// holds. This proves the assertion

for 1 � p < 1. The cases 0 � p < 1 and p D 1 are treated analogously.
Equation (20.4.10) follows from Sn ! S (Pr-a.s.) and (20.4.1).

(b) From (20.4.1) and (20.4.10) we have for 0 < p <1
`p.Sn; S/ � Lp..Y C Sn�1/Z; .Y C S/Z/ � L.Sn�1Z; SZ/

� fEkSn�1 � SkpkZkpg1^p�1 D Lp.Sn�1; S/Np.Z/;

(20.4.20)
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where the last inequality follows from the independence of .Sn�1; S/ and Z.
Taking the minimum of the right-hand side of (20.4.20) over all the joint
distributions of Sn�1 and S we obtain

`p.Sn; S/ � `.Sn�1; S/Np.Z/: (20.4.21)

Hence,

`p.Sn; S/ � `p.0; S/N n
p .Z/ D Np.S/Nn

p .Z/: (20.4.22)

From the Minkowski inequality

Np.S/ � Np.Z/Np.Y C S/ � Np.Z/fNp.Y /CNp.S/g;
which implies that Np.S/ � Np.Y / f1 �Np.Z/g�1. This and (20.4.22) prove
(20.4.10). The cases p D 0 and p D1 can be handled similarly. ut

The problem of characterizing the distribution of S as a solution of

S
dD .S C Y /Z is still open. Here we consider two examples.

Example 20.4.1. Let the distribution of S 2 X.B/ be symmetric ˛-stable. In other
words, the characteristic function of Si D .S.t1/; : : : ; S.tn//, t D .t1; : : : ; tn/, 0 <
t1 < � � � < tn � 1, is

E expfi.�; St/g D exp

�

�
Z

Rn

j.�; s/j˛�Si .ds/
�

;

where �Si .�/ is the spectral, finite symmetric measure of a symmetric ˛-stable ran-
dom vectorSt .

31 For any z 2 .0; 1/ let us choose an ˛-stable Yt D .Y.t1/; : : : ; Y.tn//
with spectral measure

�Yt .ds/ D
1 � z˛

z˛
�St .ds/:

Then S satisfies (20.4.8), with Z D z and Y having marginals Yt .32

Example 20.4.2 (Rachev and Samorodnitsky 1990). Let B D R, Z be a uniformly
.0; 1/-distributed RV. Consider (20.4.10) with nonnegative Y and S . If �X stands
for the Laplace transform of a nonnegative RV X , then, by (20.4.10), ��S.�/ D
R �

0
�S.x/�Y .x/dx for all � > 0. Differentiating we obtain

�Y .�/ D 1C ��0
S .�/=�S.�/;

and thus

31See Kuelbs (1973) and Samorodnitski and Taqqu (1994).
32For other similar examples, see class L, Feller (1971, Sect. 8, Chap. XVII).
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�S.�/ D exp

 

�
Z �

0

1 � �Y .x/
x

dx

!

: (20.4.23)

It follows from (20.4.23) that

1 >

Z �

0

.1 � �Y .x//
x

dx D
Z �

0

�Z 1

0

exp.�xy/.1 � FY .y//dy
�

dx

D
Z 1

0

.1 � FY .y// .1 � exp.�y�/
y

dy:

Thus,
Z 1

1

1 � FY .y//
y

dy <1 or
Z 1

1

.lny/FY .dy/ <1:

Thus, in the equation

S
dD .Y C S/Z; (20.4.24)

where Z is uniformly distributed, Y must satisfy

E ln.l C Y / <1: (20.4.25)

With an appeal to Feller (1971, Theorem XIII 4.2), we draw the following
cnclusions.

(a) Any RV Y satisfying (20.4.25) gives a unique solution FS of (20.4.24) for which
the Laplace transform is given by �S.�/ in (20.4.23). More detailed analysis of
(20.4.24) shows:

(b) Any distribution FS determined by (20.4.24) is infinitely divisible. More pre-
cisely, let Y correspond to S in (20.4.24), and let 0 < ˇ < 1. Then there is
a distribution FSˇ with Laplace transform �S.�/ˇ; FS solves (20.4.24), and the
corresponding FYˇ is the mixture FYˇ .x/ D .1 � ˇ/F0.x/C ˇFy.x/.

(c) The class S of RVs S solving (20.4.24) consists of infinitely divisible RVs whose
Lèvy measure � is of the following form:33

�	 Leb and �.dx/ D H.x/dx; (20.4.26)

where H.0/ 2 Œ0; 1�, H is nonincreasing, and H.x/ # 0 as x ! 1. The
corresponding Y has 1 �H as its distribution function.

Finally, note that if S is the solution of (20.4.24) with given Y and uniformly
distributed Z, then for any ˛ > 0

S
dD .S C Y˛/Z˛; (20.4.27)

33See Shiryayev (1984, p. 337).
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where S , Y˛, and Z˛ are independent, FY˛ is the mixture

˛

1C ˛F0 C
1

1C ˛FY ;

and Z˛ has density fZ˛ .z/ D .1C ˛/z˛ , 0 � z � 1.
As we have seen, in general the problem of evaluating the distribution of S is

a difficult one, and in most cases we must resort to approximations. Here we start
with the analysis of the stability of the set of solutions PrS of

S
dD .Y C S/Z; (20.4.28)

where Y , S , and Z are independent RVs in X.B/ with some Y and Z for which we
only know that they are close to some given Y � and Z�.

Suppose we want to approximate the distribution of S in (20.4.28) by the
distribution of S� defined by

S� dD .Y � C S�/Z�; (20.4.29)

where Y �, S�, andZ� are independent and such that we can evaluate the law of S�
given the laws of Z� and Y �, respectively. Assume also that the distributions of Z
and Z� (resp. Y and Y �) are close w.r.t. the minimal metric `p, i.e., for some small
" > 0 and ı > 0

`p.Z;Z
�/ < " and `p.Y; Y

�/ < ı: (20.4.30)

Theorem 20.4.2. Assume that (20.4.30) holds,

Np.Z
�/ < 1 � ";

and

Np.Y
�/CNp.S�/ <1:

Then

`p.S; S
�/ � ."CNp.Z�//ı C fNp.Y �/CNp.S�/g"

1� " �Np.Z�/
: (20.4.31)

Proof. From the definition of S and S�,

`p.S; S
�/ D `p.Z.Y C S/;Z�.Y � C S�//

� `p.Z.Y C S/;Z.Y � C S�//C `p.Z.Y � C S�/; Z�.Y � C S�//

� Np.Z/`p.Y C S; Y � C S�/CNp.Y � C S�/`p.Z;Z�/

� Np.Z/Œ`p.Y; Y �/C `p.S; S�/�C `p.Z;Z�/ŒNp.Y �/CNp.S�/�;
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and thus

`p.S; S
�/ � Np.Z/ı C fNp.Y �/CNp.S�/g"

1 �Np.Z/ :

Finally, by the triangle inequality and (20.4.18), Np.Z/ D `p.Z; 0/ � "CNpZ�/,
which proves the assertion. ut

In a similar fashion, one may evaluate the rate of convergence of Mn ! M ,

where Mn D sup1�k�n Xk , Mn
dD .Y _Mn�1/Z (here Z � 0 and the product and

maximum are pointwise). Similarly to Theorem 20.4.1, letting n!1, one obtains
(20.4.11). Further, since Z and Y are independent,

`p.Mn;M/ � Lp..Y _Mn�1/Z; .Y _M/Z/

� Lp.Mn�1Z;M _Z/ � Lp.Mn�1;M/Np.Z/:

From this, as in Theorem 20.4.1(b), we get

`p.Mn;M/ � Nn
p .Z/

Np.Y /

1 �Np.Z/:

Suppose now that the assumption of Theorem 20.4.1 (b) holds; then Mn ! M

(a.s.), and

Lp.M �
n ;M

�/ � Nn
p .Z/

Np.Z/

1 �Np.Z/ ;

whereM �
n D .Mn;MnC1; : : : /, M � D .M;M; : : : /.

Example 20.4.3. All simple max-stable processes are solutions ofM
dD .Y _M/Z.

Given an ˛-max-stable process M , i.e., one whose marginal distributions are
specified by

PrfM.t1/ � x1; : : : ;M.tn/ � xng

D exp

�

�
Z

�

�

max
1�i�n.�ix

�˛
i /Ut.d�1 : : : ; d�n/

��

;

where ˛ > 0, t D .t1; : : : ; tn/ and U.�/ is a finite measure on34

� D
(

.�1; : : : ; �n/I�i > 0; i D 1; : : : ; n;
n
X

1

�i D 1
)

:

For any z 2 .0; 1/, if we define the max-stable

Yt D .Y.t1/; : : : ; Y.tn//

34See Resnick (1987).
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with max-stable measure

UYt .d�/ D
1 � z˛

z˛
UMt

.d�/;

then M satisfies (20.4.11), with Z D z and Y being ˛-max-stable with marginals
having spectral measure MYt . A more general example of M as a solution of the
preceding equation is given by Balkema et al. (1993), where the class L for the
maxima scheme is studied.

Example 20.4.4. Suppose B D R andZ is .0; 1/-uniformly distributed. ThenM
dD

.Y _M/Z implies that

FM.x/ D exp

�

�
Z 1

x

1

t
F Y .t/dt

�

; F WD 1 � FY : (20.4.32)

For example, if Y has a Pareto distribution, F Y .t/ D min.1; t�ˇ , ˇ > 1, then
M has a truncated extreme-value distribution

FM .x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

exp

�

�1C x � x1�ˇ

ˇ � 1
�

; for 0 � x � 1

exp

�

� x
1�ˇ

ˇ � 1
�

; for x � 1:
(20.4.33)

From (20.4.11) it also follows that

FM.x/ > 0; 8x > 0 ” E ln.1C Y / <1: (20.4.34)

Note that if M has an atom at its origin, then

0 < Pr.M � 0/ D Pr.M � 0/ Pr.Y � 0/;

i.e., Y 
 0, the degenerate case. Moreover, the condition E ln.1 C Y / < 1 is

necessary and sufficient for the existence of the nondegenerate solution of M
dD

.Y _ M/Z given by (20.4.32).35 Clearly, the latter assertion can be extended for

any Z such that Z˛ is .0; 1/-uniformly distributed for some ˛ > 0 since M
dD

.M _ Y /Z ) M˛ dD .M˛ _ Y ˛/Z˛.

As far as the approximation of M is concerned, we have the following theorem.

Theorem 20.4.3. Suppose the distribution of M is determined by (20.4.11) and

M � dD Z�.Y � _M �/; `p.Z;Z
�/ < "; `p.Y; Y

�/ < ı: (20.4.35)

35See Rachev and Samorodnitsky (1990).
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Assume also that Np.Z�/ � 1 � " and Np.Y / C Np.M
�/ < 1. Then, as in

Theorem 20.4.2, we arrive at

`p.M;M
�/ � ."CNp.Z�//ı C ŒNp.Y �/CNp.M �/�"

1 �Np.Z�/� " : (20.4.36)

Proof. Recall that `p-metric is regular with respect to the sum and maxima of
independent RVs, i.e., `p.X C Z; Y C Z/ � `p.X; Y / and `p.X _ Z; Y _ Z/ �
`p.X; Y / for any X , Y , Z 2 X.B/, and Z-independent of X and Y [see (19.4.2)–
(19.4.6)]. Thus, one can repeat step by step the proof of Theorem 20.4.2 by replacing

the equation S
dD .S C Y /Z with M

dD .M _ Y /Z. ut
Note that in both Theorems 20.4.2 and 20.4.3, the `p-metric was chosen as a

suitable metric for the stability problems under consideration. The reason is the
double ideality of `p , i.e., `p plays the role of ideal metric for both summation and
maxima schemes.36

Next, we consider the relation

G
dD Z.Y C ıG/; (20.4.37)

where, as before, Z, Y , and G are independent elements of B D C.T /, and ı is a
Bernoulli RV, independent of them, with Prfı D 1g D d . IfZ 
 1, thenG could be
chosen to have a geometric infinitely divisible distribution, i.e., the law of G admits
the representation

G
dD
�.d/
X

iD1
Yi ; (20.4.38)

where the variables Yi are i.i.d. and �.d/ is independent of the Yi geometric RVs
with mean 1=.1� d/ [see (20.4.8)].

Lemma 20.4.1. In the finite-dimensional case B D R
m, a necessary and sufficient

condition for G to be geometric infinitely divisible is that its characteristic function
is of the form

fG.t/ D .1 � log�.t//�1; (20.4.39)

where �.�/ is an infinitely divisible characteristic function.

The proof is similar (but slightly more complicated) to that of Lemma 20.4.2,
and we will write it in detail.

Example 20.4.5. Suppose Z has a density

pZ.z/ D .1C z/z˛; for z 2 .0; 1/: (20.4.40)

36See Sect. 19.4 of Chap. 19.
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Then, from (20.4.37) we have

�˛C1fG.�/ D .˛ C 1/
Z �

0

u˛fY .u/f.1� d/C dfG.u/gdu;

where f.�/ stands for the characteristic function of the RV .�/. Differentiating we
obtain the equation

f 0
G.�/C

˛ C 1
�

Œ1 � dfY .�/�fG.�/ D ˛ C 1
�

.1 � d/fY .�/

whose solution clearly describes the distribution of G for given Z and Y .
Next, let us consider the approximation problem assuming that Z D z is a

constant close to 1. Suppose further that the distribution of Y belongs to the
class of “aging” distributions HNBUE.37 Then our problem is to approximate the
distribution of G defined by

G
dD Z.Y C ıG/; Z D z.const/; FY 2 HNBUE; (20.4.41)

where Y and G are independent, by means of G� specified by

G� dD Y � C ıG; F �
Y .t/ D 1 � exp.�t=�/ t � 0; (20.4.42)

where Y � andG� are independent. Given thatEY D � and VarY D �2, we obtain
the following estimate of the deviation between the distributions of Y and Y � in
terms of the metric `p ,38

`1.Y; Y
�/ � 2.�2 � �2/1=2; (20.4.43)

and for p > 1

`p.Y; Y
�/ � .�2 � �2/1=4p8��.2p/1=p: (20.4.44)

The following proposition gives an estimate of the distance between G and G�.

Theorem 20.4.4. Suppose that G satisfies (20.4.37) where Z, Y , and G are
independent elements of B D C.T / and ı is a Bernoulli RV independent of them,
and consider

G� dD .Y � C ıG�/Z�; G�; Z�; Y � 2 X.B/;

37See Definition 17.4.1 in Chap. 17.
38See Kalashnikov and Rachev (1988, Chap. 4, Sect. 2, Lemma 10).
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where G�, Z�, Y �, and ı are again independent. Assume also that

`p.Z;Z
�/ � "; `p.Y; Y

�/ � ı; Np.Z
�/d < 1 � "d:

Then

`p.G;G
�/ � ."CNp.Z�//ı C ŒNp.Y �/C dNp.G�/�"

1 � dNp.Z�/� d"
:

Proof. Analogously to Theorem 20.4.2,

`p.G;G
�/ � `p.Z.Y C ıG/;Z.Y � C ıG�//C `p.Z.Y � C ıG�/; Z�.Y � C ıG�//

� Np.Z/`p.Y C ıG; Y � C ıG�/CNp.Y � C ıG�/`p.Z;Z
�/

� Np.Z/Œ`p.Y; Y
�/C d`p.G;G�/�C ŒNp.Y �/C dNp.G�/�`p.Z;Z

�/:

(20.4.45)

The assertion follows from this and Np.Z/ � "CNp.Z�/. ut
In the special case given in (20.4.41) and (20.4.42), the inequality

`p.G;G
�/ � Np.Z/ı C ŒNp.Y �/C dNp.G�/�"

1 � dNp.Z/
(20.4.46)

holds and, moreover, Np.Y �/ C dNp.G�/ � .1 C d/=.1 � d/�.�.p C 1//1=p .
Finally, since " D `p.Z;Z

�/ D 1 � z, and ı can be defined as the right-hand side
of (20.4.43) or (20.4.44), we have the following theorem.

Theorem 20.4.5. If G and G� are given by (20.4.41) and (20.4.42), respec-
tively, then

`p.G;G
�/ � 1 � z

1 � zd
�.�.p C 1//1=p 1C d

1 � d C
zıp
1 � zd

; (20.4.47)

where

ıp WD
(

2.�2 � �2/1=2; if p D 1
�.2p/1=p.�2 � �2/1=4p8�; if p > 1

and Np.Y / D .EY p/1=p .
For p D 1 we obtain from (20.4.47)

Z 1

�1
jFG.x/ � FG� .x/jdx � 2

1 � zd

��

1 � z

1 � d
�

�C z.�2 � �2/1=2
�

:
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Finally, consider the geometric maximaH defined by

H
dD Z.Y _ ıH/; or equivalently, H

dD
�.d/
_

kD1
Yk

k
Y

jD1
Zj ; (20.4.48)

where Z, Y , ı, H , �.d/, Yk , and Zj are assumed to be independent, Yk
dD Y ,

Zk
dD Z, Z > 0, Y > 0, andH > 0.

Example 20.4.6. If Z D 1, then H has a geometric maxima infinitely divisible
(GMID) distribution, i.e., for any d 2 .0; 1/

H
dD
�.d/
_

1

Yk; (20.4.49)

where Yk D Y
.d/

k , k 2 N, are i.i.d. nonnegative RVs and �.d/ is independent of Yk
geometric RVs

Pr.�.d/ D k/ D .1 � d/dk�1; k � 1: (20.4.50)

Let B D R
m. Let Pr.H � x/ D G.x/, x 2 R

mC, and Pr.Y .d/1 � x/ D Gd.x/. Then
(20.4.49) is the same as

G.x/ D
1
X

jD1
.1 � d/dk�1Gd .x/ D .1� d/Gd .x/

1 � dGd.x/ : (20.4.51)

If we solve for Gd in (20.4.51), then we get

Gd .x/ D G.x/=.1� d C dG.x//; (20.4.52)

which is clearly equivalent to

H
dD Y _ ıH; (20.4.53)

where Y
dD Y .d/1 [see (20.4.49)].

We now characterize the class GMID. We will consider the slightly more general
case where H and Yk are not necessarily nonnegative. The characterizations are
in terms of max-infinitely divisible (MID) distributions, exponent measures, and
multivariate extremal processes.39 A MID distribution F with exponent measure
� has the property that the support Œx W F.x/ > 0� is a rectangle. Let ` 2 R

m

be the bottom of this rectangle [see Resnick (1987, p. 260)]. Clearly, in the one-
dimensional case m D 1, any DF F is a MID distribution.

39For background on these concepts, see Resnick (1987, Chap. 5).
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Lemma 20.4.2. For a distribution G on R
m the following are equivalent:

(i) G 2 GMID.
(ii) exp.1 � 1=G/ is a MID distribution.

(iii) There exists ` 2 Œ�1;1/m and an exponent measure � concentrated on the
rectangle fx 2 R

m, x 2 `g, such that for any x � `

G.x/ D 1

1C �.Rm n Œ`; x�/ :

(iv) There exists an extremal process fY.t/; t > 0g with values in R
m and an

independent exponential RV E with mean 1 such that G.x/ D Pr.Y.E/ � x/.
Proof. (i)) (ii). We have the following identity:

G D lim
˛#0

1

��

1C 1

˛

�

1 � G

˛ C .1 � ˛/G
��

: (20.4.54)

Therefore,

exp.1� 1=G/ D lim
˛#0

exp

�

� 1
˛

�

1 � G

˛ C .1 � ˛/G
��

:

If G 2 GMID, then G=.˛ C .1 � ˛/G/ is a DF for any ˛ 2 .0; 1/, which
implies that40

exp

�

� 1
˛

�

1 � G

˛ C .1 � ˛/G
��

is a MID distribution. Since the class of MID distributions is closed under weak
convergence, it follows that exp.1 � 1=G/ is a MID distribution.
(ii)) (iii). If exp.1 � 1=G/ is a MID distribution, then, by the characterization
of MID distribution, there exists ` 2 Œ�1;1/m and an exponent measure �
concentrating on fx W x � `g such that for

x � `; exp

�

1 � 1

G.x/

�

D expf��.Rm n Œ`; x�/g

and equating exponents yields (iii).
(iii)) (iv). Suppose � is the exponent measure assumed to exist by (iii), and let
fY.t/; t > 0g be an extremal process with

Pr.Y.t/ � x/ D expf�t�.Rm n Œ`; x�/g: (20.4.55)

40See Resnick (1987, pp. 257–258).
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Then

Pr.Y.E/ � x/ D
Z 1

0

e�t Pr.Y.t/ � x/dt D
Z 1

0

e�t expf�t�.Rm n Œ`; x�/gdt

D 1=.1C �.Rm n Œ`; x�//;

as required.
(iv)) (i). Suppose G.x/ D Pr.Y.E/ � x/. If (20.4.55) holds, then

G.x/ D 1=.1C �.Rm n Œ`; x�//:

To show G 2 GMID, we need to show that

G.x/

1 � d C dG.x/
D 1

1C .1� d/�.Rm n Œ`; x�/
is a distribution, and this follows readily by observing

Pr.Y..1 � d/E/ � x/ D 1

1C .1 � d/�.Rm n Œ`; x�/ :

ut
In particular, Lemma 20.4.2 implies that the real-valued RV H has a GMID

distribution if and only if its DFFH can be represented as FH.t/ D .1�logˆ.t//�1,
whereˆ.t/ is an arbitrary DF. For instance, if

ˆ.x/ D exp.�x�˛/; x > 0;

then

FH.x/ D x˛

1C x˛ ; x � 0;
is the log logistic distribution with parameter ˛ > 0. Ifˆ is the Gumbel distribution,
i.e.,ˆ.x/ D exp.�e�x/, x 2 R, then clearly FH is the exponential distribution with
parameter 1.

Example 20.4.7. Consider (20.4.53) for real-valued RVs Z, Y , andH .
Assume Z has the density (20.4.40). Then

FH.x/ D
Z 1

0

FY

�

x

z

��

1C dFH

�

x

z

��

.˛ C 1/z˛dz

or

x�˛�1FH .x/ D .˛ C 1/
Z 1

x

FY .y/Œ1C dFH.y/�y
�˛�2dy:
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This equation is easily solved, and we obtain

FH.x/ D
�

exp�.˛ C 1/
Z 1

x

1

u
Œ1 � dFY .u/�du

�

�.˛ C 1/
Z 1

x

�

exp.˛ C 1/
Z 1

y

1

u
Œ1 � dFY .u/�du

�

1

y
FY .y/dy:

(20.4.56)

The stability analysis is handled in a similar way to Theorem 20.4.4. Consider
the equations

H
dD .Y _H/Z and H� dD .Y � _H�/Z�; (20.4.57)

where Y , H , Z (resp. Y �, H�, Z�) are independent nonnegative elements of
X.B/. Following the model from the beginning of Chap. 20, suppose that the input
distributions .PrY ;PrZ/ and .PrY � ;PrZ�/ are close in the sense that

`p.Z;Z
�/ � " `p.Y; Y

�/ � ı: (20.4.58)

Then the output distributions PrH , PrH� are also close, as the following theorem
asserts.

Theorem 20.4.6. Suppose H and H� satisfy (20.4.57) and (20.4.58) holds. Sup-
pose also that Np.Z�/ < 1 � "d . Then

`p.H;H
�/ � ."CNp.Z�//ı C ŒN p.Y �/C dNp.H�/�"

1 � dNp.Z�/� d"
:

The proof is similar to that of Theorem 20.4.4.
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Part V
Euclidean-Like Distances and Their

Applications



Chapter 21
Positive and Negative Definite Kernels
and Their Properties

The goals of this chapter are to:

• Formally introduce positive and negative definite kernels,
• Describe the properties of positive and negative definite kernels,
• Provide examples of positive and negative definite kernels and to characterize

coarse embeddings in a Hilbert space,
• Introduce strictly and strongly positive and negative definite kernels.

Notation introduced in this chapter:

Notation Description

K Positive definite kernel
ReK Real part of a positive definite kernel
Nc Complex conjugate of complex number c 2 C

H.K/ Hilbert space with reproducing kernel K
.';  /H Inner product between two elements of Hilbert space H
L Negative definite kernel
.X;A; �/ Space X with measure � defined on algebra A of Bair subsets of X

21.1 Introduction

In this chapter, we introduce positive and negative definite kernels, describe their
properties, and provide theoretical results that characterize coarse embeddings in
a Hilbert space. This material prepares the reader for the subsequent chapters in
which we describe an important class of probability metrics with a Euclidean-like
structure.

We begin with positive definite kernels and then continue with negative definite
kernels. Finally, we discuss necessary and sufficient conditions under which a metric
space admits a coarse embedding in a Hilbert space.

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 21, © Springer Science+Business Media, LLC 2013
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21.2 Definitions of Positive Definite Kernels

One of the main notions of Part V of this book is that of the positive definite kernel.
Some definitions and results can be found, for example, in Vakhaniya et al. (1985).

Let X be a nonempty set. A map K W X2 ! C is called a positive definite kernel
if for any n 2 N an arbitrary set c1; : : : ; cn of complex numbers and an arbitrary set
x1; : : : ; xn of points of X the following inequality holds:

n
X

iD1

n
X

jD1
K.xi ; xj /ci Ncj � 0: (21.2.1)

Here and subsequently the notation Nc denotes the complex conjugate of c.
The 12 main properties of positive definite kernels are explained below.

Property 21.2.1. Let K be a positive definite kernel. Then for all x; y 2 X

K.x; x/ � 0; K.x; y/ D NK.y; x/:

It follows from here that if a positive definite kernel K is real-valued, then it is
symmetric.

Property 21.2.2. If K is a real positive definite kernel, then (21.2.1) holds if and
only if it holds for real c1; : : : ; cn.

Property 21.2.3. If K is a positive definite kernel, then NK and Re K are positive
definite kernels.

Property 21.2.4. If K1 and K2 are positive definite kernels and ˛1; ˛2 are nonnega-
tive numbers, then ˛1K1 C ˛2K2 is a positive definite kernel.

Property 21.2.5. Suppose that K is a positive definite kernel. Then

ˇ

ˇK.x; y/
ˇ

ˇ

2 � K.x; x/K.y; y/

holds for all x; y 2 X.

Property 21.2.6. If K is a positive definite kernel, then

ˇ

ˇK.x; x1/ � K.x; x2/
ˇ

ˇ

2 � K.x; x/
�

K.x1; x1/C K.x2; x2/� 2ReK.x1; x2/
�

holds for all x; x1; x2 2 X.
One can easily prove Properties 21.2.1–21.2.6 on the basis of (21.2.1) for specially
chosen n � 1 and c1; : : : ; cn.

Property 21.2.7. Let K˛ be a generalized sequence of positive definite kernels such
that the limit
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lim
˛

K˛.x; y/ D K.x; y/

exists for all x; y 2 X. Then K is a positive definite kernel.
Property 21.2.7 follows immediately from the definition of positive definite kernel.

For further study of positive definite kernels we will need the following two
theorems.

Theorem 21.2.1 (Aronszajn 1950). Let X be a set, and let K W X2 ! R
1 be a

positive definite kernel. Then there exists a unique Hilbert space H.K/ for which
the following statements hold:

(a) Elements of H.K/ are real functions given on X.
(b) Denoting Kx.y/ D K.x; y/ we have

fKx.y/ W x 2 Xg � H.K/I

(c) For all x 2 X and ' 2 H.K/ we have

.';Kx/ D '.x/:

Note that the space H.K/ is called a Hilbert space with reproducing kernel and the
statement in (c) is also called a reproducing property.

Proof. Let Ho be a linear span of the family

fKx W x 2 Xg:

Define on Ho a bilinear form in the following way: if ' D Pn
iD1 ˛iKxi and  D

Pm
jD1 ˇjKyj , then set

s.';  / D
n
X

iD1

m
X

jD1
˛iˇjK.xi ; yj /;

where ˛i ; ˇj 2 R
1 and xi ; yj 2 X. It is easy to see that the value s.';  / does not

depend on the concrete representations of elements ' and  . It is obvious that s is
a symmetric positive form satisfying the condition

s.';Kx/ D '.x/; ' 2 Ho; x 2 X:

The last relation and Cauchy–Bunyakovsky inequality imply that ' D 0 if
s.'; '/ D 0. Therefore,

.';  / D s.';  /

is the inner product in Ho.
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Denote by H the completion ofHo, and let H.K/ be a set of real-valued functions
given on X of the form

'.x/ D .h;Kx/H;

where h 2 H and .:; :/H is the inner product in H. Define the following inner
product in H.K/:

.'1; '2/H.K/ D .h1; h2/H:

The definition is correct because the linear span of elements Kx is dense everywhere
in H. The space H.K/ is complete because it is isometric to H. We have

Kx.y/ D .Kx;Ky/H;

and therefore Kx 2 H.K/, that is, Ho � H.K/.
The reproducing property follows now from the equalities

.';Kx/H.K/ D .h;Kx/H D '.x/:

The uniqueness of a Hilbert space satisfying (a)–(c) follows from the fact that the
linear span of the family fKx W x 2 Xg must be dense (according to the reproducing
property) in that space. ut
Remark 21.2.1. Repeating the arguments of Theorem 21.2.1, it is easy to see that if
K is a complex-valued positive definite kernel, then there exists a unique complex
Hilbert space satisfying (b) and (c) whose elements are complex-valued functions.

Theorem 21.2.2 (Aronszajn 1950; Kolmogorov 1941). A function K W X2 ! R
1

is a positive definite kernel if and only if there exist a real Hilbert space H and a
family fax W x 2 Xg � H such that

K.x; y/ D .ax; ay/ (21.2.2)

for all x; y 2 X.

Proof. Suppose that K.x; y/ has the form (21.2.2). Then K.x; y/ D K.y; x/. Let
n 2 N, x1; : : : ; xn 2 X, c1; : : : ; cn 2 R

1. We have

n
X

iD1

n
X

jD1
K.xi ; xj /ci cj D

n
X

iD1

n
X

jD1
.axi ; axj /ci cj D

�

�

�

n
X

iD1
ciaxi

�

�

�

2

H
� 0:

According to Property 21.2.1 of positive definite kernels, K is positive definite.
Conversely, if K is a positive definite kernel, then we can choose H as the Hilbert
space with reproducing kernel K and set ax D Kx . ut
Remark 21.2.2. Theorem 21.2.2 remains true for complex-valued functions K, but
the Hilbert space H must be complex in this case.
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Let us continue studying the properties of positive definite kernels. We need to
use the notion of summable family.

Suppose that I is a nonempty set and QI is a set of all finite nonempty subsets
of I . QI is a directed set with respect to inclusion. A family fuigi2I of elements of
a Banach space U is called summable if the generalized sequence

P

i2˛ ui , ˛ 2 QI ,
converges in U . If u is the limit of this generalized sequence, then we write

X

i2I
ui D u:

Property 21.2.8. A function K W X2 ! C is a positive definite kernel if and only if
there exists a family ffi gi2I of complex-valued functions such that

P

i2I jfi.x/j2 <
1 for any x 2 X and

K.x; y/ D
X

i2I
fi .x/ Nfi .y/; x; y 2 X: (21.2.3)

If K is real-valued, then the functions fi , i 2 I , may be chosen as real-valued.

To prove the positive definiteness of kernel (21.2.3), it is sufficient to note that each
summand is a positive definite kernel and apply Properties 21.2.5 and 21.2.7.

Theorem 21.2.2 implies the existence of a Hilbert space H and of the family
fax; x 2 Xg � H such that K.x; y/ D .ax; ay/ for all x; y 2 X. Let us take the
orthonormal basis fuigi2I in H, and set

fi .x/ D .ax; ui /; x 2 X; i 2 I:

It is clear that
X

i2I
jfi .x/j2 D kaxk2 < 1

and

K.x; y/ D .ax; ay/ D
X

i2I
.ax; ui /.ay; ui / D

X

i2I
fi .x/ Nfi .y/:

Property 21.2.9. Suppose that K1 and K2 are positive definite kernels. Then K1 �K2

is a positive definite kernel. In particular, jK1j2 is a positive definite kernel, and for
any integer n � 1 Kn

1 is a positive definite kernel.
The proof follows from the fact that the product of two functions of the form (21.2.3)
has the same form.

Property 21.2.10. IfK is a positive definite kernel, then exp.K/ is a positive definite
kernel, too.

The proof follows from the expansion of exp.K/ in power series and Proper-
ties 21.2.7 and 21.2.9.
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Property 21.2.11. Let X D X1 �X2, where X1 and X2 are nonempty sets. Suppose
that Kj W X2j ! C is a positive definite kernel (j D 1; 2). Then K W X2 ! C

defined as
K.x; y/ D K1.x1; y1/ � K2.x2; y2/

for all x D .x1; x2/ 2 X, y D .y1; y2/ 2 X is a positive definite kernel.
The proof follows immediately from (21.2.3).

Property 21.2.12. Let .X;A/ be a measurable space, and let� be a �-finite measure
on it. Suppose that K W X2 ! C is a positive definite kernel on X2, which is
measurable and integrable with respect to � � �. Then

Z

X

Z

X

K.x; y/d�.x/d�.y/ � 0:

Proof. If K is a measurable (with respect to the product of �-fields) function of two
variables, then the function K.t; t/ of one variable is measurable, too. Therefore,
there exists a set Xo 2 A such that �.Xo/ < 1, and the function K.t; t/ is bounded
on Xo. Because K is positive definite, we have

n
X

iD1
K.ti ; ti /C

X

i¤j
K.ti ; tj / � 0

for all n � 2, t1; : : : ; tn 2 X. Integrating both sides of the last inequality over the set
Xo with respect to the n-times product � � � � � � � we obtain

n.�.Xo//
n�1

Z

Xo

K.t; t/d�.t/Cn.n�1/.�.Xo//n�2
Z

Xo

Z

Xo

K.s; t/d�.s/d�.t/�0;

and, in view of the arbitrariness of n,

Z

Xo

Z

Xo

K.s; t/d�.s/d�.t/ � 0: ut

21.3 Examples of Positive Definite Kernels

Let us give some important examples of positive definite kernels.

Example 21.3.1. Let F be a nondecreasing bounded function on the real line.
Define

K.x; y/ D
Z 1

�1
ei.x�y/udF.u/;
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where i is the imaginary unit. Then K is a positive definite kernel because of

n
X

sD1

n
X

tD1
K.xs; xt /cs Nct D

Z 1

�1

n
X

sD1
eixsucs

n
X

tD1
eixtuctdF.u/

D
Z 1

�1

ˇ

ˇ

ˇ

n
X

sD1
eixsucs

ˇ

ˇ

ˇ

2

dF.u/ � 0:

The kernel

K1.x; y/ D ReK.x; y/ D
Z 1

�1
cos..x � y/u/dF.u/

is also positive definite.

Example 21.3.2. Let F be a nondecreasing bounded function on R
1 such that

Z 1

�1
exudF.u/ < 1

for all x 2 R
1. Define

K.x; y/ D
Z 1

�1
e.xCy/udF.u/:

It is easy to see that K is a positive definite kernel.

Let, as usual, No be the set of all nonnegative integers.

Example 21.3.3. Suppose that F is a nondecreasing bounded function on R
1 such

that
Z 1

�1
undF.u/

converges for all u 2 No. Define K W N
2 ! R

1 as

K.m; n/ D
Z 1

�1
umCndF.u/:

It is easy to see that K is a positive definite kernel.

Example 21.3.4. The inner product .x; y/ in the Hilbert space H as a function
of two variables is a positive definite kernel on H2. From here it follows that
expf.x; y/g and expfRe .x; y/g are positive definite kernels.

Example 21.3.5. The kernel

K.x; y/ D expf�kx � yk2g;
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where x; y are elements of the Hilbert space H, is positive definite. Indeed, for all
x1; : : : ; xn 2 H and c1; : : : ; cn 2 C we have

n
X

iD1

n
X

jD1
ci Ncj expf�kxi � xjk2g

D
n
X

iD1

n
X

jD1
ci Ncj expf�kxik2g � expf�kxj k2g � expf2Re .xi ; xj /g

D
n
X

iD1

n
X

jD1
c0
i Nc0
j expf2Re .xi ; xj /g � 0;

where c0
i D ci expf�kxik2g, and we used the positive definiteness of the kernel

expf2Re .x; y/g.

Example 21.3.6. Suppose that x; y are real numbers. Denote by x_y the maximum
of x and y. For any fixed a 2 R

1 set

Ua.x/ D
(

1 for x < a;

0 for x � a:

Suppose thatF is a nondecreasing bounded function on R
1, and introduce the kernel

K.x; y/ D
Z 1

�1
Ua.x _ y/dF.a/:

For all sets x1; : : : ; xn and c1; : : : ; cn of real numbers we have

n
X

iD1

n
X

jD1
K.xi ; xj /ci cj D

Z 1

�1

 

n
X

iD1
Ua.xi /ci

!2

dF.a/ � 0;

that is, K represents a positive definite kernel.

The following example provides a generalization of Example 21.3.6.

Example 21.3.7. Let X be an arbitrary set and A a subset of X. Define

K.x; y/ D
(

1 for x 2 A and y 2 A;
0 otherwise:

Then K is a positive definite kernel on X2,
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n
X

iD1

n
X

jD1
K.xi ; xj /ci cj D

X

j Wxj2A

�
X

i Wxi2A
ci
�

cj D �
X

i Wxi2A
ci
�2 � 0:

21.4 Positive Definite Functions

Suppose that X D R
d is a d -dimensional Euclidean space. Let f be a complex-

valued function on R
d . We will say that f is a positive definite function if K.s; t/ D

f .s � t/ is a positive definite kernel on R
d � R

d .

Theorem 21.4.1 (Bochner 1933). Let f be a complex-valued function on R
d . f

is a positive definite continuous function under condition f .0/ D 1 if and only if f
is a characteristic function of a probability measure on R

d .

Proof. For simplicity, we consider the case of d D 1.

(a) Let f .t/ D Eei tX , where X is a random variable. Then for all t1; : : : ; tn 2 R
1

and c1; : : : ; cn 2 C we have

n
X

jD1;kD1
f .tj � tk/cj Nck D E

n
X

jD1

n
X

kD1

�

cj ei tj X
�� Ncke�i tkX�

D E
ˇ

ˇ

n
X

jD1
cj ei tj X

ˇ

ˇ

2 � 0:

Therefore, the characteristic function of an arbitrary random variable is positive
definite.

(b) Suppose now that f is a continuous positive definite function such that f .0/ D
1. It is easy to calculate that for any � > 0 the function

'�.t/ D
(

1 � jt j
�

for jt j � � I
0 for jt j � �

is a characteristic function of the density

p.x/ D 1

��

sin2.�x=2/

x2
:

Let us consider the expression

p�.x/ D 1

2��

Z �

0

du
Z �

0

f .u � v/e�iuxeivxdv: (21.4.1)
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According to Property 21.2.12, we have p�.x/ � 0. But, changing the variables
in (21.4.1), we easily find

p�.x/ D 1

2�

Z �

��
e�i tx

�

1 � jt j
�

�

f .t/dt � 0: (21.4.2)

From the general properties of characteristic functions, we see from (21.4.2)
that p� 2 L1.R1/ is the probability density function with characteristic function

�

1 � jt j
�

�

f .t/:

But

f .t/ D lim
�!1

�

1 � jt j
�

�

f .t/; f .0/ D 1;

and f is a characteristic function in view of its continuity. ut
Let us now consider a complex-valued function f given on the interval .�a; a/

(a > 0) on the real line. We will say that f is a positive definite function on .�a; a/
if f .x � y/ is a positive definite kernel on .�a; a/ � .�a; a/. The following result
was obtained by Krein (1940).

Theorem 21.4.2. Let f be given on .�a; a/ and continuous at the origin. Then f
is positive definite on .�a; a/ if and only if

f .x/ D
Z 1

�1
eixtd�.t/;

where �.t/ .�1 < t < 1/ is a nondecreasing function of bounded variation.

We omit the proof of this theorem.

21.5 Negative Definite Kernels

Let X be a nonempty set, and L W X2 ! C. We will say that L is a negative definite
kernel if for any n 2 N, arbitrary points x1; : : : ; xn 2 X, and any complex numbers
c1; : : : ; cn, under the condition

Pn
jD1 cj D 0, the following inequality holds:

n
X

iD1

n
X

jD1
L.xi ; xj /ci Ncj � 0: (21.5.1)

The nine properties of negative definite kernels are as follows:
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Property 21.5.1. If L is a real symmetric function on X2, then L is a negative
definite kernel if and only if (21.5.1) holds for arbitrary real numbers c1; : : : ; cn
under the condition

Pn
jD1 cj D 0.

Property 21.5.1 follows from the definition of a negative definite kernel.

Property 21.5.2. If L is a negative definite kernel satisfying the condition

L.x; y/ D L.y; x/

for all x; y 2 X, then the function ReL is a negative definite kernel.
This property is an obvious consequence of Property 21.5.1.

Property 21.5.3. If the negative definite kernel L satisfies the conditions

L.x; x/ D 0; L.x; y/ D L.y; x/

for all x; y 2 X, then ReL � 0.
For the proof it is sufficient to put in (21.5.1) n D 2; x1Dx; x2Dy; c1D1; and
c2 D �1.

Property 21.5.4. If K W X2 ! C is a positive definite kernel, then the function L
defined by

L.x; y/ D K.x; x/C K.y; y/ � 2K.x; y/; x; y 2 X;

represents a negative definite kernel such that

L.x; x/ D 0; L.x; y/ D L.y; x/; x; y 2 X:

The proof follows from the definitions of positive and negative definite kernels.

Property 21.5.5. Suppose that L is a negative definite kernel such that L.xo; xo/ D
0 for some xo 2 X. Then the function

K.x; y/ D L.x; xo/C L.xo; y/ � L.x; y/; x; y 2 X;

is a positive definite kernel.

Proof. Take n 2 N, x1; : : : ; xn 2 X, c1; : : : ; cn 2 C, and co D �Pn
jD1 cj . Then

n
X

iD1

n
X

jD1
K.xi ; xj /ci Ncj D

n
X

iD0

n
X

jD0
K.xi ; xj /ci Ncj D

n
X

iD0

n
X

jD0
L.xi ; xj /ci Ncj � 0:

ut
Property 21.5.6. Suppose that a real-valued negative definite kernel L satisfies the
conditions
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L.x; x/ D 0; L.x; y/ D L.y; x/; x; y 2 X:

Then L can be represented in the form

L.x; y/ D K.x; x/C K.y; y/ � 2K.x; y/; x; y 2 X; (21.5.2)

where K is a real-valued positive definite kernel.
Let us fix an arbitrary xo 2 X. Set

K.x; y/ D 1

2

�

L.x; xo/C L.xo; y/ � L.x; y/
�

; x; y 2 X:

According to Property 21.5.5, K represents a positive definite kernel. It is easy to
verify that K satisfies (21.5.2).

Property 21.5.7. Let H be a Hilbert space and .ax/x2X a family of elements of H.
Then the kernel

L.x; y/ D kax � ayk2
is negative definite. Conversely, if a negative definite kernel L W X2 ! R

1 satisfies
the conditions L.x; x/ D 0, L.x; y/ D L.y; x/, then there exists a real Hilbert
space H and a family .ax/x2X of its elements such that

L.x; y/ D kax � ayk2; x; y 2 X:

The first part of this statement follows from Property 21.5.1. The second part follows
from Property 21.5.6 and the Aronszajn–Kolmogorov theorem.

Property 21.5.8. Let L W X2 ! C satisfy the condition L.x; y/ D L.y; x/ for all
x; y 2 X. Then the following statements are equivalent:

(a) expf�˛Lgis a positive definite kernel for all ˛ > 0.
(b) L is a negative definite kernel.

Proof. Suppose that statement (a) is true. Then it is easy to see that for any ˛ > 0

the kernel L˛ D .1 � expf�˛Lg/=˛ is negative definite. It is clear that the limit
function L D lim˛!0 L˛ is negative definite, too.

Now let us suppose that statement (b) holds. Passing from the kernel L to the
function Lo D L�L.xo; xo/, we may suppose that L.xo; xo/ D 0 for some xo 2 X.
According to Property 21.5.5, we have

L.x; y/ D L.x; xo/C L.y; xo/ � K.x; y/;

where K is a positive definite kernel. Let ˛ > 0. For any n 2 N, x1; : : : ; xn 2 X,
c1; : : : ; cn 2 C we have
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n
X

iD1

n
X

jD1
expf�˛L.xi ; xj /gci Ncj

D
n
X

iD1

n
X

jD1
expf�˛L.xi ; xo/g � expf�˛L.xj ; xo/g � expf˛K.xi ; xj /gci Ncj

D
n
X

iD1

n
X

jD1
expf˛K.xi ; xj /gc0

i Nc0
j � 0;

where c0
i D expf�˛L.xi ; xo/gci . ut

Property 21.5.9. Suppose that a negative definite kernel L W X2 ! R
1C satisfies

the conditions

L.x; x/ D 0; L.x; y/ D L.y; x/; x; y 2 X:

Let � be a measure on R
1C such that

Z

R
1
C

min.1; t/d�.t/ < 1:

Then the kernel

L�.x; y/ D
Z

R
1
C

.1 � expf�tL.x; y/g/d�.t/; x; y 2 X;

is negative definite. In particular, if ˛ 2 Œ0; 1�, then L˛ is a negative definite kernel.
According to Property 21.5.8, the function expf�tL.x; yg is a positive definite
kernel; therefore, 1 � expf�tL.x; yg is negative definite for all t � 0. Hence,
L�.x; y/ is a negative definite kernel. To complete the proof, it is sufficient to note
that L˛ D C˛L�˛ , where �˛.B/ D R

B
x�.˛C1/dx for any Borel set B � R

1C and C˛
is a positive constant.

Theorem 21.5.1 (Schoenberg 1938). Let .X; d / be a metric space. .X; d / is
isometric to a subset of a Hilbert space if and only if d2 is a negative definite kernel
on X2.

Proof. Let us suppose that d2 is a negative definite kernel. According to Prop-
erty 21.5.7, there exists a Hilbert space H and a family .ax/x2X such that

d2.x; y/ D kax � ayk2;

that is, d.x; y/ D kax � ayk. Therefore, the map x ! ax is an isometry from X to
Y D fax W x 2 Xg � H.
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Let us now suppose that f is an isometry from .X; d / to a subset Y of a Hilbert
space H. Set ax D f .x/. We have

d.x; y/ D kax � ayk;

that is,
d2.x; y/ D kax � ayk2;

which is a negative definite kernel by Property 21.5.7. ut
Let us now give one important example of negative definite kernels.

Example 21.5.1. Let .X ;A; �/ be a space with a measure (� is not necessarily a
finite measure). Define the function  p W Lp.X;A; �/ ! R

1C by setting

 p.x/ D kxkpp D
Z

X
jx.t/jpd�.t/; x 2 X D Lp:

Then
L.x; y/ D  p.x � y/; x; y 2 X

is a negative definite kernel for any p 2 .0; 2�.
Proof. Indeed, the kernel .u; v/ ! ju � vjp is negative definite on R

1, and therefore

n
X

iD1

n
X

jD1
kxi � xj kpci cj D

Z

X

0

@

X

i;j

ci cj jxi .t/ � xj .t/jp
1

A d�.t/ � 0

for all x1; : : : ; xn 2 Lp , c1; : : : ; cn 2 R
1. ut

From Property 21.5.9 it follows that L˛p is a negative definite kernel for ˛ 2 Œ0; 1�.
Corollary 21.5.1. For any measure �, the space Lp.�/ with 1 � p � 2 is
isometric to some subspace of a Hilbert space.

Proof. The proof follows immediately from Example 21.5.1 and Schoenberg’s
theorem 21.5.1. ut

21.6 Coarse Embeddings of Metric Spaces into Hilbert Space

Definition 21.6.1. Let .X; d1/ and .Y; d2/ be metric spaces. A function f from X
to Y is called a coarse embedding if there exist two nondecreasing functions �1 and
�2 from R

1C into itself and such that

�1.d1.x; y// � d2.f .x/; f .y// � �2.d1.x; y// for all x; y 2 X; (21.6.1)
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lim
z!1�1.z/ D 1: (21.6.2)

Our goal here is to prove the following theorem.

Theorem 21.6.1. A metric space .X; d / admits a coarse embedding into a Hilbert
space if and only if there exist a negative definite symmetric kernel L on X2 and
nondecreasing functions �1; �2 such that

L.x; x/ D 0; 8x 2 XI (21.6.3)

�1.d.x; y// � L.x; y/ � �2.d.x; y//I (21.6.4)

lim
z!1 �1.z// D 1: (21.6.5)

Proof. Suppose that there exists a negative definite kernel L satisfying
(21.6.3)–(21.6.5). According to Theorem 21.5.1, there exists a Hilbert space H
and a map f W X ! H such that

L.x; y/ D kf .x/ � f .y/k2 for all x; y 2 X:

Therefore,
p

�1.d.x; y// � kf .x/ � f .y/k � p

�2.d.x; y//;

which means that f is a coarse embedding.
Suppose now that there exists a coarse embedding f from X into a Hilbert space

H. Set
L.x; y/ D kf .x/ � f .y/k2:

According to Property 21.5.7 of Sect. 21.5, L is a negative definite kernel satisfying
(21.6.3). This kernel satisfies (21.6.4) and (21.6.5) by the definition of a coarse
embedding. ut

21.7 Strictly and Strongly Positive and Negative Definite
Kernels

Let X be a nonempty set, and let L W X2 ! C be a negative definite kernel. As we
know, this means that for arbitrary n 2 N, any x1; : : : ; xn 2 X, and any complex
numbers c1; : : : ; cn, under the condition

Pn
jD1 cj D 0, the following inequality

holds:
n
X

iD1

n
X

jD1
L.xi ; xj /ci Ncj � 0: (21.7.1)

We will say that a negative definite kernel L is strictly negative definite if the
equality in (21.7.1) is true for c1 D � � � D cn D 0 only.
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If L is a real-valued symmetric function given on X2, then bearing in mind
Property 21.5.1 of negative definite kernels shows us that L is a negative definite
kernel if and only if (21.7.1) is true for all real numbers c1; : : : ; cn (

Pn
jD1 cj D 0),

and the equality holds for c1 D � � � D cn D 0 only.
Let K be a positive definite kernel. We will say that K is a strictly positive definite

kernel if the function

L.x; y/ D K.x; x/C K.y; y/ � 2K.x; y/; x; y 2 X (21.7.2)

is a strictly negative definite kernel.
Let K be real-valued symmetric function given on X2. Suppose that K is a strictly

negative definite kernel and L is defined by (21.7.2). Then L.x; x/ D 0 for any
x 2 X. Choosing in (21.7.1) n D 2, c1 D 1 D �c2, we obtain L.x; y/ � 0 for all
x; y 2 X, and L.x; y/ D 0 if and only if x D y. Let us now fix arbitrary x; y; z 2 X
and set in (21.7.1) n D 3, x1 D x, x2 D y, x3 D z, c1 D �=.L.x; z//1=2, c2 D
�=.L.y; z//1=2, c3 D �.c1 C c2/, � D �

.L.x; z//1=2 C .L.y; z//1=2
�

=.L.x; y//1=2.
Then (21.7.1) implies that

.L.x; y//1=2 � .L.x; z//1=2 C .L.z; y//1=2:

As K.x; y/ D K.y; x/, then L.x; y/ D L.y; x/. Therefore, bearing in mind
Schoenberg’s theorem 21.5.1, we obtain the following theorem.

Theorem 21.7.1. Let X be a nonempty set and K a real-valued symmetric function
on X2. Suppose that K is a strictly positive definite kernel and L is defined by
(21.7.2). Then

d.x; y/ D .L.x; y//1=2 (21.7.3)

is a metric on X. The metric space .X; d / is isometric to a subset of a Hilbert space.

Later in this section we will suppose that X is a metric space. We will denote by
A the algebra of its Bair subsets. When discussing negative definite kernels, we will
suppose they are continuous, symmetric, and real-valued. Denote by B the set of all
probability measures on .X;A/.

Suppose that L is a real continuous function, and denote by BL the set of all
measures � 2 B for which the integral

Z

X

Z

X

L.x; y/d�.x/d�.y/

exists.

Theorem 21.7.2. Let L be a real continuous function on X2 under the condition

L.x; y/ D L.y; x/; x; y 2 X: (21.7.4)
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The inequality

2

Z

X

Z

X

L.x; y/d�.x/d�.y/ �
Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/ � 0 (21.7.5)

holds for all �; � 2 BL if and only if L is a negative definite kernel.

Proof. It is obvious that the definition of a negative definite kernel is equivalent to
the condition that

Z

X

Z

X

L.x; y/h.x/h.y/dQ.x/dQ.y/ � 0 (21.7.6)

for any probability measure Q given on .X;A/ and arbitrary integrable function h
satisfying the condition

R

X h.x/dQ.x/ D 0. Let Q1 be an arbitrary measure from
B dominating both � and �. Denote

h1 D d�

dQ1

; h2 D d�

dQ1

; h D h1 � h2:

Then inequality (21.7.5) may be written in the form (21.7.6) for Q D Q1, h D
h1 �h2. The measureQ1 and the function h with zero mean are arbitrary in view of
the arbitrariness of � and �. Therefore, (21.7.5) and (21.7.6) are equivalent. ut
Definition 21.7.1. LetQ be a measure on .X;A/, and let h be a function integrable
with respect to Q and such that

Z

X

h.x/dQ.x/ D 0:

We will say that L is a strongly negative definite kernel if L is negative definite and
the equality

Z

X

Z

X

L.x; y/h.x/h.y/dQ.x/dQ.y/ D 0

implies that h.x/ D 0 Q-almost everywhere (a.e.) for any measureQ.

Theorem 21.7.3. Let L be a real continuous function satisfying (21.7.4). Inequal-
ity (21.7.5) holds for all measures �; � 2 B, with equality in the case � D � only, if
and only if L is a strongly negative definite kernel.

Proof. The proof is obvious in view of the equivalency of (21.7.5) and (21.7.6). ut
Of course, a strongly negative definite kernel is at the same time a strictly negative
definite kernel.

Here are some examples of strongly negative definite kernels.
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Example 21.7.1. Let X D R
1. Set

U.z/ D
Z 1

0

�

1 � cos.zx/
�1C x2

x2
d	.x/;

where 	.x/ is a real nondecreasing function, 	.�0/ D 0. It is easy to verify that the
kernel

L.x; y/ D U.x � y/

is negative definite. L is strongly negative definite if and only if supp 	 D Œ0;1/.

Because

jxjr D cr

Z 1

0

�

1 � cos.xt/
� dt

t rC1

for 0 < r < 2, where

cr D 1=

Z 1

0

�

1 � cos t
� dt

t rC1
D �1=

�


.�r/ cos
�r

2

�

;

then jx � yjr is a strongly negative definite kernel for 0 < r < 2. It is a negative
definite kernel (but not strongly) for r D 0 and r D 2.

Example 21.7.2. Let X be a separable Hilbert space. Assume that f .t/ is a
real characteristic functional of an infinitely divisible measure on X. Then
L.t/D� logf .t/ is a negative definite function on X (i.e., L.x � y/; x; y 2 X,
is a negative definite kernel). We know that

L.t/ D 1

2
.Bt; t/ �

Z

X

�

eiht;xi � 1 � iht; xi
1C kxk2

�

1C kxk2
kxk2 d	.x/ ;

where B is the kernel operator and 	 is a finite measure for which 	.f0g/ D 0.
Clearly, if supp 	 D X, then L is a strongly negative definite function on X.

Example 21.7.3. Let L.z/ be a survival function on R
1 [i.e., 1 � L.x/ is a

distribution function]. Then the functionL.x
V

y/ is a negative definite kernel (here
x
V

y is the minimum of x and y). Suppose that

ga.z/ D
	

0 for z � a;

1 for z > a ;

and for all x1 � x2 � � � � � xn we have

n
X

iD1

n
X

jD1
ga.xi ^ xj /hihj D

n
X

iDk

n
X

jDk
hihj D

�
n
X

iDk
hi

�2 � 0;
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where k is determined by the conditions xk > a, xk�1 � a. The foregoing
conclusion now follows from the obvious equality

L.z/ D
Z 1

�1
.1 � ga.x//d�.a/;

where � is a suitable distribution function. Clearly, L.x ^ y/ is a strongly negative
definite kernel if and only if � is decreasing and strictly monotone.
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Chapter 22
Negative Definite Kernels and Metrics:
Recovering Measures from Potentials

The goals of this chapter are to:

• Introduce probability metrics through strongly negative definite kernel functions
and provide examples,

• Introduce probability metrics through m-negative definite kernels and provide
examples,

• Introduce the notion of potential corresponding to a probability measure,
• Present the problem of recovering a probability measure from its potential,
• Consider the relation between the problems of convergence of measures and the

convergence of their potentials,
• Characterize probability distributions using the theory of recovering probability

measures from potentials.

Notation introduced in this chapter:

Notation Description

BK Set of all measures defined on measurable space
.X;A/ such that

R

X K.x; x/d�.x/ < 1
K.�; �/ Positive definite kernel defined on B2K
B.L/ Set BK when kernel K arises from a strongly

negative kernel L
.B.L/;N/ Metric space in which the distance N is defined

through a strongly negative kernel L
R Set of all signed measures on .X;A/
jjRjj Norm of a signed measure R 2 R

N 1=m
m Probability metric arising from m-negative

definite kernel
'.xI�/; x 2 X Potential of a measure �
f .uI�/ Characteristic function of �
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22.1 Introduction

In this chapter, we introduce special classes of probability metrics through negative
definite kernel functions discussed in the previous chapter. Apart from generating
distance functions with interesting mathematical properties, kernel functions are
central to the notion of potential of probability measures. It turns out that for
strongly negative definite kernels, a probability measure can be uniquely determined
by its potential. The distance between probability measures can be bounded by the
distance between their potentials, meaning that, under some technical conditions, a
sequence of probability measures converges to a limit if and only if the sequence
of their potentials converges to the potential of the limiting probability measure.
Finally, the problem of characterizing classes of probability distributions can
be reduced to the problem of recovering a measure from potential. Examples
are provided for the normal distribution, for symmetric distributions, and for
distributions symmetric to a group of transformations.

22.2 N-Metrics in the Set of Probability Measures

In this section, we introduce distances generated by negative definite kernels in the
set of probability measures. The corresponding metric space is isometric to a convex
subset of a Hilbert space.1

22.2.1 A Class of Positive Definite Kernels in the Set
of Probabilities and N-Distances

Let .X;A/ be a measurable space. Denote by B the set of all probability measures
on .X;A/. Suppose that K is a positive definite symmetric kernel on X, and let us
define the following function on X2:

K.�; �/ D
Z

X

Z

X

K.x; y/d�.x/d�.y/: (22.2.1)

Denote by BK the set of all measures � 2 B for which
Z

X

K.x; x/d�.x/ < 1:

Proposition 22.2.1. The function K given by (22.2.1) is a positive definite kernel
on B2K.

1Sriperumbudur et al. (2010) discuss metrics similar to the N-distances that we cover in this
chapter. However, the results they present were already reported in the literature.
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Proof. If �; � 2 BK, then, according to Property 21.2.5 of positive definite kernels
provided in Sect. 21.2 of Chap. 21, the integral on the right-hand side of (22.2.1)
exists. In view of the symmetry of K, we must prove that for arbitrary �1; : : : ; �n 2
BK and arbitrary c1; : : : ; cn 2 R

1 we have

n
X

iD1

n
X

jD1
K.�i ; �j /ci cj � 0:

Approximating measures �i ; �j by discrete measures we can write

K.�i ; �j / D
Z

X

Z

X

K.x; y/d�i .x/d�j .y/ D lim
m!1

m
X

sD1

m
X

tD1
K.xs;i ; xt;j /as;i at;j :

Therefore,

n
X

iD1

n
X

jD1
K.�i ; �j /ci cj D lim

m!1

m
X

sD1

m
X

tD1

2

4

n
X

iD1

n
X

jD1
K.xs;i ; xt;j /.as;i ci /.at;j cj /

3

5 :

The double summation in the square brackets on the right-hand side of the preceding
equality is nonnegative in view of the positive definiteness of K. Therefore, the limit
is nonnegative. ut
Consider now a negative definite kernel L.x; y/ on X2 such that L.x; y/ D L.y; x/
and L.x; x/ D 0 for all x; y 2 X. Then for any fixed xo 2 X the kernel

K.x; y/ D L.x; xo/C L.xo; y/ � L.x; y/

is positive definite (see Property 21.5.5 of negative definite kernels explained in
Chap. 21). According to Proposition 22.2.1, the function

K.�; �/ D
Z

X

Z

X

K.x; y/d�.x/d�.y/

D
Z

X

L.x; xo/d�.x/C
Z

X

L.xo; y/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/ (22.2.2)

is a positive definite kernel on B2K. Property 21.5.4 for negative definite kernels
explained in Chap. 21 shows us that

N .�; �/ D K.�; �/C K.�; �/ � 2K.�; �/

is a negative definite kernel on B2K. Bearing in mind (22.2.2), we can write N in
the form
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N .�; �/ D 2

Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/ �
Z

X

Z

X

L.x; y/d�.x/d�.y/;
(22.2.3)

which is independent of the choice of xo.
In the case where L is a strongly negative definite kernel, Theorem 21.7.3 in

Chap. 21 shows that N .�; �/ D 0 if and only if � D �. For any given L set

K.x; y/ D L.x; xo/C L.xo; y/ � L.x; y/

and denote by B.L/ the set BK. Therefore, we have the following result.

Theorem 22.2.1. Let L be a strongly negative definite kernel on X2 satisfying

L.x; y/ D L.y; x/; and L.x; x/ D 0 for all x; y 2 X: (22.2.4)

Let N be defined by (22.2.3). Then N D N 1=2.�; �/ is a distance on B.L/.

In the remaining part of this chapter, we suppose that L satisfies (22.2.4).
Suppose now that .X; d / is a metric space. Assume that d2.x; y/ D L.x; y/,

where L is a strongly negative definite kernel on X2. As we already noted, in this
case N .�; �/ is a strictly negative definite kernel on B.L/�B.L/ and, according to
Schonenberg’s theorem, the metric space .B.L/;N), where N D N 1=2 is isometric
to a subset of the Hilbert space H. We can identify X with some subset of B.L/ by
letting a point from X correspond to the measure concentrated at that point.

Remark 22.2.1. It is easy to see that under such isometry, the image QB.L/ of the set
B.L/ is a convex subset of H. Every point of this image is a barycenter of a set of
points from image QX of the space X. Thus, the distance (the metric) N between two
measures can be described as the distance between the corresponding barycenters
in the Hilbert space H.

The converse is also true. That is, if there exists an isometry of space B.L/ (with
the distance on X preserved) onto some subset QB.L/ of the Hilbert space H such
that QB.L/ is a convex set and the distance between measures is the distance between
the corresponding barycenters in H, then L.x; y/ D d2.x; y/ is a strongly negative
definite kernel on X2 and N .�; �/ is calculated from (22.2.3).

Let X; Y be two independent random variables (RVs) with cumulative distribu-
tion functions�; �, respectively. Denote by X 0; Y 0 independent copies of X; Y , i.e.,

X and X 0 are identically distributed (notation X
dD X 0), Y dD Y 0, and all RVs

X;X 0; Y; Y 0 are mutually independent. Now we can write N .�; �/ in the form

N .�; �/ D 2EL.X; Y / � EL.X;X 0/ �EL.Y; Y 0/:

Sometimes we will write N .X; Y / instead of N .�; �/ and N.X; Y / instead of
N.�; �/.

Let us give some examples of N distances.
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Example 22.2.1. Consider random vectors taking values in R
d . As was shown in

Sect. 21.2 of Chap. 21, the function L.x; y/ D kx � ykr (0 < r < 2) is a strongly
negative definite kernel on R

d . Therefore,

N .X; Y / D 2EL.X; Y / � EL.X;X 0/ �EL.Y; Y 0/ (22.2.5)

is a negative definite kernel on the space of probability distributions with a finite r th
absolute moment, and N.X; Y / D N 1=2.X; Y / is the distance, generated by N .

Let us calculate the distance (22.2.5) for the one-dimensional case. Denote by f1.t/
and f2.t/ the characteristic functions of X and Y , respectively. Further, let

uj .t/ D Refj .t/; j D 1; 2;

vj .t/ D Imfj .t/; j D 1; 2:

Using the well-known formula

EjX jr D cr

Z 1

0

.1 � u.t//t�1�rdt;

where

cr D 1=

Z 1

0

�

1 � cos t
� dt

t rC1
D �1=

�

�.�r/ cos
�r

2

�

depends only on r , we can transform the left-hand side of (22.2.5) as follows:

N .X; Y / D 2EjX � Y jr �EjX �X 0jr �EjY � Y 0jr

D cr

Z 1

0

Œ2 � .1 � u1.t/u2.t/ � v1.t/v2.t//

�.1 � u21.t/ � v21.t// � .1 � u22.t/ � v22.t//�t
�1�rdt

D cr

Z 1

0

jf1.t/ � f2.t/j2t�1�rdt � 0:

Clearly, the equality is attained if and only if f1.t/ D f2.t/ for all t 2 R
1, so that

X
dD Y .

Example 22.2.2. Let L.z/ be a survival function on R
1 [i.e., 1 � L.x/ is a

distribution function]. Then the functionL.x
V

y/ is a negative definite kernel (here
x
V

y is the minimum of x and y). Suppose that

ga.z/ D
�

0 for z � a;

1 for z > a ;

and for all x1 � x2 � � � � � xn we have
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n
X

iD1

n
X

jD1
ga.xi ^ xj /hihj D

n
X

iDk

n
X

jDk
hihj D

 

n
X

iDk
hi

!2

� 0;

where k is determined by the conditions xk > a, xk�1 � a. The preceding
conclusion now follows from the obvious equality

L.z/ D
Z 1

�1
.1 � ga.x//d�.a/;

where � is a suitable distribution function. Clearly, L.x ^ y/ is a strongly negative
definite kernel if and only if � is decreasing and strictly monotone. In this case,

N .�; �/ D
Z 1

�1
.F�.a/ � F�.a//2d�.a/;

where F�; F� are distribution functions corresponding to the measures � and �.

22.3 m-Negative Definite Kernels and Metrics

In this section, we first introduce the notion of m-negative definite kernels and then
proceed with a class of probability metrics generated by them.

22.3.1 m-Negative Definite Kernels and Metrics

We now turn to the generalization of the concept of a negative definite kernel. Let
m be an even integer and .X; d / a metric space. Assume that L.x1; : : : ; xm/ is a
real continuous function on Xm satisfying the condition L.x1; x2; : : : ; xm�1; xm/ D
L.x2; x1; : : : ; xm; xm�1/. We say that function L is an m-negative definite kernel if
for any integer n � 1, any collection of points x1; : : : ; xn 2 X, and any collection of
complex numbers h1; : : : ; hn satisfying the condition

Pn
jD1 hj D 0 the following

inequality holds:

.�1/m=2
n
X

i1D1
: : :

n
X

imD1
L.xi1 ; : : : ; xim/hi1 : : : him � 0: (22.3.1)

If the equality in (22.3.1) implies that h1 D � � � D hn D 0, then we call L a strictly
m-negative definite kernel. By passing to the limit, we can prove that L is an m-
negative definite kernel if and only if

.�1/m=2
Z

X

: : :

Z

X

L.x1; : : : ; xm/h.x1/ : : : h.xm/dQ.x1/ : : : dQ.xm/ � 0 (22.3.2)
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for any measureQ 2 B and any integrable function h.x/ such that
Z

X

h.x/dQ.x/ D 0: (22.3.3)

We say that L is a strongly m-negative definite kernel if the equality in (22.3.2) is
attained only for h D 0, Q-almost everywhere.

We will denote by B.L/ the set of all measures � 2 B for which
Z

X

: : :

Z

X

L.x1; : : : ; xm/d�.x1/ : : : d�.xm/ < 1:

Let�; � belong to B.L/. Assume thatQ is some measure from B.L/ that dominates
� and �, and denote

h1.x/ D d�

dQ
; h2.x/ D d�

dQ
; h.x/ D h1.x/ � h2.x/:

Let

Nm.�; �/ D .�1/m=2
Z

X

: : :

Z

X

L.x1; : : : ; xm/h.x1/ : : : h.xm/dQ.x1/ : : : dQ.xm/:

(22.3.4)

It is easy to see that if L is a stronglym-negative definite kernel, then N 1=m
m .�; �/

is a metric on the convex set of measures B.L/.
We need one additional definition. Let K.x1; : : : ; xm/ be a continuous real

function given on Xm. We say that K is an m-positive definite kernel if for any
integer n � 1, any collection of points x1; : : : ; xn 2 X, and any real constants
h1; : : : ; hn the following inequality holds:

n
X

i1D1
: : :

n
X

imD1
K.xi1 ; : : : ; xim/hi1 : : : him � 0:

Lemma 22.3.1. Assume that L is an m-negative definite kernel and for some x0 2
X the equality L.x0; : : : ; x0/ D 0 is fulfilled. Then there exists anm-positive definite
kernel K such that

.�1/m=2
Z

X

: : :

Z

X

L.x1; : : : ; xm/h.x1/ : : : h.xm/dQ.x1/ : : : dQ.xm/

D
Z

X

: : :

Z

X

K.x1; : : : ; xm/h.x1/ : : : h.xm/dQ.x1/ : : : dQ.xm/ (22.3.5)

for any measure Q 2 B.L/ and any integrable function h.x/ satisfying condition
(22.3.3).
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Proof. For simplicity we will consider only the case of m D 2. The function
K.x1; x2/ defined by

K.x1; x2/ D L.x1; x0/C L.x0; x2/� L.x1; x2/

is positive definite. If x1; : : : ; xn 2 X and c1; : : : ; cn are real numbers, then letting
c0 D �Pn

jD1 cj we have

n
X

i;jD1
ci cjK.xi ; xj / D

n
X

i;jD0
ci cjK.xi ; xj /

D �
n
X

i;jD0
ci cjL.xi ; xj / � 0:

Equality (22.3.5) is fulfilled since

Z

X

Z

X

L.x1; x0/h.x1/h.x2/dQ.x1/dQ.x2/

D
Z

X

L.x1; x0/h.x1/dQ.x1/
Z

X

h.x2/dQ.x2/ D 0

and, analogously,

Z

X

Z

X

L.x0; xi /h.x1/h.x2/dQ.x1/dQ.x2/ D 0 :

ut
Let us now consider the set R of all signed measures R on .X;A/ for which the

measures RC and R� (the positive and negative parts of R) belong to B.L/, where
L is a stronglym-negative definite kernel on Xm. According to Lemma 22.3.1, there
exists an m-positive definite kernelK for which (22.3.5) holds. For R 2 R let

kRk D
�Z

X

Z

X

K.x1; : : : ; xm/dR.x1/ : : : dR.xm/

�1=m

: (22.3.6)

Clearly, the set R forms a linear space in which kRk is a norm and, therefore, R
is a normed space. However, R is not yet a Banach space because it may not be
complete with respect to that norm. We obtain the corresponding Banach space Rc

after carrying out the procedure of completion.
Thus, if for some strongly m-negative definite kernel L the metric d admits the

representation

d.x; y/ D N 1=m
m .ıx; ıy/ ; (22.3.7)
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where Nm.�; �/ is determined by (22.3.4), then X 2 B.L/. The set B.L/, in turn, is
isometric to a subset of a Banach space [namely, the space Rc with norm (22.3.6)].
It is easy to verify that the value Nm.�; �/ is equal to themth degree of the distance
between their barycenters corresponding to � and � in the space Rc . Below are
some examples ofm-negative definite kernels and the corresponding metrics N 1=m

m .

Example 22.3.1. Let X D R
1 and let

L.x1; : : : ; xm/ D jx1 � x2 C x3 � x4 C � � � C xm�1 � xmjr: (22.3.8)

For r 2 Œ0;m� this function is m-negative definite, and for r 2 .0; 2/ [ .2; 4/ [
: : : [ .m � 2;m/ it is a strongly m-negative definite kernel. This is clear for r D
0; 2; : : : ; m. Let us prove it for r 2 .0;m/; r 6D 2; 4; : : : ; m � 2. Let k 2 Œ0;m� be
an even integer such that k � 2 < r < k. We have

jxjr D Ar;k

Z 1

0

0

@

.k�2/=2
X

jD0
.�1/j .xu/2j

.2j /Š
� cos.xu/

1

A

du

u1Cr
; (22.3.9)

where

Ar;k D
0

@

Z 1

0

0

@

.k�2/=2
X

jD0
.�1/j .u

2j /2j

.2j /Š
� cos u

1

A

du

u1Cr

1

A

�1

: (22.3.10)

If Q 2 B.L/ and h.x/ is a real function such that
R

R1
h.x/dQ.x/ D 0, then taking

(22.3.9) into account we have

.�1/m=2
Z

R1

: : :

Z

R1

L.x1; : : : ; xm/h.x1/ : : : h.xm/dQ.x1/ : : : dQ.xm/

D Ar;k

Z 1

0

ˇ

ˇ

ˇ

ˇ

Z

R1

eixzh.x/dQ.x/

ˇ

ˇ

ˇ

ˇ

m d

z
z1Cr � 0 :

It is clear that equality is attained if and only if h.x/ D 0, Q-almost everywhere.
Consequently, L is a strongly m-negative definite kernel. For the kernel (22.3.8)
and r 2 .0; 2/ [ .2; 4/ [ : : : [ .m � 2;m/ there exists a corresponding metric
Nm D N 1=m

m .�; �/ admitting the representation

Nm.�; �/ D Ar;k

Z 1

0

jf .t/ � g.t/jm dt

t1Cr
; (22.3.11)

where f .t/ and g.t/ are the characteristic functions of the measures � and �,
respectively.

Example 22.3.2. Let X D R
1, and let

L.x1; : : : ; xm/ D g.x1 � x2 C x3 � x4 C � � � C xm�1 � xm/; (22.3.12)
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where g is an even, continuous function. This is anm-negative definite kernel if and
only if

g.u/ D
Z 1

0

0

@

.m�2/=2
X

kD0
.�1/ku2kx2k=.2k/Š� cos.ux/

1

A

1C xm

xm
d�.x/C Pm�2.u/;

(22.3.13)

where �.x/ is a nondecreasing bounded function, �.�0/ D 0, and Pm�2.n/ is a
polynomial of at most m � 2 degrees in the even powers of u. Here, L is strongly
m-negative definite if and only if supp � D Œ0;1/.

The distance Nm corresponding to the function L defined in (22.3.12) and
(22.3.13) admits the representation

Nm.�;�/ D
�Z 1

0

jf�.t/ � f�.t/jm 1C tm

tm
d�.t/

�1=m

; (22.3.14)

where f� and f� are the characteristic functions of the measures � and �,
respectively. We do not present a proof here. We only note that conceptually it is
close to the proof of a Lévy–Khinchin-type formula that gives the representation of
negative definite functions.2

Example 22.3.2 implies that if the metric Nm corresponds to the kernel L of
(22.3.12) and (22.3.13), then, by (22.3.14), the Banach space Rc is isometric to
the space Lm.R1; 1Ctm

tm
d�.t//. Thus, if L is determined by (22.3.12) and (22.3.14),

then the set of measures B.L/ with metric Nm is isometric to some convex subset
QB.L/ of the space Lm.R1; 1Ctm

tm
d�.t//. Of course, Nm.�; �/ is equal to the distance

between the barycenters corresponding to � and � in the space Lm.R1; 1Ctm
tm

d�.t//,
and the points of the real line correspond to the extreme points of the set QB.L/.

22.4 N-Metrics and the Problem of Recovering Measures
from Potentials

We will refer to the metrics constructed in Sects. 22.2 and 22.3 as the N-metrics.
They enable us to provide a simple solution to the problem of the uniqueness of
a measure with a given potential. The question of the uniqueness of a measure
having a given potential is essentially a question of the uniqueness of the solution
of an integral equation of a special form. This question arises in certain problems
of mathematical physics, functional analysis (especially in connection with the
extension of isometry), and the theory of random processes and in the construction
of characterizations of probability distributions.

2See, for example, Akhiezer (1961).
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22.4.1 Recovering Measures from Potentials

Suppose first that L.x; y/ D L.y; x/ is a strongly negative definite kernel on X2,
and � 2 B.L/. The quantity

'.x/ D
Z

X

L.x; y/d�.y/; x 2 X; (22.4.1)

is the potential of the measure � corresponding to the kernel L (in short, the
potential of �). We are interested in the question of whether different measures can
have the same potential. We will provide conditions guaranteeing the coincidence
of measures with equal potentials and offer certain generalizations.

Theorem 22.4.1. If L is a strongly negative definite kernel, then � 2 B.L/ is
uniquely determined by the potential ' given by (22.4.1).

Proof. Assume that two measures �; � 2 B.L/ have the same potential. Then
Z

X

L.x; y/d�.y/ D
Z

X

L.x; y/d�.y/; x 2 X: (22.4.2)

Integrating both sides of (22.4.2) with respect to d�.x/ we obtain

Z

X

Z

X

L.x; y/d�.x/d�.y/ D
Z

X

Z

X

L.x; y/d�.x/d�.y/: (22.4.3)

Similarly, integrating both sides of (22.4.3) with respect to d� leads to

Z

X

Z

X

L.x; y/d�.x/d�.y/ D
Z

X

Z

X

L.x; y/d�.x/d�.y/: (22.4.4)

Adding the corresponding sides of (22.4.3) and (22.4.4) and taking into account that
L.x; y/ D L.y; x/ we obtain

2

Z

X

Z

X

L.x; y/d�.x/d�.y/ D
Z

X

Z

X

L.x; y/d�.x/d�.y/

C
Z

X

Z

X

L.x; y/d�.x/d�.y/:

By the definition of the metric N, we see that

N .�; �/ D 0;

that is, � D �. ut
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Let us consider some consequences of Theorem 22.4.1. Let X D R
1 and d be

the standard distance on the real line, and let

'.x/ D
Z 1

�1
jy � xjrd�.y/ : (22.4.5)

We know that for r 2 .0; 2/ the function L.x; y/ D jx � yjr is a strongly negative
definite kernel. Therefore, by Theorem 22.4.1, � is uniquely determined from its
potential ' in (22.4.5).

The problem of recovering a measure from its potential (22.4.5) was first
considered by Plotkin (1970, 1971), who proved the uniqueness of the recovery
for all r � 0; r 6D 2k; k D 0; 1; 2; : : :. This result was rediscovered by Rudin
(1976). Their results can be derived from Theorem 22.4.1 since the case r > 2

can be reduced to 0 < r < 2 by differentiating (22.4.2) with respect to x for
L.x; y/ D jx � yjr . It is clear that for r D 2k the recovery of � is impossible. In
this case, (22.4.2) only shows the coincidence of some moments of the measures �
and �.

A generalization of Plotkin’s and Rudin’s results can be found in Linde (1982),
Koldobskii (1991), and Gorin and Koldobskii (1987). Their considerations are
mostly related to the study of norms in the spaces Lp , L1, and C . They also
consider certain other Banach spaces. Our method is also useful in the study of
the Lp spaces, as shown by the following lemmas.

Lemma 22.4.1. Let L.x; y/ be a negative definite kernel on X2 taking nonnegative
values and such that L.x; x/ D 0; L.x; y/ D L.y; x/. Assume that � is a measure
(not necessarily finite) on R

1C D Œ0;1/ satisfying the condition

Z 1

0

min.1; x/d�.x/ < 1:

Then the kernel

L�.x; y/ D
Z 1

0

.1� exp.�uL.x; y///d�.u/ (22.4.6)

is negative definite. In particular, if ˛ 2 Œ0; 1�, then L˛.x; y/ is a negative definite
kernel.

Proof. We first show that the function expf�	L.x; y/g is positive definite for all
	 > 0. For any x0 define

K.x; y/ D L.x; x0/C L.x0; y/ � L.x; y/

so that

L.x; y/ D L.x; x0/C L.x0; y/ �K.x; y/:
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The proof of Lemma 22.3.1 implies that K.x; y/ is a positive definite kernel. It
can be easily verified that exp.	K.x; y// is a positive definite kernel as well.3 Let
x1; : : : ; xn 2 X, and let c1; : : : ; cn be complex constants. We have (the bar denotes
the complex conjugate)

n
X

iD1

n
X

jD1
ci Ncj expf�	L.xi ; xj /g

D
n
X

iD1

n
X

jD1
ci Ncj expf�	L.xi ; x0/g expf�	L.xj ; x0/g expfLK.xi ; xj /g

D
n
X

iD1

n
X

jD1
c0
i Nc0
j expf	K.xi ; xj /g

� 0;

where c0
j D ci expf�	L.xi ; x0/g. Thus, expf�	L.x; y/g is indeed positive definite.

This implies that 1 � expf�	L.x; y/g is a negative definite kernel, and hence so is
L�.x; y/.

If ˛ 2 .0; 1/, consider the measure

�˛.A/ D
Z

A

x�.˛C1/dx; A 2 A.R1C/:

Then

L�˛ .x; y/ D c˛L˛.x; y/;

where c˛ is a positive constant. This concludes the proof. ut
Lemma 22.4.2. Let .ƒ;†; �/ be a measure space (where the measure � is not
necessarily finite). Then for 0 < p < 2 the function Lp.x; y/ defined on
Lp.ƒ;†; �/ � Lp.ƒ;†; �/ by

Lp.x; y/ D kx � ykpp D
Z

ƒ

jx.u/� y.u/jpd�.u/; x; y 2 Lp; (22.4.7)

is a strongly negative definite kernel (it is also a negative definite kernel for p D 2,
but not in the strong case).

Proof. Note that for p 2 .0; 2/ the function .u; v/ ! ju � vjp is a strongly negative
definite kernel on R

1 � R
1. Therefore, for x1; : : : ; xn 2 Lp and h1; : : : ; hn 2 R

1

such that
Pn

jD1 hj D 0 we obtain

3See Vakhaniya et al. (1985).
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X

i;j

kxi � xj kpphihj D
Z

ƒ

X

i;j

jxi .u/� xj .u/jphihj d�.u/ � 0:

The lemma is proved. ut
From Lemmas 22.4.1 and 22.4.2 we conclude that

L.x; y/ D kx � yk˛p; x; y 2 Lp;

is a strongly negative definite kernel for p 2 .0; 2/ and 0 < ˛ < p. Theorem 22.4.1
now implies that the measure � on Lp is uniquely determined by its potential

'.x/ D
Z

Lp
kx � yk˛pd�.y/; x 2 Lp; (22.4.8)

in the case of p 2 .0; 2/ and ˛ 2 .0; p/. It is clear that if we want to recover � in
the class of measures with fixed support supp�, then it is sufficient to consider only
the restriction of ' to supp�, that is, we need to know '.x/, x 2 supp�. Although
the uniqueness of � for a given ' in (22.4.8) was obtained by Linde (1982) and
Koldobskii (1982) (using a different method), our result concerning the recovery of
� with a given support from the values of '.x/, x 2 supp�, appears to be new.

Can we relax the conditionsp 2 .0; 2/, ˛ 2 .0; p/when considering the potential
(22.4.8), or the constraint r 2 .0; 2/ when studying (22.4.5)? We will try to answer
these questions by introducing potentials related to m-negative definite kernels.
Although we already noted that for (22.4.5) the case r > 2 can be reduced to
r 2 .0; 2/ when the potential is determined for all x 2 R

1, it is interesting to study
the uniqueness of the recovery of measures with fixed support from the values of
'.x/ on the support. In this case, using differentiation to reduce powers may prove
impossible.

Let L.x1; : : : ; xm/, with an evenm � 2, be a stronglym-negative definite kernel
on Xm, and let � 2 B.L/. Assume that L is symmetric in its arguments and real-
valued, and L.x; : : : ; x/ D 0 for any x 2 X. Consider the function

'.x1; : : : ; xm�1/ D
Z

X

L.x1; : : : ; xm�1; xm/d�.xm/; x1; : : : ; xm�1 2 X:

(22.4.9)

We will refer to ' as the potential of � corresponding to the kernel L (if we need to
stress that ' corresponds to an m-negative definite kernel, we will refer to it as the
m-potential of �). Let us consider a natural question of whether different measures
can have the same m-potential.

Theorem 22.4.2. If L is a strongly m-negative definite kernel, then � 2 B.L/ is
uniquely determined by the potential (22.4.9).
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Proof. Assume that the measures �; � 2 B.L/ have the same potential. Then

Z

X

L.x1; x2; : : : ; xm/d�.xm/ D
Z

X

L.x1; x2; : : : ; xm/d�.xm/: (22.4.10)

Integrate successively both sides of (22.4.10) with respect to d�.x1/ : : : d�.xm�1/,
then with respect to d�.x1/d�.x2/ : : : d�.xm�1/, and so on, and finally with respect
to d�.x1/ : : : d�.xm�1/. This leads to

Z

X

� � �
Z

X

L.x1; x2; : : : ; xm/d�.x1/ : : : d�.xm/

D
Z

X

� � �
Z

X

L.x1; : : : ; xm/d�.x1/ : : : d�.xm�1/d�.xm/

� � �
Z

X

� � �
Z

X

L.x1; : : : ; xm/d�.x1/ : : : d�.xm�1/d�.xm/

D
Z

X

� � �
Z

X

L.x1; : : : ; xm/d�.x1/ : : : d�.xm/;

which implies that

Nm.�; �/ D 0;

that is, � D �. ut

Consider again the potential (22.4.5),

'.x/ D
Z 1

�1
jy � xjrd�.y/; x 2 R

1;

where � is a measure on the �-algebra of Borel subsets of the real line. Without
making the assumption r 2 .0; 2/, suppose only that r ¤ 2k; k D 0; 1; : : :.
There exists an even m such that m � 2 < r < m. In this case, the function
L.x1; : : : ; xm/ D jx1 � x2 C � � � C xm�1 � xmjr is a strongly m-negative definite
kernel (Example 22.3.1). If the function '.x/; x 2 R

1, is known, then we also know
the function

'm.x1; : : : ; xm�1/ D
Z 1

�1
L.x1; : : : ; xm/d�.xm/

D
Z 1

�1
jx1 � x2 C � � � C xm�1 � xmjrd�.xm/

D '.x1 � x2 C � � � C xm�1/ :

Theorem 22.4.2 implies that � can be uniquely recovered from its m-potential 'm,
and hence � can also be uniquely recovered from its potential '. Similar reasoning
allows us to verify that the measure � on Lp is uniquely determined by its potential
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(22.4.8) for any p > 0 and ˛ 2 .0; p/. However, we cannot consider ' only on the
support of �. For us it is enough to know ' on the set fx1 � x2 C � � � C xm�1 W xj 2
supp�; j D 1; 2; : : : ; m1g.

22.4.2 Stability in the Problem of Recovering a Measure
from its Potential

We saw in Sect. 22.4 that N-metrics enable us to obtain a relatively simple solution
to the problem of recovering a measure from its potential. It seems plausible that
if two measures have close potentials, then the measures themselves are close in
the corresponding N-metric. If this is actually the case, then the convergence of the
corresponding sequence of potentials can be used as a criterion for convergence of
a sequence of measures. In this section, we will consider in greater detail the case
where the potentials are close in a uniform sense while the closeness of the measures
is stated in terms of N-metrics.

Suppose first that L.x; y/ is a symmetric strongly negative definite kernel on X2,
and that � 2 B.L/. For the sake of convenience, the potential (22.4.1) will now be
denoted by '.xI�/, that is,

'.xI�/ D
Z

X

L.x; y/d�.y/: (22.4.11)

Theorem 22.4.3. Suppose that L.x; y/ is a symmetric strongly negative definite
kernel on X. Then for any �; � 2 B.L/ we have

N 1
2 .�; �/ � .2 sup

x2X
j '.xI�/ � '.xI �/j/ 12 : (22.4.12)

Proof. Let

" D sup
x2X

j '.xI�/ � '.xI �/j/ 12 :

Clearly,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

X

L.x; y/d�.y/ �
Z

X

L.x; y/d�.y/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� ": (22.4.13)

Integrating both sides of (22.4.13) with respect to d�.x/ we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

X

Z

X

L.x; y/d�.x/d�.y/ �
Z

X

Z

X

L.x; y/d�.x/d�.y/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� ": (22.4.14)
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If both sides of (22.4.13) are integrated with respect to d�.x/, then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

X

Z

X

L.x; y/d�.x/d�.y/�
Z

X

Z

X

L.x; y/d�.x/d�.y/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� ": (22.4.15)

The result now follows from (22.4.14), (22.4.15), and the definition of N. ut
An analogous result for the potential (22.4.9) and metric Nm holds as well. The

proof of the following result is similar to that of Theorem 22.4.3.

Theorem 22.4.4. Suppose that L.x1; : : : ; xm/, where m � 2 is even, is a strongly
m-negative definite kernel on X, and �; � 2 B.L/. Then

Nm.�; �/ �
�

m sup
.x1;:::;xm�1/2Xm�1

j'.x1; : : : ; xm�1I�/ � '.x1; : : : ; xm�1I �/j
� 1
m
;

(22.4.16)

where

'.x1; : : : ; xm�1I �/ D
Z

X

L.x1; : : : xm�1I xm/d�.xm/; � 2 B.L/: (22.4.17)

To obtain quantitative criteria for the convergence of probability measures in
terms of the convergence of the corresponding potentials, we need a lower bound
for N.�; �/. Since we cannot obtain such an estimate in general, we will consider
only functions L.x; y/ that depend on the difference x � y of the arguments x; y 2
R
1 D X.
Recall that (Example 21.7.1) when X D R

1, then an even continuous function
L.z/ with L.0/ D 0 is strongly negative definite if and only if

L.z/ D
1
Z

0

.1 � cos.zu//
1C u2

u2
d�.u/; supp � D Œ0;1/; (22.4.18)

where �.u/ is a real bounded nondecreasing function with �.�0/ D 0. If � 2
B.L/, then the integral

Z

X

Z

X

L.x � y/d�.x/d�.y/

is finite. This integral can be written as

Z

X

Z

X

L.x � y/d�.x/d�.y/ D
1
Z

0

Z

X

Z

X

�

1 � cos.xu/ cos.yu/

� sin.xu/ sin.yu/
�1C u2

u2
d�.x/d�.y/d�.u/:
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Let f .uI�/ be the characteristic function corresponding to the measure�. Then the
preceding equality becomes

Z

X

Z

X

L.x � y/d�.x/d�.y/ D
1
Z

0

.1� jf .uI�/j2/1C u2

u2
d�.u/:

Since the left-hand-side of the preceding equality is finite by the assumption that
� 2 B.L/, the right-hand side is also finite. Consequently,

lim
ı!C0

1
Z

ı

.1 � jf .uI�/j2/1C u2

u2
d�.u/ D 0: (22.4.19)

This holds for every measure � 2 B.L/. It is convenient for us to consider a subset
ofB.L/ such that convergence in (22.4.19) is uniform with respect to this subset. For
this purpose we introduce the function !.ı/, defined for ı 2 Œ0;1/ and satisfying
the conditions

!.0/ D lim
ı!C0 !.ı/ D 0;

!.ı1/ � !.ı2/ for 0 � ı1 � ı2:

Let B.LI!/ be the set of all measures � 2 B.L/ for which

sup
�2B.LI!/

1
Z

0

.1 � jf .uI�/j2/1C u2

u2
d�.u/ � !.ı/: (22.4.20)

Here, � is the function that appears in (22.4.18).

Theorem 22.4.5. Suppose that L is defined by (22.4.18) and that �; � 2 B.LI!/.
Then

sup
x

j'.xI�/ � '.xI �/j � inf
ı>0

"p
2N 1

2 .�; �/

0

@

1
Z

ı

1C u2

u2
d�.u/

1

A

1
2

C 2
p
2!.ı/

#

:

(22.4.21)

Proof. We have

'.xI�/ D
Z

X

L.x � y/d�.y/

D
1
Z

0

.1 � cos.ux/Ref .uI�/ � sin.ux/Imf .uI�//1C u2

u2
d�.u/ ;
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where Ref and Imf are the real and the imaginary parts of f , respectively.
Therefore, the difference of the potentials of �; � 2 B.LI!/ can be represented as

j'.xI�/ � '.xI �/j D j
1
Z

0

Œcos.ux/.Ref .uI�/ � Ref .uI �//

C sin.ux/.Imf .uI�/� Imf .uI �//�1C u2

u2
d�.u/j

� p
2

1
Z

0

jf .uI�/ � f .uI �/j1C u2

u2
d�.u/: (22.4.22)

Let us represent the integral on the right-hand side of (22.4.22) as the sum of
integrals over the intervals Œ0; ı� and .ı;1/, where ı is for now an arbitrary positive
number. Applying the Cauchy–Buniakowsky inequality to the integral over .ı;1/

we obtain

1
Z

ı

jf .uI�/ � f .uI �/j1C u2

u2
d�.u/

�
0

@

1
Z

ı

jf .uI�/ � f .uI �/j2 1C u2

u2
d�.u/

1

A

1=20

@

1
Z

ı

1C u2

u2
d�.u/

1

A

1=2

� N.�; �/

0

@

1
Z

ı

1C u2

u2
d�.u/

1

A

1=2

: (22.4.23)

For the integral over Œ0; ı� we have

ı
Z

0

jf .uI�/� f .uI �/j1C u2

u2
d�.u/

�
ı
Z

0

j1 � f .uI�/j 1C u2

u2
d�.u/C

ı
Z

0

j1 � f .uI �/j 1C u2

u2
d�.u/

�
ı
Z

0

.1 � jf .uI�/j2/1C u2

u2
d�.u/C

ı
Z

0

.1 � jf .uI �/j2/1C u2

u2
d�.u/

� 2!.ı/: (22.4.24)
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By the arbitrariness of ı > 0, inequality (22.4.21) now follows from
(22.4.22)–(22.4.24). ut
Corollary 22.4.1. Suppose that in the statement of Theorem 22.4.5 the function
�.u/ is such that the integral

R1
0

1Cu2

u2
d�.u/ converges. Then

N.�I �/ � sup
x2X

j '.xI�/ � '.xI �/j

� p
2
�

1
Z

0

1C u2

u2
d�.u/

�1=2 � N.�; �/: (22.4.25)

Proof. The result follows directly from Theorems 22.4.3 and 22.4.5. Note that
instead of B.LI!/, the whole space B can be considered here. ut

We can now state the quantitative criteria for the convergence of a sequence of
measures in terms of the convergence of a sequence of their potentials. The result
below follows directly from Theorems 22.4.3 and 22.4.5.

Theorem 22.4.6. Let X D R
1 and the function L be defined by (22.4.18), and let

�1; �2; : : : ; �n be a sequence of measures from B.LI!/. The sequence f�n; n � 1g
converges in N to some measure � if and only if the sequence of potentials
f'.xI�n/; n � 1g converges in the uniform metric to the potential '.xI �/ of
�. Here,

N.�nI �/ � sup
x2X

j'.xI�n/ � '.xI �/j

� inf
ı�0

2

6

4

p
2N.�n; �/

0

@

1
Z

ı

1C u2

u2
d�.u/

1

A

1=2

C 2
p
2!.ı/

3

7

5 :

(22.4.26)

Corollary 22.4.2. Suppose that in the statement of Theorem 22.4.6 the integral
Z 1

0

1C u2

u2
d�.u/

converges and f�n; n � 1g is a sequence of arbitrary measures from B. This
sequence converges in N to � if and only if the sequence of potentials f
.xI�n/; n �
1g converges in the uniform metric to the potential 
.xI �/. Here,

N.�n; �/ � sup
x2X

j'.xI�n/� 
.xI �/j

� p
2

0

@

1
Z

0

1C u2

u2
d�.u/

1

A

1=2

� N.�n; �/ : (22.4.27)
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Note that for a bounded, continuous, and symmetric function L of the form
(22.4.18), the convergence in N is equivalent to the weak convergence of measures.
Therefore, weak convergence of measures is equivalent to the uniform convergence
of their potentials corresponding to the kernels L.

Note that our main focus is the theoretical issues of the uniqueness and stability
of the recovery of a measure from its potential. Of course, explicit reconstruction
formulas are of interest as well. Such results can be found in Koldobskii (1982,
1991).

22.5 N-Metrics in the Study of Certain Problems
of the Characterization of Distributions

The problem of characterizing probability distributions involves the description of
all probability laws with a certain property P . In cases where this property can
be stated as a functional equation, the characterization problem reduces to the
description (finding) of the probabilistic solutions of the equation. This approach
can be found in many publications devoted to characterization problems, including
the well-known monograph by Kagan et al. (1973).

Situations in which a certain class of distributions with a propertyP is known and
it must be established that there are no other distributions possessing this property
are fairly common. In such cases, one can apply results about positive solutions of
functional equations. Such an approach was developed in Kakosyan et al. (1984).

Problems of recovering a distribution from the distributions of suitable statistics,
or from certain functionals of distributions of these statistics, also belong to
characterization problems. These particular problems are related to the problem of
recovering a measure from the potential as well as to N-metrics.4 Below we show
that it is possible to use N-metrics in such problems.

22.5.1 Characterization of Gaussian and Related Distributions

Let us begin with the question of whether it is possible to recover a distribution of
independent identically distributed (i.i.d.) RVs X1; : : : ; Xn from the function

Ur.a1; : : : ; an/ D E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

jD1
ajXj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

; r 2 .0; 2/; (22.5.1)

4See Klebanov and Zinger (1990).
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where the parameter r is fixed. Here, we assume the existence of the first absolute
moment of X . We can write Ur.a1; : : : an/ as follows:

Ur.a1; : : : ; an/ D
Z

Xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

jD1
aj xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

dF.x1; : : : ; xn/

D
Z

Xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n�1
X

jD1

aj xj

xn
C an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

jxnjr dF.x1; : : : ; xn/

D
Z

Xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n�1
X

jD1

aj xj

xn
C an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

dF1.x1; : : : ; xn/;

where dF1.x1; : : : ; xn/ D jxnjr dF.x1; : : : ; xn/. Clearly, the value Ejxnjr is known
because it is the value Ur.0; : : : ; 0; 1/. The measure

dF1.x1; : : : ; xn/=EjXnjr

is a probability measure, and therefore the problem of recoveringF from the known
function Ur.a1; : : : ; an/ reduces to the problem of recovering the distribution of
Y D Pn�1

jD1
aj Xj
Xn

from the potential. As we already saw in Sect. 22.4, such a
recovery is unique. Since the coefficients aj , .j D l; : : : ; n � l/, are arbitrary,
we can recover the distribution of X1 from the distribution of Y (to within a scale
parameter).5 However, since EjX1jr is known, we can uniquely determine the scale
parameter as well. Note that the problem of recovering the distribution of X1 from
(22.5.1) was considered in Braverman (1987).

The preceding arguments enable us to reduce this problem to one of recovering a
measure from the potential. Below we demonstrate the possibilities of this approach
and the connections of N-metrics to related characterization problems, including
those in Banach spaces. Our first result is a formalization of arguments given
previously.

Theorem 22.5.1. Let B be a Banach space, and let X1; : : : ; Xn .n � 3/ be i.i.d.
random vectors with values in B. Suppose that for any a1; : : : ; an from the conjugate
space B�, the RVs haj ;Xj i have an absolute moment of order r 2 .0; 2/, j D
1; : : : ; n. Then the function

'.a1; : : : ; an/ D E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

jD1
haj ;Xj i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r

on B�n uniquely determines the distribution of X1.

5See, for example, Kagan et al. (1973).
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Proof. Proceed by following the outline given peviously. ut
Remark 22.5.1. If in Theorem 22.5.1 we have n > 3, then the aj for j > 3 can
be set to zero, so that we can consider only ' on B�3. As a3, we can choose only
vectors that are collinear to a fixed vector from B�.

Corollary 22.5.1. Suppose that B is a Banach space and X1; : : : ; Xn .n > 3/ are
i.i.d. random vectors with values in B and such that E kX1kr exists for some r 2
.0; 2/. Let

‰.A1; : : : ; An/ D E

	

	

	

	

	

	

n
X

jD1
AjXj

	

	

	

	

	

	

r

;

where A1; : : : ; An are linear continuous operators acting from B into B. Then the
distribution of X1 is uniquely determined by ‰.

Proof. It is enough to consider operators Aj mapping B into its one-dimensional
subspace and then use Theorem 22.5.1. ut
Corollary 22.5.2. Let X1; : : : ; Xn .n � 3/ be i.i.d. RVs variables (with values in
R
1) with EjX1jr < 1 for some fixed r 2 .0; 2/. If for all real a1; : : : ; an,

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

jD1
ajXj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D Cr

0

@

n
X

jD1
a2j

1

A

r=2

; (22.5.2)

where Cr is positive and depends only on r , then X1 follows a normal distribution
with mean 0.

Proof. It is enough to note that (22.5.2) holds for a normal distribution with mean 0
and then use Theorem 22.5.1. ut

The result of Corollary 22.5.2 in a somewhat more general setting r ¤ 2k,
k D 0; 1; 2; : : :, was obtained in Braverman (1987). We now present its substantial
generalization.

Theorem 22.5.2. Suppose that a Banach space B and a real number r > 0 are such
that kx � ykr , x; y 2 B, is a strongly negative definite function. Let X1;X2;X3;X4
be i.i.d. random vectors with values in B and such that EkX1kr < 1. Assume that
for some real function h the relation

E

	

	

	

	

	

	

4
X

jD1
ajXj

	

	

	

	

	

	

r

D h

0

@

4
X

jD1
a2j

1

A (22.5.3)



562 22 Negative Definite Kernels and Metrics: Recovering Measures from Potentials

holds for at least the following collections of parameters a1; a2; a3; a4 2 R
1:

a1 D 1; a2 D a3 D � 1p
2
; a4 D 0I (22.5.4)

a1 D �a2 D 1; a3 D a4 D 0I (22.5.5)

a1 D a2 D 1p
2
; a3 D a4 D � 1p

2
: (22.5.6)

Then X1 has a Gaussian distribution with mean 0.

Proof. By (22.5.3)–(22.5.6), we have

E

	

	

	

	

X1 � X2 CX3p
2

	

	

	

	

r

D h.2/;

E kX1 �X2kr D h.2/;

E

	

	

	

	

X1 CX2p
2

� X3 CX4p
2

	

	

	

	

r

D h.2/:

These three equalities imply that

2E

	

	

	

	

X1 � X2 CX3p
2

	

	

	

	

r

�E kX1 � X2kr � E

	

	

	

	

X1 CX2p
2

� X3 CX4p
2

	

	

	

	

r

D 0

or, equivalently,

N

�

X1;
X1 CX2p

2

�

D 0 ;

where N is the metric corresponding to the strongly negative definite kernel
L.u; v/ D ku � vkr . Therefore,

X1
dD X2 CX3p

2
: (22.5.7)

Let x� 2 B�. From (22.5.7) we find

hx�; X1i dD hx�; X2i C hx�; X3ip
2

:

Now by the famous Pólya theorem, the RV hx�; X1i has a Gaussian distribution
with mean 0. Since x� 2 B� was chosen arbitrarily, the result follows. ut

Similar arguments can be used to characterize symmetric distributions in R
n.

Theorem 22.5.3. Let X; Y be i.i.d. random vectors in R
n with EkXkr < 1 for

some r 2 .0; 2/. Then we have
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E kX C Y kr � E kX � Y kr ; (22.5.8)

with equality if and only if X has a symmetric distribution.

Proof. This result can be obtained from Theorem 22.2.1 and Example 22.2.1.
However, we present an alternative proof. Consider first the scalar case, where
X and Y are i.i.d. RVs taking real values and having distribution function F.x/.
Suppose that x; y are two real numbers and r 2 .0; 2/. It is easy to verify that

jx C yjr � jx � yjr D Cr

Z 1

0

sin
xt

2
sin

yt

2

dt

t1Cr
; (22.5.9)

where Cr is a positive constant that depends only on r . Integrating both sides of
(22.5.9) with respect to dF.x/ � dF.y/ we obtain

E jX C Y jr �E jX � Y jr D Cr

Z 1

0

'2
�

t

2

�

dt

t1Cr
; (22.5.10)

where '.t/ D R1
�1 sin.tx/dF.x/ is the sine-Fourier transform of F . Thus, in the

scalar case, (22.5.8) follows from (22.5.10) since Cr > 0. If the right-hand side
of (22.5.10) is equal to zero, then the sine-Fourier transform of F.x/ is identically
zero. This is equivalent to the symmetry of X , which concludes the scalar case.

The vector case is easily reduced to the scalar one by noting that for x 2 R
n

kxkr D
Z

Sn�1

j.x; �/jr dM.�/; (22.5.11)

where M is a measure on the unit sphere Sn�1 in R
d , and then using the result in

the one-dimensional case. ut
Here is a generalization of (22.5.8), which extends the range of variation of r .

Theorem 22.5.4. Suppose thatm D 2k is an even positive integer andX1; : : : ; Xm
are i.i.d. vectors in R

n. Let E kX1kr < 1, where r 2 .m � 2;m/ is fixed. Then

m
X

jD0
.�1/j

 

m

j

!

E kX1 C � � � CXm�j � Xm�jC1 � � � � � Xmkr � 0; (22.5.12)

with equality if and only if X1 has a symmetric distribution.

Proof. The result is derived from the following facts.

(a) For r 2 .m � 2;m/ the function

L.x1; : : : ; xm/ D jx1 � x2 C � � � C xm�1 � xmjr (22.5.13)

is a stronglym-negative definite kernel.
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(b) Suppose that�; � are two measures in R
n andL is a stronglym-negative definite

kernel. Let

Nm.�; �/ D .�1/m=2
Z

Rn

: : :

Z

Rn

L.x1; : : : ; xm/dQ.x1/ : : : dQ.xm/;

(22.5.14)

whereQ D � � �. Then Nm.�; �/ is a metric on B.L/.
(c) If � is a measure generated by X1, � is a measure generated by �X1, and L

is determined by (22.5.13), then Nm.�; �/ in (22.5.14) coincides with the left-
hand side of (22.5.12).

The theorem is proved. ut
Let us now study the case of a separable Hilbert space H. Let L.x�y/, x; y 2 H

be a real strongly negative definite function. The following result can be obtained
by substituting Y D �X 0 in Theorem 22.2.1.

Theorem 22.5.5. If X; Y are i.i.d. random vectors in H for which EL.X C Y / <

1, then

E L.X C Y / � E L.X � Y / ; (22.5.15)

with equality if and only if X has a symmetric distribution.

Observe that (22.5.8) is a special case of (22.5.15) with L.x/ D kxkr , H D R
n. We

note that Theorems 22.5.3–22.5.5 are set forth in Zinger and Klebanov (1991).
Theorem 22.5.3 can be used to obtain a criterion for convergence of a sequence

of random vectors in R
n to a set S of random vectors with a symmetric distribution.

Theorem 22.5.6. Suppose that fXm; m � 1g is a sequence of random vectors in
R
n, L.x; y/ D kx � ykr .r 2 .0; 2/; x; y 2 R

n/, and N is a metric generated by
L. The sequence fXm; m � 1g approaches the set S of random vectors in R

n with
symmetric distributions if and only if

lim
m!1ŒE kXm CX 0

mkr � E kXm � X 0
mkr � D 0 ;

where X 0
m is an independent copy of Xm.

This result becomes almost trivial in view of the following lemma.

Lemma 22.5.1. Let L; N, and S be the same as in Theorem 22.5.6, and let X be a
random vector in R

n. Then

N.X; S/ D 1

2r=2
ŒE kX CX 0k�r � E kX � X 0kr �1=2; (22.5.16)

where X 0 is an independent copy of X .

Proof. Similar to the proof of Theorem 22.5.3, we have
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E kX CX 0kr � E kX �X 0k D Cr

Z

Sn�1

dM.s/
Z 1

0

'2.
t

2
s/

dt

t1Cr
:

This identity, which follows from (22.5.10) and (22.5.11), can be rewritten as

E kX CX 0kr �E kX �X 0k D 2rCr

Z

Sn�1

dM.s/
Z 1

0

'2.ts/
dt

t1Cr
; (22.5.17)

where ' andM were defined in the proof of Theorem 22.5.3. On the other hand,

N.X; S/ D inf
Y2S N.X; Y /

D inf
Y2S Cr

Z

Sn�1

dM.s/
Z 1

0

jf .tsIX/ � f .tsIY /j2 dt

t1Cr
;

where f .uIX/ and f .uIY / are the characteristic functions ofX and Y , respectively.
Since Y has a symmetric distribution, f .uIY / is real, so that Imf .uIY / D 0 and
Ref .uIY / D f .uIY /. Therefore,

N.X; S/ D inf
Y2S Cr

Z

Sn�1

dM.s/

�
Z 1

0

Œ.Ref .tsIX/ � f .tsIY //2 C .Imf .tsIX//2� dt

t1Cr

� Cr

Z

Sn�1

dM.s/
Z 1

0

.Imf .tsIX//2 dt

t1Cr

D Cr

Z

Sn�1

dM.s/
Z 1

0

'2.ts/
dt

t1Cr
:

It is clear that if f .u; Y / D Ref .uIX/, then we obtain an equality in the preceding
inequality. Hence, taking into account (22.5.17), we obtain the result. ut

Incidentally, the proof of Lemma 22.5.1 implies that the closest (in the N metric)
symmetric random vector to X is the vector Y with the characteristic function
f .uIY / D Ref .uIX/. This vector can be constructed as a mixture of X and �X
taken with equal probabilities:

Y D �X � .1 � �/X;
where � is an RV independent of X taking on values 0 or 1 with probability 1=2.

Most of the results presented in this section are concerned with moments of sums
of RVs (or vectors). However, other operations on RVs can be studied as well using
a suitable choice for L. For example, if we use L given in Example 22.2.2, then we
obtain an analog of Theorem 22.5.2 that characterizes the exponential distribution
through the mean values of order statistics.
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Theorem 22.5.7. Let X1; : : : ; Xn .n � 4/ be i.i.d. nonnegative RVs with finite first
moment. Assume that there exists a finite limit limx!C0 F.x/=x D 	 not equal to

zero, where F.x/ is the distribution function ofX1. If the expectationE
�

Vn
jD1

xj
aj

�

depends only on the sum of real positive parameters a1; : : : ; an (that are chosen
arbitrarily), then X1 has an exponential distribution with parameter 	.

Proof. Let NF .x/ D 1 � F.x/. It is easy to see that

E

0

@

n̂

jD1

xj

aj

1

A D
Z 1

0

n
Y

jD1
NF .aj x/dx:

The assumptions of the theorem imply that

Z 1

0

n
Y

jD1
NF .aj x/dx D const. (22.5.18)

whenever
Pn

jD1 aj D const. Set the following values successively in (22.5.18):

a1 D a2 D 1; a3 D � � � D an D 0I
a1 D 1; a2 D a3 D 1=2; a4 D � � � D an D 0I
a1 D a2 D a3 D a4 D 1=2; a5 D � � � D an D 0:

Then, from the doubled second equality obtained in this way we calculate the first
and the third, finding

Z 1

0

h NF .x/� NF 2.
x

2
/
i2

dx D 0 ;

so that

NF .x/ D NF 2
�x

2

�

: (22.5.19)

Equations of the form (22.5.19) are well known.6 When the limit specified in the
hypothesis of the theorem exists, the only solution of the preceding equation is
NF .x/ D exp.�	x/. ut

The foregoing proof demonstrates that if E.
Vn
jD1

xj
aj
/ depends on the sum of

a1; : : : ; an only for the three sets of parameters specified previously, then F.x/ is a
function of the exponential distribution. Instead of the expectation of the minimum,
we can take the expectation of any strictly increasing function of it (as long as the
expectation exists).

6See, for example, Kakosyan et al. (1984).
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22.5.2 Characterization of Distributions Symmetric to a Group
of Transformations

Consider two i.i.d. random vectors X and Y in R
d , and a real orthogonal matrix A,

that is AAT D ATA D I . Here, AT stands for the transpose of the matrix A, and I
is the unit matrix.

Theorem 22.5.8. Suppose that A is an orthogonal d � d matrix and that L is a
negative definite kernel such that L.Ax;Ay/ D L.x; y/. Then for the i.i.d. RVs
X; Y we have

EL.X;AY / � EL.X; Y /: (22.5.20)

In addition, if L is a strongly negative definite kernel, then the equality in (22.5.20)
is attained if and only if the distribution of the vector X is invariant with respect to
the group G generated by the matrix A.

Proof. Let us consider the corresponding N kernel on the space of corresponding
probability distributions

N .X;AY / D 2EL.X;AY / �EL.X;X 0/�EL.AY;AY 0/:

As we saw in Chap. 21, N is negative definite if L is such, and it is a square of
distance if L is a strongly negative definite kernel. But L.Ax;Ay/ D L.x; y/, and
therefore

N .X;AY / D 2
�

EL.X;AY / � EL.X;X 0/
�

;

which implies the statement of the theorem. ut
Corollary 22.5.3. Suppose that X and Y are two i.i.d. random vectors such that
the moment EkXkr exists for some r 2 .0; 2/ and A is a real orthogonal matrix.
Then

EkX �AY kr � EkX � Y kr ; (22.5.21)

with equality if and only if the distribution ofX is invariant with respect to the group
G generated by the matrix A.

Proof. It is clear that

L.x; y/ D kx � ykr
is a strongly negative definite kernel in R

d �R
d , and L.Ax;Ay/ D L.x; y/ because

the Euclidean distance is invariant under orthogonal transformations. ut
Remark 22.5.2. Note that for r D 2, the equality in (22.5.21) does not characterize
any property of invariance. It imposes some restrictions on the first moments of the
distribution of X .
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Example 22.5.1. Let g.t/ be a real characteristic function of an infinitely divisible
probability distribution on R

d . Then L.x; y/ D � logg.x�y/ is a negative definite
kernel. Further, if the support of the corresponding spectral measure in the Lévy–
Khinchin representation of g.t/ coincides with the whole R

d , then the kernel is
strongly negative definite.

Let us take L.x; y/ D 1 � expf�kx � yk2g. Since g.t/ D exp.�ktk2/ is
the characteristic function of a multivariate normal distribution, then the function
L.x; y/ is a strongly negative definite kernel. Therefore,

E expf�kX � Y k2g � E expf�kX � AY k2g (22.5.22)

with equality if and only if the distribution ofX is invariant with respect to the group
G. Note that here we do not need any moment-type restrictions.

A type of generalization arises in the following way.7 LetB D CTC be a positive
definite d �d matrix, and let kxkB D .xT Bx/1=2 be the corresponding norm in R

d .
Suppose now that A is a d � d real matrix satisfying the condition ATBA D B

(which is a generalization of orthogonality).

Theorem 22.5.9. LetX and Y be i.i.d. random vectors in R
d having finite absolute

r th moment .0 < r < 2/. Then

EkX � AY krB � EkX � Y krB ; (22.5.23)

with equality if and only if the distribution ofX is invariant with respect to the group
generated by the matrix A.

Proof. Apply Theorem 22.5.3 to the random vectors CX and CY and ordinary
Euclidean norm. ut

We can now characterize the distributions invariant with respect to a group
generated by a finite set of matrices.8

Theorem 22.5.10. Suppose that Bj D CT
j Cj , j D 1; : : : ; m, are positive definite

d �d matrices andATj BjAj D Bj . Let X; Y be i.i.d. random vectors in R
d having

finite absolute r th moment .0 < r < 2/. Then

m
X

jD1

�

EkX �AjY krBj � EkX � Y krBj
�

� 0; (22.5.24)

with equality if and only if the distribution ofX is invariant with respect to the group
G generated by the matrices Aj , j D 1; : : : ; m.

7See Klebanov et al. (2001).
8See Klebanov et al. (2001).
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Chapter 23
Statistical Estimates Obtained by the Minimal
Distances Method

The goals of this chapter are to:

• Consider the problem of parameter estimation by the method of minimal
distances,

• Study the properties of the estimators.

Notation introduced in this chapter:

Notation Description

wı Brownian bridge
F� .x/ D F.x; �/ Distribution function with parameter �
p� .x/ D p.x; �/ Density of F�.x/

23.1 Introduction

In this chapter, we consider minimal distance estimators resulting from using
the N-metrics and compare them with classical M -estimators. This chapter, like
Chap. 22, is not directly related to quantitative convergence criteria, although it does
demonstrate the importance of N-metrics.

23.2 Estimating a Location Parameter: First Approach

Let us begin by considering a simple case of estimating a one-dimensional location
parameter. Assume that

L.x; y/ D L.x � y/

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 23, © Springer Science+Business Media, LLC 2013
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is a strongly negative definite kernel and

N.F;G/ D �
1
Z

�1

1
Z

�1
L.x; y/dR.x/dR.y/; R D F �G;

is the corresponding kernel defined on the class of distribution functions (DFs). As
we noted in Chap. 22, N.F;G/ D N 1=2.F;G/ is a distance on the class B.L/ of
DFs under the condition

1
Z

�1

1
Z

�1
L.x; y/dF.x/dF.y/ < 1:

Suppose that x1; : : : ; xn is a random sample from a population with DF F�.x/ D
F.x � �/, where � 2 ‚ � R

1 is an unknown parameter (‚ is some interval, which
may be infinite). Assume that there exists a densityp.x/ of F.x/ (with respect to the
Lebesgue measure). Let F �

n .x/ be the empirical distribution based on the random
sample, and let �� be a minimum distance estimator of � , so that

N.F �
n ; F��/ D min

�2‚ N.Fn; F� / (23.2.1)

or

�� D argmin�2‚N.F �
n ; F� /: (23.2.2)

We have

N.F �
n ; F� / D 2

n

n
X

jD1

1
Z

�1
L.xj � � � y/p.y/dy

� 1

n2

X

ij

L.xi � xj /

�
1
Z

�1

1
Z

�1
L.x � y/p.x/p.y/dxdy:

Suppose that L.u/ is differentiable and L and p are such that

1
Z

�1
L.x/p0.x C �/dx D d

d�

1
Z

�1
L.x � �/p.x/dx

D �
1
Z

�1
L0.x � �/p.x/dx: (23.2.3)
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Then, (23.2.2) implies that �� is the root of

d

d�
N.F �

n ; F� /j�D�� D 0

or
n
X

jD1

1
Z

�1
L0.xj � �� � v/p.v/dv D 0: (23.2.4)

Since the estimator �� satisfies the equation

n
X

jD1
g1.xj � �/ D 0; (23.2.5)

where

g1.x/ D
1
Z

�1
L0.x � v/p.v/dv/;

it is an M -estimator.1 It is well known [see, e.g., Huber (1981)] that (23.2.4) [or
(23.2.5)] determines a consistent estimator only if

1
Z

�1
g1.x/p.x/dx D 0;

that is,
1
Z

�1

1
Z

�1
L0.u � v/p.u/p.v/dudv D 0: (23.2.6)

We show that if (23.2.3) holds, then (23.2.6) does as well. The integral

1
Z

�1

1
Z

�1
L.u � v/p.u C �/p.v C �/dudv D

1
Z

�1
L.u � v/p.u/p.v/dudv

does not depend on � . Therefore,

d

d�

1
Z

�1

1
Z

�1
L.u � v/p.u C �/p.v C �/dudv D 0: (23.2.7)

1See, for example, Huber (1981) for the definition and properties of M -estimators.
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On the other hand,

d

d�

1
Z

�1

1
Z

�1
L.u � v/p.u C �/p.v C �/dudv

D
1
Z

�1

1
Z

�1
L.u � v/p0.u C �/p.v C �/dudv

C
1
Z

�1

1
Z

�1
L.u � v/p.u C �/p0.v C �/dudv

D 2

1
Z

�1

1
Z

�1
L.u � v/p0.u C �/p.v C �/dudv:

Here, we used the equality L.u � v/ D L.v � u/. Comparing this with (23.2.7), we
find that for � D 0

1
Z

�1

1
Z

�1
L.u � v/p0.u/p.v/dudv D 0: (23.2.8)

However,

1
Z

�1

1
Z

�1
L.u � v/p0.u/p.v/dudv D

1
Z

�1

0

@

d

du

1
Z

�1
L.u � v/p.v/dv

1

Ap.u/du

D
1
Z

�1

1
Z

�1
L0.u � v/p.u/p.v/dudv:

Consequently [see (23.2.8)],

1
Z

�1

1
Z

�1
L.u � v/p.u/p.v/dudv D 0;

which proves (23.2.6).
We see that the minimum N-distance estimator is an M -estimator, and the

necessary condition for its consistency is automatically fulfilled.
The standard theory of M -estimators shows that the asymptotic variance of ��

[i.e., the variance of the limiting random variable of
p
n.�� � �/ as n ! 1] is
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�2��

D

1
R

�1

� 1
R

�1
L0.u � v/p.v/dv

�2

p.u/du

� 1
R

�1

1
R

�1
L00.u � v/p.u/p.v/dudv

�2
;

where we assumed the existence of L00 and that the differentiation can be carried out
under the integral. Note that when the parameter space‚ is compact, it is clear from
geometric considerations that �� D argmin�2‚N.F �

n ; F� / is unique for sufficiently
large n.

23.3 Estimating a Location Parameter: Second Approach

We now consider another method for estimating a location parameter � . Let

� 0 D argmin�2‚N.F �
n ; ı�/; (23.3.1)

where ı� is a distribution concentrated at the point � and F �
n is an empirical DF.

Proceeding as in Sect. 23.2, it is easy to verify that � 0 is a root of

n
X

jD1
L0.xj � �/ D 0; (23.3.2)

and so it is a classic M -estimator. A consistent solution of (23.3.2) exists only if

1
Z

�1
L0.u/p.u/du D 0: (23.3.3)

What is a geometric interpretation of (23.3.3)? More precisely, how is the
measure parameter ı� related to the family parameter, that is, to the DF F�? This
must be the same parameter, that is, for all �1 we must have

N.F�; ı� / � N.F� ; ı�1/:

Otherwise,

d

d�1
N.F�; ı�1/j�1D� D 0:

It is easy to verify that the last condition is equivalent to (23.3.3). Thus, (23.3.3)
has to do with the accuracy of parameterization and has the following geometric
interpretation. The space of measures with metric N is isometric to some simplex in
a Hilbert space. In this case, ı-measures correspond to the extreme points (vertices)
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of the simplex. Consequently, (23.3.3) signifies that the vertex closest to the measure
with DF F� corresponds to the same value of the parameter � (and not to some other
value �1).

23.4 Estimating a General Parameter

We now consider the case of an arbitrary one-dimensional parameter, which is
approximately the same as the case of a location parameter. We just carry out formal
computations assuming that all necessary regularity conditions are satisfied.

Let x1; : : : ; xn be a random sample from a population with DF F.x; �/; � 2
‚ � R

1. Assume that p.x; �/ D p�.x/ is the density of F.x; �/. The estimator

�� D argmin�2‚N.F �
n ; F� /

is an M -estimator defined by the equation

1

n

n
X

jD1
g.xj ; �/ D 0; (23.4.1)

where

g.x; �/ D
1
Z

�1
L.x; v/p0

� .v/dv �
1
Z

�1

1
Z

�1
L.u; v/p�.u/p0

� .v/dudv:

Here, L.u; v/ is a negative definite kernel, which does not necessarily depend on the
difference of arguments, and the prime 0 denotes the derivative with respect to � . As
in Sect. 23.2, the necessary condition for consistency,

E�g.x; �/ D 0;

is automatically fulfilled. The asymptotic variance of �� is given by

�2��

D
Var

� 1
R

�1
L.x; v/p0

� .v/dv

�

� 1
R

�1

1
R

�1
L.u; v/p0

� .u/p
0
� .v/dudv

�2
:

We can proceed similarly to Sect. 23.3 to obtain the corresponding results in this
case. Since the calculations are quite similar, we do not state these results explicitly.
Note that to obtain the existence and uniqueness of �� for sufficiently large n,
we do not need standard regularity conditions such as the existence of variance,
differentiability of the density with respect to � , and so on. These are used only
to obtain the estimating equation and to express the asymptotic variance of the
estimator.
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In general, from the construction of �� we have

N.F �
n ; F��/ � N.F �

n ; F� / a:s:;

and hence

E�N.F
�
n ; F��/ � E�N.F

�
n ; F� /

D 1

n

1
Z

�1

1
Z

�1
L.x; y/dF.x; �/dF.y; �/ ����!

n!1 0: (23.4.2)

In the case of a bounded kernel L, the convergence is uniform with respect to � . In
this case it is easy to verify that nN.F �

n ; F� / converges to

�
1
Z

�1

1
Z

�1
L.x; y/dwı.F.x; �//dwı.F.y; �//

as n ! 1, where wı is the Brownian bridge.

23.5 Estimating a Location Parameter: Third Approach

Let us return to the case of estimating a location parameter. We will present an
example of an estimator obtained by minimizing the N-distance, which has good
robust properties. Let

Lr .x/ D
� jxj for jxj < r
r for jxj � r;

where r > 0 is a fixed number. The famous Pólya criterion2 implies that the
function f .t/ D 1 � 1

r
Lr .t/ is the characteristic function of some probability

distribution. Consequently, Lr .t/ is a negative definite function. This implies that
for a sufficiently large sample size n there exists an estimator �� of minimal Nr

distance, where N r is the kernel constructed from Lr .x � y/. If the distribution
function F.x � �/ has a symmetric unimodal density p.x � �/ that is absolutely
continuous and has a finite Fisher information

I D
Z 1

�1

�

p0.x/
p.x/

�2

p.x/dx;

then we conclude by (23.4.2) that �� is consistent and is asymptotically normal. The
estimator �� satisfies (23.2.5), where

2See, for example, Lukacs (1969).
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g1.x/ D
1
Z

�1
L0.x � v/p.v/dv

and

L0.u/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 for juj � r;

1 for 0 < u < r;
0 for u D 0;

�1 for � r < u < 0:

This implies that �� has a bounded influence function and, hence, is B-robust.3

Consider now the estimator �
0

obtained by the method discussed in Sect. 23.3.
It is easy to verify that this estimator is consistent under the same assumptions.
However, � 0 satisfies the equation

n
X

jD1
L0.xj � �/ D 0;

so that it is a trimmed median. It is well known that a trimmed median is the most
B-robust estimator in the corresponding class of M -estimators.4

23.6 Semiparametric Estimation

Let us now briefly discuss semiparametric estimation. This problem is similar to that
considered in Sect. 23.4, except that here we do not assume that the sample comes
from a parametric family. Let x1; : : : ; xn, be a random sample from a population
given by DF F.x/, which belongs to some distribution class P . Suppose that the
metric N is generated by the negative definite kernel L.x; y/ and that P � B.L/.
B.L/ is isometric to some subset of the Hilbert space H. Moreover, Aronszajn’s
theorem implies that H can be chosen to be minimal in some sense. In this case, the
definition of N is extended to the entire H.

We assume that the distributions under consideration lie on some “nonparametric
curve.” In other words, there exists a nonlinear functional ' on H such that the
distributions F satisfy the condition

'.F / D c D const.

The functional ' is assumed to be smooth. For any H 2 H

3See Hampel et al. (1986).
4See Hampel et al. (1986).
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lim
t!0

N.F C tH;G/�N.F;G/

t
D 2

1
Z

�1

1
Z

�1
L.x; y/d.G.x/ � F.x//dH.y/

D h grad N.F;G/;H i;

where G is fixed.
Under the parametric formulation of Sect. 23.4, the equation for � has the form

d

d�
N.F� ; F

�
n / D 0;

that is,
�

grad N.F; F �
n /jFDF� ;

d

d�
F�

�

D 0:

Here, the equation explicitly depends on the gradient of the functional N.F; F �
n /.

However, under the nonparametric formulation, we work with the conditional
minimum of the functionalN.F; F �

n /, assuming that F lies on the surface '.F / D
C . Here, our estimator is

QF � D argmin
F2fF W'.F /Dcg

N.F; F �
n /:

According to general rules for finding conditional critical points, we have

grad N. QF �; QF �
n / D � grad �. QF �/; (23.6.1)

where � is a number. Thus, in the general case, (23.6.1) is an eigenvalue problem.
This is a general framework of semiparametric estimation.
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Chapter 24
Some Statistical Tests Based on N-Distances

The goals of this chapter are to:

• Construct statistical tests based on the theory of N-distances,
• Study properties of multivariate statistical tests.

24.1 Introduction

In this chapter, we construct statistical tests based on the theory of N-distances.
We consider a multivariate two-sample test, a test to determine if two distributions
belong to the same additive type, and tests for multivariate normality with unknown
mean and covariance matrix.

24.2 A Multivariate Two-Sample Test

Here we introduce a class of free-of-distribution multivariate statistical tests closely
connected to N-distances.

Let L.x; y/ be a strongly negative definite kernel on R
d � R

d . As always, we
suppose that L satisfies

L.x; y/ D L.y; x/ and L.x; x/ D 0 for all x; y 2 X:

Suppose that X; Y are two independent random vectors in R
d , and define one-

dimensional independent random variables (RVs) U; V by the relation

U D L.X; Y /� L.X;X 0/; (24.2.1)

V D L.Y 0; Y 00/ � L.X 00; Y 00/: (24.2.2)

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 24, © Springer Science+Business Media, LLC 2013
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Here, X
dD X 0 dD X 00, and all vectors X;X 0; X 00; Y; Y 0; Y 00 are mutually

independent.
It is clear that the condition N.X; Y / D 0 is equivalent to N .X; Y / D 0, which

is equivalent to EU D EV . But

N .X; Y / D 0 ” X
dD Y H) U

dD V:

Therefore, under the conditions

EL.X;X 0/ < 1; EL.Y; Y 0/ < 1; (24.2.3)

we have

X
dD Y ” U

dD V: (24.2.4)

Assume now that we are interested in testing the hypothesis Ho W X
dD Y for

multivariate random vectors X; Y . We have seen that, theoretically, this hypothesis

is equivalent to H 0
o W U

dD V , where U; V are random variables taking values in
R
1. To test H 0

o, we can use a arbitrary one-dimensional free-of-distribution test, say
the Kolomogorov–Smirnov test. It is clear that if the distributions of X and Y are
continuous, then U and V have continuous distributions, too. Therefore, the test for
H 0
o will appear to be free of distribution in this case.
Consider now the two independent samples

X1; : : : ; XnI Y1; : : : ; Yn (24.2.5)

from general populationsX and Y , respectively. To apply a one-dimensional test to
U and V , we must construct (or simulate) the samples from these populations based
on observations (24.2.5). We can proceed using one of the following two methods:

Method 1. Split each sample into three equal parts, and consider each of the parts
as a sample from X , X 0, X 00 and from Y , Y 0, Y 00, respectively. Of course, this
methods leads to essential loss of information but is unobjectionable from a
theoretical point of view.

Method 2. Simulate the samples from X 0 and X 00 (as well as from Y 0 and Y 00)
by independent choices from observations X1; : : : ; Xn (and from Y1; : : : ; Yn,
respectively). Theoretically, the drawback of this approach is that now we do

not test the hypothesis X
dD Y , but one of the identities of the corresponding

empirical distributions. Therefore, the test is, obviously, asymptotically free of
distribution (as n ! 1) but generally is not free of distribution for a fixed value
of sample size n.

Let us start with the studies of test properties based on Method 1. We simulated
5,000 pairs of samples of volume n D 300 from two-dimensional Gaussian vectors,
calculated values of U and V (the splitting into three equal parts had been done),
and applied Kolmogorov–Smirnov statistics. The values ofU and V were calculated
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for the kernel L.x; y/ D kx � yk with an ordinary Euclidean norm. The results of
the simulation for the p-values are shown in Fig. 24.1 by the dashed line. The solid
line corresponds to theoretical p-values of the Kolmogorov–Smirnov test when the
sample size equals 100.

As can be seen in Fig. 24.1, the graphs appear to be almost identical. In full
agreement with theory, simulations show that the distribution of the test under zero
hypothesis does not depend either on the parameters of the underlying distribution
or on its dimensionality. We omit the corresponding graphs (they are identical to
those of Fig. 24.1).

Let us now discuss the simulation study of the power of the proposed test using
Method 2. We start with location alternatives for X and Y . In other words, we test

the hypothesisHo W X dD Y against the alternativeX
dD Y C� , where � is a known

vector.
Figure 24.2 shows the plot of the power of our test for the following case.

We simulated samples of volume n D 100 from two-dimensional Gaussian
distributions. The first sample was taken from a distribution with zero mean vector
and covariance matrix

ƒ D
�

1 ˛

˛ 1

�

;
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where ˛ D 0:5. For the other sample, the Gaussian distribution was with the
same covariance matrix but having mean vector .0:2m; 0:2m/, m D 0; 1; : : : ; 6.
The procedure was repeated 500 times for each sample. The portion of rejected
hypotheses is shown in Fig. 24.2.

Figure 24.3 shows a plot of the power of our test for almost the same case as in the
previous figure, but we changed only the first coordinate of the mean vector, i.e., we
had mean vector .0:2m; 0/, m D 0; 1; : : : ; 6. The reduction of the power is natural
in this case because the distance between simulated distributions is approximately
1=

p
2 times smaller in the second case.

As we can see from the results of the simulations, the correlation between
the components of the Gaussian vector do not essentially affect the power for the
scale alternatives. The simulations for different correlation coefficients show us that
the sensitivity of the statistic to such alternatives is essentially lower than that for
the location alternatives.

Figure 24.4 shows a plot of the power of our test for the following case.
We simulated samples of volume n D 2,000 from two-dimensional Gaussian
distributions. The first sample was taken from the distribution with zero mean vector
and covariance matrix

ƒ D
�

1 ˛

˛ 1

�

;

where ˛ D 0, and the second one with zero mean vector and covariance matrix
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„ D
�

1 ˇ

ˇ 1

�

;

where ˇ D 0:3m, m D 0; 1; 2; 3. We see from the figure that the power is not as
high as it was for the location alternatives (here we have n D 2,000 while for the
location alternatives n D 100). This finding is expected because the distributions
being compared have the same marginals.

24.3 Testing If Two Distributions Belong to the Same
Additive Type

Suppose that z1; : : : ; zk .k � 3/ are independent and identically distributed random
vectors in R

d having the DF F.x/. Consider the vector Z D .z2 � z1; : : : ; zd /.
It is clear that the distribution of the vector Z is the same as for random vectors
zj C � , j D 1; : : : ; d , � 2 R

d . In other words, the distribution of Z is the same
for the additive type of F , i.e., for all DFs of the form F.x � �/. The problem of
recovering the additive type of a distribution on the basis of the distribution of Z
was considered by Kovalenko (1960), who proved that recovery is possible if the
characteristic function has “not too many” zeros, i.e., the set of zeros is not dense in
any d -dimensional ball.

Based on the result by Kovalenko, it is possible to conduct a test to determine if
two distributions belong to the same additive type. Let X1; : : : ; Xn and Y1; : : : ; Yn
be independent samples from the populationsX and Y , respectively. We want to test

the hypothesis X
dD Y C � for a constant unknown vector � against the alternative

X
d

¤ Y C � for all � . To construct the test we can do the following steps:

1. By independent sampling or by permutations from the values X1; : : : ; Xn,
generate two independent samples X 0

1; : : : ; X
0
n and X 00

1 ; : : : ; X
00
n .

2. By independent sampling or by permutations from the values Y1; : : : ; Yn, gener-
ate two independent samples Y 0

1 ; : : : ; Y
0
n and Y 00

1 ; : : : ; Y
00
n .

3. Form vector samples

ZX D ..X 0
1 � Mean.X 0/; X 00

1 � Mean.X 00//; : : : ;

.X 0
n � Mean.X 0/; X 00

n � Mean.X 00///

and

ZY D ..Y 0
1 � Mean.Y 0/; Y 00

1 � Mean.Y 00//; : : : ;

.Y 0
n � Mean.Y 0/; Y 00

n � Mean.Y 00///:

4. Using the two methods described in the previous section, test the hypothesis that
the samples ZX and ZY are taken from the same population.
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It is clear that Method 2 is theoretically good only asymptotically because of the
impact associated with sampling from the observed data. To avoid this impact, we
can (as we did in the previous section) split the original samples into a corresponding
number of parts. But our simulations show that Method 2 of permuting original data
works rather well. Consequently, usually we do not need to split the original sample.

We simulated 500 pairs of samples from Gaussian distributions .0; 1/ and .3; �/
of size n D 300 each. Figure 24.5 shows a plot of the power of our test for the
case of split samples. The parameter � changes from 1 to 7:5 with step 0:3. On the
abscissa-axis we havem D 1C.��1/=0:3. We used the kernel L.x; y/ D kx�yk.

We also simulated 500 pairs of samples from Gaussian distributions .0; 1/ and
.3; �/ of size n D 100 each. Figure 24.6 shows a plot of the power of our test for
the case of permuted samples. The parameter � changes from 1 to 6 with step 0:2.
On the abscissa-axis we have m D 1C .� � 1/=0:2. We used the kernel L.x; y/ D
kx�yk. Comparing Figs. 24.5 and 24.6, we find that there is almost the same power
for both split and permuted samples.

Figure 24.7 shows a plot of the power of our test for the same case as for Fig. 24.6,
but we used the kernel L.x; y/ D 1 � exp.�kx � yk2/. A comparison to Fig. 24.6
indicates that the last kernel produces a higher power. But this effect depends on the
underlying distribution (recall that the Gaussian is used to generate both figures).
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24.4 A Test for Multivariate Normality

Undoubtedly, there is interest in tests to assess whether a vector of observations
is Gaussian with unknown mean and covariance matrix. Such a test may be
constructed based on the following characterization of Gaussian law.

Proposition 24.4.1. Let Z;Z0; Z00; Z000 denote four independent and identically
distributed random vectors in R

d . The vector Z has a Gaussian distribution if and
only if

Z
dD 2

3
Z0 C 2

3
Z00 � 1

3
Z000: (24.4.1)

Suppose now that Z1; : : : ; Zn is a random sample from the population Z. We
can construct the following test for determining if Z is Gaussian.

1. Choosing independently from the values Z1; : : : ; Zn (or using permutations of
those values), generateZ0

1; : : : ; Z
0
n, Z00

1 ; : : : ; Z
00
n , and Z000

1 ; : : : ; Z
000
n .

2. Build two samples

X D .Z1; : : : ; Zn/

and

Y D
��

2

3
Z0
1 C 2

3
Z00
1 � 1

3
Z000
1

�

; : : : ;

�

2

3
Z0
n C 2

3
Z00
n � 1

3
Z000
n

��

:

3. Test the hypothesis that X and Y are taken from the same population. According
to Proposition 24.4.1, this hypothesis is equivalent to one of the normality of Z.

Figure 24.8 shows the power of our test for the case where we simulated samples
of volume n D 300 from the mixture of two Gaussian distributions, both with unit
variance and mean 1 and 5, respectively. The mixture proportion p changed from 0

to 1 with step 0:1. Of course, the power is small near p D 0 and p D 1 because the
mixture almost corresponds to a Gaussian distribution [with the parameters .0; 1/
for p close to 0, and with parameters .5; 1/ for p close to 1]. But the power is close
to 1 for p 2 .0:3; 0:7/.



588 24 Some Statistical Tests Based on N-Distances

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1Fig. 24.8 Power of test for
normality with arbitrary
parameters

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1Fig. 24.9 Power of test for
normality with zero mean

We can use another characterization of the normal distribution with zero mean to
construct a corresponding statistical test. To do this, we can change the definition

Y D
��

2

3
Z0
1 C 2

3
Z00
1 � 1

3
Z000
1

�

; : : : ;

�

2

3
Z0
n C 2

3
Z00
n � 1

3
Z000
n

��

by

Y D
�

Z0
1 CZ00

1p
2

; : : : ;
Z0
n CZ00

np
2

�

:

Samples X and Y are taken from the same population if and only if Z is Gaussian
with zero mean and arbitrary variance.

Figure 24.9 demonstrates the power of our test for the case where we simulated
samples of volume n D 200 from a Gaussian distribution with parameters .a; 1/.
Parameter a (mean value of the distribution) changed from 0 to 1 with step 0:1.
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Chapter 25
Distances Defined by Zonoids

The goals of this chapter are to:

• Introduce N-distances defined by zonoids,
• Explain the connections between N-distances and zonoids.

Notation introduced in this chapter:

Notation Description

h.K; u/ Support function of a convex body
K1 ˚K2 Minkowski sum of sets K1 and K2

Sd�1 Unit sphere in R
d

25.1 Introduction

Suppose that X is a metric space with the distance �. It is well known (Schoenberg
1938) that X is isometric to a subspace of a Hilbert space if and only if �2 is a
negative definite kernel. The so-called N-distance (Klebanov 2005) is a variant of a
construction of a distance on a space of measures on X such that N2 is a negative
definite kernel. Such a construction is possible if and only if �2 is a strongly negative
definite kernel on X.

In this chapter, we show that the supporting function of any zonoid in R
d is a

negative definite first-degree homogeneous function. The inverse is also true. If the
support of a generating measure of a zonoid coincides with the unit sphere, then
the supporting function is strongly negative definite, and therefore it generates a
distance on the space of Borel probability measures on R

d .

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 25, © Springer Science+Business Media, LLC 2013
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25.2 Main Notions and Definitions

Here we review some known definitions and facts from stochastic geometry.1

Let C (resp. C0) be the system of all compact convex sets (resp. nonempty
compact convex sets) in R

d . A set K 2 C0 is called a convex body if K 2 C0; then
for each u 2 Sd�1 there is exactly one number h.K; u/ such that the hyperplane

fx 2 R
d W hx; ui � h.K; u/ D 0g (25.2.1)

intersects K , and hx; ui � h.K; u/ � 0 for each x 2 K . This hyperplane is called
the support hyperplane, and the function h.K; u/, u 2 Sd�1 (where Sd�1 is the
unit sphere), is the support function (restricted to Sd�1) of K . Equivalently, one
can define

h.K; u/ D supfhx; ui; x 2 Kg; u 2 R
d : (25.2.2)

Its geometrical meaning is the signed distance of the support hyperplane from the
coordinate origin.

An important property of h.K; u/ is its additivity:

h.K1 ˚K2; u/ D h.K1; u/C h.K2; u/;

whereK1 ˚K2 D faC b W a 2 K1; b 2 K2g is the Minkowski sum ofK1 andK2.
For K 2 C0 let ǨD f�k; k 2 Kg. We say that K is centrally symmetric if K 0 D Ǩ0
for some translate K 0, i.e., if K has a center of symmetry.

The Minkowski sum of finitely many centered line segments is called a zonotope.
Consider a zonotope

Z D
k
M

iD1
ai Œvi ;�vi �; (25.2.3)

where ai > 0, vi 2 S
d�1. Its support function is given by

h.Z; u/ D hZ.u/ D
k
X

iD1
ai jhu; viij: (25.2.4)

We use the notationK0 for the space of all compact subsets of Rd with the Hausdorff
metric

dH.K1;K2/ D maxf sup
x2K1

dist.x;K2/; sup
y2K2

dist.y;K1/g; (25.2.5)

where dist.x;K/ D infz2K kx � zk.

1See, for example, Ziegler (1995) and Beneš and Rataj (2004).
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A set Z 2 C0 is called a zonoid if it is a limit in a dH distance of a sequence of
zonotopes.

It is known that a convex body Z is a zonoid if and only if its support function
has a representation

h.Z; u/ D
Z

Sd�1

jhu; vijd�Z.v/ (25.2.6)

for an even measure �Z on S
d�1. The measure �Z is called the generating measure

of Z . It is known that the generating measure is unique for each zonoid Z .

25.3 N-Distances

Suppose that .X;A/ is a measurable space and L is a strongly negative definite
kernel on X. Denote by BL the set of all probabilities � on .X;A/ for which there
exists the integral

Z

X

Z

X

L.x; y/d�.x/d�.y/ < 1: (25.3.1)

For �; � 2 BL consider

N .�; �/ D 2

Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/: (25.3.2)

It is known (Klebanov 2005) that

N.�; �/ D
�

N .�; �/
�1=2

is a distance on BL.
Described below are some examples of negative definite kernels.

Example 25.3.1. Let X D R
1. For r 2 Œ0; 2� define

Lr .x; y/ D jx � yjr :
The functionLr is a negative definite kernel. For r 2 .0; 2/,Lr is a strongly negative
definite kernel.



592 25 Distances Defined by Zonoids

For the proof of the statement in this example and the statement in the next example
(Example 25.3.2), see Klebanov (2005).

Example 25.3.2. Let L.x; y/ D f .x � y/, where f .t/ is a continuous function on
R
d , f .0/ D 0, f .�t/ D f .t/. L is a negative definite kernel if and only of

f .t/ D
Z

Rd

�

1 � cosht; ui�1C kuk2
kuk2 d‚.u/; (25.3.3)

where ‚ is a finite measure on R
d . Representation (25.3.3) is unique. Kernel L is

strongly negative definite if the support of the measure ‚ coincides with the whole
space Rd .

We will give an alternative proof for the fact that jx � yj is a negative definite
kernel. For the case X D R

1 define

L.x; y/ D 2max.x; y/ � x � y D jx � yj: (25.3.4)

Then L is a negative definite kernel.

Proof. It is sufficient to show that max.x; y/ is a negative definite kernel. For
arbitrary a 2 R

1 consider

ua.x/ D
(

1; x < a;

0; x � a:
(25.3.5)

It is clear that

ua.max.x; y// D ua.x/ua.y/:

Let F.a/ be a nondecreasing bounded function on R
1. Define

K.x; y/ D
Z 1

�1
ua.max.x; y//dF.a/:

For any integer n > 1 and arbitrary c1; : : : ; cn under condition
Pn

jD1 cj D 0

we have

n
X

iD1

n
X

jD1
K.xi ; xj /ci cj D

Z 1

�1

n
X

iD1

n
X

jD1
ua.xi /ua.xj /ci cjdF.a/

D
Z 1

�1

 

n
X

iD1
ua.xi /ci

!2

dF.a/ � 0:
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But

K.x; y/ D
Z 1

�1
ua.max.x; y//dF.a/

D F.C1/ � F.max.x; y//:

Let us fix arbitrary A > 0 and apply the previous equality to the function

F.a/ D FA.a/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

A for a > A;

a for � A � a � A;

�A for a < �A:
(25.3.6)

In this case, K.x; y/ D A � max.x; y/ for x; y 2 Œ�A;A�, and, as A ! 1, we
obtain that max.x; y/ is a negative definite kernel. ut

Directly from the definition of a negative definite kernel and Example 25.3.1 we
obtain the next example.

Example 25.3.3. Let x; y 2 R
d , and f W R

d ! R
1. Define

L.x; y/ D jf .x/ � f .y/j:
Then L is a negative definite kernel.

Of course, the mixture of negative definite kernels is again a negative definite
kernel.

Example 25.3.4. Let us choose and fix a vector � 2 S
d�1 and consider the kernel

L� .x; y/ D jhx; �i � hy; �ij:
From previous considerations it is clear that L� is a negative definite kernel on R

d ,
and for the �-finite measure„

L„.x; y/ D
Z

Sd�1

L� .x; y/d„.�/ (25.3.7)

is, again, a negative definite kernel.

Consider expression (25.3.2) constructed on the basis of (25.3.7). Let us rewrite
(25.3.2) in a different form. Suppose that X and Y are two random vectors in R

d

with distributions � and �, respectively. We write N .X; Y / instead of N .�; �/,
so that

N .X; Y / D 2EL„.X; Y /� EL„.X;X 0/ �EL„.Y; Y 0/;
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where X 0 dD X and Y 0 dD Y are independent copies of X and Y , respectively. Note

that we use the sign
dD for the equality in a distribution. We have

N .X; Y / D E

Z

Sd�1

Œ4max.hX; �i; hY; �i/

�2max.hX; �i; hX 0; �i/� 2max.hY; �i; hY 0; �i/�d„.�/:

Denote X� D hX; �i, Y� D hY; �i. Then

N .X; Y / D 2

Z

Sd�1

lim
A!1E

Z A

�A
�

ua.X�/ua.X
0
� /

Cua.Y� /ua.Y
0
� / � 2ua.X�/ua.Y� /

�

dFA.a/d„.�/:

But Eua.X�/ D PrfX� < ag, and therefore

N .X; Y / D 2 lim
A!1

Z

Sd�1

d„.�/
Z A

�A

�

PrfX� < agPrfX 0
� < ag

CPrfY� < agPrfY 0
� < ag � 2PrfX� < agPrfY� < ag

�

dFA.a/

D 2

Z

Sd�1

d„.�/
Z 1

�1

�

F�.a/ �G�.a/
�2

da;

where F�.a/ D PrfX� < ag, G�.a/ D PrfY� < ag. So finally we have

N .X; Y / D 2

Z

Sd�1

d„.�/
Z 1

�1

�

F�.a/ �G�.a/
�2

da: (25.3.8)

If the support of „ coincides with S
d�1, then N.X; Y / D

�

N .X; Y /
�1=2

is a

distance between the distributions of X and Y .
Let us return to the kernel

L� .x; y/ D 2max.hx; �i; hy; �i/� hx; �i � hy; �i:

Choose arbitrary �o 2 S
d�1, and consider the measure

„o D 1

2

�

ı�o C ı��o
�

;

where ı�o is the measure concentrated at point �o. Then
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L„�o .x; y/ D
Z

Sd�1

L� .x; y/d„o.�/

D max.hx; �oi; hy; �oi/C max.�hx; �oi;�hy; �oi/
D jhx � y; �ij:

Now, if we have an arbitrary even measure„s on sphere Sd�1, then

L„s .x; y/ D
Z

Sd�1

L� .x; y/d„s.�/

D
Z

Sd�1

jhx � y; �ijd„s.�/

is a negative definite kernel. Let us note that the function

h.z/ D
Z

Sd�1

jhz; �ijd„s.�/; z 2 R
d (25.3.9)

is the support function of a zonoid with generating measure „s .
Summarizing all the preceding relations we may formulate the following result.

Theorem 25.3.1. Each zonoid Z generates a negative definite kernel on R
d

LZ.x; y/ D hZ.x � y/ D
Z

Sd�1

jhx � y; �ijd�Z.�/: (25.3.10)

This kernel is strongly negative definite if the support of �Z coincides with the
whole sphere Sd�1, and

N .�; �/ D 2

Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/�
Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/

�
Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/

is the square of a distance between measures �; � 2 BL. This distance has the
following representation:

N.�; �/ D
�Z

Sd�1

d�Z.�/
Z 1

�1
�

F�.a/ �G�.a/
�2

da

�1=2

; (25.3.11)

where

�.A/ D PrfX 2 Ag; �.A/ D PrfY 2 Ag;
F� .a/ D PrfhX; �i < ag; G� .a/ D PrfhY; �i < ag: (25.3.12)
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According to Example 25.3.2, the function hZ.u/ from (25.3.10) may be
represented in the form (25.3.3). Let us investigate the connection between �Z
in (25.3.10) and ‚ in (25.3.3). To do so, we will use the following identity:

jzj D 2

�

Z 1

0

�

1 � cos.zt/
�dt

t2
: (25.3.13)

We have

hZ.u/ D 2

�

Z

Sd�1

Z 1

0

�

1 � coshu; �i�dt

t2
d�Z.�/

D 2

�

Z

Rd

�

1 � coshu; vi�1C kvk2
kvk2 d‚.v/:

So

d‚.v/ D 2

�

1

1C t2
dtd�.�/;

v D t � �; � 2 S
d�1; t � 0: (25.3.14)

If hZ.u/ is a support function of a zonoid Z , then clearly

hZ.	 � u/ D 	hZ.u/

for all 	 > 0 and u 2 R
d , and, as was shown previously, hZ.x � y/ is a negative

definite kernel. The inverse is also true.

Theorem 25.3.2. Suppose that f is a continuous function on R
d such that f .0/ D

0, f .�u/ D f .u/. Then the following facts are equivalent:

Fact 1. f .	 � u/ D 	f .u/ and f .x � y/ is a negative definite kernel.
Fact 2. f is a support function of a zonoid.

Proof. Previously we saw that Fact 2 implies Fact 1, and we must prove only that
Fact 1 implies Fact 2. According to Example 25.3.2,

f .u/ D
Z

Rd

�

1 � coshu; vi�d‚1.v/; (25.3.15)

where

d‚1.v/ D 1C kvk2
kvk2 d‚.v/;

and‚ is the measure from (25.3.3).
We have

f .	 � u/ D 	f .u/ (25.3.16)

for any 	 > 0, u 2 R
d . Substituting (25.3.15) into (25.3.16) and using the

uniqueness of the measure‚ in (25.3.3) we obtain
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Z

Rd

�

1 � cosh	 � u; vi�d‚1.v/ D 	

Z

Rd

�

1 � coshu; vi�d‚1.v/;

�

1 � coshu; vi�d‚1.v=	/ D 	

Z

Rd

�

1 � coshu; vi�d‚1.v/

and

‚1.v=	/ D 	‚1.v/:

We write here v D r � w for r > 0 and w 2 S
d�1. We have

‚1.r	 � w/ D 	‚1.r � w/

and, finally, for 	 D r ,

‚1.r � w/ D 1

r
‚1.w/: (25.3.17)

It is clear that representation (25.3.15) for ‚1 of the form (25.3.17) coincides with
(25.3.14).2 ut

Note that the N-distance can be bounded by the Hausdorf distance. Let Z� and
Z� be two zonoids with generating measures � and �, respectively. The following
inequality holds for their supporting functions h.Z�; u/ and h.Z�; u/:

jh.Z�; u/� h.Z�; u/j � dH .Z�;Z�/:

Obviously, from this inequality it follows that

N .�; �/ � 2dH.Z�;Z�/;

and therefore

N.�; �/ � .2dH .Z�;Z�//1=2: (25.3.18)

Note that each N-distance generated by a zonoid is an ideal distance of
degree 1=2.
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Chapter 26
N-Distance Tests of Uniformity
on the Hypersphere

The goals of this chapter are to:

• Discuss statistical tests of uniformity based on the N-distance theory,
• Calculate the asymptotic distribution of the test statistic.

Notation introduced in this chapter:

Notation Description

bX; Y Smaller angle between X and Y
located on unit sphere

Pk.x/ Legendre polynomial of order k

26.1 Introduction

Several invariant tests for uniformity of a distribution on a circle, a sphere, and
a hemisphere have been proposed. In this chapter, we propose an application of
N-distance theory for testing the hypothesis of uniformity of spherical data. The
proposed procedures we discuss in this chapter have a number of advantages:
consistency against all fixed alternatives, invariance of the test statistics under
rotations of the sample, computational simplicity, and ease of application even in
high-dimensional cases. Some new criteria of uniformity on Sp�1 based on N-
metrics are introduced. Particular attention is devoted to p D 2 (circular data) and
p D 3 (spherical data). In these cases, the asymptotic behavior of the proposed
tests under the null hypothesis is established using two approaches: the first one is
based on an adaptation of methods of goodness of t-tests described in Bakshaev
(2008, 2009), and the second one uses Gine theory based on Sobolev norms; see
Gine (1975) and Hermans and Rasson (1985). At the end of the chapter, we present
a brief comparative Monte Carlo power study for the proposed uniformity criteria.
S1 and S2 cases are considered. Analyzed tests are compared with classical criteria

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 26, © Springer Science+Business Media, LLC 2013
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by Gine (1975) using a variety of alternative hypotheses. Results of the simulations
show that the proposed tests are powerful competitors to existing classic ones. All
the results reported in this chapter were originally obtained by Bakshaev (2009). All
of the proofs for propositions and theorems are provided in the last section of this
chapter.

26.2 Tests of Uniformity on a Hypersphere

Consider the sample X1; : : : ; Xn of observations of random variable (RV) X , where
Xi 2 R

p and kXik D 1, i D 1; : : : ; n. Let us test the hypothesis H0 that X has a
uniform distribution on Sp�1.

The statistics for testing H0 based on N-distance with the kernel L.x; y/ have
the form

Tn D n

2

4

2

n

n
X

iD1
EYL.Xi ; Y /� 1

n2

n
X

i;jD1
L.Xi ; Xj /� EL.Y; Y 0/

3

5; (26.2.1)

where X; Y; Y 0 are independent RVs from the uniform distribution on Sp�1 and
EYL.Xi ; Y / D R

L.Xi ; y/dFY .y/ is a mathematical expectation calculated by Y
with fixed Xi , i D 1; : : : ; n. We should reject the null hypothesis in the case of
large values of our test statistics, that is, if Tn > c˛ , where c˛ can be found from the
equation

Pr0.Tn > c˛/ D ˛:

Here Pr0 is the probability corresponding to the null hypothesis and ˛ is the size of
the test.

Let us consider strongly negative definite kernels of the form L.x; y/ D
G.kx � yk/, where k:k is the Euclidean norm. In other words, G.:/ depends on
the length of the chord between two points on a hypersphere. As examples of such
kernels we propose the following ones:

L.x; y/ D kx � yk˛; 0 < ˛ < 2;

L.x; y/ D kx � yk
1C kx � yk ;

L.x; y/ D log.1C kx � yk2/:

Note that these kernels are rotation-invariant. This property implies that the mathe-
matical expectation of the length of the chord between two independent uniformly
distributed RVs Y and Y 0 on Sp�1 is equal to the mean length of the chord between a
fixed point and a uniformly distributed RV Y on Sp�1. Thus, we can rewrite (26.2.1)
in the form
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Tn D n
h

EG.kY � Y 0k � 1

n2

n
X

i;jD1
G.kXi � Xjk/

i

: (26.2.2)

In practice, statistics Tn with the kernel L.x; y/ D kx � yk˛ , 0 < ˛ < 2, can be
calculated using the following proposition.

Proposition 26.2.1. In cases of p D 2; 3 statistic Tn will have the form

Tn D .2R/˛�..˛ C 1/=2/�.1=2/

��..˛ C 2/=2/
n � 1

n

n
X

i;jD1
kXi �Xjk˛ .p D 2/;

Tn D .2R/˛
2n

˛ C 2
� 1

n

n
X

i;jD1
kXi � Xjk˛ .p D 3/;

where R is the radius of a hypersphere and ˛ 2 .0; 2/.
In the case of L.x; y/ D kx � yk, test statistic (26.2.2) is very similar to Ajne’s

statistic A, the difference being that statistic A uses the length of the chord, whereas
here we use the length of the smaller arc given by

A D n

4
� 1

�n

n
X

i;jD1
 ij ;

where  ij is the smaller of two angles between Xi and Xj , i; j D 1; 2; : : : ; n. One
can see that Ajne’s test is not consistent against all alternatives. As an example,
consider the distribution on the circle concentrated in two diametrically opposite
points with equal probabilities. Taking, instead of the arc, the length of the chord
leads to a consistency of the N-distance test against all fixed alternatives:

Tn

n

Pr! N .X; Y /;

whereN .X; Y / is the square of the N-distance between the probability distributions
of RVs X and Y . If RVs X and Y are not identically distributed, then N .X; Y / > 0
and Tn ! 1 as n ! 1.

Further, we consider the asymptotic distribution of statistics (26.2.1) under
the null hypothesis. Particular attention is devoted to circular and spherical data
(p D 2; 3). In these cases, the asymptotic behavior of the proposed tests under
the null hypothesis is established using two approaches. The first is based on an
adaptation of methods of goodness of t-tests described in Bakshaev (2008, 2009).
The second uses Gine theory based on Sobolev norms as demonstrated in Gine
(1975) and Hermans and Rasson (1985). For arbitrary dimension (p � 3) it is
rather difficult from a computational point of view to establish the distribution of
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test statistics Tn analytically. In this case, the critical region of our criteria can be
determined with the help of simulations of independent samples from the uniform
distribution on Sp�1.

26.3 Asymptotic Distribution

26.3.1 Uniformity on a Circle

Here we consider the circle S1 with unit length, that is, with R D 1
2�

. Let us
transform the circle – and therefore our initial sample X1; : : : ; Xn, Xi D .Xi1; Xi2/,
X2
i1 C X2

i2 D R2 – to the interval Œ0; 1/ by making a cut at an arbitrary point x0 of
the circle

x $ x�; x 2 S1; x� 2 Œ0; 1/;
where x� is the length of the smaller arc x0x.

It is easy to see that if X has a uniform distribution on S1, then after the
transformation we will get the RV X� with uniform distribution on Œ0; 1/. Let
L.x; y/ be a strongly negative definite kernel in R

2; then function H.x�; y�/ on
Œ0; 1/ defined as

H.x�; y�/ D L.x; y/ (26.3.1)

is a strongly negative definite kernel on Œ0; 1/. In this case, N-distance statistic T �
n ,

based onH.x�; y�/ for testing the uniformity on Œ0; 1/ has the form1

T �
n D �n

Z 1

0

Z 1

0

H.x�; y�/d.Fn.x�/� x�/d.F.y/� y/;

where Fn.x
�/ is the empirical distribution function based on the sample

X�
1 ; : : : ; X

�
n , X�

i 2 Œ0; 1/, i D 1; : : : ; n. Due to (26.3.1), the following equality
holds

Tn D T �
n ; (26.3.2)

where Tn is defined by (26.2.1).
Thus, instead of testing the initial hypothesis on S1 using Tn, we can test the

uniformity on Œ0; 1/ for X� on the basis of statistics T �
n with the same asymptotic

distribution. The limit distribution of T �
n is established in Theorem 1 in Bakshaev

(2009) and leads to the following result.

Theorem 26.3.1. Under the null hypothesis, statistic Tn will have the same asymp-
totic distribution as a quadratic form:

1See Bakshaev (2008, 2009).
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T D
1
X

kD1

1
X

jD1

akj

�2kj
�k�j ; (26.3.3)

where �k are independent RVs having the standard normal distribution and

akj D �2
Z 1

0

Z 1

0

H.x�; y�/d sin.�kx�/d sin.�jy�/:

It is easy to see that in the case of rotation-invariant kernel L.x; y/, the
considered transformation of S1 to Œ0; 1/ does not depend on the choice of the point
of cut.

Proposition 26.3.1. For the kernel L.x; y/ D kx � yk˛ , 0; ˛ < 2, we have

H.x�; y�/ D
� sin�d

�

�˛

;

where d D min.jx� � y�j, x�; Y � 2 Œ0; 1/.

26.3.2 Uniformity on a Sphere

In the case of a sphere, we also try to substitute the initial hypothesis of uniformity
on S2 by testing the uniformity on the unit square. Consider sphere S2 with unit
surface area, that is, R2 D 1

4�
.

Note that if X� D .X�
1 ; X

�
2 / has a uniform distribution on Œ0; 1/2, then the RV

has the form X D .X1;X2;X3/

X1 D R cos �1; X2 D R sin �1 cos �0; X3 D R sin �1 sin �0; (26.3.4)

where
�0 D 2�X�

1 ; �1 D arccos.1 � 2X�
2 /

has a uniform distribution on S2.
Consider the strongly negative definite kernelH.x�; y�/ on Œ0; 1/2 defined by

H.x�; y�/ D L.x; y/; (26.3.5)

where L.x; y/ is a strongly negative definite kernel in R
3, x�; y� 2 Œ0; 1/2, x; y 2

S2 and the correspondence between x and x� follows from (26.3.4).
TheN-distance statistic, based onH.x�; y�/, for testing the uniformity on Œ0; 1/2

has the form2

T �
n D �n

Z

Œ0;1/2

Z

Œ0;1/2
H.x�; y�/d.Fn.x�/ � x�

1 x
�
2 /d.F.y/� y1y2/;

2See Bakshaev (2008, 2009).
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whereFn.x�/ is the empirical distribution function based on the transformed sample
X�. Equations (26.3.4) and (26.3.5) imply that

Tn D T �
n : (26.3.6)

Thus, the asymptotic distribution of Tn coincides with the limit distribution of T �
n ,

established in Bakshaev (2009, Theorem 2).

Theorem 26.3.2. Under the null hypothesis, statistic Tn will have the same asymp-
totic distribution as the quadratic form

T D
1
X

i;j;k;lD1
aijkl

p
˛ij ˛kl �ij �kl ; (26.3.7)

where �ij are independent RVs from the standard normal distribution,

aijkl D �
Z

Œ0;1/4
H.x; y/d ij d kl ; x; y 2 R

2;

˛ij , and  ij .x; y/ are eigenvalues and eigenfunctions of the integral operator A

Af .x/ D
Z

Œ0;1�2
K.x; y/f .y/dy; (26.3.8)

with the kernel

K.x; y/ D
2
Y

iD1
min.xi ; yi / �

2
Y

iD1
xiyi :

Note that if L.x; y/ is a rotation-invariant function on a sphere, then the values
of statistics Tn and T �

n do not depend on the choice of coordinate system on S2.
The main difficulties in applying Theorem 26.3.2 are due to the calculations of
eigenfunctions of integral operator (26.3.8). One possible solution was discussed in
Bakshaev (2009). Another possible solution is considered in the next subsection,
where the asymptotic distribution of the proposed statistics for some strongly
negative definite kernels is established with the help of Gine theory based on
Sobolev tests.

26.3.3 Alternative Approach to the Limit Distribution of Tn

In this section, we propose an application of Gine theory of Sobolev invariant
tests for uniformity on compact Riemannian manifolds to establish the null limit
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distribution of some N-distance statistics on the circle and sphere. We start with a
brief review of Sobolev tests.3

Let M be a compact Riemannian manifold. The Riemannian metric determines
the uniform probability measure � on M . The intuitive idea of the Sobolev tests of
uniformity is to map the manifoldM into the Hilbert spaceL2.M;�/ of the square-
integrable functions on M by a function t W M ! L2.M;�/ such that, if X is
uniformly distributed, then the mean of t.X/ is 0.

The standard way of constructing such mappings t is based on the eigenfunctions
of the Laplacian operator onM . For k � 1 letEk denote the space of eigenfunctions
corresponding to the kth eigenvalue, and set d.k/ D dimEk . Then there is a map tk
fromM into Ek given by

tk.x/ D
d.k/
X

iD1
fi .x/fi ;

where fi W 1 � i � d.k/ is any orthonormal basis ofEk . If a1; a2; : : : is a sequence
of real numbers such that

1
X

iD1
a2kd.k/ < 1;

then

x 7! t.x/ D
1
X

iD1
aktk.x/

defines a mapping t of M into L2.M;�/. The resulting Sobolev statistic evaluated
on observationsX1; : : : ; Xn on M is

Sn.fakg/ D
n
X

iD1

n
X

jD1
ht.Xi /; t.Xj /i;

where h:; :i denotes the inner product in L2.M;�/.
The asymptotic null distribution of statistic Sn.fakg/ is established by the

following theorem.4

Theorem 26.3.3. Let X1; : : : ; Xn be a sequence of independent RVs with uniform
distribution on M . Then

Sn.fakg/ d!
1
X

kD1
a2k�	k;

where f	kg1
kD1 is a sequence of independent RVs such that for each k, 	k has a

chi-squared distribution with d.k/ degrees of freedom.

3For more details see Gine (1975) and Jupp (2005).
4See Bakshaev (2010, Theorem 3.4).
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Further, consider the N-distance and Sobolev tests for two special cases of a
circle and a sphere.

Let M be the circle x21 C x22 D 1 in R
2. Gine (1975) showed that in this case,

Sobolev tests Sn.fakg/ have the form

Sn.fakg/ D 2

n

1
X

kD1

n
X

i;jD1
cos k.Xi � Xj /; (26.3.9)

with the limit null distribution established by Theorem 26.3.3, where 	k are
independent RVs with a chi-squared distribution with d.k/ D 2 degrees of freedom.

Consider the statistic Tn on M with strongly negative definite kernel L.x; y/ D
kx � yk, x; y 2 R

2. From Proposition 26.2.1 we have

Tn D 4n

�
� 1

n

n
X

i;jD1
kXi � Xjk D 4n

�
� 2

n

n
X

i;jD1
sin

Xi �Xj
2

; (26.3.10)

where Xi � Xj and kXi � Xjk denote the length of the arc and chord between Xi
and Xj , respectively.

Under the null hypothesis, the limit distribution of Tn is established by the
following theorem:

Theorem 26.3.4. If X1; : : : ; Xn is a sample of independent observations of the
uniform distribution on a circle with unit radius, then

�

4
Tn

d!
1
X

kD1
a2k	

2
k; (26.3.11)

where 	2k are independent RVs with a chi-squared distribution with two degrees of
freedom and

a2k D 1

2�

Z 2�

0

�

1 � �

2
sin

x

2

�

cos kxdx:

We now consider N-distance and Sobolev tests on a sphere. If M D S2 is the
unit sphere x21Cx22 Cx23 D 1, then d� D .4�/�1 sin �d�d', where� is the uniform
distribution on S2 and .�; '/ are usual spherical coordinates. The general expression
of Sobolev tests on a sphere has the form

Sn.fakg/ D 1

n

1
X

kD1
.2k C 1/a2k

n
X

i;jD1
Pk.cos2Xi;Xj /; (26.3.12)

where 2Xi;Xj is the smaller angle between Xi and Xj , and Pk are Legendre
polynomials

Pk.x/ D .kŠ2k/�1.dk=dxk/.x2 � 1/k:



26.4 Proofs 607

Under the null hypothesis, the limit distribution of Sn.fakg/ coincides with the
distribution of RV 1

X

kD1
a2k	

2
2kC1; (26.3.13)

where 	22kC1 are independent RVs with a chi-squared distribution with 2k C 1

degrees of freedom.
Consider the statistic Tn on S2 with a strongly negative definite kernel L.x; y/ D

kx � yk, x; y 2 R
3. From Proposition 26.2.1 we have

Tn D 4n

3
� 1

n

n
X

i;jD1
kXi � Xjk D 4n

3
� 2

n

n
X

i;jD1
sin

2Xi;Xj

2
; (26.3.14)

where 2Xi;Xj and kXi � Xjk denote the smaller angle and chord between Xi and
Xj , respectively.

The asymptotic distribution of Tn is established by the following theorem.

Theorem 26.3.5. If X1; : : : ; Xn is a sample of independent observations from the
uniform distribution on S2, then

3

4
Tn

d!
1
X

kD1
a2k	

2
2kC1; (26.3.15)

where 	22kC1 are independent RVs with a chi-squared distribution with 2k C 1

degrees of freedom and

a2k D 1

2

Z �

0

�

1 � 3

2
sin

x

2

�

sinxPk.cosx/dx; (26.3.16)

where Pk.x/ are Legendre polynomials.

26.4 Proofs

26.4.1 Proof of Proposition 26.2.1

The stated formula follows directly from (26.2.2), and the property

EkY � Y 0k˛ D EkY � ak˛;

where Y and Y 0 are independent RVs uniformly distributed on Sp�1 and a, is an
arbitrary fixed point on Sp�1.
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For the two-dimensional case calculate the expectation of the length of the chord
between fixed point a D .0;R/ and a uniformly distributed RV Y :

Eka � Y k˛ D 1

2�R

Z 2�

0

R.R2 cos2 ' C .R sin2 ' � R/2/˛=2d'

D 2˛=2�1R˛

�

Z 2�

0

.1 � cos'/˛=2d'

D 2˛C1R˛

�

Z 2�

0

sin˛ 'd'

D .2R/˛�..˛ C 1/=2/G.1=2/

��..˛ C 2/=2/
:

In the case where p D 3, let us fix the point a D .0; 0; R/ and calculate the average
length of the chord:

Eka � Y k˛ D 1

4�R2

Z �

��

Z �

0

R2 sin2 � cos2 '

C sin2 � sin2 ' C .cos � � 1/2/˛=2d�d'

D 2˛=2R˛

4�

Z �

��

Z �

0

.1 � cos �/˛=2 sin �d�d'

D .2R/˛
2

˛ C 2
:

26.4.2 Proof of Proposition 26.3.1

The kernel L.x; y/ in the case of a circle equals the length of the chord between two
points x D .x1; x2/ and y D .y1; y2/ raised to the power of ˛. After the proposed
transformation, the length of the smaller arc between x and y is equal to

d D min.jx� � y�j; 1 � jx� � y�j/:
The length of the chord of a circle with R D 1

2�
based on the angle 2�d equals

sin.�d/=� . This completes the proof of the statement.

26.4.3 Proof of Theorem 26.3.4

Let us express statistic (26.3.10) in the form

Tn D 4

�n

n
X

i;jD1
h.Xi � Xj /;
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where h.x/ D 1� �
2

sin.x=2/. The function h.x/ can be represented in the form of
a series by a complete orthonormal sequence of functions f2 coskxg on Œ0; 2��

h.x/ D p
2

1
X

kD1
ak cos kx;

where

ak D 1p
2�

Z 2�

0

�

1 � �

2
sin

x

2

�

cos kxdx:

Note that ak > 0 for all k D 1; 2; : : :. After some simple calculations, we obtain

Z 2�

0

�

1 � �

2
sin

x

2

�

coskxdx D 4

Z �

0

sin x sin2 kxdx � 4

and

Z �

0

sin x sin2 kxdx D �k2
Z �k

0

sin.1=k � 2/x � k2

2k C 1

Z �k

0

sin
x

k
dx

D 4k3

.2k � 1/.2k C 1/
> 1; k D 1; 2; : : : :

Thus, statistic Tn can be rewritten in the form of Sobolev statistic (26.3.9):

4

�
Tn D 2

n

1
X

kD1

n
X

i;jD1
cosk.Xi �Xj /;

where a2k D ˛k=
p
2. After that, the statement of the theorem follows directly from

Theorem 26.3.3.

26.4.4 Proof of Theorem 26.3.5

The proof can be done in nearly the same way as that of Theorem 26.3.4. Let us
rewrite statistic Tn in the form

Tn D 4

3n

n
X

i;jD1
h.2Xi ;Xj /;

where h.x/ D 1 � .3=2/ sin.x=2/, and then decompose h.x/ into a series by an
orthonormal sequence of functions fp2k C 1Pk.cos x/g for x 2 Œ0; ��,
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h.x/ D
1
X

kD1

p

2k C 1˛kPk.cos x/;

where

˛k D
p
2k C 1

4�

Z 2�

0

Z �

0

�

1 � 3

2
sin

�

2

�

sin �Pk.cos �/d�d':

As a result, statistic Tn can be expressed in the form of the Sobolev statistic (26.3.12)

4

3
Tn D 1

n

1
X

kD1
.2k C 1/a2k

n
X

i;jD1
Pk.cos2Xi ;Xj /;

where
p
2k C 1a2k D ˛k . Applying Theorem 26.3.3 we obtain the assertion of the

theorem.
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Symbols
�-uniform class, 272

in a broad sense, 272
"-entropy of the measure, 290
"-independence, 306

A
Abel sum, 443
admissible plan, 318
aggregate claim in the individual model (S ind),

396
Akaike, 480
atom, 29

B
balance equation, 318
Balkema, 463, 508
Barlow, 337
Bazaraa, 115, 124
Berge, 131
Berkes, 29
Bernstein, 293

–Kantorovich functional limit theorem, 292
–Kantorovich invariance principle, 293
-Kantorovich invariance principle, 284
central limit theorem, 293
condition, 292

Berry–Esseen theorem, 361
Bhattacharya, 88, 369
Billingsley, 24, 83, 125, 225, 292, 295
Blackwell, 27
Borovkov, 301, 304, 305

C
Cambanis, 179, 185, 204

Cambanis–Simons–Stout formula, 321
Cesàro sum, 442, 456
characteristic function, 509, 543, 547, 548,

556, 565, 577
characterization, 548, 559, 560
characterization of a distribution (stability),

485
Chebyshev’s inequality, 211
chi square (�2) test of exponentiality, 336
Chow, 303, 468
claim sizes, 380
Cohen, 463
Cohn, 24, 25
collective model in risk theory, 397
compactness in the space of measures, 157
completed graph of a function, 71
completeness in the space of measures, 157
compound Poisson approximation, 410
compound Poisson model in risk theory, 410
conjugate function, 322
consumption quality measure, 318
contamination

by additive factor, 342
by mixture, 341

convergence, 554
G-weak, 95, 275
criteria, 564
in N, 559
in the space of measures, 157
of measures, 555, 558
of potentials, 555, 558
quantitative, 571
uniform, 556, 559, 577
vague, 279, 280
weak, 559

convolution probability metric, see probability
metric
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covariance operator, 462
Cramer, 480, 484
Csiszar, 480

D
D’Aristotile, 195
Daley, 340
Dall’Aglio, 119
de Finetti’s theorem, 494
de Finetti-type characterization of scale

mixtures of i.i.d. uniform variables,
497

de Haan, 439, 463
density, 572, 576

unimodal, 577
Diaconis, 195, 480, 494
distance, 540, 542, 543, 547, 548, 550

N, 572, 577
Nm, 548
N, 542
method of minimal, 571
primary h-minimal, 36
primary minimal, 36
probability, see probability distance

distribution, 180, 536, 537, 543, 544, 559–561,
563, 566–568, 575–578

aging class, 336, 388
beta, 480
chi-squared, 340
class of, 572
compound Poisson, 397, 418
DFR class, 337
DFRA class, 337
empirical, 572
exponential, 565, 566
gamma, 483
Gaussian, 562
geometric infinitely divisible, 509
geometric maxima infinitely divisible, 512
HNBUE class, 336, 339–341, 388, 510
HNWUE class, 336
Hoeffding, 180
IFR class, 336, 388
IFRA class, 337, 388
infinitely divisible, 505
input, 480, 481
invariant, 567, 568
max-infinitely divisible (MID), 512
NBU class, 337, 388
NBUE class, 337, 388
normal, 561, 568
NWU class, 337
NWUE class, 337

output, 480, 481
Pareto, 508
recovering of, 559, 560
simple max-stable, 422
symmetric, 562–565
symmetric ˛-stable, 345, 353, 359

distribution function
generalized inverse, 44

distribution of mass
final, 112
initial, 112

Dobrushin, 190, 326
Donsker–Prokhorov theorem, 292
Doob’s inequality, 476
doubly ideal probability metric, see probability

metric
Duality theorem, 200
Dudley, 14, 24, 25, 87, 88, 92, 95, 96, 98, 128,

131, 132, 136, 138, 141, 185, 188,
195, 285

Dunford, 21, 133, 137, 337, 400

E
embedding

coarse, 533
epochs of claims, 380
equicontinuous class of functions, 277
estimation

semiparametric, 578, 579
estimator, 573, 576–579

B-robust, 578
M�, 571, 573–576
asymptotic variance of, 576
consistent, 573
minimal Nr distance, 577
minimal distance, 571, 572
minimum N-distance, 574

F
factorial moments, 418
family

summable, 523
Feller, 483, 504
Fisher, 577
Fortet, 94, 278, 284, 285
Fréchet derivative, 344
Freedman, 195, 480, 494
function

characteristic, 527, 528
infinitely divisible characteristic, 509
lower semicontinuous convex, 322
negative definite, 536

strongly, 536
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positive definite, 527, 528
regularly varying with index r � 1, 435

functional, 548, 578, 579
characteristic, 536
gradient of, 579
nonlinear, 578
Prokhorov, 190, 193

functional central limit theorem, 291
functional equation, 559

G
Gaussian measure, 324
Genest, 185
Ghouila-Houri, 187
Gibbs random field, 326
Gikhman, 294
Gine, 467
Gini, 118, 119
Gini’s index of dissimilarity, 118
Glivenko–Cantelli–Varadarajan

generalized theorem, 288
theorem, 188

Glivenko-Cantelli-Varadarajan
theorem, 136

Gnedenko, 301
Gray, 119

H
Hahn–Banach theorem, 137
Hall, 97
Hampel, 480
hazard rate function, 389
Hennequin, 273, 281
Hoeffding-Fréchet inequality, 205, 426
Hoffman-Jorgensen, 465
Huber, 480

I
ideal metric, 336, 343, 344
Iglehart, 301
individual model in risk theory, 396
input distribution, 480, 481
input flow, 298
insurance risk theory, 379
integral limit theorem for random motions, 369
isometry, 531, 532, 542

J
Jarvis, 115, 131
Jensen’s inequality, 222

K
Kalashnikov, 181, 205, 309, 314, 480, 510
Kallenberg, 279
Kantorovich, 92, 112, 118, 122, 129

–Rubinstein duality theorem, 130
–Rubinstein functional, 110
–Rubinstein problem, 115
–Rubinstein–Kemperman multistage

problem, 112
-Rubinstein functional, 115

generalized, 164
distance, 42, 44, 129
functional, 112, 115, 116, 120, 299

dual representation, 129
generalized, 164

mass transference problem, 111
metric, 13, 42, 44, 53, 58, 112, 141, 191,

203, 339, 346
multidimensional problem, 120, 121, 170,

180
multidimensional theorem, 121, 128, 192,

324
Karlin, 230
Kaufman, 26
Kellerer, 170, 323
Kemperman, 47, 230
Kemperman geometric approach to moment

problems, 305, 312
Kennedy, 301
kernel, 548, 550, 552, 559, 572, 577

m-negative definite, 544, 545, 552, 553
strictly, 544
strongly, 545–548, 552, 555, 563

m-positive definite, 545, 546
bounded, 577
negative definite, 520, 528–533, 535, 536,

540, 541, 543, 544, 549–551, 567,
568, 576, 578

strictly, 533, 534, 542
strongly, 533, 535–537, 542–544, 549,

550, 552, 554, 562, 567, 568, 572
symmetric, 533

positive definite, 520–527, 529–531, 534,
541, 551

strictly, 534
symetric, 540

reproducing, 521, 522
Kersten, 279
Knott, 323
Kolmogorov, 185
Kruglov, 21, 293
Kruskal, 118
Kuelbs, 504
Kullback, 480
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Ky Fan functional, 190
Ky Fan metric, see probability metric
Ky Fan radius, 309

L
Lèvy measure, 505
law

probability, 559
Lebesgue, 24
Leon, 467
Levin, 47, 146
limiting negligibility, 291
Lindeberg condition, 292
Ljung, 480
local limit theorem for random motions, 375
Loeve, 29
Lorentz, 180
loss function, 318, 320, 325
lower bound

with fixed difference of marginal moments,
62

with fixed marginal moments, 62
lower semicontinuous convex

function, 322
lower topological limit, 76
Lukacs, 14
Lusin, 24

M
MacKay, 185
Makarov, 185
Marcinkiewicz–Zygmund inequality, 303, 468,

476
marginal problem, 219
max-extreme value distribution function, 422
max-ideal metric, see probability metric
max-smoothing inequality, 426, 452
max-stable process, 471
max-stable property, 444
max-stable sequences, 456, 462
maximal distance, 58, 200, 201
maximal metric, 59
measure, 532, 542, 544–556, 558–560, 563,

564, 575, 576
at a point, 542
discrete, 541
finite, 536
Gaussian, 324
infinitely divisible, 536
Lèvy, 505
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Nm, 548
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uniform, 558
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Minkovski inequality, 300
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Monge
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Lévy–Wasserstein, 120
max-ideal, 423, 440
max-ideal compound, 470, 471
max-smoothing, 423
minimal, 423, 440, 445
minimal with respect to p;r , 449
minimal with respect to �r;p , 471
minimal with respect to Lp;r , 441
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