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Part #1

Mathematically self-consistent models of classical
mechanics - models for the system Spring - Weight
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System Spring - Weight/Description and assumptions

Bodies (weights) modeled as
mass-points

Three Newton’s postulates:

F = 0 =⇒ straight-line
motion
F = d

dt (mv) = m dv
dt = m d2x

dt2

Any F exerts reaction −F

Motion allowed only in the
vertical direction

Mass of the spring is neglected
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System Spring - Weight/Assumptions characterizing
material properties

Linear Spring:
F2 = (0,−k(y + a), 0) (k > 0)

Resistance due to environment is
neglected

d2y
dt2 + k

m y = 0
y(0) = y0

dy
dt (0) = y1
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System Spring - Weight/Assumptions characterizing
material properties

Linear Spring:
F2 = (0,−k(y + a), 0) (k > 0)

Resistance proportional to the velocity:
F3 = (0,−b dy

dt , 0) (b > 0)

d2y
dt2 + b

m
dy
dt + k

m y = 0
y(0) = y0

dy
dt (0) = y1
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System Spring - Weight/Assumptions characterizing
material properties

Linear Spring:
F2 = (0,−k(y + a), 0) (k > 0)

Resistance force due to environment
depends on the velocity non-linearly:

F3 = (0, h
(

dy
dt

)
, 0)

m d2y
dt2 + h

(
dy
dt

)
+ ky = 0

y(0) = y0

dy
dt (0) = y1
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System Spring - Weight/Assumptions characterizing
material properties

Non-linear Spring: F2 = (0, g(y + a), 0)

Environment resistance neglected,
linear, or non-linear

d2y
dt2 + h( dy

dt ) + g(y) = 0

d2y
dt2 = f (y , dy

dt )

Free fall due to gravity: F2 = (0, 0, 0)

d2y
dt2 + h( dy

dt ) = 0 ⇐⇒ dv
dt + h(v) = 0

dv
dt = f (v) v(0) = v0
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System Spring - Weight/Mathematically self-consistent
models

Simplifying assumptions =⇒ very crude approximation of the reality

Independently how accurate are models we are interested in
mathematical self-consistency of the models: notion of solution

existence for arbitrary set of data (T , v0 (or y0 and y1), m, ....)
uniqueness
continuous dependence of solution on data
boundedness of the velocity
long time behavior of solutions.

Mathematical self-consistency of models of incompressible fluid
thermodynamics

Derivation of fluid thermodynamics models stems from the principles
of classical mechanics
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System Spring - Weight/Simple observations

Free fall due to gravity: first order equation for the velocity

Mathematical self-consistency of the equation of a ”slightly”
generalized form dv

dt = f (v), v(0) = v0. Counterexamples:

existence/boundedness for any time interval - f (v) = v 2

uniqueness - f (v) = v 2/3

m dv
dt + bv = f =⇒ m

2
d
dt |v |

2 + b
m |v |

2 = fv =⇒

|v(t)|2 ≤ |v0|2e−
b
m

t +
f 2

b2
(1− e−

b
m

t) pro t > 0

Derived models have a limited region where they can be useful
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Part #2

Thermodynamics of incompressible fluids
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Fluid

Definition

Fluid is a body that, in time scale of observation of interest, undergoes
discernible deformation due to the application of a sufficiently small shear
stress

v =
∂χ

∂t
Fχ =

∂χ

∂X
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Long-lasting physical experiment

In 1927 at University of Queensland: liquid asphalt put inside the closed
vessel, after three years the vessel was open and the asphalt has started to
drop slowly.

Year Event
1930 Plug trimmed off
1938 (Dec) 1st drop
1947 (Feb) 2nd drop
1954 (Apr) 3rd drop
1962 (May) 4th drop
1970 (Aug) 5th drop
1979 (Apr) 6th drop
1988 (Jul) 7th drop
2000 (28 Nov) 8th drop
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Balance equations of continuum physics

Balance of mass, linear and angular momentum, balance of energy and the
second law of thermodynamics

%,t + div(%v) = 0

(%v),t + div(%v⊗ v)− div T = 0

TT = T(
%(e + |v|2/2)

)
,t

+ div(%(e + |v|2/2)v) + div q = div (Tv)

% . . . density
v . . . velocity
e . . . internal energy
T . . . the Cauchy stress
q . . . heat flux

Eulerian description - flows of fluid-like bodies
No external sources - for simplicity
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Balance equations of continuum physics/2

B ⊂ Ω fix for all t ≥ 0:

d

dt

∫
B
% dx = −

∫
∂B
%v · n dS =⇒ FVM

= −
∫

B
div(%v) dx =⇒ %t + div %v = 0

Choice B = {x ∈ Ω; η(x) > r}, where r ∈ (0,∞) and η ∈ D(Ω)

d

dt

∫
B
%η dx −

∫
B
%v · ∇η dx = 0 =⇒ weak solution, FEM

Oseen, Leray, . . . , Chen, Torres, Ziemer, . . . Feireisl:

weak formulation of balance equations - the primary setting

classical formulation of balance equations - the secondary setting
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”Equivalent” formulation of the balance of energy

%,t + div(%v) = 0

(%v),t + div(%v⊗ v)− div T = 0 (BLM)

TT = T(
%(e + |v|2/2)

)
,t

+ div(%(e + |v|2/2)v) + div q = div (Tv)

is equivalent, provided that v is admissible test function in (BLM), to

%,t + div(%v) = 0

(%v),t + div(%v⊗ v)− div T = 0

TT = T

(%e),t + div(%ev) + div q = T · ∇v

Note that T · ∇v = T ·D where D := D(v) is the symmetric part of the
velocity gradient
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Entropy

(%e),t + div(%ev) + div q = T · ∇v (1)

Continuum thermodynamics (Callen 1985): there is η (specific entropy
density) being a function of state variables, here η = η̃(e), fulfilling:

η̃ is increasing function of e =⇒ 1
θ =: ∂η̃∂e or e = ẽ(η) =⇒ θ = ∂ẽ

∂η

η → 0+ as θ → 0+

S(t) :=
∫

Ω
%∗η(t, ·)dx goes to its maximum as t →∞ provided that the

body is thermally and mechanically isolated

(1) is equivalent to

∂η̃

∂e

(
%
[
e,t + v · ∇e

])
+

div q

θ
=

T ·D(v)

θ

%
[
η,t + η · ∇v

]
+ div

(q

θ

)
=

1

θ

[
T ·D(v)

]
− q · ∇θ

θ2
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Second law of thermodynamics/1

(
%η
)
,t

+ div(%ηv) + div
(q

θ

)
= ξ with θξ := T ·D(v)− q · ∇θ

θ
(2)

Second law of thermodynamics: ξ ≥ 0

Stronger requirement: T ·D(v) ≥ 0 (entropy production due to work being converted into heat) and
− q·∇θ

θ ≥ 0 (entropy production due to heat conduction)

We shall use the constitutive equations that automatically meet these
requirements

Minimum principle for e

if e0 ≥ C∗ in Ω then e(t, ·) ≥ C∗ in Ω for all t
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Second law of thermodynamics/2

(
%η
)
,t

+ div(%ηv) + div
(q

θ

)
= ξ with θξ ≥ T ·D(v)− q · ∇θ

θ

In terms of the internal energy η = η̃(e)

e,t + div(ev) + div q ≥ T ·D(v)

or, using the balance of energy,(
|v|2
)
,t
− 2 div(Tv) + div

(
v|v|2

)
≤ 0

Suitable weak solution (in the sense of Caffarelli, Kohn, Nirenberg): In
addition to equations representing balance of mass, linear momentum and
energy we require that solution satisfies one of the formulations of the
second law of thermodynamics
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Incompresibility

Definition

Volume of any chosen subset (at initial time t = 0) remains constant
during the motion.

for all t: |Vt | = |V0| ⇐⇒ det Fχ = 1

Taking the derivative w.r.t. time and using the identity

d
dt

det Fχ = div v det Fχ

we conclude that

div v = 0
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Balance equations for Inhomogeneous incompressible fluids

Balance equations

%,t + div(%v) = 0

(%v),t + div(%v⊗ v)− div T = 0 (BLM)(
%(e + |v|2/2)

)
,t

+ div(%(e + |v|2/2)v) + div q = div (Tv)

Consequences of incompressibility

div v = 0 and T = −pI + S

div v = 0

%t + v · ∇% = 0

(%v)t + div(%v⊗ v)− div S = −∇p(
%(e + |v|2/2)

)
,t

+ div(%(e + |v|2/2 + p)v) + div q = div (Sv)

S and q: additional (the so-called) constitutive equations

Homogeneous fluids: the density is constant
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Balance equations for homogeneous incompressible fluids

div v = 0 (3)

v,t + div(v⊗ v)− div S = −∇p (4)

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (Sv) (5)

e,t + div(ev) + div q ≥ S ·D(v) (6)

Constitutive equations for S and q (next section)

Boundary conditions (internal flows)

Initial data
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IBVP

div v = 0

v,t + div(v⊗ v)− div S = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (Sv)

Data

Ω ⊂ R3 bounded open connected container, T ∈ (0,∞) length of time
interval

v(0, ·) = v0, e(0, ·) = e0 in Ω

α that appears in boundary conditions (thermally and mechanically or
energetically isolated body)

Task Mathematical Consistency of a Model - for any set of data to find uniquely
defined, smooth, solution (notion of solution, its existence, uniqueness, regularity)

Weak solution - solution dealing with averages
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Boundary conditions

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q− div (Sv) = 0

d

dt

(∫
Ω

E (t, x) dx

)
+

∫
∂Ω

[(E + p)v · n + q · n− Sv · n] dS = 0

Mechanically and thermally isolated body, Navier’s slip on [0,T ]× Ω:

v · n = 0 q · n = 0

λ(Sn)τ + (1− λ)vτ = 0 for λ ∈ (0, 1) uτ := u− (u · n)n

λ = 0 =⇒ no-slip λ = 1 =⇒ slip

Energetically isolated body, Navier’s slip on [0,T ]× Ω:

v · n = 0 q · n = −α|vτ |2

(Sn)τ + αvτ = 0 α := (1− λ)/λ
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”Equivalent” formulation of the balance of energy/1

div v = 0

v,t + div(v⊗ v)− div S = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (Sv)

is equivalent (if v is admissible test function in BM) to

div v = 0

v,t + div(v⊗ v)− div S = −∇p

e,t + div(ev) + div q = S ·D(v)

Helmholtz decomposition u = udiv +∇g v

Leray’s projector P : u 7→ udiv
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”Equivalent” formulation of the balance of energy/2

div v = 0

v,t + div(v⊗ v)− div S = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (Sv)

is equivalent (if v is admissible test function in BM) to

div v = 0

v,t + P div(v⊗ v)− P div S = 0

e,t + div(ev) + div q = S ·D(v)

Advantages/Disadvantages

+ pressure is not included into the 2nd formulation

+ minimum principle for e if S ·D(v) ≥ 0

− S ·D(v) ∈ L1 while Sv ∈ Lq with q > 1
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”Equivalent” formulation of the balance of energy/2

div v = 0
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v,t + P div(v⊗ v)− P div S = 0

e,t + div(ev) + div q = S ·D(v)
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+ pressure is not included into the 2nd formulation
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Constitutive equations

J. Málek (MFF UK) Analysis for incompressible fluid flows June 16, 2008 27 / 36



Newtonian fluids

Definition

The viscosity: the coefficient of the proportionality between the shear rate
and the shear stress.

Simple shear flow: v(x , y , z) = (v(y), 0, 0)

Newton: The resistance arising from the want of lubricity in parts of the
fluid, other things being equal, is proportional to the velocity with which
the parts are separated from one another.

Txy = νv ′(y) g(Txy , v
′(y)) = 0
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Generalized Newtonian fluids

Experimental data show that the viscosity may depend on the pressure,
shear rate, temperature, concentration, ..., density (if fluid is
inhomogeneous)

Txy = νv ′(y) ν = ν(p, θ, |v ′(y)|) S = ν(p, θ, |D(v)|2)D

Examples:

T = −pI + 2µ0D, tr D = 0

T = −pI + 2µ0|D|r−2D r ∈ [1,∞)

T = −pI + 2µ0

(
1 + |D|2

) r−2
2 D

T = −pI + 2µ0 exp(αp)D or T =

−pI +
(
1 + αµ(p, θ) + |D|2

) r−2
2 D

T = −pI + 2ν(p, %, θ)D = −pI + A
√
% exp

(
B(p+D%2)

θ

)
D

T = −pI + 2µ0 exp(1/θ − 1/θ0)
(
1 + αµ(p, θ) + |D|2

) r−2
2 D
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Implicitely constituted fluids

More general implicit relations

G (Txy , v
′(y)) = 0 or G (p, θ,Txy , v

′(y)) = 0 G(p, θ,S,D) = 0

have the ability to capture complicated responses of materials without any
need to introduce (non-physical) internal variable constitutive theories, etc.
Implicit relations

algebraic

rate type

integral
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Newtonian versus non-Newtonian fluids

Incompressible Newtonian fluid

T = −pI + 2µD, tr D = 0

Departures from Newtonian behavior (at a simple shear flow)

Dependence of the viscosity on the shear rate

Dependence of the viscosity on the pressure

The presence of the yield stress (or other activation or deactivation
criteria)

The presence of the normal stress differences

Stress relaxation

Nonlinear creep
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Fourier fluids - heat conducting fluids

Definition

The heat conductivity: the coefficient of the proportionality between the
heat flux q and the temperature gradient ∇θ.

Landau, Lifschitz: The heat flux is related to the variation of temperature
through the fluid. . . . We can then expand q as a series of powers of
temperature gradient, taking only the first terms of the expansion. The
constant term is evidently zero since q must vanish when ∇θ does so.
Thus we have

q = −κ∇θ

The coefficient κ is in general a function of temperature and pressure.
Examples:

q = −κ∇θ
q = −κ(θ, p)∇θ
q(∇θ) = q(0) + ∂z(0)∇θ + 1/2∂

(2)
z (0)∇θ ⊗∇θ
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Implicitely constituted heat conducting fluids

More general implicit relations

r(q,∇θ) = 0 r(q, p, θ,∇θ,D) = 0

Implicit relations

algebraic

rate type

integral
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4 J. Hron, J. Málek and K.R. Rajagopal: Simple Flows of Fluids with Pressure Dependent
Viscosities, Proc. London Royal Soc.: Math. Phys. Engnr. Sci. 457, 1603–1622, 2001
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