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Problem formulation/1

e,t + div(ev) + div q(·, e,∇e) = f ≥ 0 in Q := (0,T )× Ω

e(0, x) = e0(x) ≥ c > 0 in Ω

q(t, x , e(t, x),∇e(t, x)) · n(x) = 0 (0,T )× ∂Ω

(*)

• for all (e,u) ∈ R× Rd : q(·, e,u) is measurable,

• for almost all (t, x) ∈ Q: q(t, x , ·, ·) is continuous in R× Rd ,

• there are C1,C2 > 0 such that for all (e,u) ∈ R× Rd

q(·, e,u) · u ≥ C1|u|q and |q(·, e,u)| ≤ C2|u|q−1 ,

• for all e ∈ R and for all u1,u2 ∈ Rd , u1 6= u2

(q(·, e,u1)− q(·, e,u2)) · (u1 − u2) > 0 .
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Problem formulation/2

e,t + div(ev) + div q(·, e,∇e) = f ≥ 0 in Q := (0,T )× Ω

e(0, x) = e0(x) > 0 in Ω

q(t, x , e(t, x),∇e(t, x)) · n(x) = 0 (0,T )× ∂Ω

(P)

Data: Ω ⊂ Rd with Lipschitz boundary, T ∈ (0,∞)

e0 ∈ L1(Ω)

f ∈ L1(Q) or M(Q) := (C (Q))∗

v ∈ Lr (0,T ; Ls(Ω)) (1 ≤ r , s ≤ ∞)

div v = 0 in Q, v · n = 0 on (0,T )× ∂Ω

Task: Large data mathematical theory (notion of solution, its existence,

uniqueness, ...) to Problem P, for any set of data and for largest class of

constitutive relations
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Approximations and apriori estimates/1

en
,t + div(enHn(v)) + div q(·, en,∇en) = f n ≥ 0

en(0, ·) = en
0 > 0 [ic]

q(·, en,∇en) · n(x) = 0 [bc]

(Pn)

where

Hn(v) := (χnv) ∗ ωn −∇ηn =⇒ divHn(v) = 0 and Hn(v) · n = 0

=⇒ Hn(v) ∈ L∞(0,T ; Lk(Ω)) ∀k ∈ [1,∞)

=⇒ Hn(v)→ v ∈ Lr (0,T ; Ls(Ω))

f n ∈ L∞(Q) f n → f in M(Q) or in L1(Q)

0 < en
0 ∈ L∞(Ω) en

0 → e0 in L1(Ω)
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Approximations and apriori estimates/2

en
,t + div(enHn(v)) + div q(·, en,∇en) = f n ≥ 0

en(0, ·) = en
0 > 0 [ic]

q(·, en,∇en) · n(x) = 0 [bc]

(Pn)

Truncation operators

Tk(z) :=

{
z if |z | ≤ k,

sign(z)k if |z | > k,

Tk,δ(z) :=

{
z if |z | ≤ k ,

sign(z)(k + δ/2) if |z | > k + δ
,

such that Tk,δ ∈ C2(R), 0 ≤ T ′k,δ ≤ 1.

Θk(s) :=

∫ s

0
Tk(t) dt, Θk,δ(s) :=

∫ s

0
Tk,δ(t) dt.
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Approximations and apriori estimates/3

en
,t + div(enHn(v)) + div q(·, en,∇en) = f n ≥ 0

en(0, ·) = en
0 > 0 [ic]

q(·, en,∇en) · n(x) = 0 [bc]

(Pn)

For any λ > 0

E :=
{

e ≥ 0; e ∈ L∞(0,T ; L1(Ω)), ∇(1+e)
q−1−λ

q ∈ Lq(0,T ; Lq(Ω)d)
}

‖en‖E ≤ C =⇒ ‖ |en|q−1 ‖L1(Q) ≤ C if q >
2d + 1

d + 1

‖∇Tk(en)‖Lq(Q) ≤ C .

‖Tk(en),t‖L1(0,T ;(W 1,z )∗) ≤ C , for sufficiently large z .

Consequently,

en → e almost everywhere in Q
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Weak Solution

Let q > 2d+1
d+1 and v ∈ Lr (0,T ; Ls(Ω)) with

r ′

s
<

q(d + 1)− 2d

d
and s >

d(q − 1)

q(d + 1)− 2d

We say that:

e ∈ E is a weak solution to Problem (P) if for all ϕ ∈ D(−∞,T ; C∞(Ω))

−(e, ϕ,t)Q + (q(·, e,∇e),∇ϕ)Q = 〈f , ϕ〉+ (ev,∇ϕ)Q + (e0, ϕ(0))Ω

Theorem (Buĺıček, Consiglieri, Málek)

There exists a weak solution to Problem (P).
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Entropy solution

Let q > 1 and v ∈ L1(0,T ; L1(Ω)) and f ∈ L1(Q).
We say that:

e ∈ E is an entropy solution to Problem (P) if for a.a. t ∈ (0,T )

〈ϕ,t ,Tk(e − ϕ)〉Qt +

∫
Ω

Θk(e(t)− ϕ(t)) + (q(·, e,∇e),∇Tk(e − ϕ))Qt

≤ (Tk(e − ϕ)v,∇ϕ)Qt + (f ,Tk(e − ϕ))Qt +

∫
Ω

Θk(e(0)− ϕ(0)) dx

for all ϕ ∈ L∞(0,T ; W 1,∞(Ω)) with ϕ,t ∈ Lq′(0,T ; W−1,q′(Ω))

Theorem (Buĺıček, Consiglieri, Málek)

There exists an entropy solution to Problem (P). This solution is unique
in the class of entropy solutions provided that v ∈ Lq′(Q) and q does not
explicitly depends on e.
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Results and their relation to earlier studies

e,t + div(ev) + div q(·, e,∇e) = f ≥ 0 v given with div v = 0

Theorem W/a. (Bocardo, Murat ’92)
div(vθ) ∈ L1, f non-negative measure =⇒ existence of weak solution.

Theorem W/b. (Diening, Růžička, Wolf ’08)
vθ ∈ L1, f ∈ Lq′(0,T ; W−1,q′) =⇒ existence of weak solution.

Theorem W/c. (Buĺıček, Consiglieri, Málek ’08)
vθ ∈ L1, f non-negative measure =⇒ existence of weak solution.

Theorem E/a. (Prignet ’97)
v = 0, f ∈ L1(Q) =⇒ existence and uniqueness of entropy solution.

Theorem E/b. (Buĺıček, Consiglieri, Málek ’08)
v ∈ L1(Q), f ∈ L1(Q) =⇒ existence of entropy solution.
v ∈ Lq′(Q), q = q(·,∇e) and f ∈ L1(Q) =⇒ uniqueness.
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Key step: almost everywhere convergence of {en}

Theorem

Let given q fulfil the assumptions with q > 1 and v ∈ L1(Q). Assume that
{|en|}∞n=1 is bounded in E , {f n}∞n=1 is bounded in L1(0,T ; L1(Ω)), and

〈Tk,δ(en),t , ϕ〉+ (q(·, en,∇en),∇(T ′k,δ(en)ϕ))Q

= (f nT ′k,δ(en), ϕ)Q + (enHn(v),∇(T ′k,δ(en)ϕ))Q ,

for all ϕ ∈ L∞(0,T ; W 1,∞
0 (Ω)) and all k , δ ∈ R+.

Then there exists a subsequence en and e:

|e| ∈ E and ∇en → ∇e a.e. in Q
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Key tool: Lipschitz approximations of Bochner functions/1

Lemma. Let for 1 < q <∞

u ∈ L∞(0,T ; L2(Ω))∩Lq(0,T ; W 1,q(Ω)) f ∈ L1(Q) q ∈ Lq′(0,T ; Lq′(Ω))

fulfil
u,t = div q + f in D′(Q) .

Moreover, let E ⊂⊂ Q be an open set such that

Mα(|∇u|) + αMα(|q|) + αMα(|f |) ≤ C < +∞, a.e. in Q \ E . (1)

Then there holds

∇LαE u ∈ L∞(0,T ; L∞(Ω))

∂t (LαE u) (LαE u − u) ∈ L1
loc (Q)
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Key tool: Lipschitz approximations of Bochner functions/2

and for all φ1 ∈ C∞0 (Ω) and all φ2 ∈ C∞0 (0,T )∫ T

0
〈∂tu,Tε(LαE u)φ1〉φ2 dt = −

∫
Q

Θε(LαE u)φ1(∂tφ2) dx dt

−
∫

Q
(u − LαE u) ∂t (Tε(LαE u))φ1φ2 dx dt

−
∫

Q
(u − LαE u) Tε(LαE u)φ1 (∂tφ2) dx dt

Proof is a minor (important) generalization (due to BCM) of the assertion
due to Diening, Růžička and Wolf (2008).
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Ads: Lipschitz approximations of Sobolev function/1

Theorem. (Diening, Málek, Steinhauer ’08 inspired by Frehse, Málek,
Steinhauer ’03)
Let 1 < q <∞ and Ω ∈ C0,1. Let

un ∈W 1,q
0 (Ω)d and un ⇀ 0 weakly in W 1,q

0 (Ω)d .

Set

K := sup
n
||un||1,q <∞,

γn := ||un||q → 0 (n→∞).

Let θn > 0 be such that (e.g. θn :=
√
γn)

θn → 0 and
γn

θn
→ 0 (n→∞).

Let µj := 22j
.
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Ads: Lipschitz approximations of Sobolev function/2

Then there exists a sequence λn,j > 0 with

µj ≤ λn,j ≤ µj+1,

and a sequence un,j ∈W 1,∞
0 (Ω)d such that for all j , n ∈ N∣∣∣∣un,j
∣∣∣∣
∞ ≤ θn → 0 (n→∞),∣∣∣∣∇un,j
∣∣∣∣
∞ ≤ c λn,j ≤ c µj+1

and

{un,j 6= un} ⊂ Ω ∩
(
{Mun > θn} ∪ {M(∇un) > 2λn,j}

)
,

and for all j ∈ N and n→∞

un,j → 0 strongly in Ls(Ω)d for all s ∈ [1,∞],

un,j ⇀ 0 weakly in W 1,s
0 (Ω)d for all s ∈ [1,∞),

∇un,j ∗⇀ 0 weakly- ∗ in L∞(Ω)d×d .
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Ads: Lipschitz approximations of Sobolev function/3

Furthermore, for all n, j ∈ N

|{un,j 6= un}|d ≤
c‖un‖q1,q
λq

n,j

+ c

(
γn

θn

)q

and

‖∇un,j χ{un,j 6=un}‖q ≤ c ‖λn,jχ{un,j 6=un}‖q ≤ c
γn

θn
µj+1 + c εj ,

where εj := K 2−j/q vanishes as j →∞. The constant c depends on Ω.
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Ads: Lipschitz approximations of Sobolev function/4

The gradient of any function φ ∈W 1,1
loc (Ω), that is constant on some

measurable subset of Ω, vanishes on this set. Consequently for φ := un,j

∇un,j = ∇(un,j − un) +∇un = (∇un,j −∇un)χ{un,j 6=un} +∇un

= ∇un,jχ{un,j 6=un} +∇unχ{un,j =un} .

In particular this implies that

if div un = 0 then div un,j = div un,jχ{un,j 6=un}.
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Relation to analysis of unsteady flows of heat-conducting
incompressible fluids/1

div v = 0 (2)

v,t + div(v ⊗ v)− div SSS = −∇p (3)

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (SSSv) (4)

v . . . velocity

e . . . internal energy total energy E := e + |v|2/2

p . . . pressure

SSS . . . a part of the Cauchy stress TTT = −pIII + SSS, SSS = SSST

q . . . heat flux

Nonlinear system of PDEs
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Constitutive equations

div v = 0

v,t + div(v ⊗ v)− div SSS = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (SSSv)

Constitutive equations 2DDD(v) := ∇v + (∇v)T

SSS = ν(p, e, |DDD(v)|2)DDD(v) (5)

q = −κ(p, e,∇e, |DDD(v)|2)∇e (6)

Linear (Navier-Stokes and Fourier) relations

Non-Linear constitutive equations (power-law, etc.)
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Constitutive Equations - examples

ν(|DDD(v)|2) = ν0|DDD(v)|r−2 Power-law fluids r ∈ [1,∞)

ν(|DDD(v)|2) = ν0 + ν1|DDD(v)|r−2 Generalized NS fluids r ∈ [1,∞)

ν(p) = ν0 exp(αp) Barus (1893)

ν(θ) = ν0 exp
(

a
b+θ

)
Vogel (1922)

ν(p, θ) = A exp
(

Bp+D
θ

)
Andrade’s (1929), Bridgman (1931)

ν(p, |DDD(v)|2) = ν0p
|DDD(v)| Schaeffer (1987)
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IBVP

div v = 0

v,t + div(v ⊗ v)− div SSS = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (SSSv)

Data

Ω ⊂ R3 bounded open connected container, T ∈ (0,∞) length of time
interval

v(0, ·) = v0, e(0, ·) = e0 in Ω

α that appears in boundary conditions (thermally and mechanically or
energetically isolated body)

Task Mathematical Consistency of a Model - for any set of data to find uniquely
defined, smooth, solution (notion of solution, its existence, uniqueness, regularity)

Weak solution - solution dealing with averages
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Boundary conditions

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q− div (SSSv) = 0

d

dt

(∫
Ω

E (t, x) dx

)
+

∫
∂Ω

[(E + p)v · n + q · n− SSSv · n] dS = 0

Mechanically and thermally isolated body, Navier’s slip on [0,T ]× Ω:

v · n = 0 q · n = 0

λ(SSSn)τ + (1− λ)vτ = 0 for λ ∈ (0, 1) uτ := u− (u · n)n

λ = 0 =⇒ no-slip λ = 1 =⇒ slip

Energetically isolated body, Navier’s slip on [0,T ]× Ω:

v · n = 0 q · n = −α|vτ |2

(SSSn)τ + αvτ = 0 α := (1− λ)/λ
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”Equivalent” formulation of the balance of energy/1

div v = 0

v,t + div(v ⊗ v)− div SSS = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (SSSv)

is equivalent (if v is admissible test function in BM) to

div v = 0

v,t + div(v ⊗ v)− div SSS = −∇p

e,t + div(ev) + div q = SSS ·DDD(v)

Helmholtz decomposition u = udiv +∇g v

Leray’s projector P : u 7→ udiv
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”Equivalent” formulation of the balance of energy/2

div v = 0

v,t + div(v ⊗ v)− div SSS = −∇p

(e + |v|2/2),t + div((e + |v|2/2 + p)v) + div q = div (SSSv)

is equivalent (if v is admissible test function in BM) to

div v = 0

v,t + P div(v ⊗ v)− P div SSS = 0

e,t + div(ev) + div q = SSS ·DDD(v)

Advantages/Disadvantages

+ pressure is not included into the 2nd formulation

+ minimum principle for e if SSS ·DDD(v) ≥ 0

− SSS ·DDD(v) ∈ L1 while SSSv ∈ Lq with q > 1
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Assumptions on SSS = ν(e, |DDD(v)|2)DDD(v) and
q = κ(e,∇e)∇e

(C1) given r > 1 there are C1 > 0 and C2 > 0 such that for all symmetric
matrices BBB, DDD and e ∈ R+

C1(1 + |DDD|2)
r−2

2 |BBB|2 ≤
∂
[
ν(e, |DDD|2)DDD

]
∂DDD

· (BBB⊗BBB) ≤ C2(1 + |DDD|2)
r−2

2 |BBB|2

(C2) given q > 1 there are C3 > 0 and C4 > 0 such that for all vectors u, w

and e ∈ R+

C3(1 + |u|2)
q−2

2 |w|2 ≤ ∂ [κ(e,u)u]

∂u
· (w ⊗w) ≤ C4(1 + |u|2)

q−2
2 |w|2
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Result

Theorem 4. (M. Buĺıček, L. Consiglieri, J. Málek ’07)
Let (C1)–(C2) hold and r and q fulfil

r >
9

5
and q >

7

4

Assume that

∂Ω ∈ C 1,1

v0 ∈ L2
n,div and e0 ∈ L1, e0 ≥ C ∗ > 0 a.a. in Ω

Then for all T > 0 (and any α ∈ (0, 1]) and any (v0, e0) there exists at
least one suitable weak solution (v, p, e) of the system relevant system
completed by Navier’s slip boundary conditions (mechanically and
thermally isolated domain).
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Concluding remarks/1

General mathematical theory for internal unsteady flows of
incompressible heat conducting fluids - mathematical self-consistency
of IBVP

Implicit constitutive theory

”Equivalent” forms of the balance of energy

The role of boundary conditions at tangent directions to the boundary
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Concluding remarks/2

Methods to take the limit in nonlinearities (three groups)

Convective terms: products of weakly and strongly converging
sequences, Aubin-Lions compactness lemma for v and e

Material nonlinearities: monotone operator theory, L∞-truncation and
Lipschitz truncation method, perturbations of strictly monotone
operators

Term representing the dissipation energy: energy equality method (if
v is admissible test function in BLM), otherwise use a primary form of
energy balance

Entropy, renormalized, suitable, dissipative solutions: use maximum
information that is in place
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Concluding remarks/3

Open problems

ν(p, e) or ν(p)

BC’s: no-slip, inflow, outflow

Qualitative theory: uniqueness, regularity

More complicated constitutive relations (stress relaxation, normal
stress differences, nonlinear creep), discontinuous (fully implicit)
relationships
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