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Notations

Notations

• Nondimensional form of the Boltzmann equation

Ma∂t f + v · ∇x f =
1

Kn
Q(f , f )

• Fluctuations around a global equilibrium M

f = M(1 + Mag)

controlled by the relative entropy

H(f |M) =

∫∫ (
f log

f

M
− f + M

)
dvdx ≤ CMa2

• Perturbative form of the Boltzmann equation

Ma∂tg + v · ∇xg = − 1

Kn
Lg +

Ma
Kn
Q(g , g)
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Physical a priori estimates

The entropy inequality

Physical a priori estimates

I The entropy inequality

Starting from

• the local conservation of mass, momentum and energy

• the local entropy inequality

and integrating by parts using

• Maxwell’s boundary condition with accomodation coefficient α

we get formally the entropy inequality

H(f |M)(t) +
1

KnMa

∫ t

0

∫
Ω

D(f )(s, x)dsdx +
α

Ma

∫ t

0

∫
∂Ω

E (f |M)(s, x)dσxds

≤ H(fin|M) ≤ CMa2

(which will be actually satisfied even for very weak solutions of the
Boltzmann equation)
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Physical a priori estimates

The entropy inequality

The three controlled quantities are

• the relative entropy

H(f |M) =

∫∫
Mh(Mag)dvdx with h(z) = (1 + z) log(1 + z)− z

• the entropy dissipation

D(f ) = −
∫

Q(f , f ) log fdv

=
1

4

∫
ff∗r

(
f ′f ′∗
ff∗
− 1

)
bdvdv∗dω with r(z) = z log(1 + z)

• the Darrozès-Guiraud information

E (f |M) =
1√
2π
〈h(Mag) −h (〈Mag〉∂Ω)〉∂Ω

with 〈G 〉∂Ω
def
=
∫

GM
√

2π(v · n(x))+dv
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Physical a priori estimates

The relative entropy

I The relative entropy

The relative entropy bound∫∫
Mh(Mag)dvdx ≤ CMa2

controls the size of the fluctuation.

• By Young’s inequality

(1 + |v |2)g = O(1)L∞t (L1
loc (dx :L1(Mdv))).

• Heuristically

h(z) ∼z→0
1

2
z2

so that we expect g to be almost in L∞t (L2(dxMdv)).



Mathematical tools for hydrodynamic limits

Physical a priori estimates

The relative entropy

• We therefore define the renormalized fluctuation

ĝ =
2

Ma
(
√

1 + Mag − 1) .

The functional inequality

1

2
h(z) ≥ (

√
1 + z − 1)2 , ∀z > −1

implies that
ĝ = O(1)L∞t (L2(dxMdv)).

That refined a priori estimate will be used together with the identity

g = ĝ +
1

4
Maĝ 2.
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Physical a priori estimates

The entropy dissipation

I The entropy dissipation
The bound on the entropy dissipation

1

4

∫ t

0

∫ ∫
ff∗r

(
f ′f ′∗
ff∗
− 1

)
bdvdv∗dωdxds ≤ CMa3Kn

controls some renormalized collision integral.

The functional inequality

(x − y) log
x

y
≥ 4(
√

x −√y)2 , x , y > 0

coupled with the Cauchy-Schwarz inequality, implies indeed

q̂ =
1√

Ma3Kn

1

M
Q(
√

Mf ,
√

Mf )

= O(1)L2
loc (dt,L2(Mν−1dvdx)

Remark : In order to control the relaxation process, we will further need
estimates on the nonlinearity based on the continuity properties of Q and
bounds on g .
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Physical a priori estimates

The Darrozès-Guiraud information

I The Darrozès-Guiraud information
The bound on the boundary term∫ t

0

∫
∂Ω

〈h(Mag)− h (〈Mag〉∂Ω)〉∂Ωdσxds ≤ C
Ma3

α

controls the variation of the trace in v .

By Taylor’s formula (with cancellation of the first order), one indeed has

η̂ = 2

√
α

Ma3

(√
1 + Mag −

√
〈1 + Mag〉∂Ω

)
= O(1)L2

loc (dt,L2(M(v ·n(x))+dσxdv))

Remark : In order to control the trace g|∂Ω, we will further need
estimates coming from the inside, on g and on v · ∇xg .
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Control of the relaxation

Additional integrability in v coming from the relaxation
I Control of the relaxation

The fundamental identity
From the bilinearity of Q and the definition of ĝ , we have obviously

Lĝ =
Ma
2
Q(ĝ , ĝ)− 2

Ma
1

M
Q(
√

Mf ,
√

Mf )

=
Ma
2
Q(ĝ , ĝ)− 2

√
MaKnq̂

For simplicity, we assume that ν is bounded from up and below.
Else we would have to use some truncated b̃, L̃ and Q̃

Control of the quadratic term
By the continuity of Q : L2(Mdv)× L2(Mνdv)→ L2(Mν−1dv)
and the L2 bound on ĝ , we get

Ma
2
Q(ĝ , ĝ) = O(Ma)L∞t (L1

x (L2(Mdv))
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Additional integrability in v coming from the relaxation

Control of the relaxation

Control coming from the entropy dissipation
By the entropy dissipation bound,

2
√

MaKnq̂ = O(
√

MaKn)L2
loc (dt,L2(dxMdv))

The relaxation estimate
From the coercivity inequality for L∫

gLMg(v)M(v)dv ≥ C‖g − Πg‖2
L2(Mνdv) .

we then deduce

ĝ − Πĝ = O(Ma)L∞t (L1
x (L2(Mdv)) + O(

√
MaKn)L2

loc (dt,L2(dxMdv))
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Additional integrability in v coming from the relaxation

Control of large velocities

I Control of large velocities

By Young’s inequality

(1 + |v |p)2|ĝ |2 ≤ δ2

Ma2 |Mag | (1 + |v |p)2

δ2

≤ δ2

Ma2

(
h(Mag) + h∗

(
(1 + |v |p)2

δ2

))

Therefore, for any δ > 0, p < 1, q < +∞

(1 + |v |p)|ĝ | = O(δ)L∞t (L2(Mdvdx)) + O

(
Cδ,q
Ma

)
L∞t,x (Lq(Mdv))

Remark : for p = 1 one can actually obtain a bound.
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Additional integrability in v coming from the relaxation

Moments and equiintegrability in v

I Moments and equiintegrability in v

From the decomposition

ĝ = (ĝ − Πĝ) + Πĝ

we deduce that for r < 2, q < +∞, p < 1

(1 + |v |p)2|ĝ |2 = (1 + |v |2p)ĝΠĝ + (1 + |v |2p)(ĝ − Πĝ)ĝ

= O(1)L∞t (L1
x (Lr (Mdv)) + (1 + |v |p)|ĝ − Πĝ |O(δ)L∞t (L2(Mdvdx))

+(1 + |v |p)|ĝ − Πĝ |O
(

Cδ,q
Ma

)
L∞t,x (Lq(Mdv))

By the relaxation estimate, choosing δ sufficiently small, we get

(1 + |v |p)2|ĝ |2 = O(1)L1
loc (dtdx,L1(Mdv)) uniformly integrable in v .
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Additional integrability in x coming from the free transport

In viscous regime, we further use properties of the free-transport equation

Ma∂tg + v · ∇xg = S (1)

• The free transport is the prototype of hyperbolic operators

g(t, x , v) = gin(x −Matv , v) +

∫ t

0

S(x −Masv , v , t − s)ds

No regularizing effect on g . Propagation of singularities at finite speed.

• Ellipticity of the symbol outside from a small subset of R3
v

a(τ, ξ, v) = i(Maτ + v · ξ)

Regularity in x of the averages
∫

gϕ(v)dv (moments).
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Additional integrability in x coming from the free transport

Averaging properties

I Averaging properties

v1

v2

ξ

|St τ+v.ξ| > α

Small contribution
to the average

Ellipticity of
the symbol

Ellipticity of
the symbol

|St τ+v.ξ| > α|St τ+v.ξ| < α

Fig.: Symbol of the free transport operator
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Additional integrability in x coming from the free transport

Averaging properties

Theorem [L2 averaging lemma] (Golse, Lions, Perthame, Sentis) :
Let g ∈ L2

t,x,v be the solution of the transport equation (1).

Then, for all ϕ ∈ L∞(R3
v )∥∥∥∥∫ gϕ(v)dv

∥∥∥∥
L2(Rt ,H

1/2
x )

≤ Cϕ‖g‖1/2

L2
t,x,v
‖S‖1/2

L2
t,x,v

.

Sketch of the proof

• Take Fourier transform

• Split the integral into two contributions

• Estimate each contribution with the Cauchy-Schwarz inequality

• Optimize with respect to α

Can be extended to Lp spaces with 1 < p <∞.
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Additional integrability in x coming from the free transport

Averaging properties

Remark 1 : Because of concentration phenomena, velocity averaging
fails in L1 and L∞ (as proved by the following counterexample).

Consider (Sn) bounded in L1
t,x,v such that

Sn → Stχ′(t)δ
x−Ma−1

v0t
⊗ δv−v0

Let (fn) be the corresponding solutions to (1). Then,∫
R3

fnϕ(v)dv ⇀ ρ in Mt,x ,

support(ρ) ⊂ R× R+v0 .

Remark 2 : It is actually sufficient to control the concentration effects in
v (non concentration in x will follow automatically).
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Additional integrability in x coming from the free transport

Mixing properties

I Mixing properties

v

x

E(s)
E(t)

(t-s)v

A set of “small measure in x” becomes a set of “small measure in v”
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Additional integrability in x coming from the free transport

Mixing properties

Theorem [dispersion lemma] (Castella, Perthame) :
Let χ be the solution to

∂sχ+ Ma∂tχ+ v · ∇xχ = 0.

Then, for all (p, q) ∈ [1,+∞] with p ≤ q,

∀s ∈ R∗, ‖χ(s)‖L∞t (Lq
x (Lp

v )) ≤ |s|
−3( 1

p−
1
q ) ‖χ|s=0‖L∞t (Lp

x (Lq
v )).

Sketch of the proof

• Start from the formula of characteristics

• Use the change of variables v 7→ x − vs

• Conclude by interpolation with the conservation of mass

Coupled with Green’s formula, and with a suitable choice of the
parameter s, that gives the expected mixing property.

Combined with classical averaging results, it provides some criterion
(equiintegrability in v) to get strong compactness of the moments in L1.
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Additional integrability in x coming from the free transport

Control of the free transport

I Control of the free transport

In viscous regime Ma ∼ Kn, we can prove that

(Ma∂t + v · ∇x)

√
f /M + Maa − 1

Ma
= O(Ma2−a/2)L1(dtdxMdv) + O(1)L2(dtdxν−1Mdv) + O(Ma)L1

loc (dtdx,L2(ν−1Mdv))

As the squareroot is not an admissible renormalization, we start from

(Ma∂t + v · ∇x)

√
f /M + Maa − 1

Ma
=

1

2KnMa
1√

f + MaaM
√

M

∫∫ (√
f ′f ′∗ −

√
ff∗
)2

b(v − v∗, σ)dσdv∗

+
1

KnMa

√
f√

f + MaaM
√

M

∫∫ (√
f ′f ′∗ −

√
ff∗
)√

f∗b(v − v∗, σ)dσdv∗
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Additional integrability in x coming from the free transport

Control of the free transport

The L2 bound on q̂ (coming from the entropy dissipation) gives

‖Q1‖L1(dtdxMdv) ≤
1

2
CinMa2−a/2.

The weighted L2 bound on ĝ implies

Q2 = O

(√
Ma
Kn

)
L2(dtdxν−1Mdv)

+ O

(
Ma

√
Ma
Kn

)
L1

loc (dtdx,L2(ν−1Mdv))

.

Remark : In inviscid regime Kn << Ma, there is no bound on the
transport, and consequently no a priori regularity estimate on the
moments.
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Additional integrability in x coming from the free transport

Control of the free transport

Combined with the comparison estimate(√
f /M + Maa − 1

Ma

)2

− ĝ 2 = O(Maa−1)L2
loc (dtdx,L2((1+|v |p)Mdv))

+O(Maa/2)L2
loc (dtdx,L1((1+|v |p)Mdv)).

it will provide the convenient control to get

• the equiintegrability with respect to x of

Mĝ 2(1 + |v |p)

• the spatial regularity of the moments∫
Mĝϕ(v)dv
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