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L Renormalized solutions to the Boltzmann equation

The mathematical framework

» Renormalized solutions to the Boltzmann equation
Theorem (DiPerna & Lions) : Assume that b satisfies Grad’s cutoff
assumption. Let f;, € L} _(Q x R3) be such that

loc

fin
H(fin|M) ‘iZEf/ / (f,-,, log i fin + M) (x,v) dvdx < 400,
Q

Then there exists (at least) one global renormalized solution
f e C(RT,LL.(Q2 x R?)) to the Boltzmann equation : for any
re C(RY),
1
Mad,l(f) + v - V[ (f) = K—F’(f)Q(f, f) on RT x Q x R,
n
f(0,x,v) = fi(x,v) on Q x R3.
Moreover, f satisfies

- the continuity equation

Mao; / fdv + Vi - / fvdv = 0;



Incompressible hydrodynamic limits : convergence results
The mathematical framework

L Renormalized solutions to the Boltzmann equation
- the momentum equation with defect measure m
Ma&t/fvdv+vx~/fv®vdv+vx-m:O

- the entropy inequality with defect measure

H(FIM)(t) + /Trm MaKn/ / (5. x)dsdx < H(f| M)

» Proceeding by analogy

The main idea is then to recognize in the scaled Boltzmann equation the
same mathematical structure as in the asymptotic hydrodynamic
equations

e weak stability (controlled by some dissipation)

e strong-weak stability (controlled by some energy functional)
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» Leray solutions to the Navier-Stokes equations

Theorem : Let u;, € L2(Q) be a divergence free vector field.
Then there exists (at least) one global weak solution
uelz (RT,HY(Q)) N C(RT,w — L%(Q)) to the incompressible

loc
Navier-Stokes equations
V-u=0, (1)
Oru+ (u-V)u+Vp = plAu,

It further satisfies the energy inequality

t
lu(t) 1) + 2u/0 IV u(s)lI72() 95 < [luinll 2o

The Leray energy inequality and the DiPerna-Lions entropy inequality are
very similar objects : in both cases,

e the dissipation controls the spatial regularity of the moments
e the global inequality controls the weak stability of solutions
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» Dissipative solutions to the Euler equations

Theorem : Let u;, € L2(Q) be a divergence free vector field.
Then there exists at least one global dissipative solution

ue L>=([0, T),L2(Q)) N C([0, T),w — L>(Q)) to the incompressible
Euler equations

V-u=0, 0w+ (u-V)u+Vp=0. (2)

meaning that, for all t and all & € C°(R* x Q),

t
lu(t) = 8(t)IFa) < Mluin — Ginl| o) exp </0 IIDTJ(S)IILoo(Q)dS)

+/0t/ A@) - (B — u)(s, x)dx exp (/Sthf(T)lle(de)

A similar stability inequality will be established for the solutions to the
Boltzmann equation. In particular, we will have

e uniqueness and convergence as long as the smooth solution exists
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From Boltzmann to Navier-Stokes

» Statement of the result

Theorem : Let £, € L}, (2 x R®) be a family of initial fluctuations

around a global equilibrium M, i.e. such that

1
?H(fsm“\/l) S Cina

Let (f.) be a family of renormalized solutions to

1
€0if. + v - Vif. = ZQ(f.,£.) on RT x Q x R3,
5
(0, x, v) = fe.in(x, v) on Q x R3.
Then the family (g.) defined by . = M(1 + £g.) is relatively weakly
compact in L. (dtdx, L}(Mdv)); and for any limit point g of (g.),

loc
2 _
g(t,x,v) = u(t,x)-v+9(t,x)|v| >

where v is a weak solution to the Navier-Stokes equations (1) and
0 satisfies some convection-diffusion equation.
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L Strategy of the proof : the moment method

» Strategy of the proof : the moment method

e From the relative entropy bound, we deduce that

g — ginw— L2 _(dt, [*(dxMdv)),

loc

up to extraction of a subsequence.
e By the entropy dissipation bound, we have

Lg. = %Q(gg,gs) —2¢§. — 0in Lj(dtdx, L*(Mdv))

from which we deduce that
1
g(t,x,v) = p(t,x) + u(t,x) - v+ 59(1-‘,><)(IVI2 -3).

e Passing to the limit in the local conservations of mass and
momentum, we get

Vi-u=0, Vi(p+0)=0.
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L Strategy of the proof : the moment method

e The core of the proof is to derive the equations for u and 6.

Start from the formal conservation laws

1
//\/Igevdv—FV /Mg8 v)dv + V <3E/Mg5|v|2dv) =0,

1 1
8t/Mg€§(\v|2—5)dv—|—Vx-E/Mgalll(v)dv:o

As &, W belong to Ker(Ly),
& =Lyd, V=_LyV for some &,V e Ker(Ly)

We then use the skew-symmetry of Ly together with the identity

1
g/\/’ﬁmge = —V: vaga + Q(MgEa Mg&) + 0(6)
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L Strategy of the proof : the moment method

Ot / /\/Igsvvarvx'/ (Q(Mg., Mg.) — v -V Mg.) ®(v)dv+V,p. = O(e),
convection viscous diffusion
/ M.

Using the relaxation estimate g. — Mg, = O(e) together with the
identity

dv+V, /(Q(Mgs,Mgs)f v-VMg) W(v)dv = O(e).

convection thermal diffusion

2Q(MNg, MNg) = MLy(Ng)?,

we get explicit formulas for the convection terms

. 1 . 5
/Q(Mga, Mg.)ddv ~ u®? — §|u5\2/d, /Q(I\/Igg, Mg )Wdv ~ Eueﬁa

Taking limits as € — 0 and assuming some strong convergence on the
moments, we get the motion and heat equations,
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L Convergence of the conservation defects

» Convergence of the conservation defects

Because renormalized solutions are not known to satisfy the Boltzmann
equation in distributional sense, we use

e a truncation of large tails (renormalization)

e a truncation of large velocities
and start from

8t/Mgs'}/sl\v\nggg(V)dV+vx : /Mgs'761|v|2§Ke vé(v)dv = D.(§)

The first step is therefore to prove that the conservation defect D.(¢)
converges to 0 for any collision invariant £&. We use

e the decomposition of the collision integrand

ff, — o = (VR — VERP + 2AVERL - VEL)VEE.
e the bound coming from the entropy dissipation
e some symmetrization based on the invariance £ + &, = &' + &,
e the equiintegrability of Mg? coming from the relaxation estimate
and the (x, v)-mixing property (see lecture 2)
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» Decomposition of the flux terms

The asymptotic behaviour of the flux terms

/Mgs’ysl| p<k.C(v)dv — = //\/I Cdv+2/Mq5CdVHO

comes from
e a suitable decomposition based on the identities
515 = ge +5§%/47
EM»CMgs = iQ(Mg—ev Mgs) - 2/\/’6\75
together with the skew-symmetry of Ly
e the equiintegrability of Mg2(1 + |v|P) (p < 2)
e the relaxation estimate : g&. — Mg. — 0 in some weighted L? space

The convergence of the diffusion term is obtained using the weak
compactness on (§.) as well as

v-V.g =2q
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L Filtering of acoustic waves

» Filtering of acoustic waves

The convergence of the convection term (depending nonlinearly on the
moments of g.) requires some strong convergence

o the spatial regularity comes from averaging lemma

o the regularity with respect to time is valid only for some projections
Pu, and (30. — 2p.)/5

To deal with acoustic waves, i.e. with the fast oscillating components
Ve = (Id — P)u, and 7. = 3(p: + 6.)/5

1 1
atﬂ—s + 7Ast =0 < )
g e

5 1
8tv'¢e +—Vym.=o0 () ,
3e €

we use some compensated compactness argument
PV, - ((Vpe)®?) — 0, and V, - (1-Vip:) — 0

in the sense of distributions on RT x Q.
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From Boltzmann to Euler

» The convergence result for well-prepared initial data

Theorem : Let £ ;, € L}, (Q x R®) be a family of initial fluctuations
around a global equilibrium M, satisfying

1
— H(fe in| M1 cu,1) — 0 as e — 0,
- :

for some given divergence-free vector field u;, € L?(Q).
Let (f.) be a family of renormalized solutions to (q > 1)

1
e0fe +v - Vil = gQ(ﬁ:"%) on RT x Q x R3,

£-(0,x,v) = f.in(x,v) on Q x R3.

Then the family (u.) defined by u. = ! [ f.vdv is relatively weakly
compact in L} _(dtdx), and any limit point u of (u.) is a dissipative
solution to the incompressible Euler equations (2).
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» Strategy of the proof : the modulated entropy method
e From the relative entropy bound, we deduce that
g — ginw— L2 (dt, [*(dxMdv)),

loc

up to extraction of a subsequence.

e By the entropy dissipation bound, we have
Lg = SQ(&+&) — 224 — O in L, (dtdx, L2(Mdv))
from which we deduce that
g(t,x,v) = p(t,x) + u(t,x) v+ %G(t,x)(|v|2 —3).
e Passing to the limit in the local conservation of mass, we get

Vx-u=0
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L Strategy of the proof : the modulated entropy method

e The core of the proof is to establish the stability inequality

1
;H(ﬂrlMLeul + 5 q+3/ // ) dsdx

1
< L H(E My o) 9 (c [ 1085

B 0
t
_,/ // v — edi) - A(B) exp (c/ ||Df1(s)||Loo(Q)ds> dvdxds
s
e The conclusion follows then from some convexity argument giving

1 o |
> /(u — u) dx < I|Q1J8f?H(MfE|M1,ea,1)

1
< limi i
< I|g1_£{)1f 2 H(f:|Mien1)
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» The modulated entropy inequality

Start from the entropy inequality with defect measure :

H(fs(t)\M)—k/RB Tr(m.)(¢ q+1/ // (s, x)dsdx < H(f.n|M)

By definition of the modulated entropy,

H(f:Ma,en,1)(t) + /]RTr(m6 (t) + q+1// f.)dsdx
< H(fz in| Mt 1 / dt/ ~(e%t? — 2ev - B)f.(s, x, v)dvdxds

Then use
e the continuity equation

e the local conservation of momentum with defect measure.
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L The modulated entropy inequality

Integrating by parts leads finally to

"‘I(’"s|/V11,ea,1)(f)+/]R3 Tr(m.)(t q+1/ / f.)dsdx

t

< H(f: in| M1 c5,,.1) +/ // €0l - (el — v)fo(s, x, v)dvdxds
0

_/Ot/vxa : </(v — etl)®2f.(s, x, v)dvdx + mg(s,x)) dxds

_/Ot/gvxu; (/(v—sﬂ)@ﬂfg(s,x, v)dv) ds

In order to obtain the expected stability inequality, it remains then to
control the flux term

1
Vi ?/(v—gu)mfsdv

1 1
= V,i: 5—2/ ((v —eu)®? — §|v - Euzld) f-dv

and to apply Gronwall’s lemma.
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» Decomposition of the flux term

Because
1
O, = (v—cel)® — §|v —¢cl’ld  belongs to (Ker £aq. )"

we have B B
&, = L, P, for some &, € (KerLME)J‘

Then, using the identity

1 2 1
ng»Caée = _E_2Q( V Mefsv V Mefs) + EQ(Msé‘aMsés)

together with the skew-symmetry of L., we can prove
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» Some improvements of the modulated entropy method

Under an additional non-uniform estimate on f. (that guarantees the
local conservation of momentum and energy), we can

Take into account the acoustic waves

e replacing A by some penalized acceleration operator A.(p, i1, 0)

defined by
O0ep+ (- Vx)p 1 X0
tp )P+ -
~ . 3= 1 .
Ol 4 (- +< ) <p—29>+vx(p+9)
~ i 2 .
00+ (0-V 35 -0

e building approximate solutions to the acoustic equations
As(ﬁv Ela 0) =0
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L Some improvements of the modulated entropy method

Take into account the initial kinetic layer

e modulating also the entropy dissipation

f! fa/l fapp fappl

1 g
D(f;|f;PP) = Z//(fslfs/l - fsfsl)log fflf/ f!

app‘appl
1 £/
it fefea

1 g
- (f:app appl — faPPf:?PPl) £ f - £ f
appappl app'appl

bdvdvido

e building approximate solutions to the relaxation equation in the
initial layer
1

Ocf = cq+l

Q(f,f)

e using the previous argument outside from the initial layer
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