
Incompressible hydrodynamic limits : convergence results

Convergence results :
from the Boltzmann equation

to incompressible hydrodynamic models

Laure Saint-Raymond
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The mathematical framework

I Renormalized solutions to the Boltzmann equation

Theorem (DiPerna & Lions) : Assume that b satisfies Grad’s cutoff
assumption. Let fin ∈ L1

loc(Ω× R3) be such that

H(fin|M)
def
=

∫
Ω

∫ (
fin log

fin
M
− fin + M

)
(x , v) dv dx < +∞,

Then there exists (at least) one global renormalized solution
f ∈ C (R+, L1

loc(Ω× R3)) to the Boltzmann equation : for any
Γ ∈ C∞c (R+),

Ma∂tΓ(f ) + v · ∇xΓ(f ) =
1

Kn
Γ′(f )Q(f , f ) on R+ × Ω× R3,

f (0, x , v) = fin(x , v) on Ω× R3.

Moreover, f satisfies
- the continuity equation

Ma∂t

∫
fdv +∇x ·

∫
fvdv = 0;
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- the momentum equation with defect measure m

Ma∂t

∫
fvdv +∇x ·

∫
fv ⊗ vdv +∇x ·m = 0

- the entropy inequality with defect measure

H(f |M)(t) +

∫
Trm(t) +

1

MaKn

∫ t

0

∫
Ω

D(f )(s, x)dsdx ≤ H(fin|M)

I Proceeding by analogy

The main idea is then to recognize in the scaled Boltzmann equation the
same mathematical structure as in the asymptotic hydrodynamic
equations

• weak stability (controlled by some dissipation)

• strong-weak stability (controlled by some energy functional)
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I Leray solutions to the Navier-Stokes equations

Theorem : Let uin ∈ L2(Ω) be a divergence free vector field.
Then there exists (at least) one global weak solution
u ∈ L2

loc(R+,H1(Ω)) ∩ C (R+,w − L2(Ω)) to the incompressible
Navier-Stokes equations

∇ · u = 0,
∂tu + (u · ∇)u +∇p = µ∆u,

(1)

It further satisfies the energy inequality

‖u(t)‖2
L2(Ω) + 2µ

∫ t

0

‖∇u(s)‖2
L2(Ω)ds ≤ ‖uin‖2

L2(Ω)

The Leray energy inequality and the DiPerna-Lions entropy inequality are
very similar objects : in both cases,

• the dissipation controls the spatial regularity of the moments

• the global inequality controls the weak stability of solutions
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I Dissipative solutions to the Euler equations

Theorem : Let uin ∈ L2(Ω) be a divergence free vector field.
Then there exists at least one global dissipative solution
u ∈ L∞([0,T ), L2(Ω)) ∩ C ([0,T ),w − L2(Ω)) to the incompressible
Euler equations

∇ · u = 0, ∂tu + (u · ∇)u +∇p = 0. (2)

meaning that, for all t and all ũ ∈ C∞c (R+ × Ω),

‖u(t)− ũ(t)‖2
L2(Ω) ≤ ‖uin − ũin‖2

L2(Ω) exp

(∫ t

0

‖Dũ(s)‖L∞(Ω)ds

)
+

∫ t

0

∫
A(ũ) · (ũ − u)(s, x)dx exp

(∫ t

s

‖Dũ(τ)‖L∞(Ω)dτ

)

A similar stability inequality will be established for the solutions to the
Boltzmann equation. In particular, we will have

• uniqueness and convergence as long as the smooth solution exists
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I Statement of the result

Theorem : Let fε,in ∈ L1
loc(Ω× R3) be a family of initial fluctuations

around a global equilibrium M, i.e. such that

1

ε2
H(fε,in|M) ≤ Cin,

Let (fε) be a family of renormalized solutions to

ε∂t fε + v · ∇x fε =
1

ε
Q(fε, fε) on R+ × Ω× R3,

fε(0, x , v) = fε,in(x , v) on Ω× R3.

Then the family (gε) defined by fε = M(1 + εgε) is relatively weakly
compact in L1

loc(dtdx , L1(Mdv)) ; and for any limit point g of (gε),

g(t, x , v) = u(t, x) · v + θ(t, x)
|v |2 − 5

2

where u is a weak solution to the Navier-Stokes equations (1) and
θ satisfies some convection-diffusion equation.
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I Strategy of the proof : the moment method

• From the relative entropy bound, we deduce that

ĝε ⇀ g in w − L2
loc(dt, L2(dxMdv)),

up to extraction of a subsequence.

• By the entropy dissipation bound, we have

Lĝε =
ε

2
Q(ĝε, ĝε)− 2εq̂ε → 0 in L1

loc(dtdx , L2(Mdv))

from which we deduce that

g(t, x , v) = ρ(t, x) + u(t, x) · v +
1

2
θ(t, x)(|v |2 − 3).

• Passing to the limit in the local conservations of mass and
momentum, we get

∇x · u = 0, ∇x(ρ+ θ) = 0.
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• The core of the proof is to derive the equations for u and θ.

Start from the formal conservation laws

∂t

∫
Mgεvdv +∇x ·

1

ε

∫
MgεΦ(v)dv +∇x

(
1

3ε

∫
Mgε|v |2dv

)
= 0,

∂t

∫
Mgε

1

2
(|v |2 − 5)dv +∇x ·

1

ε

∫
MgεΨ(v)dv = 0

As Φ,Ψ belong to Ker(LM),

Φ = LMΦ̃, Ψ = LMΨ̃ for some Φ̃, Ψ̃ ∈ Ker(LM)

We then use the skew-symmetry of LM together with the identity

1

ε
MLMgε = −v · ∇xMgε + Q(Mgε,Mgε) + O(ε)
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∂t

∫
Mgεvdv+∇x ·

∫
(Q(Mgε,Mgε)︸ ︷︷ ︸

convection

− v · ∇xMgε)︸ ︷︷ ︸
viscous diffusion

Φ̃(v)dv+∇xpε = O(ε),

∂t

∫
Mgε
|v |2 − 5

2
dv+∇x ·

∫
(Q(Mgε,Mgε)︸ ︷︷ ︸

convection

− v · ∇xMgε)︸ ︷︷ ︸
thermal diffusion

Ψ̃(v)dv = O(ε).

Using the relaxation estimate gε − Πgε = O(ε) together with the
identity

2Q(MΠg ,MΠg) = MLM(Πg)2,

we get explicit formulas for the convection terms∫
Q(Mgε,Mgε)Φ̃dv ∼ u⊗2

ε −
1

3
|uε|2Id ,

∫
Q(Mgε,Mgε)Ψ̃dv ∼ 5

2
uεθε

Taking limits as ε→ 0 and assuming some strong convergence on the
moments, we get the motion and heat equations.
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I Convergence of the conservation defects

Because renormalized solutions are not known to satisfy the Boltzmann
equation in distributional sense, we use

• a truncation of large tails (renormalization)
• a truncation of large velocities

and start from

∂t

∫
Mgεγε1|v |2≤Kε

ξ(v)dv +∇x ·
∫

Mgεγε1|v |2≤Kε
vξ(v)dv = Dε(ξ)

The first step is therefore to prove that the conservation defect Dε(ξ)
converges to 0 for any collision invariant ξ. We use

• the decomposition of the collision integrand

f ′ε f
′
ε∗ − fεfε∗ = (

√
f ′ε f
′
ε∗ −

√
fεfε∗)

2 + 2(
√

f ′ε f
′
ε∗ −

√
fεfε∗)

√
fεfε∗

• the bound coming from the entropy dissipation
• some symmetrization based on the invariance ξ + ξ∗ = ξ′ + ξ′∗
• the equiintegrability of Mĝ2

ε coming from the relaxation estimate
and the (x , v)-mixing property (see lecture 2)
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I Decomposition of the flux terms

The asymptotic behaviour of the flux terms∫
Mgεγε1|v |2≤Kε

ζ(v)dv − 1

2

∫
M(Πĝε)

2ζdv + 2

∫
Mq̂εζ̃dv → 0,

comes from
• a suitable decomposition based on the identities

gε = ĝε + εĝ2
ε /4,

1

ε
MLM ĝε =

1

2
Q(Mĝε,Mĝε)− 2Mq̂ε

together with the skew-symmetry of LM

• the equiintegrability of Mĝ2
ε (1 + |v |p) (p < 2)

• the relaxation estimate : ĝε − Πĝε → 0 in some weighted L2 space

The convergence of the diffusion term is obtained using the weak
compactness on (q̂ε) as well as

v · ∇xg = 2q
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I Filtering of acoustic waves
The convergence of the convection term (depending nonlinearly on the
moments of ĝε) requires some strong convergence

• the spatial regularity comes from averaging lemma

• the regularity with respect to time is valid only for some projections
Puε and (3θε − 2ρε)/5

To deal with acoustic waves, i.e. with the fast oscillating components
∇ψε = (Id − P)uε and πε = 3(ρε + θε)/5

∂tπε +
1

ε
∆xψε = o

(
1

ε

)
,

∂t∇ψε +
5

3ε
∇xπε = o

(
1

ε

)
,

we use some compensated compactness argument

P∇x · ((∇ψε)⊗2)→ 0, and ∇x · (πε∇ψε)→ 0

in the sense of distributions on R+ × Ω.
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I The convergence result for well-prepared initial data

Theorem : Let fε,in ∈ L1
loc(Ω× R3) be a family of initial fluctuations

around a global equilibrium M, satisfying

1

ε2
H(fε,in|M1,εuin,1)→ 0 as ε→ 0,

for some given divergence-free vector field uin ∈ L2(Ω).
Let (fε) be a family of renormalized solutions to (q > 1)

ε∂t fε + v · ∇x fε =
1

εq
Q(fε, fε) on R+ × Ω× R3,

fε(0, x , v) = fε,in(x , v) on Ω× R3.

Then the family (uε) defined by uε = ε−1
∫

fεvdv is relatively weakly
compact in L1

loc(dtdx), and any limit point u of (uε) is a dissipative
solution to the incompressible Euler equations (2).
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I Strategy of the proof : the modulated entropy method

• From the relative entropy bound, we deduce that

ĝε ⇀ g in w − L2
loc(dt, L2(dxMdv)),

up to extraction of a subsequence.

• By the entropy dissipation bound, we have

Lĝε =
ε

2
Q(ĝε, ĝε)− 2εq̂ε → 0 in L1

loc(dtdx , L2(Mdv))

from which we deduce that

g(t, x , v) = ρ(t, x) + u(t, x) · v +
1

2
θ(t, x)(|v |2 − 3).

• Passing to the limit in the local conservation of mass, we get

∇x · u = 0
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• The core of the proof is to establish the stability inequality

1

ε2
H(fε|M1,εũ,1)(t) +

1

2εq+3

∫ t

0

∫∫
D(fε)dsdx

≤ 1

ε2
H(fε,in|M1,εũin1) exp

(
C

∫ t

0

‖Dũ(s)‖L∞(Ω)ds

)
−1

ε

∫ t

0

∫∫
fε(v − εũ) · A(ũ) exp

(
C

∫ t

s

‖Dũ(s)‖L∞(Ω)ds

)
dvdxds

• The conclusion follows then from some convexity argument giving

1

2

∫
(u − ũ)2dx ≤ lim inf

ε→0

1

ε2
H(Mfε |M1,εũ,1)

≤ lim inf
ε→0

1

ε2
H(fε|M1,εũ,1)
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I The modulated entropy inequality

Start from the entropy inequality with defect measure :

H(fε(t)|M) +

∫
R3

Tr(mε)(t) +
1

εq+1

∫ t

0

∫∫
D(fε)(s, x)dsdx ≤ H(fε,in|M)

By definition of the modulated entropy,

H(fε|M1,εũ,1)(t) +

∫
R3

Tr(mε)(t) +
1

εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|M1,εũin,1) +

∫ t

0

d

dt

∫∫
1

2
(ε2ũ2 − 2εv · ũ)fε(s, x , v)dvdxds

Then use

• the continuity equation

• the local conservation of momentum with defect measure.
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Integrating by parts leads finally to

H(fε|M1,εũ,1)(t) +

∫
R3

Tr(mε)(t) +
1

εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|M1,εũin,1) +

∫ t

0

∫∫
ε∂t ũ · (εũ − v)fε(s, x , v)dvdxds

−
∫ t

0

∫
∇x ũ :

(∫
(v − εũ)⊗2fε(s, x , v)dvdx + mε(s, x)

)
dxds

−
∫ t

0

∫
ε∇x ũ :

(∫
(v − εũ)⊗ ũfε(s, x , v)dv

)
ds

In order to obtain the expected stability inequality, it remains then to
control the flux term

∇x ũ :
1

ε2

∫
(v − εu)⊗2fεdv

= ∇x ũ :
1

ε2

∫ (
(v − εu)⊗2 − 1

3
|v − εu|2Id

)
fεdv

and to apply Gronwall’s lemma.
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I Decomposition of the flux term

Because

Φε = (v − εũ)⊗2 − 1

3
|v − εũ|2Id belongs to (KerLMε

)⊥

we have
Φε = LMεΦ̃ε for some Φ̃ε ∈ (KerLMε)⊥

Then, using the identity

1

ε
MεLεg̃ε = − 2

ε2
Q(
√
Mεfε,

√
Mεfε) +

1

2
Q(Mεg̃ε,Mεg̃ε)

together with the skew-symmetry of LMε , we can prove

− 1

2ε2

∫ t

0

∫∫
∇x ũ : Φε(fε −Mε)(s, x , v)dvdxds

≤ C

ε2

∫ t

0

‖∇x ũ‖L2∩L∞(Ω)H(fε|Mε)(s)ds + o(1)
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I Some improvements of the modulated entropy method

Under an additional non-uniform estimate on fε (that guarantees the
local conservation of momentum and energy), we can

Take into account the acoustic waves

• replacing A by some penalized acceleration operator Aε(ρ̃, ũ, θ̃)
defined by

∂t ρ̃+ (ũ · ∇x)ρ̃+
1

ε
∇x · ũ

∂t ũ + (ũ · ∇x)ũ +

(
eεθ̃ − 1

ε

)
∇x

(
ρ̃− 3

2
θ̃

)
+

1

ε
∇x(ρ̃+ θ̃)

∂t θ̃ + (ũ · ∇x)θ̃ +
2

3ε
∇x · ũ


• building approximate solutions to the acoustic equations

Aε(ρ̃, ũ, θ̃) = 0
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Take into account the initial kinetic layer

• modulating also the entropy dissipation

D(fε|fapp) =
1

4

∫∫
(f ′ε f

′
ε1 − fεfε1) log

(
f ′ε f
′
ε1fappfapp1

fεfε1f ′appf
′
app1

)

−
(
f ′appf

′
app1 − fappfapp1

)( f ′ε f
′
ε1

f ′appf
′
app1

− fεfε1

fappfapp1

)
bdvdv1dσ

• building approximate solutions to the relaxation equation in the
initial layer

∂t f =
1

εq+1
Q(f , f )

• using the previous argument outside from the initial layer
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