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1st order systems of conservation laws

Space-time domain:

t ≥ 0, x = (x1, . . . , xd).

Vector-valued unknown

(x, t) 7→ u(x, t) ∈ U
(
⊂ RN

)
,

having the meaning of physically conserved densities: mass density, energy-
momentum, charge, electro-magnetic field, ...

Conservation laws:

∂u

∂t
+

d∑
α=1

∂fα(u)

∂xα
= 0.



Examples

Gas Dynamics: 1 ≤ d ≤ 3 and N = 2 + d. Unknowns u = (ρ, ρv, ρε). Euler
equations:

• Conservation of mass ∂tρ+ div(ρv) = 0,

• C. of momentum ∂t(ρv) + div(ρv ⊗ v) +∇p(ρ, e) = 0,

• C. of energy

∂t

(
ρe+

1

2
ρ|v|2

)
+ div

((
ρe+

1

2
ρ|v|2 + p

)
v

)
= 0.



Traffic flow (Lighthill, Whitham): scalar unknown u = ρ, the density of cars
along a road (d = 1).

Conservation of “mass”

∂tρ+ ∂xq = 0, q = f(ρ) := κρ(ρmax − ρ).

Maxwell’s equations: d = 3 and N = 6. Unknown u = (B,D). Faraday and
Ampère conservation laws

∂tB + curlE = 0, ∂tD − curlH = 0, divB = divD = 0,

with equations of state

E = E(B,D), H = H(B,D).



The Cauchy Problem

For the sake of simplicity: d = 1 (planar waves).

∂u

∂t
+
∂f(u)

∂x
= 0, (1)

where

u 7→ f(u)

U → RN

is called the flux.

Given an initial data u0 : R→ U , find the solution such that

u(x,0) ≡ u0(x).



An example: the Riemann problem

• Hypothesis: u0 is invariant under x 7→ σx:

u0(x) ≡ a if x < 0, u0(x) ≡ b if x > 0,

• The PDEs are invariant under (x, t) 7→ (σx, σt),

• Uniqueness is expected: The solution must be self-similar,

u(x, t) = R

(
x

t

)
.



Solve the implicit Differential Equation

d

dξ
f(R(ξ)) = ξ

dR

dξ
. (2)

If ξ 7→ R(ξ) is Lipschitz:

(df(R(ξ))− ξ)
dR

dξ
= 0.

Whence either ξ 7→ R(ξ) is constant (locally), or

• dR
dξ = rk(R(ξ)) is an eigenvector,

• ξ = λk(R(ξ)) the corresponding eigenvalue.

−→ Suggests to assume hyperbolicity: df(u) is diagonalisable with real
eigenvalues.



Differentiation yields

dλk(R(ξ)) ·
dR

dξ
= 1, (3)

which raises two obstacles:

1. (3) is impossible for linear systems (λk ≡ cst), or more generally if

dλk(R(ξ)) · rk = 0.

2. (3) does not allow us to solve the Riemann problem for certain data.

Example: the Burgers equation (d = 1),

∂u

∂t
+

∂

∂x

(
1

2
u2
)

= 0.

Then λ(u) = f ′(u) ≡ u,

u(ξ) = ξ



yields the NC

a ≤ b.

What to do if b < a instead ?

Answer: Accept discontinuous solutions.

Then (2) to be understood in the distributional sense,

d

dξ
{f(R(ξ))− ξR(ξ)} = −R(ξ).

Whence ξ 7→ f(R(ξ))−ξR(ξ) is Lipschitz continuous. Yields a jump relation,

...



the Rankine–Hugoniot condition:

[f(R)] = ξ[R], (4)

with

[R] := R(ξ+ 0)−R(ξ − 0).

Warning. Not all discontinuities are admissible.

Example: in Burgers’ equation, discontinuities are restricted by

R(ξ+ 0) < R(ξ − 0).



Construction: to solve the Riemann problem, glue

• constant states,

• C1-solutions (rarefaction waves),

• discontinuities (shock waves).

Definition. R = R
(
a, b; xt

)
is the Riemann solver.

♣



Conservative difference schemes

Choose ∆x > 0, ∆t > 0.

Rectangular grid: tn = n∆t and xj = j∆x.

Aspect ratio:

σ :=
∆t

∆x

Dimensional analysis:
1

σ
is a velocity.



Discretized unknown:

unj ∼ u(xj, tn).

Driven by a difference scheme

un+1
j − unj

∆t
+

gn
j+1

2
− gn

j−1
2

∆x
= 0,

with g the numerical flux.

Initial sampling:

u0
j := u0(j∆x) or u0

j :=
1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x
u0(x) dx.



Designing a scheme

Choose a flux map

(. . . , uj, uj+1, . . .) 7→ g
j+1

2

with shift invariance.

Example: Three-point schemes

g
j+1

2
:= F (uj, uj+1).

Yields

un+1
j = unj + σ

(
F (unj−1, u

n
j )− F (unj , u

n
j+1)

)
.



Reconstruction

−→ Approximated solution uapp(x, t).

Extra- / inter-polated from the points unj .

• piecewise constant,

• piecewise linear,

• exact solution in strips n∆t ≤ t < (n+1)∆t (uses the Riemann
solver),

• ...

There remains to choose F .



Consistency

• Assume that σ is constant.

• Let ∆t → 0+. Assume that uapp converges boundedly almost every-
where.

• Theorem (Lax–Wendroff). Then the limit u(x, t) satisfies

∂tu+ ∂xF (u, u) = 0.

♥

• Want to fit ∂tu+ ∂xf(u) = 0 ? Require that

F (a, a) ≡ f(a), ∀a ∈ RN .



Examples of schemes

Centered scheme (Von Neumann):

Fc(a, b) :=
1

2
(f(a) + f(b)).

Highly unstable!!!

Lax–Friedrichs scheme:

FLF (a, b) :=
1

2
(f(a) + f(b)) +

1

2σ
(a− b).

Can be defined through the Riemann problem !



Lax–Wendroff scheme. A second-order variant of Lax–Friedrichs.

FLW (a, b) :=
1

2
(f(a) + f(b)) +

σ

2
dfm(f(a)− f(b)),

with dfm a “middle point” between df(a) and df(b), e.g.

df
(
a+ b

2

)
,

1

2
(df(a) + df(b)),

∫ 1

0
df(θa+ (1− θ)b) dθ.

Godunov scheme:

FG(a, b) = f(c), c := R(a, b; 0),

where (x, t) 7→ R(a, b;x/t) is the Riemann solver.

Nota. Godunov’s flux f(R(0)) is well-defined even in the case of a sta-
tionary shock, since

f(R(0+)) = f(R(0−)).

Other schemes: Roe, Osher, Leveque, ...



Linearized stability of schemes

• Still assume σ constant.

• Let ∆t→ 0+.

• Write the scheme

un+1
j = G(unj−1, u

n
j , u

n
j+1),

with

G(a−1, a0, a1) := a0 + σ
(
F (a−1, a0)− F (a0, a1)

)
.

• Constants are solutions.



• Linearize about a constant state u∗:

wn+1
j =

∑
−1≤k≤1

Akw
n
j+k, Ak :=

∂G

∂aj
(u∗, u∗, u∗).

One has ∑
−1≤k≤1

Ak = IN .

• Linearized stability: Given w(·,0) ∈ L2(R)N , the approximate solution
wapp(·, t), has to remain bounded in L2 as ∆t→ 0+:

There should exist C(t) (independent of ∆t), such that

+∞∑
j=−∞

‖wnj ‖
2 ≤ C(t)

+∞∑
j=−∞

‖w0
j ‖

2,

with

n = E[t/∆t]→ +∞.



• Apply discrete Fourier transform:

ŵ(ξ) :=
∞∑

k=−∞
eıkξwk.

The scheme becomes

ŵn+1(ξ) = M(ξ)ŵn(ξ),

with

M(ξ) := eıξA−1 +A0 + e−ıξA1.

• Induction yields

ŵn(ξ) = M(ξ)nŵ0(ξ).



• By Uniform Boundedness Principle, stability requires (Lax–Wendroff)

sup {‖M(ξ)n‖ ; ξ ∈ R, n ≥ 0} <∞.

Depends on both u∗ and σ.

• NC, the Courant–Friedrichs–Lewy condition:

ρ(M(ξ)) ≤ 1, ∀ξ ∈ R.

Centered scheme: ξ 6= 0 implies ρ(M(ξ)) > 1.

Hadamard instability



Warning

Linearized analysis
is not appropriate

in presence of
shock waves

!!!



The Courant–Friedrichs–Lewy condition (again)

Propagation in the discrete world: unj depends only on u0
j−n, . . . , u

0
j+n.

That is, uapp(x, t) depends only on the restriction of the initial data to[
x−

t

σ
, x+

t

σ

]
.

Propagation in the PDE world: at a linearized level,

∂tw+A∂xw = 0, A := df(u∗).

Decomposing the data and the solution onto the eigenbasis of df(u∗)
yields pure transport:

w(x, t) =
N∑

m=1

am(x− λmt)rm, df(u∗)rm = λmrm.



Whence w(x, t) depends on the restriction of the initial data to

[x+ λ1t, x+ λNt] .

Necessary condition for consistency:

The aspect ratio may not be so large that the waves travel slowlier in
the discretized world than in the real world.

In other words, one needs

[x+ λ1t, x+ λNt] ⊂
[
x−

t

σ
, x+

t

σ

]
.



Whence the C.-F.-L. condition:

For every likely u∗,

σ ρ(df(u∗)) ≤ 1. (5)

Lax–Friedrichs or Godunov schemes: CFL amounts precisely to (5).



The Cauchy problem: the state of the art

Only partial results for the Cauchy problem:

• Smooth initial data: Existence and uniqueness of classical solutions, on a
strip

Rd ×
[
0, T (u0)

)
.

Of little interest for applications.

• No other result for systems (N ≥ 2) in several space dimensions (d ≥ 2).

...



• Nice theory for the scalar case (N = 1, d ≥ 1), Volpert, Kruzhkov (1970).

– Existence and uniqueness for L∞-data.

– Contraction in the L1-distance.

– Error estimates for approximate solutions (Kutznetsov).

– Kinetic formulation (Perthame, P.-L. Lions & Tadmor)

• Systems (N ≥ 2) when d = 1, Glimm (1965), Bressan (1994–ff):

– Existence for quite general systems and small initial data in BV (R).

– Uniqueness, L1-continuous semi-group.

...



• Systems with many entropies (mainly N = 2 and d = 1) and some
convexity, DiPerna (1983):

– Existence of solutions for arbitrarily large initial data in L∞,

– Uniqueness is not known.

One cause of troubles: shock waves.

A related one is: irreversibility.



Entropies

In physics and mechanics, C1-solutions of

∂tu+ Divxf(u) = 0

do satisfy an additional conservation law

∂tφ(u) + divx~q(u) = 0,

where D2φ > 0n.

Terminology (mathal):

• φ is an entropy (!?!), q its entropy flux.

Proposition (Godunov, Lax & Friedrichs). A strongly convex entropy ensures
the hyperbolicity: df(u) diagonalizable with real eigenvalues.

♦



Example (gas dynamics):

Define the physical entropy s = s(ρ, e) by

θds = de+ p(ρ, e)d
1

ρ
.

Then smooth flows satisfy

∂

∂t
(ρs) + Div(ρsv) = 0.

Whence

φ = −ρs, ~q = −ρsv = φv.



Shock waves

Typical solutions of ∂tu + ∂xf(u) = 0 display discontinuities along curves
x = X(t).

Limits u(X(t)± 0, t) =: u±(t) are expected, together with a shock speed

s :=
dX

dt
.

The PDEs translate into jump relations: the Rankine–Hugoniot condition,

f(u+)− f(u−) = s(u+ − u−).

Nota: the shock velocity is a λk(u∗) (Taylor formula).



Irreversibility: the Lax entropy inequality

Relevant to thermodynamics and its 2nd principle.

Translates through a differential inequality.

For genuinely nonlinear systems, the R.-H. condition is not compatible with the
jump relation

q(u+)− q(u−) = s
(
φ(u+)− φ(u−)

)
(6)

associated to the additional conservation law.

So what ?



Example: Burgers equation, N = 1 and f(u) = 1
2u

2.

• Rankine–Hugoniot:

s =
f(u+)− f(u−)

u+ − u−
=
u+ + u−

2
.

• With φ(u) := u2/2 (thus q(u) = u3/3), (6) reads

s =
q(u+)− q(u−)
φ(u+)− φ(u−)

=
2

3
×

(u+)2 + u+u−+ (u−)2

u+ + u−
.

• Together, these identities give u− = u+.

Means that for discontinuous solutions,

∂tφ(u) + ∂xq(u) 6= 0.

So what ?



Require only the Lax entropy inequality (say d ≥ 1)

∂tφ(u) + divx~q(u) ≤ 0,

in the sense of distributions.

Translated as

q(u+)− q(u−) ≤ s
(
φ(u+)− φ(u−)

)

across discontinuities.

−→ irreversibility.



Entropy consistent schemes

Definition (d = 1). Have a discrete entropy flux Q(a, b) with Q(a, a) ≡ q(a),
such that

φ(un+1
j ) ≤ φ(unj ) + σ

(
Q(unj−1, u

n
j )−Q(unj , u

n
j+1)

)

for every sequency (umj )j,m generated by the scheme.

♣

Lax & Wendroff: one recovers again

∂tφ(u) + divx~q(u) ≤ 0

in the limit.



Shock profile

Principle: Every admissible solution of ∂tu+∂xf(u) = 0, depending only on
d′ = 0 or 1 variable should have a counterpart at the discrete level.

• Constants −→ constants !

OK for conservative finite differences:

(
unj−1 = unj = unj+1 = a

)
=⇒

(
un+1
j = a

)
.

• Discontinuous travelling waves (shocks)

u(x, t) =

{
u−, x < st,

u+, x > st.

−→ “discrete” shock profile (DSP).



What is a DSP ?

• Look for a travelling wave in

x− ct = j∆x− cn∆t.

Normalized variable

y :=
x− ct
∆x

= j − σcn.

• Look for a travelling discrete wave

unj = U(y) = U

(
x− ct
∆x

)
.

...



• Plug into the difference scheme:

U(y − σc) = U(y) + σ{F (U(y − 1), U(y))− F (U(y), U(y+ 1))}.

Terminology: the Profile Equation.

• Ask for limits

U(y)→ u±, x→ ±∞.

Then

uapp(x, t)
∆x→0−→

{
u−, x < ct,

u+, x > ct.



The velocity of a discrete shock

Integrate the profile equation over y ∈ (−∞,+∞):∫ +∞

−∞
(U(y)− U(y − σc)) dy = σ

∫ +∞

−∞
{F (U(y), U(y+ 1))

−F (U(y − 1), U(y))} dy.

Apply twice the formula∫ +∞

−∞
(Z(y)− Z(y − h)) dy = h(Z(+∞)− Z(−∞)).

−→

F (u+, u+)− F (u−, u−) = c(u+ − u−).



Remember the consistency

F (a, a) = f(a).

−→ The Rankine–Hugoniot condition for (u−, u+; c) !

Proposition: If a DSP exists from a state u− to a state u+, then

1. (u−, u+) satisfy the Rankine–Hugoniot condition,

2. the velocity c of the DSP and the shock speed s coincide.

♦



The latter is specific to conservation laws. When discretizing reaction-diffusion
equations, say

∂tv −∆v = g(v),

then

• the velocity of a discrete front differs from the front speed in the PDE,

• the velocity may not be unique,

• there is a “pinning” phenomenon: as parameters in the PDE vary smoothly,
the velocity of the discrete front may vary as in a “devil staircase”.

Example: KPP–Fisher equation.



Integration also gives:

Proposition. Assume that the scheme be entropy-consistent. Let U
be a DSP with limits u± and velocity s.

Then the shock (u−, u+; s) satisfies the Lax entropy inequality

q(u+)− q(u−) ≤ s
(
φ(u+)− φ(u−)

)
.

♣

Thus DSPs are a valuable tool. They represent faithfully shock waves.



Existence of DSPs

Question.

? Given a shock wave (u−, u+; s), does there exist a profile y 7→
U(y), satisfying

• the limits U(±∞) = u±,

• the profile equation

U(y−σs) = U(y)+σ{F (U(y−1), U(y))−F (U(y), U(y+1))}.

Notation: the equation involves a dimensionless parameter, the ‘grid velocity’

η := σs



The domain D of a DSP

y ∈ D 7→ U(y).

For the PE to make sense, D must be invariant under both

y 7→ y ± 1 and y 7→ y − η.

Simplest choice:

D = Z + ηZ.



Rational case: If η = p
q , then

D =
1

q
Z

is OK.

Irrational case: If η 6∈ Q, then D is dense in R. Take

D = R

instead.

Ask that y 7→ U(y) be continuous.



Existence: the rational case

η =
p

q
, p ∧ q = 1.

General method:

• “Integrate” once the profile equation (Benzoni).

Example: if η = 1
2, then

U(y)− σ{F (U(y− 1/2), U(y+1/2))+ F (U(y), U(y+1))} ≡ cst .

Calculation of the constant:

– Take the limit as y → −∞,

– use η = σs and apply consistency.



In the example:

U(y) − σ

(
F (U(y −

1

2
), U(y+

1

2
)) + F (U(y), U(y+ 1))

)
= u− −

1

s
f(u−).

• This integrated form encodes the conditions at infinity U(±∞) = u±.

• More generally, rewrite the profile equation as

G
(
Vk, Vk+1;u

−, σ
)
= 0

for the extended state

Vk =

(
U

(
k

q
− 1

)
, U

(
k+ 1

q
− 1

)
, . . . , U

(
k − 1

q
+ 1

))
.



• If possible, apply the IFT, to convert the integrated profile equation into a
discrete dynamical system

Vk+1 = H
(
Vk;u

−, σ
)
.

• V − = (u−, . . . , u−) is a rest point (obvious).

• V+ = (u+, . . . , u+) is a rest point (Rankine–Hugoniot).

• Look for a heteroclinic orbit between V − and V+.

• Tools: bifurcation theory, center manifold theorem applied to the map

(V, u, σ) 7→ Ĥ(V, u, σ) := (H(V ;u), u, σ).



Results in the rational case

Theorem (Majda & Ralston, 1979). Under the assumptions that

• the scheme is “non-resonant” and “linearly stable”,

• the system is “genuinely non-linear”,

• (u−, u+; s) is an admissible shock,

• ‖u+ − u−‖ << 1
q ,

there exists a one-parameter family of DSPs with limits u±.

♠



Sketch of the proof (η = 0)

For steady shocks (s = 0), one has η = 0.

1- Geometry of the R.–H. condition. Select an index 1 ≤ k ≤ N . Select a
state u∗ such that

λk(u
∗) = 0, dλk(u

∗)rk(u
∗) 6= 0.

• Define locally

Σ := {u ∈ U ; λk(u) = 0}.

Σ is a hypersurface, transversal to rk(u).

• f(Σ) is a hypersurface too.

• Locally, f(Σ) splits RN into two open sets O0 and O2.



• The graph of u 7→ f(u) folds over Σ. The equation

f(v) = f̄

has zero, one or two solutions, depending on whether

f̄ ∈ O0, ∈ f(Σ), ∈ O2.

• In a neighbourhood U∗ of u∗,

f(v) = f(v′)

defines a smooth involution

v 7→ v′,

such that

(v′ = v)⇐⇒ (v ∈ Σ).

• One has

λk(v)λk(v
′) < 0, ∀v 6∈ Σ.



2- The dynamical system.

• Define M(a, v) by I.F.T.:

F (a,M(a, v)) = f(v).

Works for Lax–Friedrichs, but not for Godunov.

• Write the Profile Equation F (uj, uj+1) = f(u−) in the form

(uj+1, vj+1) = H(uj, vj), H(a, v) := (M(a, v), v). (7)

Meaning that vj ≡ cst.

• Fixed points correspond to f(a) = f(v). Two families:

– (v, v) for v ∈ U∗,

– (v′, v) for v ∈ U∗.



• These N -dimensional manifolds intersect transversally along diag(Σ ×
Σ).

3- Center manifold theory.

• Compute

DH(u∗, u∗) =

(
daM dbM
0N IN

)
.

• Differentiating, one has

daF + dbF daM = 0, dbF dvM = df.

• Recall that

daF + dbF = df,

along the diagonal.



• Whence

1 ∈ Sp
(
daM(u∗, u∗)

)
,

• and µ = 1 is an eigenvalue of DH(u∗, u∗),

#{µ = 1} ≥ N + 1.

• Non-resonnance:

– the multiplicity is exactly N + 1,

– no other eigenvalue on the unit circle.



• Center Manifold Theorem. There exists locally a smooth manifoldM of
dimension N + 1, invariant under the dynamics, containing every trajec-
tory which remains globally in U∗.

The center manifold is tangent at (u∗, u∗) to

kerDH(u∗, u∗).

♦

• Here, kerDH(u∗, u∗) is made of vectors(
X

X + αrk(u
∗)

)
, ∀X ∈ RN , α ∈ R.

• The center manifold contains

– fixed points in U∗ (two hypersurfaces),

– heteroclinic orbits within U∗.



• Since vj+1 = vj,M is foliated by curves

δ(v̄) := {(a, v) ∈M ; v = v̄},

invariant under the dynamics.

• These curves are transversal to the fixed point locuses. Each δ(v̄) con-
tains exactly two fixed points:

P := (v̄, v̄) and Q := (v̄′, v̄).

• The restriction of H to δ(v̄) is orientation-preserving: H maps the arc PQ
onto itself PQ, monotonically.

• Every point R in PQ yields a heteroclinic orbit such that

(u0, v0) = R.



Other values of η (sketchy)

1. Still use the integrated profile equation

2. Pretend that u− and σ are not constant, and write the dynamics as

Vk+1 = H(Vk, zk, σk), zk+1 = zk, σk+1 = σk, (!!)

that is

(Vk+1, zk+1, σk+1) = Ĥ(Vk, zk, σk),

but with zk and σk constant ...

3. Given u− ∈ U and 1 ≤ j ≤ N , the state (V −, u−, σ−) is a fixed point,
where

V − := (u−, . . . , u−), σ− ∈ R

is arbitrary



4. Nearby fixed points are of the form (V+, u+, σ+) with V+ := (u+, . . . , u+)

and (u−, u+; η/σ+) satisfying R–H.

5. The dynamics stands in a space of dimension (2q + 1)N + 1... but
The Center Manifold Theorem reduces the dynamics to an (N + 2)-
dimensional manifoldM.

6. There are N + 1 constants of the dynamics: (u, σ). ThusM is foliated
by curves invariant under the dynamics.

7. ...

QED



• In other words, there exists a continuous “D”SP

U : R→ RN !

• For every h ∈ R, the following defines a travelling wave

unj = U

(
h+ j −

pn

q

)
.

• Re-parametrization: If U is a continuous DSP, then so is U ◦ ψ for every
one-to-one mapping ψ : R→ R with (circle homeomorphism)

ψ

(
y+

1

q

)
= ψ(y) +

1

q
.

• The theorem applies mainly to Lax “compressive” shocks.



Non-resonance vs Lax–Friedrichs

Lax–Friedrichs scheme:

un+1
j =

1

2

(
unj−1 + unj+1

)
+

1

2σ

(
f(unj−1)− f(u

n
j+1)

)
.

The odd / even subgrids ignore each other:

j + n ∈ 2Z, / j + n+ 1 ∈ 2Z.

−→ L.–F. is resonant.

To apply Majda–Ralston Theorem: iterate the scheme

un+2
j =

1

4

(
unj−2 + 2unj + unj+2

)
+ · · ·



Doubling the scales ∆t and ∆x yields

vmk := u2m
2k ,

which obeys a conservative difference scheme with numerical flux

FLF2(a, b) :=
1

4σ
(a− b) +

1

4
(f(a) + f(b))

+
1

2
f

(
a+ b

2
+
σ

2
(f(a)− f(b))

)
.

This scheme is non-resonant.



The irrational case

Warning: Z + ηZ is dense in R.

−→ Search for a continuous DSP

U : R→ RN .

First attempt: Pass to the limit as rationals tend to irrationals.

Failure, because of the restriction

‖u+ − u−‖ <<
1

q

in Majda–Ralston Theorem.

In the limit, q → +∞. There remains the useless situation

u+ = u−.



A complete theory: the scalar case (N = 1)

Scalar conservation laws satisfy a comparison principle (Kruzkhov): If u and v
solve the Cauchy problem, then

(u0 ≤ v0, a.e.) =⇒ (u ≤ v, ∀t > 0).

Suggests to employ monotone schemes

un+1
j = G

(
unj−1, u

n
j , u

n
j+1

)
,

with

(a, b, c) 7→ G(a, b, c)

(componentwise) monotonous non-decreasing.

Often related to the CFL condition.



Examples:

• Lax–Friedrichs and Godunov schemes are monotone under σ|f ′| ≤ 1,

GLF (a, b, c) =
1

2
(a+ σf(a)) +

1

2
(c− σf(c)).

GG(a, b, c) = b+ σ (fG(a, b)− fG(b, c))

with

fG(a, b) :=


inf{f(u) ; u ∈ [a, b]},

sup{f(u) ; u ∈ [b, a]}.

• Lax–Wendroff is never monotone (2nd order).

• Monotone schemes are only first-order.



Theorem (G. Jennings).

For scalar equations and monotone schemes, continuous DSPs

1. exist for every admissible shock with η ∈ Q,

2. are strictly monotone,

3. are essentially unique,

4. are Lipschitz:

|U(x+ h)− U(x)| ≤ |h(u+ − u−)|, ∀x, h ∈ R.

♥

“Admissible shocks”: those satisfying the Oleinik condition.



The latter justifies the passage to the limit:

Theorem (H. Fan , D. S.).

The same existence / uniqueness / monotonicity result holds true re-
gardless the (ir)rationality of η, for every (weakly) monotone scheme.

♦

Sketch of proof:

• Apply Ascoli–Arzela

• Pass to the limit in the “integrated form” of the profile equation.

• From 1– monotonicity of the profile U , 2– the integrated profile equation,
3– the Oleinik inequality, prove that U(±∞) = u±.



The shift function

Back to systems. Let U : R→ U be a DSP, with bounded variations.

Given h ∈ R, define

Y (h) :=
∑
j∈Z

(U(j + h)− U(j))
(
Y (h) ∈ RN

)
.

Properties:

• Because U(±∞) = u±,

Y (h+ 1)− Y (h) = u+ − u−.



• Because of the profile equation (+ Rankine–Hugoniot and σs = η):

Y (h+ η)− Y (h) = η(u+ − u−).

=⇒

Y (h) = h(u+ − u−), ∀h ∈ Z + ηZ. (8)

Application:

The scalar case with a monotone scheme. The monotonicity of U
together with (8) imply

|U(y+ h)− U(y)| ≤ |h(u+ − u−)|

(see above).



Irrational case. By continuity and density of Z + ηZ, (8) yields

Y (h) = h(u+ − u−), ∀h ∈ R. (9)

But R \Q is dense ...

Thus (9) is expected to hold even when η ∈ Q.

In particular for

h 6∈
1

q
Z,

... well, if the life is smooth.



Something must go wrong !

In the rational case, the shift function compares two profiles

u = (uy)y∈1
qZ and v = (vy)y∈1

qZ ,

U(j) = uj, U(j + h) = vj.

• If h ∈ 1
qZ, u and v are identical, up to a shift ; (9) is OK because it is (8).

• But if h 6∈ 1
qZ, u and v are distinct.

If N ≥ 2, there is no reason why Y (h) should be parallel to u+ − u−.



Counter-example

Here is a construction with

Y (h) 6 ‖ u+ − u−.

• η = 0 : the shock (u−, u+) is stationnary,

• The scheme is Godunov’s (Lax–Wendroff scheme works too).

• The “integrated” profile equation for steady shocks:

f
(
R(uj, uj+1; 0)

)
= f(u−) = f(u+).

• −→ Typically:

R(uj, uj+1; 0) ∈ {u−, u+}, ∀j ∈ Z.



Lemma. If (u−, u+; 0) is an admissible shock, it is not possible that

R(uj−1, uj; 0) = u+ and R(uj, uj+1; 0) = u−.

♠

Proof: 1- Since R(uj, uj+1; 0) = u−, the Riemann problem from uj to u−

consists only in backward waves.

2- One passes from u− to u+ by a steady admissible shock.

3- Since R(uj−1, uj; 0) = u+, the Riemann problem from u+ to uj consists
only in forward waves.

Gluing these pieces, the Riemann problem from uj to uj admits a non-constant
solution. This contradicts the Lax entropy inequality.

QED



Consequence: up to a shift,

R(uj, uj+1; 0) =


u−, j < 0,

u+, j ≥ 0.

Same idea as in the proof above: if j < 0, the solution of the Riemann problem
from u− to itself passes through uj. Likewise, if j > 0, ... Whence

uj =


u−, j < 0,

u+, j > 0.

There remains

R(u−, u0; 0) = u−, R(u0, u
+; 0) = u+.

These conditions define an arc γ ⊂ U with ends u− and u+.



[For specialists only: if (u−, u+; 0) is an N -shock, then γ is the portion of the
shock curve SN(u−) between u− and u+.]

The continuous DSP:

Arbitrary parametrization of γ

y ∈ [0,1] 7→ U(y), U(0) = u−, U(1) = u+.

Extend it by

U(y) ≡


u−, y < 0,

u+, y > 1.



To every point a = U(h) ∈ γ, there corresponds a DSP

uj = U(h+ j) =


u−, j < 0,
a, j = 0,
u+, j > 0.

The shift function Y measures the difference between two DSPs. If a is as
above, then

Y (h) =
∑
j∈Z

(uj − vj) = a− u−.

Not parallel to u+ − u−, unless γ = [u−, u+].

QED

Thus (9) does not pass to the limit from irrationals to rationals.



The alternative

1. Either DSPs do not exist for irrationals too close to rationals (non-Diophantine
numbers),

2. or their have an infinite total variation,

3. or they do not depend smoothly on the data (u−, u+; s, σ).

Causes:

• Small divisors problem,

• Resonnance between the shock front and the grid.



Why the scalar case is not that bad

For a monotone scheme:

• DSPs do exist,

• they have a finite total variation |u+ − u−|,

• they depend smoothly on the data.

So what ?

Two vectors in R are always parallel !

−→ Y (h) ‖ u+ − u−.

Monotonicity forbids infinite total variation.



(back to systems) The Diophantine case

Definition. A real number η is Diophantine if there exists C = C(η) <∞ and
ν = ν(η) > 0 such that∣∣∣∣η − r`

∣∣∣∣ ≥ C

`ν
, ∀

r

`
∈ Q, r ∧ ` = 1.

♣

• Lebesgue-almost every number is Diophantine of degree ν = 2.

• π = 3.14159... is Diophantine of degree ν ≤ 8.0161....

• ζ(3) is Diophantine of degree ν ≤ 5.513891....

• But
∞∑

m=1

10−m! is not (Liouville).



The small divisor problem

• Look at the integrated profile equation∫ x
x−η

U(y) dy − σ
∫ x+1

x
F (U(y − 1), U(y)) dy = ηu− − σf(u−).

• Linearize the r.-h.-s.:

Lv(x) =
∫ x
x−η

v(y) dy − σ
(
A
∫ x
x−1

v(y) dy+B
∫ x+1

x
v(y) dy

)
.

• The operator L diagonalizes via Fourier transform:

e−iξxL
[
eiξxX

]
= M(ξ)X,

with

M(ξ) :=
1

iξ

(
(1− e−iξη)IN − σ((1− e−iξ)A− σ(eiξ − 1)B

)
.



• The operator L is not Fredholm:

M(2π`) =
1

2iπ`

(
1− e−2iπ`η

)
IN .

The right-hand side is

O

(
1

`2

)
for infinity many `’s.

• If η is not Diophantine: ∀ν > 2, ∃ r` ∈ Q with∣∣∣∣η − r`
∣∣∣∣ ≤ 1

`ν
.

Then

‖M(2π`)‖ ≤
1

`ν
.



• Very fast decay !!

Even Nash–Moser technique does not apply in this case.

• Diophantine case:

∃ ν ≥ 2 such that

‖M(2π`)‖ = O
(

1

`ν

)
.

−→ Tame estimates for the Green function of the linearized
scheme.



Theorem (T.-P. Liu & S.-H. Yu).

Assume that the scheme is dissipative and non-resonant.

Assume that η is Diophantine and that (u−, u+; s) is a small enough
(|u+ − u−| << 1) admissible shock.

Then there exists a continuous DSP.

♠

Smallness is measured in terms of C(η) and ν(η).

These DSPs are orbitally stable for the numerical scheme.



Large total variation problem

(Baiti, Bressan & Jenssen) consider semi-decoupled systems

∂tv+ ∂xf(v) = 0, (10)

∂tw+ ∂x(λw+ g(v)) = 0. (11)

• Either apply Jennings Theorem to (10), a scalar equation.

Or compute explicit DSPs (Lax) for certain fluxes f .

• Evaluate Green function for the linear part (11)

(∂t + λ∂x)w = r.h.s.

Resonance may occur, depending on λσ.



Lax–Friedrichs scheme. Here σm → σ ∈ Q.

The DSP Um converges uniformly but its total variation increases un-
boundedly.

The variations concentrate on an interval[
−a(σm − σ)−2,−b(σm − σ)−2

]
,

far away the shock front.

Godunov scheme. More or less the same result.



By-products

• The schemes (L.-F. or G.) produce sequences (aν, u
app
ν ) with

– initial data aν whose total variation remains bounded as ν →∞.

– approximate solution uapp
ν whose total variation over R×{T} does not

remain bounded as ν →∞.

• Considering aν and aν(· − h), the approximations are unstable in the L1-
norm, with respect to the initial data:

sup
ν,h

1

h
‖aν(· − h)− aν‖L1(R) < ∞,

lim
ν→∞

(
sup

0<h<1

1

h
‖uapp
ν (· − h, T )− uapp

ν (·, T )‖L1(R)

)
= ∞.



• However, compensated-compactness method yields convergence uapp →
u towards an admissible solution of the Cauchy problem.

This convergence cannot be very strong; at least, it is not uniform.

• The convergence of finite difference schemes cannot be proven by a priori
BV bounds.

• For small initial data, BV -bounds do hold (Glimm, Bressan & coll.). Thus
the counter-example build by Baiti & coll. are not that small.

The mathematics of the stability / convergence of conservative dif-
ference schemes must be very hard !



Comparison with Viscous Shock Profiles

Shortcoming: VSP

Approximate (1) by some amount of viscosity:

∂tu+ ∂xf(u) = ε∂x(B(u)∂xu).

Examples:

• Euler vs Navier–Stokes in gas dynamics,

• Viscoelasticity,

• second-order model of traffic flow,



Normalized travelling wave

uε(x, t) = U

(
x− st
ε

)
.

with

(B(U)U ′)′ = f(U)′ − sU ′, U(±∞) = u±. (12)

Integrate once:

B(U)′ = f(U)−sU−f(u−)+su−. (13)

(13) includes:

• Conditions at infinity,

• Rankine–Hugoniot.



Existence theory for VSPs

• A VSP is a heteroclinic orbit of a continuous dynamical system.

• VSPs form the intersection of Wu(u−) and Ws(u+), unstable / stable
invariant manifolds of u± for (13).

• If

dimWu(u−) + dimWs(u+) ≥ N + 1,

then generically,

dim
(
Wu(u−) ∩Ws(u+)

)
= dimWu(u−) + dimWs(u+)−N.

Tools: again, bifurcation analysis, Center Manifold Theorem.



The case of a Lax shock

Notation: The k-th characteristic field

df(u)rk(u) = λk(u)rk(u).

Definition: A discontinuity (u−, u+; s) is a Lax shock if ∃ k such that

λk−1(u
−) < s < λk(u

−), λk(u
+) < s < λk+1(u

+).

♠

Interpretation: Among the 2N characteristic curves

ẋ = λj(u(x, t))

(N curves at right of the shock and N at left), N + 1 enter the shock.



Lemma (Lax).

1. Small discontinuities are approximately parallel to one of the eigenvectors
rk:

u+ − u− ∼ ρrk(u−)

for some 1 ≤ k ≤ N .

2. Assume that the k-th characteristic field is genuinely nonlinear:

dλk(u) · rk(u) 6= 0.

Then small k-discontinuities are Lax shocks, up to a switch u− ←→ u+.

♥

For a Lax shock,

dimWu(u−) = N − k+ 1, dimWs(u+) = k.



−→ Generically (always true for small shocks)

dim
(
Wu(u−) ∩Ws(u+)

)
= 1.

Whence the existence and uniqueness of a VSP, up to a shift.

This is a one-parameter family of VSPs.

Parameter = shift.

Qualitatively similar to DSPs.

Question. Does this similarity occur for non-Lax shocks ?



Non-Lax shocks: VSPs

• Undercompressive shocks

λk(u
−) < s < λk+1(u

−), λk(u
+) < s < λk+1(u

+).

Only N characteristics enter the shock:

dimWu(u−) + dimWs(u+) = N.

• Overcompressive shocks

λk−2(u
−) < s < λk−1(u

−), λk(u
+) < s < λk+1(u

+).

N + 2 characteristics enter the shock.

dimWu(u−) + dimWs(u+) = N + 2.



Undercompressive shocks: VSPs

Generically,

dim
(
Wu(u−) ∩Ws(u+)

)
≤ N −N = 0.

ButWu(u−) ∩Ws(u+) is made of integral curves of the field

u 7→ B(u)−1
(
f(u)− su− f(u−) + su−

)
.

Therefore

Wu(u−) ∩Ws(u+) = ∅

Principle. Most undercompressive shocks do not admit a VSP.

The existence of a shock profile is a codimension-1 property.

♣



Undercompressive shocks: DSPs

Assume η ∈ Q. Example: η = 0.

Recall:

Integrated profile equation:

F (uj, uj+1) = f(u−)
(R.–H.)

= f(u+).

When IFT applies, rewrite

uj+1 = H(uj). (14)

Then
DSP ←→ heteroclinic orbit from u− to u+



Again, DSPs correspond to an intersection

Wu(u−) ∩Ws(u+),

unstable / stable manifolds for H, a diffeormorphism.

Undercompressive shock:

dimWu(u−) + dimWs(u+) = N,

whence (generically)

dim
(
Wu(u−) ∩Ws(u+)

)
≤ N +N − 2N = 0.



Special: in discrete dynamics, an invariant subset under H may be discrete !

Thus the intersection may have dim = N −N = 0.

Principle. Undercompressive shocks may admit a DSP.

The existence of a shock profile is a generic property (stable under
small disturbances of the data).

A DSP is now isolated, instead of a one-parameter family.

♠



Undercompressive shocks: DSPs vs VSPs

Discrete SP. Generic property.

Discrete set, with a Z-action.

An even number of orbits. Often 2 orbits.

Viscous SP. Codimension-one property.

One-parameter set if any, with an R-action.

Moral: in the theory of profiles for undercompressive shocks

0 · ∞ = 2 or R−1 × R = Z/2Z.



Why two DSPs ?

Say N = 2, η = 0. Then

dimWs(u+) = dimWu(u−) = 1.

u± are saddle points of (14)



Uj+1 = H(Uj).

H(u±) = u±.

Principle.

• H is orientation preserving.

• Let τs(u) be the tangent to W s(u+) at u, oriented towards u+.

Likewise, let τu(u) ...



• (Generic) At an intersection point,

B(u) = {τs(u), τu(u)}

is a basis.

• Define the “sign” of the intersection:

σ(u) :=


+1, direct basis,

−1, reverse basis.

• The sign of the intersection is constant along an orbit.

• Two consecutive intersection points u and ū have opposite inter-
section signs

Thus u and ū correspond to distinct orbits,

−→ distinct DSPs.



An example taken from reaction-diffusion

Consider the KPP equation

∂u

∂t
=
∂2u

∂x2
− φ′(u), φ(u) :=

1

4

(
u2 − 1

)2
.

Steady states are

Constants:

u ≡ ±1.

Fronts:
d2u

dx2
= φ′(u),

whence
1

2

(
du

dx

)2
= φ(u), u(±∞) = ±1.



Lemma. Fronts minimize the functional

J[v] :=
∫
R

(
1

2

(
du

dx

)2
+ φ(u)

)
dx,

under the constraint

u(±∞) = ±1.

♠

The front is unique up to a shift.

It is odd:

u(−x) = −u(x).

Actually, −u is another front, from +1 to −1.



Discretization of KPP

um+1
j − umj

∆t
=
umj+1 − 2umj + umj−1

(∆x)2
− φ′(umj ).

Standing discrete waves:

umj+1 − 2umj + umj−1

(∆x)2
= φ′(umj ). (15)

Interpretation in the phase space

Define

vj :=
uj+1 − uj

∆x
.



Then (
uj
vj

)
=

(
uj−1 + ∆x vj−1

vj−1 + ∆xφ′
(
uj−1 + ∆x vj−1

)) =: H

(
uj−1
vj−1

)
.

Two fixed points:

H

(
±1
0

)
=

(
±1
0

)
.

These are saddle points.

Discrete fronts from −1 to +1 correspond to heteroclinic orbits of H.
They are parametrized by

Wu

(
−1
0

)
∩Ws

(
+1
0

)
.



Existence of discrete fronts

Lemma. Discrete fronts minimize the functional

J∆[v] :=
1

2∆x

∑
j∈Z

(uj − uj−1)
2 + ∆x

∑
j∈Z

φ(uj),

under the constraint

u±∞ = ±1.

♣

Whence the idea:

Minimize J∆ over the set of odd sequences.

Still, minimizers are fronts.



There are two fronts

Two ways to express the oddness:

• Either u is odd with respect to 0,

u−j = −uj.

• 0r u is odd with respect to 1
2,

u1−j = −uj.

This yields two disjoint sets of odd sequences, whence two distinct minimizers.

Theorem. The KPP equation admits at least two distinct discrete fronts from
−1 to +1.

They are monotonous.

♥



There are many fronts !

• We proved thatWu

(
−1
0

)
intersect transversallyWs

(
+1
0

)
.

• By symmetry,Wu

(
+1
0

)
intersect transversallyWs

(
−1
0

)
.

• Wu

(
−1
0

)
folds infinitely many times and approaches Wu

(
+1
0

)
, being

squeezed.

• Ultimately,Wu

(
−1
0

)
intersect transversallyWs

(
−1
0

)
.



$u^l$
$u^r$

$W^u(u^r)$

$W^s(u^l)$

$W^s(u^r)$
$W^u(u^l)$

$z$



• Whence a Smale horse-shoe configuration.

Theorem. There are countably many discrete fronts from −1 to +1.

Most of them are non-monotone.

♦

Theorem. There are as well countably many discrete fronts homo-
clinic to −1 (or to +1).

♠

There are also chaotic trajectories, approaching ±1 infinitely many times on
intervals of arbitrary lengths.



The case of a non-even potential φ

On the one hand, the Smale horse-shoe configuration is structurally stable: it
persists under small disturbance of the dynamical systems.

On the other hand, the saddle-saddle connection of

d2u

dx2
= φ′(u)

does not persist, if the wells of φ are not equal.

Application: choose φ, close enough to an even, double-well potential φ0.

• Then countably many heteroclinic discrete fronts.

• However, there is no viscous front, when unequal wells.




