Nonlinear evolution equations with anomalous diffusion

Part I. Lévy operator

Grzegorz Karch

Wrocław, POLAND http://www.math.uni.wroc.pl/~karch/

EVEQ 2008

International Summer School on Evolution Equations Prague, Czech Republic, 16. – 20. 6. 2008

Probabilistic motivations

Laplace operator & Wiener process

Brownian motion – one trajectory of a Wiener process

Laplace operator & Wiener process

Definition

The stochastic process $\{W(t)\}_{t\geq 0}$ is called the Wiener process, if it fulfils the following conditions

- W(0) = 0 with probability equal to one,
- ightharpoonup W(t) has independent increments,
- ightharpoonup trajectories of W are continuous with probability equal to one
- $\blacktriangleright \forall_{0 \leq s \leq t} W_t W_s \sim \mathcal{N}(0, t s).$

For every function $u_0 \in C_b(\mathbb{R}^n)$ we define

$$u(x,t) = E^{x}(u_{0}(W(t))) = \int_{\mathbb{R}^{n}} u_{0}(x-y) \mathcal{N}(0,t)(dy),$$

where $\mathcal{N}(0,t)(dy) = (2\pi t)^{-n/2} e^{-|x|^2/(2t)}$. Hence

$$u_t = (1/2)\Delta u$$
 oraz $u(x, 0) = u_0(x)$.

3/32

Lévy process

One trajectory of a Lévy process

Lévy process

Definition

The stochastic process $\{X(t): t \geq 0\}$ on the probability space (Ω, F, P) is called the Lévy process with values in \mathbb{R}^n if it fulfils the following conditions:

- ► X(0) = 0, P-p.w.,
- ▶ for every sequence $0 \le t_0 < t_1 < \cdots < t_n$ random variables $X(t_0), X(t_1) X(t_0), \ldots, X(t_n) X(t_{n-1})$ are independent,
- ▶ the law of X(s + t) X(s) is independent of s,
- ▶ the process X(t) is continuous in probability, namely, $\lim_{s\to t} P(|X_s X_t| > \varepsilon) = 0$.

5 / 32

7 / 32

Lévy process

Two pictures of the same trajectory of a Lévy process

Family of measures

We define the family of probability measures

$$\mu^t(dy) = P(X(t) \in dy)$$

and, for every $u_0 \in C_b(\mathbb{R}^n)$,

$$u(x,t) = E^{x}(u_0(X(t))) = \int_{\mathbb{R}^n} u_0(x-y) \, \mu^{t}(dy).$$

Convolution semigroup

Definition

The family of bounded Borel measures $\{\mu^t\}_{t\geq 0}$ on \mathbb{R}^n is called to be the convolution semigroup if

- 1. $\mu^t(\mathbb{R}^n) = 1$ for all $t \geq 0$;
- 2. $\mu^s * \mu^t = \mu^{t+s}$ for $s, t \ge 0$ and $\mu^0 = \delta_0$ (the Dirac delta)
- 3. $\mu^t \to \delta_0$ vaguely as $t \to 0$, namely,

$$\int_{\mathbb{R}^n} arphi(y) \ \mu^t(dy) o arphi(0) \quad ext{as} \quad t o 0$$

for every test function $\varphi \in C_c(\mathbb{R}^n)$ (smooth and compactly supported).

9 / 32

Lévy operator

Definition

Lévy operator \mathcal{L} is the pseudodifferential operator with the symbol $a = a(\xi)$:

$$\widehat{\mathcal{L}v}(\xi) = a(\xi)\widehat{v}(\xi).$$

Crucial observation

Denote by $a=a(\xi)$ the symbol of the convolution semigroup $\{\mu^t\}_{t\geq 0}$ in \mathbb{R}^n . For every sufficiently regular (bounded) function $u_0=u_0(x)$ the convolution

$$u(x,t) = \int_{\mathbb{R}^n} u_0(x-y) \, \mu^t(dy).$$

is the solution of the initial value problem

$$u_t = -\mathcal{L}u, \quad x \in \mathbb{R}^n, \quad t \ge 0$$

 $u(x,0) = u_0(x).$

This is the problem describing anomalous diffusion.

11/32

Theorem

Let $\{\mu^t\}_{t\geq 0}$ be a convolution semigroup on \mathbb{R}^n .

There exists a function $a: \mathbb{R}^n \to \mathbb{C}$ such that

$$\widehat{\mu}^t(\xi) = (2\pi)^{-n/2} e^{-ta(\xi)}$$

holds for all $\xi \in \mathbb{R}^n$ and $t \geq 0$.

Proof.

For $\xi \in \mathbb{R}^n$ fixed we consider the mapping $\phi_{\xi} : [0, \infty) \mapsto \mathbb{C}$ defined by

$$\phi_{\xi}(t) = (2\pi)^{n/2} \widehat{\mu}^{t}(\xi) = \int_{\mathbb{R}^{n}} e^{-ix\xi} \ \mu^{t}(dx).$$

This mapping is continuous and satisfies

$$\phi_{\xi}(s+t) = \phi_{\xi}(t)\phi_{\xi}(s), \qquad \lim_{t\to 0} \phi_{\xi}(t) = 1.$$

Hence, there is a unique complex number $a(\xi)$ such that

$$\phi_{\xi}(t)=e^{-t\mathsf{a}(\xi)},\quad t\geq 0.$$

Example 1. Let $a(\xi) = |\xi|^2$ and $\mathcal{L} = -\Delta$.

For the heat equation

$$u_t = \Delta u$$

the convolution semigroup $\{\mu^t\}_{t\geq 0}$ has the form

$$\mu^{t}(dy) = (4\pi t)^{-n/2} e^{-|y|^{2}/(4t)} dy.$$

Hence.

$$u(x,t) = \int_{\mathbb{R}^n} u_0(x-y) (4\pi t)^{-n/2} e^{-|y|^2/(4t)} dy.$$

Example 2. With fixed $b \in \mathbb{R}^n$, let $a(\xi) = ib \cdot \xi$ and $\mathcal{L} = b \cdot \nabla$. In case of the transport equation

$$u_t + b \cdot \nabla u = 0$$

with fixed $b \in \mathbb{R}^n$, we have

$$\mu^t(dx) = \delta_{th}$$
.

Hence.

$$u(x,t)=u_0(x-bt).$$

Theorem (Lévy-Khinchin formula)

There exist

- ▶ a vector $b \in \mathbb{R}^n$.
- ightharpoonup a symmetric positive semidefinite quadratic form q on \mathbb{R}^n

$$q(\xi) = \sum_{j,k=1}^{n} a_{jk} \xi_j \xi_k,$$

▶ a Borel measure Π satisfying $\Pi(\{0\}) = 0$ and

$$\int_{\mathbb{R}^n} \min(1,|\eta|^2) \, \Pi(d\eta) < \infty$$

such that

$$a(\xi)=ib\cdot \xi+q(\xi)+\int_{\mathbb{R}^n}\left(1-\mathrm{e}^{-i\eta\xi}-i\eta\xi 1\!\!1_{\{|\eta|<1\}}(\eta)
ight)\Pi(d\eta).$$

Moreover, this representation is unique.

Important example: fractional Laplacian

Let

$$\Pi(d\eta) = rac{C(lpha)}{|\eta|^{n+lpha}} \quad ext{with} \quad lpha \in (0,2)$$

in

$$\mathcal{L}u(x) = -\int_{\mathbb{R}^n} \left(u(x-\eta) - u(x) - \eta \cdot \nabla u(x) \mathbf{1}_{\{|\eta| < 1\}}(\eta) \right) \ \Pi(d\eta).$$

In this case, we obtain the α -stable anomalous diffusion:

$$\mathcal{L} = (-\Delta)^{\alpha/2}$$
 and $a(\xi) = |\xi|^{\alpha}$ for $0 < \alpha \le 2$.

Using symmetry of the Lévy measure, we can simplify:

$$(-\Delta)^{\alpha/2}u(x) = -C(\alpha)\,PV\int_{\mathbb{R}^n}\frac{u(x-\eta)-u(x)}{|\eta|^{n+\alpha}}\,\Pi(d\eta).$$

15 / 32

Lévy operator

Note that

$$\widehat{\mathcal{L}u}(\xi) = a(\xi)\widehat{u}(\xi)$$

with

$$a(\xi)=ib\cdot \xi+q(\xi)+\int_{\mathbb{R}^n}\left(1-\mathrm{e}^{-i\eta\xi}-i\eta\xi 1\!\!1_{\{|\eta|<1\}}(\eta)
ight)\Pi(d\eta).$$

Inverting the Fourier transform we obtain

$$\mathcal{L}u(x) = b \cdot \nabla u(x) - \sum_{j,k=1}^{n} a_{jk} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}$$
$$- \int_{\mathbb{R}^{n}} \left(u(x-\eta) - u(x) - \eta \cdot \nabla u(x) \mathbb{1}_{\{|\eta| < 1\}}(\eta) \right) \Pi(d\eta).$$

References

Analytical proof:

N. Jacob, *Pseudodifferential Operators and Markov Processes, Vol. 1*, Imperial College Press, 2001.

Probabilistic proof:

J. Bertoin, Lévy Processes, Cambridge University Press, 1996.

Probabilistic proof of Lévy-Khinchin formula

Definition

We say that a stochastic process X(t) is a Lévy process if for every $s,t\geq 0$, the increment $X_{t+s}-X_t$ is independent of the process $(X_{\nu},0\leq \nu\leq t)$ and has the same law as X_s .

The proof of the Lévy-Khinchin formula consists in showing the decomposition

$$X = X^{(1)} + X^{(2)} + X^{(3)},$$

where

- \blacktriangleright $X^{(1)}$ is a linear transform of a Brownian motion with drift,
- ▶ $X^{(2)}$ is a compound Poisson process having only jumps of size at least 1,
- ▶ $X^{(3)}$ is a pure-jump process (martingale) only with jumps of size less than 1.

17 / 32

Maximum principle

Theorem

Denote by $\mathcal L$ the Lévy diffusion operator. Then $A=-\mathcal L$ satisfies the positive maximum principle.

Proof 1.

Assume that $0 \le \varphi(x_0) = \sup_{x \in \mathbb{R}^n} \varphi(x)$. Then

$$\begin{split} &-\mathcal{L}\varphi(x_0)\\ &= -b\cdot\nabla\varphi(x_0) + \sum_{j,k=1}^n a_{jk} \frac{\partial^2\varphi(x_0)}{\partial x_j\partial x_k}\\ &+ \int_{\mathbb{R}^n} \left(\varphi(x_0-\eta) - \varphi(x_0) - \sum_{j=1}^n \eta_j \frac{\partial\varphi(x_0)}{\partial x_j} 1\!\!1_{\{|\eta|<1\}}(\eta)\right) \, \Pi(d\eta) \leq 0. \end{split}$$

19/32

Maximum principle

Definition

The operator A satisfies the **positive maximum principle** if for any $\varphi \in D(A)$ the fact

$$0 \le \varphi(x_0) = \sup_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x})$$
 for some $x_0 \in \mathbb{R}^n$

implies

$$A\varphi(x_0)\leq 0.$$

REMARK

 $A\varphi=\varphi''$ or, more generally, $A\varphi=\Delta\varphi$ satisfies the positive maximum principle.

Maximum principle

Proof 2.

Assume that $0 \le \varphi(x_0) = \sup_{x \in \mathbb{R}^n} \varphi(x)$.

Recall that the solution of the problem

$$u_t = -\mathcal{L}u, \quad x \in \mathbb{R}^n, \ t \ge 0,$$

 $u(x,0) = \varphi(x)$

is given by

$$u(x,t) = \int_{\mathbb{R}^n} \varphi(x-y) \mu^t(dy).$$

Hence, by the definition of the derivative ∂_t , we have

$$-\mathcal{L}\varphi(x_0) = \lim_{t \to 0^+} \frac{u(x_0, t) - \varphi(x_0)}{t}.$$

Now.

$$u(x_0,t)-arphi(x_0)=\int_{\mathbb{R}^n}\left(arphi(x_0-y)-arphi(x_0)
ight)\mu^t(dy)\leq 0.$$

Integration by parts and the Lévy operator

Kato inequality for Lévy operator

Theorem

For every $\varphi \in C_c^\infty(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} (\mathcal{L}\varphi) \operatorname{sgn} \varphi \ dx \geq 0.$$

Proof. Denote by $\{\mu^t\}_{t\geq 0}$ the convolution semigroup corresponding to \mathcal{L} . Recall that

$$e^{-t\mathcal{L}}u_0(x)\equiv u(x,t)=\int_{\mathbb{R}^n}u_0(x-y)\,\mu^t(dx)$$

is the solution of the initial value problem

$$u_t = -\mathcal{L}u, \quad x \in \mathbb{R}^n, \quad t \ge 0$$

 $u(x,0) = u_0(x).$

Hence

$$\mathcal{L} arphi = \lim_{t o 0^+} rac{arphi - e^{-t\mathcal{L}} arphi}{t}.$$

23 / 32

Kato inequality for Laplacian

Theorem

For every $\varphi \in C_c^\infty(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} (-\Delta \varphi) \operatorname{sgn} \varphi \ dx \ge 0.$$

Proof. Let

$$g_{\varepsilon}(s) = \frac{d}{ds} \left(\sqrt{\varepsilon + s^2} \right) = \frac{s}{\sqrt{\varepsilon + s^2}}.$$

Note that

$$g_{\varepsilon}'(s) \geq 0$$
 and $g_{\varepsilon}(s) \rightarrow \operatorname{sgn} s$

as $\varepsilon \to 0$. Now, we integrate by parts

$$\int_{\mathbb{R}^n} (-\Delta \varphi) \, g_{\varepsilon}(\varphi) \, dx = \int_{\mathbb{R}^n} |\nabla \varphi|^2 \, g_{\varepsilon}'(\varphi) \, dx \ge 0,$$

and we pass to the limit $\varepsilon \to 0$.

Kato inequality for Lévy operator

Consequently, it suffices to show that

$$\int_{\mathbb{R}^n} (\varphi - e^{-t\mathcal{L}}\varphi) \operatorname{sgn} \varphi \ dx \ge 0$$

which is equivalent to

$$\int_{\mathbb{R}^n} |\varphi| \ dx \ge \int_{\mathbb{R}^n} (e^{-t\mathcal{L}}\varphi) \operatorname{sgn} \varphi \ dx.$$

Now, we complete the proof by the estimate

$$\left| \int_{\mathbb{R}^n} (e^{-t\mathcal{L}}\varphi) \operatorname{sgn} \varphi \ dx \right| \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |\varphi(x-y)| \ \mu^t(dy) \ dx = \int_{\mathbb{R}^n} |\varphi| \ dx.$$

Strook-Varopoulos inequality

Theorem

Assume that \mathcal{L} is a Lévy operator.

For every $p\in (1,\infty)$ and $\varphi\in C_c^\infty(\mathbb{R}^n)$ such that $\varphi\geq 0$ we have

$$4\frac{p-1}{p^2}\int_{\mathbb{R}^n}(\mathcal{L}\varphi^{p/2})\,\varphi^{p/2}\,\,dx\leq \int_{\mathbb{R}^n}(\mathcal{L}\varphi)\,\varphi^{p-1}\,\,dx.$$

REMARK

For $\mathcal{L}=b\cdot\nabla$, both sides of the Strook-Varopoulos inequality are equal to 0.

REMARK

For $\mathcal{L} = -\Delta$ we integrate by parts to obtain **the equality**

$$\int_{\mathbb{R}^n} (-\Delta \varphi) \, \varphi^{p-1} \, dx = (p-1) \int_{\mathbb{R}^n} |\nabla \varphi|^2 \, \varphi^{p-2} \, dx$$
$$= (p-1) \int_{\mathbb{R}^n} |\nabla \varphi \, \varphi^{p/2-1}|^2 \, dx$$
$$= 4 \frac{p-1}{p^2} \int_{\mathbb{R}^n} |\nabla \varphi^{p/2}|^2 \, dx.$$

25 / 32

General Strook-Varopoulos inequality

The Kato inequality combined with the Strook-Varopoulos inequality give the following estimate

$$\frac{4(p-1)}{p^2} \langle \mathcal{L} | \varphi |^{p/2}, | \varphi |^{p/2} \rangle \leq \langle \mathcal{L} \varphi, | \varphi |^{p-1} \mathrm{sgn} \, \varphi \rangle$$

for every $\varphi \in D(\mathcal{L})$.

27 / 32

Proof of Strook-Varopoulos inequality

Step 1. Let $\alpha > 0$ and $\beta > 0$ be such that $\alpha + \beta =$. Then

$$(x^{\alpha}-y^{\alpha})(x^{\beta}-y^{\beta}) \geq \alpha\beta(x-y)^2$$

for all $x \ge 0$ and $y \ge 0$.

Step 2. We use

$$\int_{\mathbb{R}^n} (\mathcal{L}f) g \ dx = \lim_{t \to 0^+} \frac{1}{t} \int_{\mathbb{R}^n} (f - e^{-t\mathcal{L}}f) g \ dx$$

for all $f,g\in D(\mathcal{L})$.

Step 3. We show (by Step 1) that

$$\int_{\mathbb{R}^n} (f^{\alpha} - e^{-t\mathcal{L}} f^{\alpha}) f^{\beta} dx \ge \alpha \beta \int_{\mathbb{R}^n} (f - e^{-t\mathcal{L}} f) f dx$$

for every $f \in D(\mathcal{L})$, $f \geq 0$, and $\alpha + \beta = 2$.

Step 4. We substitute in Step 3

$$f = \varphi^{p/2}, \quad \alpha = \frac{2}{p}, \quad \beta = 2 - \frac{2}{p}, \quad \alpha\beta = 4\frac{p-1}{p^2},$$

and we pass to the limit $t \to 0^+$.

Convexity inequality

Theorem

Let $u \in C_b^2(\mathbb{R}^n)$ and $g \in C^2(\mathbb{R})$ be a convex function. Then

$$\mathcal{L}g(u) \leq g'(u)\mathcal{L}u.$$

Proof. Use the representation

$$\mathcal{L}u(x) = b \cdot \nabla u(x) - \sum_{j,k=1}^{n} a_{jk} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}} - \int_{\mathbb{R}^{n}} \left(u(x - \eta) - u(x) - \eta \cdot \nabla u(x) \mathbb{1}_{\{|\eta| < 1\}}(\eta) \right) \, \Pi(d\eta).$$

and the convexity of g

$$g(u(x - \eta)) - g(u(x)) \ge g'(u(x))[u(x - \eta) - u(x)],$$

which immediately implies

$$g(u(x-\eta))-g(u(x))-\eta\cdot\nabla g(u(x))\geq g'(u(x))[u(x-\eta)-u(x)-\eta\cdot\nabla u(x)].$$

28 / 32

Convexity inequality

Corollary

Let $g \in C^2(\mathbb{R})$ be a convex function.

Assume that $g(u) \in D(\mathcal{L})$ and $\mathcal{L}g(u) \in L^1(\mathbb{R}^n)$.

Then

$$0\left(=\int_{\mathbb{R}^n}\mathcal{L}g(u(x))\ dx\right)\leq \int_{\mathbb{R}^n}g'(u(x))\mathcal{L}u(x)\ dx.$$

Proof. Recall that

$$\int_{\mathbb{R}^n} \mathcal{L}v(x) \ dx = \int_{\mathbb{R}^n} (a \,\widehat{v}) \check{}(x) \ dx = (2\pi)^{n/2} a(0) \widehat{v}(0)$$

and a(0) = 0.

Important application

Any Lévy diffusion operator ${\mathcal L}$ satisfies

$$\int_{\mathbb{R}^n} (\mathcal{L}u) \Big((u-k)_+ \Big)^p \ dx \ge 0$$

for each $1 and all constants <math>k \ge 0$.

Theorem

The operator $-\mathcal{L}$ generates a strongly continuous semigroup $e^{-t\mathcal{L}}$ of linear operators on $L^2(\mathbb{R})$ (in fact, on $L^p(\mathbb{R}^n)$, $1 for a large class of symbols <math>a(\xi)$).

This is the sub-Markovian semigroup:

$$0 \le v \le 1$$
 implies $0 \le e^{-t\mathcal{L}}v \le 1$

almost everywhere.

31/32

Convexity inequality

The General Strook-Varopoulos inequality

$$C(p)\langle \mathcal{L}|\varphi|^{p/2}, |\varphi|^{p/2}\rangle \leq \langle \mathcal{L}\varphi, |\varphi|^{p-1}\operatorname{sgn}\varphi\rangle$$

can be obtained immediatel from the convexity inequality

$$\mathcal{L}g(u) \leq g'(u)\mathcal{L}u$$
.

with

$$g(\varphi) = |\varphi|^{p/2}$$
 for $p > 2$.

Here, we have the non-optimal constant

$$C(p) = \frac{2}{p} \quad \left(\leq \frac{4(p-1)}{p^2} \quad \text{for} \quad p > 2 \right).$$

References concerning Lévy operator

- 1. P. BILER, G. KARCH, W. A. WOYCZYŃSKI, Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math. 148 (2001), 171–192.
- 2. A. CÓRDOBA AND D. CÓRDOBA, *A maximum principle applied to quasi-geostrophic equations*, Comm. Math. Phys. **249** (2004), 511–528.
- 3. J. Droniou and C. Imbert, Fractal first order partial differential equations, Arch. Rat. Mech. Anal. 182 (2006), 299–331.
- 4. N. Jacob, Pseudo-differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London, 2001.
- 5. V. A. LISKEVICH, YU. A. SEMENOV, Some problems on Markov semigroups, Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, 163–217, Math. Top., **11**, Akademie Verlag, Berlin, 1996.

П