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Laplace operator & Wiener process

Brownian motion — one trajectory of a Wiener process

Probabilistic motivations

Laplace operator & Wiener process
Definition
The stochastic process {W(t)},~ is called the Wiener process, if it
fulfils the following conditions
W(0) = 0 with probability equal to one,
W(t) has independent increments ,
trajectories of W are continuous with probability equal to one
Vo<s<t We — W ~ N(0, t — s).

vV v v Y

For every function vy € Cp(R") we define

ulx,t) = E(o(W(e))) = | unlx ) A0, 2)(dy),
where N(0, t)(dy) = (2rt)="/2e~IxI"/(21).
Hence
ur = (1/2)Au oraz  u(x,0) = up(x).




Lévy process

One trajectory of a Lévy process

Lévy process

Definition

The stochastic process {X(t) : t > 0} on the probability space
(Q, F, P) is called the Lévy process with values in R" if it fulfils the
following conditions:

» X(0) =0, P-p.w.,

» for every sequence 0 < ty < t; < --- < t, random variables
X(to), X(t1) — X(to), .., X(tn) — X(t,—1) are independent,

> the law of X(s + t) — X(s) is independent of s,

> the process X(t) is continuous in probability, namely,
Iimsi)t P(‘XS - Xt| > 6) - O

Lévy process
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Two pictures of the same trajectory of a Lévy process

Family of measures

We define the family of probability measures
p'(dy) = P(X(t) € dy)

and, for every up € Cp(R"),

ulx, 1) = E(uo(X(0) = | wox =) ()




Convolution semigroup

Definition
The family of bounded Borel measures {u};>0 on R” is called to be
the convolution semigroup if

1. p'(R") =1 forall t > 0;
2. p®x pt = ptts for s, t >0 and u® = & (the Dirac delta)

3. ub — &g vaguely as t — 0, namely,

/Rn o(y) p'(dy) = ¢(0) as t—0

for every test function ¢ € C.(R") (smooth and compactly

Lévy operator

Definition
Lévy operator L is the pseudodifferential operator with the symbol

a=a(¢):

—

Lv(§) = a(§)v(¢)-

Crucial observation

Denote by a = a(&) the symbol of the convolution semigroup {u*}¢>0 in
R". For every sufficiently regular (bounded) function ug = wp(x) the
convolution

u(x, t) = /R uo(x — y) p' (dy).

is the solution of the initial value problem

supported). uy=—-Lu, xeR" t>0
u(x,0) = uo(x).
This is the problem describing anomalous diffusion.
Theorem Example 1. Let a(¢) = |¢]? and £ = —A.

Let {p'}+>0 be a convolution semigroup on R".
There exists a function a : R” — C such that

() = (2m)"/2e 0
holds for all £ € R" and t > 0.

Proof.
For ¢ € R” fixed we consider the mapping ¢ : [0, 00) — C defined by
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This mapping is continuous and satisfies

Gels+1) = 6e()oe(s).  lim de(t) = 1
Hence, there is a unique complex number a(£) such that

pe(t) =e 2O, >0

For the heat equation
ur = Au

the convolution semigroup {u'}:>0 has the form
' (dy) = (amt)~"2e /0 gy,

Hence,
u(x, t) = / uo(x — y)(47rt)7“/2e*|Y|2/(4f) dy.

Example 2. With fixed b € R", let a(§) =ib-£and L=b- V.
In case of the transport equation

u+b-Vu=0
with fixed b € R", we have
pt(dx) = dp.

Hence,
u(x,t) = uo(x — bt).




Theorem (Lévy-Khinchin formula)

There exist
» a vector b € R”",

> a symmetric positive semidefinite quadratic form g on R”

n

a(€) = > a&ie,

Jrk=1

> a Borel measure [ satisfying M({0}) = 0 and

/ min(L, [n[2) (dn) <
Rn

such that

o) =ib-¢+a(©)+ [ (1= e~ ingypcn () ().

Moreover, this representation is unique. O

n

Important example: fractional Laplacian

Let

n(dn):hf'(nﬁ with € (0,2)

in
£u() = = [ (sl =) = ulo) =1 Va0 (n) el
In this case, we obtain the a-stable anomalous diffusion:

L=(-A)*? and a(&)=[]* for 0<a<2

Using symmetry of the Lévy measure, we can simplify:

(—A)*2u(x) = —C(a) PV/ W M(dn).

n

Lévy operator

Note that

—~

Lu(§) = a(§)u(€)

with

) =ib-¢+a()+ [ (1= e~ inglgy en(n) ()

n

Inverting the Fourier transform we obtain

0%u

Lu(x) = b-Vu(x)— Z ajk 0

Jsk=1

[ (b= 1) ulo) = - TG0y () M)
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Probabilistic proof of Lévy-Khinchin formula

Definition

We say that a stochastic process X(t) is a Lévy process if for every
s,t > 0, the increment X;,s — X; is independent of the process
(Xv,0 < v < t) and has the same law as X;.

The proof of the Lévy-Khinchin formula consists in showing the
decomposition
X =X 4 x@ 4 x@)
where
» X1 is a linear transform of a Brownian motion with drift,

» X is a compound Poisson process having only jumps of size at
least 1,

» X©) is a pure-jump process (martingale) only with jumps of size less
than 1.

Maximum principle

Theorem
Denote by £ the Lévy diffusion operator. Then A = —L satisfies the
positive maximum principle.

Proof 1.
Assume that 0 < ¢(xp) = sup,cgn ¢(x). Then

—Lp(x0)
~ - 0%o(x0)

= —b-Vy(x) + Z Ak o s

J,k=1

+/n o(xo —1n) —

. 0o(
Z”J (px

Maximum principle

Definition
The operator A satisfies the positive maximum principle if for any
¢ € D(A) the fact

0 < p(x0) = sup ¢(x) for some xp € R"

x€ER"
implies
Ap(xp) < 0.
(]
REMARK
Ap = ¢” or, more generally, Ap = Ay satisfies the positive maximum
principle.

Maximum principle
Proof 2.
Assume that 0 < ¢(xp) = sup,cp» @(X).
Recall that the solution of the problem

ug=—Lu, xeR" t>0,
u(x,0) = ¢(x)
is given by

u(x,t) = /R o(x — y)ut(dy).

Hence, by the definition of the derivative 0;, we have

—EQO(XO) — lim (X07 t) — QD(XO).

t—0t t

Now,

o) = p00) = [ (0= 5) — o)) t(at) <0
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Integration by parts
and the Lévy operator
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Kato inequality for Lévy operator

Theorem
For every p € C°(R")

/ (L) sgnp dx > 0.

Proof. Denote by {p'}¢>0 the convolution semigroup corresponding to
L. Recall that

e Fup(x) = u(x, t) = / ug(x — y) u*(dx)

n

is the solution of the initial value problem

u=—Lu, x€R" t>0
u(x,0) = uop(x).

Hence
tL

Lo= lim £~ %

t—0+ t

Kato inequality for Laplacian

Theorem
For every ¢ € C°(R")

/ (—Ap)sgnp dx > 0.
Rn

Proof. Let
s
-(s) = — 5+52) = .
g:(s) = 7 (v —a
Note that

g:(s)>0 and g(s)—sgns

as € — 0. Now, we integrate by parts

[ Canae o= [ vorale) ax 2o
n R"’

and we pass to the limit € — 0.

Kato inequality for Lévy operator

Consequently, it suffices to show that
/ (o —e ¥ p)sgny dx >0
which is equivalent to
/ lo| dx > / (e”*£ ) sgn ¢ dx.
Rn Rn
Now, we complete the proof by the estimate

/ (e ) sgn o dx| < / / o(x — )| u(dy) dx = / o] dx.
Rr R JRP Rn




Strook-Varopoulos inequality
Theorem
Assume that £ is a Lévy operator.
For every p € (1,00) and ¢ € C2°(R") such that ¢ > 0 we have

1
4%/ (LgP?) oP/? dx S/ (L) P! dx.
Rn

n

REMARK
For £ = b -V, both sides of the Strook-Varopoulos inequality are equal
to 0.

REMARK
For £L = —A we integrate by parts to obtain the equality

(—Ap) P tdx = (p—l)/ [Vo|? oP~2 dx
Rn Rn
= (p—l)/ Vo oP 1 dx
Rn

-1
= P [ v o
p R"

General Strook-Varopoulos inequality

The Kato inequality combined with the Strook-Varopoulos inequality give
the following estimate

4(p—1 _
( . ) (LI, olP/2) < (Lo, [P~ sgn )

for every p € D(L).

Proof of Strook-Varopoulos inequality
Step 1. Let o > 0 and 3 > 0 be such that o+ 3 =. Then
(x* =y)(? =y") = af(x —y)?
forall x >0and y > 0.

Step 2. We use

T —tL
/Rn(ﬁf)g dx—thT+EAn(f—e f)g dx

for all f,g € D(L).
Step 3. We show (by Step 1) that

/ (F* —e ) P dx > apf | (f—e F) f dx
n Rl‘l
for every f € D(L), f >0, and o+ 3 = 2.

Step 4. We substitute in Step 3
2 2 -1
f:(pP/Q’ o= —, ﬁ:27—7 aﬁ:4p2 )
P p p

and we pass to the limit t — 0.

Convexity inequality
Theorem
Let u € C3(R") and g € C*(R) be a convex function. Then

Lg(u) < g'(u)Lu.

Proof. Use the representation
Lu(x) = b-Vu(x)— Z ajk@f-—;)q(
jok=1 J
[ o) = )~ 0 Va1 gy () M)
and the convexity of g
g(u(x —n)) — g(u(x)) = g'(u(x))[ulx —n) — u(x)],

which immediately implies

g(u(x—n))—g(u(x))—n-Ve(u(x)) = g'(u(x))[u(x—n)—u(x)=n-Vu(x)].




Convexity inequality

Corollary

Let g € C?(R) be a convex function.

Assume that g(u) € D(L) and Lg(u) € LY(R").
Then

n

0 (z s Lg(u(x)) dx) < / g'(u(x))Lu(x) dx.
Proof. Recall that
RZOEE /R (a9)(x) de = (27)"/23(0)%(0)
and a(0) = 0. O

Important application
Any Lévy diffusion operator L satisfies

Rn(ﬁu)((u - k)+) dx >0

for each 1 < p < oo and all constants k > 0.

Theorem

The operator —L generates a strongly continuous semigroup e~ % of
linear operators on L?(R) (in fact, on LP(R"), 1 < p < oo for a large
class of symbols a(¢)).

This is the sub-Markovian semigroup:
0<v<1 implies 0<e ®v<1

almost everywhere.

Convexity inequality

The General Strook-Varopoulos inequality
C(P)(LI[P7?,16lP/?) < (Lo, |p]P " sgn o)
can be obtained immediatel from the convexity inequality
Lg(u) < g'(u)Lu.

with
g(p) = l¢lP/? for p>2.

Here, we have the non-optimal constant

2 (<4

C(p)=— = for p>2>.
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