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Theorem  (Lévy-Khinchin formula)

There exist
» a vector b € R”",

> a symmetric positive semidefinite quadratic form g on R”

n

a(§) = > a&i,

J k=1

> a Borel measure [ satisfying M({0}) = 0 and
[ min1, ) () < o0
such that

A =ib-¢+a(©)+ [ (1=~ ingypcny () ().

Moreover, this representation is unique.

Lévy operator
Fundamental objects in this lecture:

» Convolution semigroup of measures {4} >o.
» Symbol of the convolution semingroup:
H(E) = (2m) /26O,

> Lévy operator L is the pseudodifferential operator with the symbol
2= a(¢): A
Lv (&) = a(§)v(¢)-

» Anomalous diffusion: for every sufficiently regular (bounded)
function ug = up(x) the convolution

s t) = [ ao(x = y) ().
is the solution of the initial value problem
uy=—Lu, xe€R", t>0
u(x,0) = up(x).

Fractional Laplacian — repetition

Let

n(dn)—|§|(nil with « € (0,2)

£u() = = [ (ulx = n) = 6() = 0 Va1 () Nl
We obtain the a-stable anomalous diffusion:
L=(-A)? and a(&)=¢]* for 0<a<2.
The corresponding family of measures satisfies
pi(€) = (2m)"2e~ " and  uf(dy) = pa(y. 1) dy.

where b, (&, t) = e~ tEI",




Fundamental solution

Define the function p,(x, t) by the Fourier transform:
Pal€, £) = e tIEl".

> Scaling:
Pa(x,t) = t—n/aPa(xt—l/a), where (P, )'(&) = e lE1”
» For every a € (0, 2], the function P, is smooth, nonnegative,
Jan Pa(x) dx = 1, and satisfies
0 < Pu(x) < C(1+|x])~(@FM and  |VP4(x)| < C(14|x|)~(a+n+D)

for a constant C and all x € R".

Lévy conservation laws

Joint work with P. Biler and W.A. Woyczynski (1999-2001)

Fundamental solution

By the Young inequality for the convolution,

Su0)v0) = (&) v = [ vl ypalyet) oy

n

satisfies
[Sa(t)vllp Ce =P ey,

<
IVSa(tvll, < Cemrtv/Plet/afy),

for every p € [1,00] and all t > 0.

Nonlinear models

Fractal Burgers equation

up + (=A)*?u+ c-V(uu"') =0, ceR"

Multifractal conservation laws
us+ Lu+ f(u)x =0,
with the multifractal operator
k
L=—al+) a(—A)9",

j=1
0<a;<2, a;>0,j=0,1,..., k where (~A)*/2,0 < a <2, is the
fractional Laplacian.

Lévy conservation laws: u; + Lu + div f(u) =0




Existence, uniqueness,
and properties of solutions

A priori estimates: u; + Lu+ div f(u) =0

Theorem 2
The solution from Theorem 1 is regular, satisfies the conservation of

mass property
/ u(x,t)dx = / up(x) dx,

and the contraction property

[u(®)llp < llwollp,

for each p € [1,00] and all t > 0. Moreover, the maximum and minimum
principles hold true:

ess inf up < u(x,t) <esssupug, a.e. x,t,
as well as the comparison principle for vy < vy € L1(R"):

u(x,t) < v(x,t) ae x, t, and |u(t) = v(t)ll1 < [Juo — vol|x.

Theorem 1
Let £ = (—A)*/? with a € (1,2). Assume that f € C*(R,R").
Given

up € LX(R™) N L>=(R"),

there exists the unique solution u € C([0,00); LY(R") N L>°(R™)) of the
problem
u+ Lu+V-f(u)=0, u(x,0) = up(x).

Proof.

» Local-in-time (mild) solutions are obtained via the integral equation

u(t) = Sa(t)ug — /o V- So(t = 7)f(u)(T) dT.

» These solutions exist for all t > 0 because of a priori estimates.

A priori estimates: u; + Lu+div f(u) =0

For 1 < p < oo we multiply equation by |u|P~1sgn u and integrate over
R"™ with respect to x. This leads to the equality

1
E% / lu(x, t)|P dx + (Lu, |u[P"tsgn u) = 0.

The second term on the left hand side of the above formula is
nonnegative in view of the Strook-Varopoulos inequality

4p—1
(pp2 )<£|U|P/27|U|P/2> S <£U, \U|pflsgnu>,

and because of the following well-known property of the Fourier transform

(Loo) = (Le. ) = | JE"I2(I d > 0.




Comparison principle: u; + Lu+ div f(u) =0

Now, we show that solutions of the Lévy conservation law with
ug € LY(R") N L>°(R") satisfy

ess infug < w(x, t) <esssupug, a.e. x, t.

Let k = ess sup ug and consider the function
g = (u— k); = max(u — k,0).

Multiplying the equation by g we obtain

/gutdx—i—/gﬁudx—i—/ gV - f(u)dx=0.
n Rn R"

Since [, utg dx = [p, geg dx, [z, &V - f(u) dx =0, we arrive at

1d

—_—— 2 f—
59 Rng (x,t) dx + (g, Lu) = 0.

The convexity inequality implies (Lu, g) > 0. Hence

g=0.

Self-similar large time behavior — linear asymptotics

Theorem A (Biler, K., Woyczyriski (2001))
Assume that o € (1,2) and g > 0.
Let u be the solution of the Cauchy problem

ue 4+ (=A)2u+b-V (ulu]?) =0, u(x,0) = u(x).

Suppose that the initial datum satisfies

up € LY(R") and up(x)dx =M
RrRn

for some fixed M € R.
» If g > (o« —1)/n, then then

tn(l—l/p)/aHu(t) _ Mpa(t)Hp —0 as t— oo,

for each p € [1, ).

Ref.: [P. Biler, G. K., and W.A. Woyczynski, Asymptotics for conservation laws
involving Levy diffusion generators, Studia Math. 148 (2001), 171-192.]

Large time behavior of solutions for
Uug € Ll(Rn)

Self-similar large time behavior — nonlinear asyptotics
Theorem B (Biler, K., Woyczyrski, (2001))
Assume that o € (1,2) and g > 0.
Let u be the solution of the Cauchy problem

e+ (—A)*?u+ bV (ulul9) =0, u(x,0) = up(x).

Suppose that up € L*(R") and  [5, uo(x) dx = M.
> If g = (o —1)/n, then

tn(l—l/p)/OtHu(t) _ UM(f)Hp —0 as t— oo,

for each p € [1,00], where Up(x,t) = t~="/*Up(xt=1/* 1) is the
unique self-similar solution of the equation

U 4 (=A)2u + b- V(u|u)@"D/") =0
with the initial datum Mdg.
Ref.: P. Biler, G. K., and W.A. Woyczyriski, Critical nonlinearity exponent and

self-similar asymptotics for Levy conservation laws , Ann. |.H. Poincaré - Analyse non
lindare 18, (2001), 613-637.]




Fractal Burgers equation

Joint work with C. Miao and X. Xu (2007)
and with C. Imbert (2008).

1 < o < 2. Existence o solutions

Theorem (Biler, K., Woyczynski, Droniou, Imbert, Gallouét, Vovelle)

Let a € (1, 2) and up € L*(R).

There exists the unique smooth global-in-time solution u = u(x, t) to the
Cauchy problem

u+Nuv+uu, =0, xeR, t>0,
u(x,0) = up(x).

Moreover, the following inequality holds true

lu(t)]loo < ||tolloc forall t>0.

Initial value problem

The Cauchy problem

us+ANu+uu, =0, x€eR, t>0,
u(0,x) = uop(x)

where
A = (_82/6)(2)(1/2

—

is defined via the Fourier transform (A®v)(&) = |£]|*V(§).

Initial condition

up(x)=c +/ m(dy)
with ¢ € R, m being a finite signed measure on R.

REMARK
For ¢ = 0 and a probability measure m, the function ug is called the
probability distribution function.

1 < a < 2. Decay estimates

Theorem (K., Miao, Xu)

Let a € (1, 2) and
up(x) =c+ / m(dy)

— 00

with ¢ € R and m being a finite nonnegative measure on R.

Then
> uy(x,t) >0forall xeRand t >0,

> [g ux(x, t) dx = [, m(dx),

> for every p € [1, 0]

lux(£)lp < £/ m] /P




Nonnegativity of uy(x, t)

Assume that ug x(x) > 0 and up x € LP(R) for every p € [1, cq].
Differentiating equation with respect to x we have

(ux)e + A%uyx + (uuy)x = 0.

Hence, multiplying equation by u_, integrating over R, and integrating
by parts, we obtain

1d
—— (uy)? dx—o—/(/\“ux)u; dx = —/ (uuy )xuy dx
2dt J, <o R 4, <0
1/ 13
= -z u, )’ dx.
5 uxgo( )
Since [(A“uy)uy dx >0 and [, _(us(x,0))? dx = 0, we have

quSO(u (x,t))>dx =0 for all ¢ Z O Consequently,

uy (x,t) =0.

Inequality [|ux(t)|l, < t7|[m]|*/?
For fixed p € (1,00) and uy, > 0, we multiply the equation
(ux)e + Auy + (uux)x =0

by uP~1 and integrate over R:

1d -1
——|uX||,€+/ uP~ Ny, dx = —/(uux)xuf(71 dx = —p—/ uPT dx.
p dt R R P Jr

Recall now that fR uP~IN>u, dx > 0 by the convexity inequality.
It follows from the Holder inequality that

lux(£)][57/ P < [lue(£)][251 | m]| Y/ P~

Hence, (note that u, > 0) we obtain the following differential inequality

d 1 /(p— 1)
Zlu(Ol12 < —(p = Dllm| 7D (ux()ig)”

Integrating it we complete the proof for any p € (1,00).
The case of p = oo is obtained passing to the limit p — oco.

Conservation of the integral
We consider
ur +Nu+uu, =0 for ae(l,2),

with the initial datum
) = c+ [ m(dy)

with ¢ € R and m being a finite nonnegative measure on R.
Consider integral equation for uy:

ux(t):Sa(t)m/o DS (t — 7)u(r)u(7) d

Integrating equation over R and using the equalities

/RSa(t)m dt:/Rm(dx) and /Raxsa(r—T)(u(T)ux(T)) dx =

we obtain the identity

/Rux(x, t)dx = /Rm(dx) = ||m]|.

Rarefaction waves

The unique entropy solution of the Riemann problem

R R, R _
wy +whw, =0,

w(x,0) = ug(x) = {

_, x<0,
Uy, X>07

with u_ < uy, is given by the so-called rarefaction wave

u_, x/t<u_,
wR(x,t) = WR(x/t) = { x/t, u_ < x/t < uy,
uy, X/t > uy.




1 < a < 2. Large time asymptotics
Theorem (K., Miao, Xu)

Let a € (1, 2) and
up(x) =c¢ +/ m(dy)

with ¢ € R and m being a finite measure on R (not necessary
nonnegative). We assume that

+oo
u_:C<u+:C+/ m(dy).
For every
3
e (0]
a—1

there exists C > 0 independent of t such that
lu(t) = wR(t)llp < CeTleT 1B/ P2 10g(2 1 1)

for all t > 0.

Smooth approximations of rarefaction waves

Theorem
Let u_ < us. The problem

W — Wyx + Wy, = 0,

w(x,0) = wo(x) = {

u_, x < 0,
uy, x > 0.
has the unique, smooth, global-in-time solution w(x, t) satisfying

> u_ < w(t,x) < uy and wy(t,x) > 0 for all (x,t) € R x (0, 0);

> for every p € [1, o], there exists a constant C = C(p,u_,uy) >0
such that

Ct71+1/p’
Ct-3/2+1/(2p)

[[w(t)]p
”WXX(t)HP
Iw(t) = wR(D), < CO1/erz

IN A

for all t > 0, where wR(x, t) is the rarefaction wave.

This result is deduced from the explicit formula for smooth approximations of

rarefaction waves.

Smooth approximation of the rarefaction wave

In the proof, we use the "energy estimates” in order to show the
convergence toward the smooth approximation of the rarefaction
wave, i.e., the unique smooth solution to the viscous Burgers equation

Wi — Wy + wwy = 0,

w(x,0) = wo(x) = {

u_, x<0,
uy, x > 0.

Proof of convergence toward rarefaction waves

Using the Gagliardo-Nirenberg inequality we have
lu(e) = w(tllp < Clle(lloe + ()l ) u(®) = wie)
for 1 < pg < p < .

Since ||ux(t)]|oo and [|wi(t)|loo decay, the proof is completed by the
following lemma.

Lemma
For po = (3 — a)/(a — 1), the following estimate is valid

lu(t) = w(t)llp < Clog(2+ ).




Proof of Lemma.
The function v = u — w satisfies

1
v + A + E[v2 + 2w = —A“W + Wi

We multiply this equation by |v|[P~2v and we integrate over R to obtain

1d 1

- P « p—2 - 2 p—2
pdt/|v| dx+/(/\ v)(Jv]P~%v) dx+2/[v + 2vw]|v|P~%v dx
= /(—/\"‘W—f— Wi )([V]P2V) dx.

The second and the third term on the left hand side are nonnegative.
Using the Holder inequality on the right-hand side we obtain the
following differential inequality

%HV(t)IIﬁ < p(IA*w(t)llp + wa()]1) V(D)5

which, after integration, leads to

V(e < [Iv(to)lle +/t [N w ()l + Wi (7) ] p dT-

Publicity

From: http://wikitravel.org/en/Wroclaw

Wroclaw in Polish, formally known as Breslau in German, is a large
undiscovered gem of a city in southwestern Poland in the historic region
of Silesia. It boasts fascinating architecture, many rivers and bridges, and
a lively and metropolitan cultural scene. It is a city with a troubled past,
having seen much violence and devastation, and was almost completely
destroyed during the end of the Second World War. However, it has been
brilliantly restored and can now be counted amongst the highlights of
Poland, and all of Central Europe. As Poland rushes headlong into
further integration with the rest of Europe, now is the time to visit before
the tourist hordes (and high prices) arrive. Read Norman Davies'and
Roger Moorhouse's Microcosm: Portrait of a Central European City to
understand the complicated history of the town.

Publicity

® [Key European Cities

o 300 km to Wroclaw

O 2,5 hour flight to Wroclaw

WROCLAW

Entropy solutions for a € (0, 1]




Entropy solutions for 0 < a <1

Theorem (Alibaud)

Let 0 < & <1 and up € L*(R).

There exists the unique entropy (in the sense of Kruzhkov)
global-in-time solution u = u(x, t) to the Cauchy problem

us+AN“u+uu, =0, x€eR, t>0,
u(x,0) = uop(x).

Proof of decay estimates for p = 2

For v = ug > 0, we multiply the equation
Ve —eVix + AV + (V) =0
by v and integrate over R:

1d ]
mnv@+gA(vX)2dx+AvAavdx+E/dex_o,

Note that second, third, and forth term are nonnegative !

Let us use the third one, only.

0 < a < 2. Decay estimates

Theorem
Let 0 < o <2 and ug(x) = c+ [~ m(dy) with c € R and m being a
finite nonnegative measure on R.

For any € > 0, denote by u® = u®(x, t) the unique solutions of the
regularized problem

up + N —euy, +utu; =0, xeR, t>0,
u®(x,0) = up(x).

Then
» u(x,t) >0forall xeRand t >0,

> for every p € [1,00] there exists C = C(p) > 0 independent of ¢
such that

Jus(®)llp < C(p)min { &= @/DOB | ¢~ Q=370 o1/}

forallt >0

Nash inequality for the operator A*

Lemma
Let 0 < a. There exists a constant Cy > 0 such that

2(14+« a a
Iwlz" < CutAw, w) |l
for all functions w satisfying w € L'(R) and A®/?w € L?(R).

Proof.
For every R > 0, we decompose the L?-norm of the Fourier transform of
w as follows

Wiz = ¢ / W2 de
Cllw|2 dé+ CR™® W) d
< Clwl2 /W £+ / €2 w(E) 2 de

|§>R
< CRwl} + CR“|A**w3.

For R = (||/\a/2W||%/HW||§)1/(1+a) we obtain complete the proof. O




End of the proof

Applying the Nash inequality, we estimate the third term of the inequality

to obtain J
— —2« 2(1+a
VI3 + 26 Iml > V(DI <o,

which, after integration, leads to
Iv(t)]2 < Gl m|t=C) with G = (Cy/2a)Y/ ).

This is requived decay estimate with p = 2. O

In fact, we have

Ju5(®)llp < C(p)min { =G/ DO=VP | m|, = (A=1/0) m]|t/e }

0 < a < 1in equation vy + A*u + uu, =0

Passing to the limit € — 0 in the estimate from the lemma above we
obtain

Theorem
Let 0 < < 1and up(x) =c+ [*__ m(dy) with c € R and m being a
finite nonnegative measure on R. Put M = [, m(dx).

Denote S, (t) = e~ t\".
Let u = u(x, t) be the entropy solutions to the fractal Burgers equation.

Then, for every p € (2=, 00] there exists C(p) > 0 such that

-’

lu(t) = Mpa(D)ll, < Gplluooc|ml|t~(/)E1/P)

for all t > 0.

0 < a < 1. Regularized problem (& > 0 is fixed)

LEMMA

Let 0 < < 1and ug(x) =c+ [*__ m(dy) with c € R and m being a
finite measure on R (not necessary nonnegative).

Denote SE(t) = e~ tA"+<tdl

Then, for every p € [1, 0] there exists C(p) > 0 independent of ¢ such
that

[[u*(t) = Sa(t)uoll, < /0|52(t—7)u8(T)Ui(T)|p dr

CP” UOHOO H mH #1-(1/2)(1-1/p)

N

for all t > 0.

0 < a < 2. Asymptotic stability

LEMMA (K., Miao, Xu) ~
Let « € (0,2). Assume that u® and u® are two solutions of the
regularized problem

up + N —eul, +uu =0, xeR, t>0,

uf(x,0) = ug(x).
with initial conditions vy and U, the both of with finite signed measures
m and m, respectively.
Suppose, moreover, that the measure m of ug is nonnegative and

up — T € L(R).

Then, for every p € [1, 00] there exists a constant C = C(p) >0
independent of ¢ such that

lu(2) = &=(2)]],, < Ce= 7PV g — Tl

for all t > 0.




a = 1. Self-similar solution

Theorem
The unique entropy solution U = U(x, t) of the initial value problem

U +NU+UU, =0, xeR, t>0,

U(X,O) = Uo(X) = {

u_, x<0,
up, x>0,

is self-similar, i.e. it has the form
Ulx,t) = U (; 1)
for all x € R and t > 0.

Proof. It follows immediately from the Alibaud uniqueness result,
because the problem is invariant under the rescaling

Urx, t) = U(x, At).

Probabilistic conclusion

Solutions of the initial value problem

us+AN*v+uu, =0, x€eR,t>0,
u(0,x) = uo(x)

where

w() = [ i)

— 00
with a probability measure m on R, converge, as t — oo, toward
> the uniform distribution on the interval [0,¢], if 1 < o < 2;
» the one parameter family of new laws, if a = 1;

> the symmetric a-stable law, if 0 < o < 1.

a = 1. Large time asymptotics

Theorem

Let u = u(x,t) be the entropy solution to u; + Alu + uu, =0
corresponding to the initial condition up(x) = c+ [*__ m(dy) with c € R
and m being a finite measure on R (not necessary nonnegative).

We assume that u_ = c < uy =c+ fj;’j m(dy) and up — Up € L1(R).

For every p € [1,00] there exists C > 0 independent of t such that
lu(t) = U(®)]lp < =P Jug — sl

for all t > 0.

Proof. Pass to the limit € — 0 in Asymptotic stability lemma.
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