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Hamilton-Jacobi equation h; + AV h|? = 0.

In the one dimensional case, the substitution v = hy leads to the
(nonviscous) Burgers equation

vi +2A vy, = 0.

ah

PHYSICAL MOTIVATION

> A surface is grown via a ballistic deposition process (such as some
chemical vapor deposition processes in semiconductor growth).

» New particles are added in the direction perpendicular to the existing
surface.
Denote by h(x, t) the function describing the evolution of the interface
elevation. Since the normal vector is
(=Vxh, 1)

VTR

the elevation increment satisfies
1
="V -
V14 |Vih|?
Here, v stands for the velocity of particles being deposited.

Taking the limit 6t — 0, and transforming to another coordinate frame,
we obtain the Hamilton-Jacobi equation

he + A Vxh|* = 0,

5t = (v - g\vth) St.

where A € R is constant.

First-principles derivation of the equation

» The Laplacian term can be interpreted as a result of the surface
transport of adsorbed particles caused by the standard Brownian
diffusion;

> In several experimental situations a hopping mechanism of surface
transport is present which necessitates augmentation of the
Laplacian by a nonlocal term modeled by a Lévy stochastic process;

» The quadratic nonlinearity is a result of truncation of a series
expansion of a more general, physically justified, nonlinear even
function.




Fractal Hamilton-Jacobi-KPZ equation

The surface transport may be caused, besides the standard
Brownian diffusion, by a hopping mechanism modeled by a Lévy
flight.

KPZ= Kardar, Parisi and Zhang (1986) and the standard Brownian diffusion
Hopping mechanism in KPZ introduced by Mann and Woyczynski (2001)

This leads to the nonlinear nonlocal equation
up = —Lu~+ A\|Vul?
where L is the Lévy operator and
AVul? =X (100 + ... + |0 uP)
Here, g = 2 is the best choice from the physical point of view.

For the intensity constant A € R, we distinguish two cases:
> the deposition case A > 0 (the intensity of the ballistic rain),

> evaporation case for A < 0.

Maximum principle
Lemma
Let o € CZ(R"). Assume that the sequence {x,}n,>1 C R" satisfies

©(xn) — sup @(x).
x€ER"

Then
lim Vo(x,) =0 and limsup —Lp(x,) < 0.

n— o0 n— oo

Proof.
Since D2y is bounded there exists C > 0 such that

sup (x) = ©(xn + 2) = ©(xn) + Vp(xa) — Clz|>.
x€ERn

Since V(x,) is bounded, passing to the subsequence, we can assume
that

Vo(xa) = p.
Hennce, passing to the limit in the inequality above we obtain
0>p-z—Clz]?

for every z € R". Chosing z = tp and letting t — 0", we have p = 0.

Preliminary result

Theorem
Assume that
L~ (=02 for ac(1,2].

For every initial datum
up € WH(R™MNLY(R") and A eR

the initial value problem for the fractal Hamilton-Jacobi-KPZ equation

up = —Lu+ A\Vul?
has the unique solution in the space

X = C([0, 00), WE=(R™) N L*(R™)).
Moreover, this solutions satisfies the estimates
[u(t)llco < l[tolloc and [[Vu(t)]oo < [|Vuolloo

for all t > 0.

Maximum principle

Now, we prove that
limsup —Lp(x,) < 0.

n—oo
Note first that

o(xn+2) — p(xn) < sup ¢ —@(x,) =0 as n— oo.
xXERN

Hence
lim sup (tp(Xn +2z)— @(Xn)> <0

and
lim sup (cp(x,, +z) — o(xn) — V(xp) - z) <0.

n—oo

Hence, it suffices to use the Fatou lemma in the expression

Leln) = [ (olon =)~ ulon) = 2+ Vilon) 1)) M)




Maximum principle
Theorem (Droniou & Imbert (2007))
Let

£ol) = [ (¢lx=2) = 90 = - V(1) (2)) M)

Assume that
ue G(R" x [0, T]) N CAR" x [¢, T))
is the solution of the equation
uy = —Lu+ b(x,t)Vu,

where b = b(x, t) is given and sufficiently regular.
Then

u(x,0) <0 implies  u(x,t) <0.

Proof.
The function

®(t) = sup u(x,t)
x€ERn

is well-defined and continuous.
Claim: @ is locally Lipschitz and ¢’(t) < 0 almost everywhere.

®’(t) < 0 almost everywhere
Now, we differentiate
®(t) = sup u(x,t).

xeRn
By the Taylor expansion, for 0 < s < t, we have
u(x, t) < u(x, t — s) + sO:u(x, t) + Cs>.

Hence,

u(x, t) <supu(x,t—s)+ s( — Lu(x, t) + b(x, t)Vu(x, t)) + Cs°.
Substitute x = x,, where u(x,, t) — sup, u(x,t) as n — oo.
Passing to the limit, we obtain

sup u(x, t) < supu(x,t —s)+ Cs,

* (1) — b(s)

s
When s — 0, we conclude ¢'(t) < 0.

< Cs.

Lipschitz continuity of ®

For every € > 0 there is x. such that

sup u(x,t) = u(xe, t) + e.
xERn

Now, we fix t,s and we suppose that ®(t) > ®(s). Then
0<P(t)—P(s) = supu(x,t)—supu(x,s)

€+ u(xe, t) — u(xe, s)
e +sup |u(x, t) — u(x,s)|

IN N

IN

e+ [t —s|sup |V:u(x,t)|.
x,t

Since € > 0 is arbitrary, the function @ is locally Lipschitz, hence it is
differentiable almost everywhere.
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Mass evolution
Fractal Hamilton-Jacobi-KPZ equations

up = —Lu+ A\Vul?

“Mass” of the solution

M) = Ja(©lh = [ ute ) b
]RN
t
= / up(x) dx—l—)\/ / |Vu(x,s)|9 dxds
RN o Jrv
We have
> M(t) in the deposition case, i.e., for A > 0,
> M(t) \, in the evaporation case, i.e., for A < 0.

(This is the joint work with W.A. Woyczyrski (2008)).
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Deposition case: A > 0
and the increasing mass

M(t) = /n u(x,t) dx = /]Rn up(x) dx + )\/Ot/Rn |Vu(x,s)| dxds
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Deposition case: A >0
Theorem
Under the assumptions of the above theorem and if n > 2 there exists
Ty = fo(Llo) such that, for all t > to(Uo)

M(t) > C(q)AMJtNta=(NtD)a) e - for 1 < g < %—ﬁ3
> C(q)AM{ log t, for q= 1744
Proof.

Since A and wug are nonnegative, it follows that
u(t) =e “ug+ )\/Ot e_(t_T)E|Vu(T)|q dr > e .
Moreover,
ATIM(t) = A lu(t) |l > /Ot IVu(7)ll§ d.
Hence, by the Sobolev inequality, we obtain

t t
ATIM(t) > C/O ||U(T)||7Vq/(,v_q) dr > C/O ||e*7£“0\|7vq/(/v_q) dr.

O

Deposition case: A > 0

Theorem
Let A >0 and

N+ «
l<g< .
9= N+1

Assume that
L~ (=0)? for ae€(1,2].

If u= u(x, t) is a solution with an initial datum satisfying conditions
0 < up € LX(RN) N Wh>(RN),
and ug =0, then
lim M(t) = +o0.

t—o0o

Deposition case: A > 0

Theorem

Let A >0 and
N+ o

N+1°

q>

Assume that
L~ (=D)2 for ae(l1,2].

If
either ||uo|l1 or |Vuolls is sufficiently small

then
tlim M(t) = My < 0.




Deposition case: A >0

Idea of the proof.
We work with the integral equation
Vu(t) = Ve “up + /\/OtVe(tT)'C|Vu(T)|q dr
in order to show that
[Vu(t)llg < C(L+t)"
for some k > 1, provided

either |luglls or ||Vuolleo is sufficiently small.

Deposition case: \ > 0.

Theorem
Let A >0 and
q=>2.

Suppose that the Lévy diffusion operator L has a non-degenerate
Brownian part:

L~ =D+ (-D)? for ae(1,2)
Then, each nonnegative solution with an initial datum
up € WH2(RN) n LY(RN)
has the mass M(t) = [.n u(x, t) dx increasing to a finite limit

Jim M(t) = My < cc.

Idea of the proof. A priori estimates and “classical” integration by parts.

Deposition case: A > 0

Remark

L= (_A)a/zv
it suffices only to assume that the quantity

luo|2 ||V uo|| S+ D == /(e

is small
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Deposition case

Remarks
The smallness assumption imposed above seems to be necessary.

» For L=—-A, A >0, and

N+2
N+1

< g <2,
there exists a solution such that
lim M(t) =+oc0
t—oo
(cf. Ben-Artzi, Souplet & Weissler (2002))

> if ||ugl1 and ||V upl|oo are “large”, then the large-time behavior of
the solution is dominated by the nonlinear term, hence M., = .
(Benachour, K. & Laurengot (2004))
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Deposition case

Conjectures
» Analogous results hold true at least for £ = (—A)®/2 and for q
satisfying
N+ o cg<
a.
TES

» The critical exponent g = 2 for £ = —A should be replaced by
g = a. In this case, for ¢ > « and as t — oo, the mass of every
nonnegative solution converges to a finite limit.
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Evaporation case: A <0

Theorem
Let A <0 and

=

_|_
N+1°

Q

1<qg<

Assume that
L~ (=0)? for ae(1,2].

If uis a nonnegative solution with an initial datum satisfying
0 < up € WH(RN) n L}(RN)
then

lim M(t) =0.

t—oo

Evaporation case: A < 0
and the decreasing mass

M(t) = /n u(x,t) dx = /Rn up(x) dx + )\/Ot/n |Vu(x,s)|? dxds

Evaporation case: A <0

When q is greater than the critical exponent, the diffusion effects prevails
for large times.

Theorem

Let A < 0 and
N+«

N+1°

q>

Assume that
L~ (=D)? for ae(l1,2].

If uis a nonnegative solution with an initial datum satisfying
0 < up € WH(RN) n L}(RN)
then

lim M(t) = My > 0.

t—oo
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Evaporation case: A <0

Remarks

» The proof of Theorem above is based on the decay estimates of

IVu(t)]lp-

> As was the case for A > 0, we can significantly simplify the reasoning
for Lévy operators £ with nondegenerate Brownian part and g > 2.

Selfsimilar asymptotics

Theorem
Let u = u(x, t) be a solution with up € LY(RN) N W1>°(RN), and with
the Lévy operator L satisfying

L~ (=DA)*? for ac(1,2]
If lim;_ oo M(t) = M exists and is finite then

Jim [u(£) ~ Mcpa(£)]1 = 0.

If, additionally,
lu(t)]l, < Ct=NA=1/p)/

for some p € (1,00], all t > 0, and a constant C then, for every

r€[1,p),
lim NI u(t) — Moopa(t)||, = 0.

Selfsimilar asymptotics

When the mass M(t) tends to a finite limit M, as t — oo, the solutions
to Cauchy problem for the Fractal Hamilton-Jacobi-KPZ equation display
a self-similar asymptotics dictated by the fundamental solution of the
linear equation

up 4 (=A)*2u=0

which given by the formula

pa(x,t) = tNop, (xt7/* 1)

1 ix€ ,—t|&]~
= 4(270,\[/2 /RNe EetlEl™ ge.
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Thecase a =2, L =—A, and M, € {0,000}

Deposition case and M., = 400
The large time asymptotics is decribed by the self-similar solution

X x| \ /@D +
z(x,t)=[K—=(g-1) qfq/(q* ) <m>

of the equation
7z = |Vz|9.

Evaporation case and M, =0

The large time asymptotics is decribed by the self-similar solution
—a/2 -1/2 : 2—q
w(x,t) =t 7 W(xt™/“) with a= ")

q-—

of the equation
ur = Au— |Vul9.
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