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Abstract

We are concerned with Γ-convergence of gradient flows, which is a notion meant
to ensure that if a family of energy functionals depending of a parameter Γ-converges,
then the solutions to the associated gradient flows converge as well. In this paper we
present both a review of the abstract “theory” and of the applications it has had, and
a generalization of the scheme to metric spaces which has not appeared elsewhere.
We also mention open problems and perspectives.

Γ-convergence was introduced by De Giorgi in the 70’s. It provides a convenient notion
of convergence of a family of energy functionals Eε to a limiting functional F , which ensures
in particular that minimizers of Eε converge to minimizers of F . In [DeG1], De Giorgi raised
the question of knowing whether there was any general relation between solutions of the
gradient flows of Eε and solutions to the gradient flow of F when Eε Γ-converges to F .
Such a result is not true in general: it is easy to construct finite-dimensional examples
where it fails (take for example a smooth function and perturb it by adding a sequence of
functions which is small in L∞ norm but such that the sum has many local minima). The
question itself is a natural one, and of importance for a variety of (potential) applications:
dynamics of singularities in materials, homogenization of evolution equations, (numerical)
approximation of solutions to gradient flows, and in general asymptotic limits of PDEs.

In 2004, motivated by the convergence of the Ginzburg-Landau heat flow, we introduced
with Etienne Sandier in [SS1] a notion which we called “Γ-convergence of gradient flows”,
which provided an abstract framework giving additional conditions on Eε and F that
ensure convergence of the gradient flows. Previously, convergence was proved on a case by
case basis, usually via PDE methods. The goal in [SS1] was to provide an energy-based
method, taking advantage of the Γ-convergence structure. For the sake of simplicity, the
method in [SS1] was presented in the situation of Hilbert spaces for the original flows,
and finite-dimensional spaces for the limiting flow. It was explained in [SS1] that with
applications in mind, the appropriate situation was probably that of a (formal) Hilbert
manifold structure, and that the appropriate rigorous framework was that of metric spaces
using De Giorgi’s “minimizing movements” i.e. gradient flows which are defined only on
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metric spaces, as presented in [AGS]. It was noted that the scheme could be carried out
in that framework.

While the abstract result is easy to state and prove, the difficulty is displaced into
proving that the hypotheses of the abstract result are satisfied for each specific problem.
This has been achieved in some examples, it also raises some interesting analysis questions
and encounters some difficulties, as we shall show below. Our goal here is to present an
overview of these, as well as present the extension of the scheme to the more (and probably
most) general setting of gradient flows on metric spaces.

The paper is organized as follows: Section 1 presents the abstract scheme following
[SS1]. Section 2 presents and proves the adaptation of the abstract scheme to metric
spaces, and briefly reviews other related results in the literature. Section 3 looks into
applications of the scheme to a few famous evolution PDEs depending on a parameter: the
heat-flow for Ginzburg-Landau vortices (following [SS1, Ku]), the Cahn-Hilliard equation
(following [Le1]), the Allen-Cahn equation (drawing on [MR1]) and a prospective attempt
of application to Ginzburg-Landau with large number of vortices.

Acknowledgements: I would like to thank Luigi Ambrosio, Nam Le, and Maria
Westdickenberg for their useful comments.

1 The abstract scheme in Hilbert spaces

In [SS1] we assumed that the we were taking the gradient flow for the C1 functionals Eε
with respect to some Hilbert space structure Xε, i.e. we consider solutions to

(1.1) ∂tu = −∇XεEε(u) ∈ Xε

where ∇XεEε is defined via the relation dEε(u) · φ = 〈∇XεEε(u), φ〉Xε , dEε denoting the
differential of the C1 function Eε. The functionals Eε are assumed to Γ-converge to a
functional F . It was noted in [SS1] that since Eε and F need not in practice be defined on

the same space, one should consider a general sense of convergence uε
S
⇀ u, to be specified

in each case, relative to which the Γ-convergence of Eε to F holds. Following [JSt] one may
model this convergence by assuming there is a continuous “projection” map πε from Xε

to Y such that uε
S
⇀ u is defined by πε(uε) → u in Y . In addition, to deal with Γ-limsup

constructions, one may also add the existence of a “lifting” map Pε from Y to Xε with
πε ◦ Pε = Id.

In [SS1], we assumed for simplicity in the rigorous results that the limiting functional
F was defined over a finite-dimensional vector space Y equipped with some Hilbert scalar
product, thus its gradient flow with respect to Y is given by

(1.2) ∂tu = −∇Y F (u)

with the analogous notation.

2



We also introduced the “energy-excess” along a family of curves uε(t) with uε(t)
S
⇀ u(t)

by setting Dε(t) = Eε(uε(t)) − F (u(t)) and D(t) = lim supε→0Dε(t). Similarly if uε
S
⇀ u

then D denotes lim supε→0Eε(uε)− F (u).

Let us now state the result in [SS1] in a slightly simplified form:

Theorem 1 (Γ-convergence of gradient flows in the Hilbert space setting - [SS1]). Assume

Eε and F are as above and satisfy a Γ-liminf relation: if uε
S
⇀ u as ε→ 0 then

lim inf
ε→0

Eε(uε) ≥ F (u).

Assume that the following two additional conditions hold:

1. (Lower bound on the velocities.) If uε(t)
S
⇀ u(t) for all t ∈ [0, T ) then there exists

f ∈ L1(0, T ) such that for every s ∈ [0, T )

(1.3) lim inf
ε→0

∫ s

0

‖∂tuε(t)‖2
Xε dt ≥

∫ s

0

(
‖∂tu(t)‖2

Y − f(t)D(t)
)
dt.

2. (Lower bound for the slopes) If uε
S
⇀ u then

(1.4) lim inf
ε→0

‖∇XεEε(uε)‖2
Xε ≥ ‖∇Y F (u)‖2

Y − CD

where C is a universal constant.

Let then uε(t) be a family of solutions to (1.1) on [0, T ) with uε(t)
S
⇀ u(t) for all t ∈ [0, T ),

such that

∀t ∈ [0, T ) Eε(uε(0))− Eε(uε(t)) =

∫ t

0

‖∂tuε(s)‖2
Xε ds.

Assume also that it is “well-prepared”, i.e. D(0) = 0 or

(1.5) lim
ε→0

Eε(uε(0)) = F (u(0)),

then u is in H1((0, T ), Y ) (in particular continuous in time) and is a solution to (1.2) on
[0, T ). Moreover D(t) = 0 for all t (that is the solutions “remain well-prepared”) and as
ε→ 0,

‖∂tuε‖Xε → ‖∂tu‖Y in L2(0, T )

‖∇XεEε(uε)‖Xε → ‖∇Y F‖Y in L2(0, T ).

The proof of the theorem is very simple and relies on the Cauchy-Schwarz inequality
combined with the two extra lower bounds (1.3)–(1.4). For simplicity, and in many exam-
ples one can take f ≡ 0 and C = 0 above. If these are not zero then they are handled via
Gronwall’s lemma, and proved to be zero in the end.
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Proof of the theorem. Let us now present the proof in the simpler case where f ≡ 0 and
C ≡ 0. Let uε(t) be the solution to (1.1) as above, by assumption and by (1.1),

Eε(uε(0))− Eε(uε(t)) =

∫ t

0

‖∂tuε(s)‖2
Xε ds =

1

2

∫ t

0

‖∂tuε(s)‖2
Xε + ‖∇XεEε(uε(s))‖2

Xε ds.

In view of the relations (1.3) and (1.4) it follows (with Fatou’s lemma) that

lim inf
ε→0

(Eε(uε(0))− Eε(uε(t))) ≥
1

2

∫ t

0

‖∂tu(s)‖2
Y + ‖∇Y F (u(s))‖2

Y .

By the Cauchy-Schwarz inequality (for real numbers) we have

(1.6)
1

2

∫ t

0

‖∂tu(s)‖2
Y + ‖∇Y F (u(s))‖2

Y ≥ −
∫ t

0

〈∂tu,∇Y F (u)〉Y ds = F (u(0))− F (u(t)).

But since uε(t) is a well-prepared solution, we have limε→0Eε(uε(0)) = F (u(0)). Combining
the above relations, we deduce

lim inf
ε→0

(−Eε(uε(t))) ≥ −F (u(t))

i.e.
lim sup
ε→0

Eε(uε(t)) ≤ F (u(t)).

But by Γ-convergence of Eε to F the converse holds i.e.

lim inf
ε→0

Eε(uε(t)) ≥ F (u(t)).

It follows that we must have

(1.7) lim
ε→0

Eε(uε(t)) = F (u(t))

and all the inequalities above must be equalities. In particular, we have equality in (1.6)
and thus ∂tu = −∇Y F (u) for a.e. t ∈ (0, T ). Also there must be equality in (1.3) and (1.4)
for uε(t) for almost every time, hence the last two assertions. Well-preparedness persists
for all time from (1.7). The fact that u(t) ∈ H1((0, T ), Y ) is a direct consequence of (1.3).
It implies in particular u ∈ C0,α((0, T ), Y ). If f and C are present, the same can be done
and one concludes using Gronwall’s lemma on D(t).

Several remarks can be made at this point.

1. Although we say only a Γ-liminf relation between Eε and F is required, in reality
assuming that there is well-prepared initial data implicitly requires the Γ-limsup to
hold as well.

2. Taking the spaces (and their norm) Xε to possibly depend on ε allows for more
flexibility, in particular it allows to incorporate time rescalings of the equation (1.1)
into the norm (see [SS1]).
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3. When looking at the convergence of a family of gradient flows, it is not clear which
is the structure with respect to which the limiting gradient flow should be taken,
in other words what is the structure Y . In practice Y can be guessed by guessing
for which structure the inequalities (1.3) and (1.4) can hold. In addition, even if Xε

are Hilbert spaces, the limiting gradient flow will not always be a flow with respect
to a Hilbert space or a flat space. In general it can be a flow with respect to a
curved space (i.e. a formal infinite dimensional manifold, where the scalar product
Yu depends on the point u). We will see examples of this phenomenon in Section 3
below (for Cahn-Hilliard and Allen-Cahn). The limiting space and energies need not
even be smooth, this is the reason to go to the more general setting of metric spaces
and curves of maximal slope, as in Section 2.

4. The conditions (1.3) and (1.4) are general conditions. However to prove the result of
the theorem, one does not really need to prove them for all uε but only for families
of solutions to the gradient flow, on which one may have more information.

5. The conditions (1.3) and (1.4) provide sufficient extra conditions for Γ-convergence of
gradient flows. They correspond to a kind of C1 notion of Γ-convergence in the sense
that they allow to compare the C1 structures of the energy landscapes of Eε and
F , where the gradient flows live. Of course the spaces where these flows live being
different, they cannot be compared, however the sizes of the slopes or derivatives can
be compared, and this suffices.

If in (1.4) we have C = 0, this condition immediately implies that critical points
of Eε converge to critical points of F . (Note that Γ-convergence only ensured the
convergence of global minimizers).

A similar C2 notion of Γ-convergence was introduced in [Se1]: it provides a sufficient
condition (based on the C2 structure of the energy landscape) to ensure that stable
critical points of Eε converge to stable critical points of F (in [Se1] this is applied to
Ginzburg-Landau vortices).

6. In [SS1] we propose a constructive way of proving relation (1.4): it suffices, for any
continuous v(t) defined in a neighborhood of 0 and such that v(0) = u, to find a
deformation vε(t) of uε, such that

lim sup
ε→0

‖∂tvε(0)‖Xε ≤ ‖∂tv(0)‖Y

and

lim inf
ε→0

− d

dt |t=0
Eε(vε) ≥ −

d

dt |t=0
F (v).

Indeed, if this is true, then one can take a deformation v(t) with derivative −∇F (u)
at 0, and the two relations above immediately imply (1.4). In this point of view the
question reduces to “lifting” a curve v(t) in the space Y to a curve vε(t) in such a way
that the velocity of the lifted curve is smaller than (and in fact equal to with (1.3))
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that of the original one, and that the energy decreases by more than the limiting
energy, i.e. more than expected.

7. An interesting related question is to study the Γ-convergence of “action” functionals
along time-dependent curves:

(1.8) Aε(uε) =

∫ T

0

‖∂tuε +∇XεEε(uε(t))‖2
Xε dt

with the constraint uε(0) = u0
ε and uε(T ) = uTε . Indeed, according to the theory of

large deviations, in the equation ∂tuε = −∇XεEε(uε) + noise and when the noise is
white in space and time, the switching between the states u0

ε and uTε is most likely to
happen along a curve uε(t) which minimizes Aε. Then, when ε→ 0, one just needs to
identify the Γ-limit of Aε since then minimizers of Aε will converge to the minimizers
of the Γ-limit. However, a rigorous meaning can only be given to this (and to the
noisy equation) in 1 space dimension. This program, in the context of sharp-interface
problems, was first presented and illustrated with numerics in E-Ren-Vanden-Eijden
[ERV]. It was carried out for the action functional (formally) associated to the
Allen-Cahn equation with noise in a formal way in [KORV], and at a rigorous level
in [KRT, WT] in one-space dimension and [MR1] in higher dimensions (2,3).

One can check very easily that our framework is very well adapted to this question.
Indeed, by expanding the scalar product in (1.8), one is led to

Aε(uε) =

∫ T

0

‖∂tuε‖2
Xε + ‖∇XεEε(uε)‖2

Xε + 2

∫ T

0

∂t(Eε(uε(t)) dt

=

∫ T

0

‖∂tuε‖2
Xε + ‖∇XεEε(uε)‖2

Xε dt+ 2(Eε(u
T
ε )− Eε(u0

ε)).

Thus it suffices to understand the Γ-convergence of
∫ T

0
‖∂tuε‖2

Xε
+ ‖∇XεEε(uε)‖2

Xε

and conditions (1.3)–(1.4) provide precisely a Γ-liminf relation on this functional.

2 Γ-convergence of gradient flows on metric spaces

It was noticed by De Giorgi that in order to define gradient flows one does not really need
to have a Hilbert or Banach structure, i.e. a differentiable structure, but that one can
define a weak notion using only a metric structure. The notion replacing gradient flows
is then that of “curves of maximal slope”. This notion was introduced in [DeGMT], then
further developed in [DMT, MST, Am]. We follow here the self-contained presentation in
[AGS]. The notion of gradient flows in metric spaces turns out to be useful in application,
in particular for defining gradient flows over the space of probability measures equipped
with the (metric) Wasserstein distance. In the past years, many interesting PDE’s (such
as porous media, Fokker-Planck, the Chapman-Rubinstein-Schatzman model of supercon-
ductivity ...) have been shown to fall into that class, see [Vi] chapter 23-24 and references
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therein. As we explained above (item 3 in the remarks above) it is a natural setting for
limits of gradient flows (even of gradient flows on Hilbert spaces).

In order to generalize gradient flows to metric spaces, the starting point is to observe
that if u is a solution of the gradient flow

∂tu = −∇φ(u)

say on a Hilbert space, then u is characterized by the relation

(2.1) ∂t(φ(u)) ≤ −1

2

(
|∂tu|2 + |∇φ|2

)
Indeed the relation 1

2
(|∂tu|2 + |∇φ|2) ≥ −〈∂tu,∇φ〉 holds in all cases, and there is equality

if and only if ∂tu = −∇φ(u). (Note that this is precisely what we have used for the proof
of Theorem 1 above.) Now (2.1) can naturally be extended to a metric setting provided
one gives a definition to the norm of the derivative |∂tu| (this will be called the metric
derivative) and to the norm of the gradient |∇φ(u)| (this will be called the slope or an
upper gradient).

One may also generalize this to (p, q) gradient flows where p and q are conjugate ex-
ponents in (1,+∞): solutions to ∂tu|∂tu|p−2 = −∇φ(u) are characterized (via Young’s
inequality) by

∂t(φ(u)) ≤ −1

p
|∂tu|p −

1

q
|∇φ|q.

Usual gradient flows simply correspond to p = q = 2.

2.1 Definitions

Let us present the details and recall the main definitions from [AGS], Chapter 1. (S, d) is
a complete metric space equipped with the distance d.

Definition 1 (Absolutely continuous curves). v : (a, b) → S is a p-absolutely continuous
curve or belongs to ACp(a, b,S) (p ≥ 1) if there exists an Lp(a, b) function m such that

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀a < s ≤ t < b.

In particular absolutely continuous curves are uniformly continuous functions of t.

Definition 2 (Metric derivative). Let v be an absolutely continuous curve on (a, b). Then
the limit

|v′|(t) := lim
s→t

d(v(s), v(t))

|s− t|
exists for a.e. t ∈ (a, b) and is called the metric derivative of v. Moreover it is the smallest
admissible function m in the definition above.
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Note that v ∈ ACp is equivalent to |v′| ∈ Lp.
In what follows φ is a real-valued function on S with domain D(φ).

Definition 3 (Strong upper gradient). A function g : S → [0,+∞] is a strong upper
gradient for φ if for every absolutely continous curve v ∈ AC1(a, b,S) the function g ◦ v is
Borel and

(2.2) |φ(v(t))− φ(v(s))| ≤
∫ t

s

g(v(r))|v′|(r) dr ∀a < s ≤ t < b.

In particular if g ◦ v|v′| ∈ L1(a, b) then φ ◦ v is absolutely continuous and

(2.3) |(φ ◦ v)′|(t) ≤ g(v(t))|v′|(t) for a.e. t ∈ (a, b).

A candidate to be an upper gradient of φ is its slope:

Definition 4 (Slope). The local slope of φ at v ∈ D(φ) is defined by

|∂φ|(v) := lim sup
w→v

(φ(v)− φ(w))+

d(v, w)
.

A theorem is that the slope |∂φ| is always a weak upper gradient for φ (see [AGS] for
the definition).

Definition 5 (Curve of maximal slope). We say that a locally absolutely continuous map
u : (a, b) → S is a p-curve of maximal slope for the functional φ with respect to its weak
upper gradient g if φ ◦ u is a.e. equal to a nonincreasing map ϕ and

(2.4) ϕ′(t) ≤ −1

p
|u′|(t)p − 1

q
gq(u(t)) for a.e. t ∈ (a, b).

Since (2.3) always holds, we must have

ϕ′(t) ≥ −g(u(t))|u′|(t) ≥ −1

p
|u′|p − 1

q
gq(u)

by Young’s inequality, so there must be equality in (2.4) a.e. in t. If g is a strong upper
gradient then ϕ(t) is absolutely continuous hence continuous and in particular the energy
identity

(2.5) φ(u(s))− φ(u(t)) =

∫ t

s

|u′|p

p
+
gq(u)

q

holds.
For simplicity one may think of the most standard case p = q = 2. Then 2-curves of

maximal slope are simply called curves of maximal slope.
The notion of curve of maximal slope is thus a natural analogue of the notion of gradient

flow or steepest descent curve. The existence of curves of maximal slope is obtained via
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the notion of “generalized minimizing movements” of De Giorgi i.e. taking the limit as
τ → 0 of the semi-discrete implicit Euler scheme for steepest descent which is given by

(2.6) Uk
τ = argmin

(
φ(v) +

1

pτ p−1
dp(v, Uk−1

τ )

)
.

Let (Sε, dε) be a family of metric spaces equipped with distances dε, and (S, d) be
another metric space. d naturally induces a topology on S, however we also consider a
possibly weaker topology σ on S. We are given functionals Φε on Sε and Φ on S. We
assume there is a sense of convergence S of uε ∈ Sε to u ∈ S which can be general and
with respect to which we know the Γ-liminf convergence of Φε to Φ:

(2.7) uε
S
⇀ u =⇒ lim inf

ε→0
Φε(uε) ≥ Φ(u).

To be specific, as above we may assume that there exists a map πε from Sε to S such that

uε
S
⇀ u means πε(uε)

σ
⇀ u. The need to use here a possibly weaker topology than that

induced by d on S is well explained in [AGS], as well as in the examples we shall see below.

2.2 Abstract result and proof

Slopes and metric derivatives will be computed in Sε and S with respect to the metrics dε
and d. To emphasize this dependence, we will place a dε or d subscript next to them.

Theorem 2 (Γ-convergence of gradient flows in the metric setting). Let Φε and Φ be
functionals defined on metric spaces (Sε, dε) and (S, d) respectively, and such that (2.7)
holds. Let gε and g be strong upper gradients of Φε and Φ respectively. Assume in addition
the relations

1. (Lower bound on the metric derivatives) If uε(t)
S
⇀ u(t) for s ∈ (0, T ) then

(2.8) ∀s ∈ [0, T ) lim inf
ε→0

∫ s

0

|u′ε|
p
dε

(t) dt ≥
∫ s

0

|u′|pd(t) dt.

2. (Lower bound on the slopes) If uε
S
⇀ u then

(2.9) lim inf
ε→0

gε(uε) ≥ g(u).

Let then uε(t) be a p-curve of maximal slope on (0, T ) for Φε with respect to gε, such that

uε(t)
S
⇀ u(t), which is well-prepared in the sense that

lim
ε→0

Φε(uε(0)) = Φ(u(0)).

Then u is a p-curve of maximal slope for Φ with respect to g and

lim
ε→0

Φε(uε(t)) = Φ(u(t)) ∀t ∈ [0, T )

gε(uε)→ g(u) in Lploc(0, T )

|u′ε|dε → |u′|d in Lploc(0, T ).
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Proof. The proof follows the same steps as in Theorem 1. First note that since uε are
p-curves of maximal slopes they are in ACp(0, T,Sε) (see Remark 1.3.3 in [AGS]). From
(2.8) it follows that |u′| is in Lploc[0, T ) and thus u is in ACp(0, T,S). From (2.5) since gε
is a strong upper gradient

Φε(uε(0))− Φε(uε(t)) =

∫ t

0

1

p
|u′ε|

p
dε

(s) +
1

q
gqε(uε(s)) ds.

Using the inequalities (2.8) and (2.9) and Fatou’s lemma, it follows that for all t ∈ [0, T )

(2.10) lim inf
ε→0

Φε(uε(0))− Φε(uε(t)) ≥
∫ t

0

1

p
|u′|pd(s) +

1

q
gq(u(s)) ds.

From Young’s inequality we deduce

(2.11)

∫ t

0

1

p
|u′|pd(s) +

1

q
gq(u(s)) ds ≥

∫ t

0

|u′|d(s)g(u(s)) ds.

In addition, by the definition of a strong upper gradient we have (2.2), so

(2.12)

∫ t

0

|u′|d(s)g(u(s)) ds ≥ Φ(u(0))− Φ(u(t)).

On the other hand from the well-preparedness assumption (2.10) and (2.11) become

lim inf
ε→0

−Φε(uε(t)) ≥ −Φ(u(t))

But the converse inequality holds by (2.7) so we have

(2.13) lim
ε→0

Φε(uε(t)) = Φ(u(t))

and there must be equality in all the inequalities above. In particular there is equality in
(2.11) and (2.12), that is

1

p
|u′|pd(s) +

1

q
gq(u(s)) = |u′|d(s)g(u(s)) a.e. in s ∈ (0, T )

and |u′|d(s)g(u(s)) = −(Φ ◦ u)′. The fact that Φ ◦ u is a.e. nonincreasing immediately
follows from (2.13) and the fact that Φε ◦ uε is a.e. nonincreasing (since uε is a p-curve of
maximal slope). This proves that u is a p-curve of maximal slope for Φ with respect to g.
The other relations easily follow from that chain of equalities as well.

Several remarks can be made at this point

1. There is obviously a question of compactness of sequences of solutions which we have
left aside here as well as in the previous theorem.
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2. This can easily be particularized to λ-convex functions following [Or1].

3. One can particularize this scheme to Banach spaces by using Section 1.4 in [AGS].
For example, if φ is a (non C1) convex functional on a Banach space X and ∂φ is
the Fréchet subdifferential of φ, we have that

|∂φ|(u) := min{‖ξ‖X∗ , ξ ∈ ∂φ(v)}

i.e. the element of ∂φ with smallest norm, is a strong upper gradient (see [AGS]
Section 1.4). This way we can treat the passage to the limit in differential inclusions
for nonsmooth functionals, which correspond to p-curves of maximal slope according
to Proposition 1.4.1 in [AGS].

4. The metric space setting should be a good generalization of the (formal) Hilbert man-
ifold setting, by taking the geodesic distance on the Hilbert manifold. An interesting
example where this correspondance is known is the case of the space of probability
measures equipped with the 2-Wasserstein distance (see [AGS, Vi]). Otto observed
that this space, initially just a metric space, is a formal Hilbert manifold with Hilbert
metric at µ being given by L2

µ. This was made rigorous in [AGS]. This space appears
as a natural limiting space for gradient-flows of Ginzburg-Landau with large number
of vortices, as we shall see in Section 3.4.

2.3 Related results in the literature

The convergence of curves of maximal slope under Γ-convergence actually holds with no
extra assumptions when the functionals are φ-convex: this was proved in [DMT].

A later paper that addressed the same type of questions is [Ji], but there it was restricted
to a certain class of parabolic flows.

In [Or1], Ortner also looked into something very close: he proposed to approximate
curves of maximal slope via the minimizing movement scheme, by Γ-convergence approx-
imation i.e. taking a sequence of functionals φn which approximate φ by Γ-converging to
it. He proved that the discrete solutions to the associated Euler scheme (2.6) associated
to φn converge to a curve of maximal slope for φ, under two additional conditions:

lim inf
n→∞

dn(un, vn) ≥ d(u, v)

if un ⇀ u and vn ⇀ v which is the counterpart of (1.3), and the lower semi-continuity of
the slopes

(2.14) lim inf
n→∞

|∂φn(un)| ≥ |∂φ(u)|

which is the analogue to (1.4). Then he particularized it to λ-convex functionals, noticing
that the condition of λ-convexity together with the Γ-convergence of the φn to φ ensure
that (2.14) holds. In [Or2] the presentation was a bit different: he stated an abstract
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convergence theory for convergence of the gradient flows of λ-convex functionals on Hilbert
spaces (sufficient to the purpose of that paper), analogous to the one we present here. The
motivation was the convergence of local minima during numerical approximation: gradient
flows are then seen as a selection criteria. It was then applied to an atomistic energy
approximation.

In the paper [MRS], a program similar to ours is carried out for “rate-independent
processes”. These are evolutions which arise in the modelling of fracture and plasticity
and which can essentially be viewed as the limit case p = 1 of the p−curves of maximal
slope described above.

Another natural and important question is whether similar results hold for Hamiltonian
flows, i.e. under which conditions solutions to Hamiltonian flows of a family of energies
Eε (Γ-converging to F ) converge to solutions of the Hamiltonian flow of F . An abstract
convergence result, using convergence conditions on the underlying symplectic structures,
is proposed in [Mi]. It is applied to some atomistic models and homogenization of wave
equations.

3 A review of some applications

3.1 Ginzburg-Landau vortices

The first motivation for the method introduced in [SS1] was the derivation of the dynamical
law of vortices for solutions to the parabolic Ginzburg-Landau equation, with or without
applied magnetic field, this application was detailed in [SS1]. This recovered by a different
method, a result that was known [Li, JSo] in the case without magnetic field; and proved
a new result in the case with magnetic field. For simplicity we present here the application
in the case without magnetic field. The Ginzburg-Landau energy functional in that case is

(3.1) Fε(u) =
1

2

∫
Ω

|∇u|2 +
(1− |u|2)2

ε2
,

and its gradient flow under consideration is the parabolic PDE

(3.2)
∂tu

|log ε|
= ∆u+

u

ε2
(1− |u|2).

Here Ω is a two-dimensional smooth bounded domain (simply connected), ε is a (small)
material constant, and u : Ω → C is the “order-parameter” in physics. This model is a
simplified version of the Ginzburg-Landau model of superconductivity (it also serves in the
modelling of superfluidity and Bose-Einstein condensates). A key feature is the existence
of vortices, i.e. isolated zeros of u with nonzero winding number d ∈ Z of u/|u| around.
In the limit ε → 0 the vortices become point singularities of u/|u|. Each vortex has a
divergent energetic cost of at least π|d| log 1

ε
.

This functional was studied in detail by Bethuel-Brezis-Hélein [BBH] and some subse-
quent works, in the situation where the total number of vortices remains bounded indepen-
dently of ε (this is ensured by a bound C|log ε| on Fε(uε)). Then one may extract limiting
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vortices a1, · · · , an with corresponding nonzero integer degrees d1, · · · , dn. The functionals
Fε are defined on H1(Ω,C) or H1

g (Ω,C) if a boundary condition u = g (with |g| = 1) on
∂Ω is imposed (then H1

g corresponds to H1 functions with trace g on the boundary). The
limiting space is that of configurations of points + degrees (a,d) ∈ Ωn × Zn

∗ where the
total number of points is fixed to n. An appropriate sense of convergence to consider here

is uε
S
⇀ u := (a,d) if

curl 〈iuε,∇uε〉⇀ 2π
n∑
i=1

diδai in D′(Ω)

where δx is the Dirac mass at x, and 〈, 〉 denotes the scalar product in C as identified with

R2. Equivalently one could take the definition uε
S
⇀ (a,d) if uε/|uε| converges to u∗, an

S1-valued map with singularities ai of degrees di.
The results proved in [BBH] can be phrased in Γ-convergence terms as follows. There

exists a function Wg(a,d) called “renormalized energy”, defined over Ωn ×Zn
∗ such that if

uε ∈ H1
g (Ω), modulo a subsequence uε

S
⇀ (a,d) and

lim inf
ε→0

Fε(uε)− π
n∑
i=1

|di||log ε| ≥ Wg(a,d).

A matching upper bound also holds. This renormalized energy corresponds to the in-
teraction energy between the vortices left when one substracts the divergent core energy
π|di||log ε| of each vortex.

The same can be done when the Dirichlet boundary condition is replaced by a Neumann
boundary condition, leading to a modified renormalized energy. We will all call them W
for simplicity.

Restricting to the situation where the limiting degrees di are all ±1 (this class is
preserved under the gradient-flow, at least for short times), we may say that Eε(u) :=
Fε(u) − πn|log ε| Γ-converges to F = W , which is defined on a finite-dimensional space.
We may thus look into applying Theorem 1 to the family Eε. (3.2) is the gradient flow of
Fε or Eε for the L2(Ω) structure rescaled as follows: take ‖ · ‖2

Xε
= 1
|log ε|‖ · ‖

2
L2(Ω). Indeed

one may check that

(3.3) ∇XεEε(u) = −|log ε|
(

∆u+
u

ε2
(1− |u|2)2

)
.

The limiting space of configurations (a,d) with di fixed to ±1, can be identified to Ωn, and
we equip it with the rescaled Euclidean structure on (R2)n given by ‖ · ‖2

Y = 1
π
| · |2R2n . In

the framework of Theorem 1, the two extra conditions are here specifically (dropping the
D(t)):

if uε(t)
S
⇀ (a,d) with di = ±1,

(3.4) lim inf
ε→0

1

|log ε|

∫ s

0

‖∂tuε‖2
L2(Ω)(t) dt ≥

1

π

∫ s

0

|∂tai|2 dt

13



and (in view of (3.3))

(3.5) lim inf
ε→0

1

|log ε|

∫
Ω

|log ε|2
∣∣∣∆u+

u

ε2
(1− |u|2)

∣∣∣2 ≥ ‖∇YW (a,d)‖2
Y = π|∇W (a,d)|2.

The relation (3.4), which relates the velocity of the curve u(t) to the velocity of the under-
lying vortices, is not true in general, however it is true when one restricts to uε which has
n limiting vortices of degrees ±1 and such that

(3.6) Fε(u) ≤ πn|log ε|+ C.

This is sufficient since we only focus on well-prepared configurations, i.e. such that Eε(u) ≤
C, which implies (by decrease of the energy) that Fε(u) ≤ πn|log ε|+C for all subsequent
times, as long as the number of vortices remains equal to n. This analysis thus breaks
down when some vortices collide or exit from the domain. The inequality (3.4) under the
assumption (3.6) was first proved in [Je], and is also a corollary of a more general lower
bound proved in [SS3] which has the form of a “product estimate”, and which we will see
again in other examples below.

On the other hand the relation (3.5) which relates the slope of Eε to the gradient of
the renormalized energy, was proved in [Li]. We gave a proof in [SS1] using the approach
outlined after Theorem 1, item 6, i.e. via the construction of a deformation. With these
two conditions proved, one recovers the dynamical law of vortices obtained in [JSo, Li] by
PDE methods.

Theorem 3. Let uε be a family of solutions to (3.2) with either Dirichlet or Neumann
boundary condition, such that curl 〈iuε,∇uε〉(0) ⇀ 2π

∑n
i=1 diδa0

i
as ε → 0 where a0

i are
distinct points in Ω and di = ±1. Assume also uε(0) is well-prepared in the sense

Fε(uε(0)) = πn|log ε|+W (a0,d) + o(1) as ε→ 0.

Then there exists a time T∗ > 0 such that curl 〈iuε,∇uε〉(t) ⇀ 2π
∑n

i=1 diδai(t) for all
t ∈ [0, T∗) and

dai
dt

= − 1

π
∂iW (a(t),d), ai(0) = a0

i

with the di’s remaining constant. T∗ is the minimum of the collision time and the exit time
(in the Neumann case) under this law. Moreover, the solution “remains well-prepared” in
time.

We make several remarks.

1. If (3.2) is scaled differently in time, then it is shown that the limiting vortices either
do not move at all, or converge instantaneously to a critical configuration of W (i.e.
such that ∇W = 0). This is naturally obtained by including the time rescaling in
the metric Xε.
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2. In [SS1] the method above was also applied to the case of the parabolic Ginzburg-
Landau equation but with a gauge field and an applied magnetic field. That result
was new, and in addition did not follow from the existing methods for the case
without magnetic field.

3. As mentioned above, this method is naturally limited to the interval of time before
collisions or exits. This is because at those instances, the solutions cease to be
“well-prepared” and instantaneous energy excess appears, causing in particular (3.4)
to break down. We will see this is a common feature in the applications. On the
other hand, the limiting behaviour of vortices has been understood passed collision
times, via an energy-based method (such as here) in [Se2], and via PDE methods
[BOS2, BOS3, BOS4]. This required a better understanding of the possible vortex
structure for configurations for which lim supε→0 ‖∇XεEε(uε)‖Xε <∞, and obtaining
a stronger lower bound than (3.5) when energy-excess appears due to collisions.

This approach of Γ-convergence of gradient flows was also followed by M. Kurzke [Ku]
for deriving the dynamical law of boundary vortices in a thin-film model for micromagnet-
ics. The functional there is

1

2

∫
Ω

|∇m|2 +
1

2ε

∫
∂Ω

(m · ν)2

where m ∈ H1(Ω, S1) and ν is the normal to the boundary. Using a lifting m = eiu, the
functional gets transformed into

Eε(u) =
1

2

∫
Ω

|∇u|2 +
1

2ε
sin2(u− g)

where ν = ieig, and this time u ∈ H1(Ω,R). The function g, phase of ν, must jump by
−2π, but the paper [Ku] considers the more general case where it jumps by −2πD for
some integer D. The functions uε with energy bounded by C|log ε| converge to harmonic
functions on Ω with singularities on the boundary, more precisely to functions u∗ satisfying

∆u∗ = 0 in Ω
sin(u∗ − g) = 0 on ∂Ω
u∗ jumps by − πdi at ai ∈ ∂Ω

The sense of convergence is then defined as follows: uε
S
⇀ (a,d) if u converges to the u∗

above. A renormalized energy W (a,d) exists just as in the above case of Ginzburg-Landau,
with the main difference that it is defined for configurations of points + degrees on the
boundary only. The result in [Ku] is then the analogue as the one for Ginzburg-Landau
vortices, more precisely: if uε(t) are solutions of the L2 gradient flow for Eε,

(3.7)

{
λε∂tuε = ∆uε in Ω× (0, T )
∂uε
∂ν

= − 1
2ε

sin 2(uε − g) on ∂Ω.
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which are initially well-prepared and have initial vortices with degrees di = ±1, then the
limiting evolution law of (a(t),d) is

dai
dt

= − 2

π
∂aiW (a(t),d)

if λε = 1
|log ε| . If λε � 1

|log ε| the vortices converge to their initial locations, i.e. there is no

motion; and if λε � 1
|log ε| they converge instantaneously to a collection of boundary points

b with ∇W (b,d) = 0, i.e. to a critical point of W . The two conditions for Γ-convergence
of gradient flows are proved through arguments analogous to the above arguments from
[SS1]: proof of a “product estimate” for (1.3), and proof of (1.4) via construction of a
deformation.

3.2 Cahn-Hilliard

This section covers the work on Nam Le [Le1], who applied the scheme in a formal manner
to the convergence of the well-known Cahn-Hilliard equation (which is a model for phase-
separation phenomena):

(3.8)


∂tuε = −∆vε in Ω

vε = ε∆uε − 1
ε
f(uε) in Ω

∂uε
∂ν

= ∂vε
∂ν

= 0 on ∂Ω

uε(x, 0) = u0
ε(x)

Here uε and vε are real-valued functions on Ω × [0,+∞), Ω is a smooth bounded
domain in RN , N ≥ 2, f(u) = −2u(1 − u2) is the derivative of the double-well potential
W (u) = 1

2
(1 − u2)2. As ε → 0, the phases uε ∼ 1 and uε ∼ −1 become separated by

a sharp interface γ(t), and solutions to the Cahn-Hilliard equation converge to solutions
to the Mullins-Sekerka motion (also called two-phase Hele-Shaw), in the sense that vε
converges to v solving the following free-boundary problem

(3.9)



∆v = 0 in Ω\γ(t)

v = σκ on γ(t)
∂v
∂ν

= 0 on ∂Ω

∂tγ = 1
2

[
∂v
∂ν

]
γ(t)

on γ(t)

γ(0) = γ0.

Here κ is the mean curvature of the hypersurface γ(t), σ =
∫ 1

−1

√
W (s)/2 ds = 2

3
,
[
∂v
∂ν

]
γ(t)

denotes the jump of the normal derivative of v accross the hypersurface γ(t), and γ0 is the
interface separating {u0 = 1} and {u0 = −1} where u0 ∈ BV (Ω, {±1}) is the limit (after
extraction if necessary) of the initial u0

ε.
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The convergence of solutions of Cahn-Hilliard to Mullins Sekerka motion was derived
formally by Pego via matched asymptotic expansions in [Pe], and proved rigorously by
Alikakos-Bates-Chen in [ABC] under the assumption of a smooth classical solution to (3.9)
(see also other references in [Le1]). It is well-known on the other hand that the Cahn-
Hilliard equation is a gradient-flow. More precisely it is the H−1 gradient-flow of the
Allen-Cahn (or Modica-Mortola) energy

(3.10) Eε(u) =
1

2

∫
Ω

ε|∇u|2 +
(1− u2)2

ε
.

It is well-known [MM] that Eε Γ-converges the perimeter functional. On the other hand,
one can observe that (3.9) is a gradient flow for the perimeter functional. So the ques-
tion of convergence of (3.8) to (3.9) can be phrased as proving that solutions of the H−1

gradient flow of (3.10) converge to solutions of the gradient flow (for some structure to be
determined) of the Γ-limit of (3.10).

Let us now describe more precisely how to fit this problem into the abstract framework,
following [Le1]. Using the notation of Theorem 1, the functionals Eε are as in (3.10),
defined over H1(Ω). The structure Xε should be taken to be H−1

n (Ω) defined as follows:
letting (H1(Ω))∗ denote the dual to H1(Ω), and 〈, 〉 denote the pairing between H1(Ω) and
(H1(Ω))∗, then

H1
n(Ω) =

{
f ∈ (H1(Ω))∗|∃g ∈ H1(Ω), such that 〈f, ϕ〉 =

∫
∇g · ∇ϕ ∀ϕ ∈ H1(Ω)

}
Formally, H−1

n consists of all distributions f of the form f = ∆u where u ∈ H1(Ω) and
and ∂u

∂ν
= 0 on ∂Ω. The function g in the definition above can be chosen to have mean zero

and is then denoted −∆−1
n f . H−1

n (Ω) is equipped with the Hilbert space inner product

〈u, v〉H−1
n (Ω) =

∫
Ω

∇(∆−1
n u) · ∇(∆−1

n v).

The structure Xε is then taken to be this Hilbert space H−1
n (Ω). Simple calculations give

indeed that

∇H−1
n (Ω)Eε(u) = −∆

(
−ε∆u+

1

ε
f(u)

)
.

So (3.8) is the gradient flow of Eε for the H−1
n (Ω) structure. Moreover

(3.11) ‖∇H−1
n (Ω)Eε(u)‖2

H−1
n (Ω)

= ‖∆vε‖2
H−1
n (Ω)

= ‖∇vε‖2
L2(Ω)

where vε is as in (3.8).
Next, the limiting space should be taken as the space of finite perimeter hypersurfaces,

which are sufficiently regular (at this point things are formal). It is seen as a formal Hilbert

manifold and the structure Yγ to be taken at each γ on that space is H
−1/2
n (γ) defined as
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follows: for every f̃ ∈ H1(Ω) such that
∆f̃ = 0 in Ω\γ
f̃ = f on γ
∂f̃
∂ν

= 0 on ∂Ω

we set
‖f‖H1/2(γ) = ‖∇f̃‖L2(Ω)

(this definition is unambiguous by trace theory if γ is regular enough). We note that
‖f‖H1/2(γ) = 0 iff f = cst on γ, and we take the quotient under the relation f1 ∼ f2

if f1 − f2 = cst on γ. Then H
1/2
n (γ) = H1/2(γ)/ ∼ becomes a Hilbert space equipped

with this norm (H
1/2
n (γ) is thus roughly speaking the space of traces on γ of H1(Ω)). For

f ∈ H1/2(γ) we define

∆γf = −

[
∂f̃

∂ν

]
γ

and we may check that

(3.12) 〈u, v〉
H

1/2
n (γ)

= −
∫
γ

v∆γu dHN−1.

Finally H
−1/2
n (γ) is defined as the dual of H

1/2
n (γ). We may check that H

−1/2
n (γ) is a

Hilbert space with the inner product

(3.13) 〈u, v〉
H
−1/2
n (γ)

= 〈∆−1
γ u,∆−1

γ v〉
H

1/2
n (γ)

.

The limiting functional defined on the limiting space Yγ is

F (γ) = 2σHN−1(γ).

It is the Γ-limit of Eε as ε→ 0, relative to the sense of convergence uε
S
⇀ γ if uε → u in L1

and γ = ∂{u = 1}. The gradient of F (γ) with respect to the structure ‖·‖2
Yγ

= 4‖·‖2

H
−1/2
n (γ)

can be computed and is found (if γ is a C3 parametrized hypersurface) to be

∇YγF (γ) =
1

2
∆γ(σκ)n

where n is the unit normal to γ. Moreover, using (3.12)–(3.13),

(3.14) ‖∇YγF (γ)‖2
Yγ = ‖∆γ(σκ)‖2

H
−1/2
n (γ)

= σ2‖κ‖2

H
1/2
n (γ)

.

So if γ is C3 the Mullins-Sekerka law (3.9) coincides with the gradient flow of F for
the structure Yγ. We are thus (under regularity assumptions on γ) in the framework of
Theorem 1, formally (since the limiting space is infinite dimensional).
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The first extra condition (1.3) in Theorem 1 here becomes showing that if uε(t)
S
⇀ γ(t)

on [0, T ) then for all 0 ≤ s < T

(3.15)

∫ s

0

‖∂tuε‖2
H−1
n (Ω)

(t) dt ≥ 4

∫ s

0

‖∂tγ(t)‖2

H
−1/2
n

ds

and the second condition (1.4) becomes (in view of (3.11)–(3.14)) showing that if uε
S
⇀ γ,

then

(3.16) lim inf
ε→0

‖∇vε‖2
L2(Ω) ≥ σ2‖κ‖2

H
1/2
n (γ)

.

The first condition (3.15) is a direct consequence of the assumed convergence and weak
lower semi-continuity. The second condition is much more interesting: it bounds from
below the H1 norm of the chemical potential vε by the H

1/2
n norm of the curvature of

the limiting interface. This actually led in [Le1] to the formulation of a Γ-convergence
conjecture: is it true that as ε→ 0

(3.17) u 7→
∫

Ω

∣∣∣∣∇(ε∆u− 1

ε
f(u)

)∣∣∣∣2 Γ− converges to γ 7→ σ2‖κ‖2

H
1/2
n (γ)

?

A related conjecture was made by De Giorgi: is is true that

(3.18) u 7→
∫

Ω

1

ε

∣∣∣∣ε∆u− 1

ε
f(u)

∣∣∣∣2 Γ− converges to 2σ‖κ‖2
L2(γ)?

The latter question was answered positively (under the additional conditions that Eε(uε) ≤
C) by Röger and Schätzle [RS] in dimensions 2 and 3. We will see in Section 3.3 that it
comes out naturally from the question of convergence of Allen-Cahn to mean-curvature
motion. Now (3.17) can be seen as a higher-order derivative analogue of (3.18), and
comes out naturally (as we just saw) from the question of convergence of Cahn-Hilliard to
Mullins-Sekerka.

In [Le1] (3.17) is proved in dimension N ≤ 3 (or in higher dimension provided an
equipartition result holds) if γ is C3. (There was another assumption of constant multi-
plicity which can in fact be removed, according to [Sc]: ‖κ‖

H
1/2
n (γ)

<∞ implies the constant

multiplicity – see [Le2] for the details). Note that a full Γ-convergence result is not really
needed to use our scheme, only a Γ-liminf relation is needed. However in [Le1] Le also
proved the Γ-limsup, which is a question of independent interest.

With the result (3.17) and (3.15), it is established in [Le1], in dimension N ≤ 3, that
if uε is a sequence of solutions to (3.8) with

1. Eε(uε) ≤ C

2. uε(0)
S
⇀ γ0

3. limε→0Eε(uε(0)) = F (γ0)
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then there exists T∗ > 0 such that on [0, T∗), we have uε(t)
S
⇀ γ(t) and provided γ(x, t) ∈ C3

in space-time, then γ is a solution to (3.9) in the classical sense. Moreover, T∗ can be chosen
as the minimum of the self-collision time and the exit time from Ω under the evolution (3.9).
We thus encounter the same limitation as in the case of collisions or exit for Ginzburg-
Landau vortices.
The method of this proof was extended by N. Le in [Le2] to treat the case of Ohta-
Kawasaki equation, a nonlocal variant of Cahn-Hilliard (related to the modelling of “diblock
copolymers”), for which it is noteworthy that no maximum principle holds. The results
obtained there are new.

Of course, the study described above leaves open many questions:

1. Is the conjecture (3.17) true in all dimensions without assumptions?

2. We have worked in a formal Hilbert manifold setting, however it would be better to
work on the associated metric space where the distance is the formal geodesic distance
for H

−1/2
n (γ). Is it possible to find a suitable definition for this metric space that does

not require regularity of γ and that bypasses the geodesic definition? Is it possible to
find a suitable weak notion of solutions coinciding with curves of maximal slope on
that metric space so that something like Theorem 2 could be applied, without having
to assume any regularity on γ? In particular does an upper bound on the left-hand
side of (3.17) allow to obtain the sufficient regularity on γ?

3.3 Allen-Cahn

It is interesting to look into the case of the Allen-Cahn equation in light of the other cases
we have examined: Ginzburg-Landau and Cahn-Hilliard, and in the light of the closely
related recent progress in [MR1] on the Allen-Cahn action functional. We use the notation
of Section 3.2. The Allen-Cahn equation is the PDE

(3.19) ∂tu = ∆u− 1

ε2
f(u)

where u is real valued.
Just like Cahn-Hilliard, it is a gradient-flow of the (real-valued) Allen-Cahn energy

(3.10), but for an L2 structure (like Ginzburg-Landau). The structure Xε to consider is
easily seen to be given by ‖ · ‖2

Xε
= ε‖ · ‖2

L2(Ω) structure. Indeed,

∇XεEε(u) = −∆u+
1

ε2
f(u).

It is a result due to several authors [DMS, BK, Ch, ESS, I] that the interfaces (between the
values ±1) of solutions to the Allen-Cahn equation converge to solutions of mean curvature
motion (in the sense of Brakke), formally

(3.20) ∂tγ = H
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where H is the mean curvature vector of γ. Note a very recent paper [Sa] gives a very nice
and short proof of this convergence result, building on the result of [RS]. The result of
[MR1] on the Γ-convergence of the Allen-Cahn action functional (see item 7 of the remarks
of Section 1) also yields as a byproduct this convergence result. [MR2] also extends the
study to the convergence of the Allen-Cahn equation with forcing right-hand side.

One may check that (3.20) is the formal gradient flow of the perimeter functional
F (γ) = 2σHN−1(γ) (itself Γ-limit of Eε in the same sense as in Section 3.2), with respect
to structure ‖ · ‖2

Yγ
= 2σ‖ · ‖2

L2
γ
. This is more precisely defined as follows: tangent vectors

to a hypersurface γ are given by vector fields X defined on γ and one sets (if γ is regular
enough)

‖X‖2
Yγ = 2σ

∫
γ

|X|2.

The first variation of the area of γ is equal to its mean curvature vector (oriented outwards),
this is equivalent to saying that the differential of HN−1(γ) along the direction X is

−
∫
γ

X ·H,

where H is oriented inwards. So we may indeed write (formally)

∇YγF (γ) = −H.

In the scheme of Γ-convergence of gradient flows, the two extra conditions are in this

setting: if uε(t)
S
⇀ γ(t),

(3.21) lim inf
ε→0

∫ s

0

ε‖∂tuε‖2
L2(Ω)(t) dt ≥

∫ s

0

‖∂tγ‖2
Yγ (t) dt = 2σ

∫ s

0

∫
γ(t)

|∂tγ|2 dt.

and if uε
S
⇀ γ

(3.22) lim inf
ε→0

∫
Ω

ε

∣∣∣∣∆uε − 1

ε2
f(uε)

∣∣∣∣2 ≥ 2σ

∫
γ

|H|2.

It turns out that both these relations are known to be true from [RS, MR1], once phrased in
a suitable setting. As we mentioned earlier (3.22) was obtained in [RS] as part of the proof
of the De Giorgi conjecture of Γ-convergence of the left-hand side of (3.22) to the Wilmore
functional. (3.21) is proved in [MR1]. The problem with the way they are phrased is that
first of all the interface γ need not be smooth, so one should use the theory of varifolds
and view its mean curvature H in the generalized sense; second of all γ may have foldings
and “hidden boundaries” corresponding to higher multiplicity of the associated varifold.
Because of that we should resort to the definition of L2 flows introduced in [MR1], which
allows to prove (3.22) even with multiplicity.

Let us now present the framework of [MR1]:
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Definition 6. Let µt be any family of integer rectifiable Radon measures such that µ :=
L1⊗µt defines a Radon measure on [0, T ]×Ω and such that µt has a weak mean curvature
H(t, ·) ∈ L2(µt) for almost all t ∈ (0, T ). If there exists a positive constant C and a vector
field v ∈ L2(µ,RN) such that v(t, x) ⊥ Txµ

t for µ-almost all (t, x) ∈ [0, T ]× Ω and∣∣∣∣∫ T

0

∫
Ω

(∂tη +∇η · v)dµt dt

∣∣∣∣ ≤ C‖η‖C0

for all η ∈ C1
c ((0, T )× Ω̄), then µt is called an L2 flow and v is called a generalized velocity

vector.

They also show that any generalized velocity is (in a set of good points) uniquely
determined by the evolution µt. With this definition the definition of mean curvature flow
becomes

v = H

where v is a generalized velocity vector and H a generalized mean curvature vector, and
it is similar to Brakke’s formulation.

Note that in view of the proof of Theorem 1 it suffices to prove rather that along families
of solutions we have

lim inf
ε→0

(∫ s

0

ε‖∂tuε‖2
L2(Ω)(t) +

∫
Ω

ε

∣∣∣∣∆uε(t)− 1

ε2
f(uε(t))

∣∣∣∣2 dt
)

≥ 2σ

∫ s

0

∫
γ(t)

|∂tγ|2 + 2σ

∫
γ(t)

|H|2.

So we may assume, without loss of generality, that first Eε(uε(t)) ≤ C and second

(3.23) lim sup
ε→0

∫ s

0

(
ε‖∂tuε‖2

L2(Ω)(t) +

∫
Ω

ε

∣∣∣∣∆uε(t)− 1

ε2
f(uε(t))

∣∣∣∣2
)
dt <∞.

Let us then set for such uε,

µtε =
1

2σ

(
1

2
|∇uε(t)|2 +

1

ε
W (uε(t))

)
which is for each t ∈ (0, T ) a Radon measure on Ω̄ (the energy measure). Then for a
subsequence, as ε → 0, µtε → µt for almost all t, where from [RS, HT], µt are integer
rectifiable and have a (generalized) mean curvature. It is a main theorem of [MR1] that
under (3.23) and Eε(uε(t)) ≤ C, µt admit a generalized velocity v ∈ L2(µ,RN) and that

(3.24) lim inf
ε→0

∫ s

0

∫
Ω

ε|∂tuε|2 dt ≥ 2σ

∫
[0,s]×Ω

|v|2 dµ.

This is the rigorous version of (3.21).
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The rigorous version of (3.22) is the main theorem of [RS] which states that in dimension

N ≤ 3, if Eε(uε) ≤ C and
∫

Ω
ε
∣∣∆uε − 1

ε2
f(uε)

∣∣2 ≤ C then defining µε as above, µε
converges up to extraction to µ which is an integer multiplicity rectifiable varifold, with a
generalized mean curvature vector H and

(3.25) lim inf
ε→0

∫
Ω

ε

∣∣∣∣∆uε − 1

ε2
f(uε)

∣∣∣∣2 ≥ 2σ

∫
Ω

|H|2 dµ.

Finally, in order to deduce in dimension ≤ 3 the convergence of Allen-Cahn to the Brakke
flow (as defined in [MR1]) from the scheme, it suffices to show (using the definition of the
velocity and mean curvature) that∫ s

0

∫
Ω

H · v dµ =

∫
Ω

dµ0 −
∫

Ω

dµs,

which is true for regular flows. Note that here
∫

Ω
dµ replaces the perimeter functional.

To finish this subsection, we point to an interesting negative result for a problem also
related to mean curvature flow. In [NV] it is shown that the functionals defined over sets
of finite perimeter:

Fε(E) = Per(E) +
1

ε

∫
E

U(
x

ε
) dx

where U is a given function, Γ-converge as ε → 0 to an anisotropic perimeter functional
(with anisotropy depending on U), while the solutions to the gradient flows of Fε do not
converge to the solution of limiting (anisotropic curvature) flow. This demonstrates again
the need for extra conditions to ensure the convergence of gradient flows, and the possibility
of failure of these conditions.

3.4 Ginzburg-Landau with large number of vortices

In this section we move to purely formal considerations and conjectures.
When the assumption Fε(u) ≤ C|log ε| is dropped in the Ginzburg-Landau energy

with or without magnetic field, the number of vortices can blow up as ε → 0. This is for
example the case for minimizers of the energy with magnetic field, with an external field
of strength |log ε| (see [SS4]).

In this situation, configurations are best described through their limiting vortex density
µ, limit of the measures

2π
∑

i diδai∑
i |di|

,

where ai’s are the vortex locations and di their degrees. An equivalent (and more rigorous)

way of expressing this is to consider the sense of convergence (uε, Aε)
S
⇀ µ if

1

hex

(curl 〈iuε,∇Aεuε〉+ curlAε) ⇀ µ
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in the weak sense of measures, where ∇A denotes ∇− iA (see [SS4], Chapter 6). The (full)
Ginzburg-Landau energy with magnetic field is

(3.26) Gε(u,A) =
1

2

∫
Ω

|∇Au|2 + |curlA− hex|2 +
1

2ε2
(1− |u|2)2.

Here A : Ω→ R2 is the magnetic potential and hex is the intensity of the applied magnetic
field, assumed here for simplicity to be equal to λ|log ε|, where λ is a fixed constant.

The Γ-convergence of this full Ginzburg-Landau energy as ε → 0 was established in
[SS5] (see also [SS4]). The result is that in this situation Gε/h

2
ex Γ-converges (for the sense

(uε, Aε)
S
⇀ µ above) to the functional

(3.27) Fλ(µ) =
1

2λ

∫
Ω

|µ|+ 1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2

where hµ is deduced from µ through

(3.28)

{
−∆hµ + hµ = µ in Ω
hµ = 1 on ∂Ω.

The purely dissipative evolution of the vortices is given by solving the time-dependent
parabolic Ginzburg-Landau, as proposed by Gorkov-Eliashberg

(3.29)


∂tu+ iuΦ = ∇2

Au+ u
ε2

(1− |u|2) in Ω
∂tA+∇Φ = ∇⊥h+ 〈iu,∇Au〉 in Ω
〈iu,∇Au〉 · ν = 0 on ∂Ω
h = hex on ∂Ω

We will not go into details of this equation, suffice it to say that this is the version of (3.2)
with magnetic field and gauge-invariance, and that it is the gradient flow of (3.26) with
respect to the L2(Ω)× L2(Ω) structure.

Chapman-Rubinstein-Schatzman formally established in [CRS] that in the ε→ 0 limit,
the evolution of the limiting µ(t) should be given by the equation

(3.30) ∂tµ− div (∇hµ|µ|) = 0.

With L. Ambrosio we established in [AS] that, restricted to the space of positive measures
µ, (3.30) is the gradient flow of (3.27) for the 2-Wasserstein structure on positive (without
loss of generality probability) measures, and we established some existence and uniqueness
results using that structure, following the method of [AGS]. In [AMS] we extend this
approach to the case of general signed measures (but with partial results only). For the
definition of the Wasserstein metric, the reader can refer to [AGS, Vi]. Deriving rigorously
(3.30) as the ε→ 0 limit of (3.29) is still a challenging open problem. Let us see how this
question would fit in our Γ-convergence of gradient flows framework.
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First of all, the Γ-convergence result we have is for Eε := Gε/h
2
ex. We saw that (3.29)

is the L2 × L2 gradient flow for Gε, so it is the gradient flow for Fε for the Xε structure
given by

‖(·, ·)‖2
Xε =

1

h2
ex

‖(·, ·)‖2
L2(Ω)×L2(Ω).

The formal Hilbert manifold structure associated to the Wasserstein metric is the L2
µ scalar

product at each point µ. It is established in [AGS] that µ(t) is an absolutely continuous
curve on the space of probabilities if and only if it solves a continuity equation

∂tµ+ div (vtµ(t)) = 0

with vt ∈ L2
µ(t). The metric derivative (with respect to the Wasserstein distance) in the

sense of Section 2 is |µ′|(t) = ‖vt‖L2
µ(t)
. (Note the similarity with L2 flows in Section 3.3.)

On the other hand, we know from [SS3] that the µ(t) obtained as limit of (uε(t), Aε(t))
solution to (3.29) (or even not necessarily solution) solves a continuity equation

∂tµ+ div V = 0

where V is the “Jacobian velocity” associated to µ. The condition (1.3) in the scheme is
thus (formally) in this setting

(3.31) lim inf
ε→0

1

h2
ex

∫ s

0

|∂tuε|2 + |∂tAε|2 dt ≥
∫ s

0

|µ′|2(t) dt =

∫ s

0

∥∥∥∥Vµ
∥∥∥∥2

L2
µ

dt.

To prove that this holds along solutions of (3.29), we can use try to use the product-
estimate established in [SS3] Theorem 3, which states that for any X ∈ C0

c ([0, s]×Ω,R2),
we have (without magnetic field, to simplify matters)

(3.32) lim inf
ε→0

1

h2
ex|log ε|2

(∫
[0,s]×Ω

|∂tuε|2
∫

[0,s]×Ω

∫
Ω

|X · ∇uε|2
)
≥
∣∣∣∣∫

[0,s]×Ω

V ·X⊥
∣∣∣∣2

On the other hand we expect that

(3.33)
1

hex|log ε|

∫
Ω

|X · ∇uε|2 ∼
1

2

1

hex|log ε|

∫
Ω

|X|2|∇uε|2 ∼
1

2

∫
Ω

|X|2 dµ.

At this point we see that the scaling in (3.31) is not right (unless 2|log ε| = hex i.e. λ = 2).
In order to fix this we need to rescale the original equation (3.29) in time by a factor of
λ/2 before we can get convergence to the desired limiting flow (this is an illustration of
how the scheme indicates which time-scaling to use). So instead of (3.29) we consider the
same equation with left-hand sides λ

2
∂tu and λ

2
∂tA. Then it is the gradient flow for Eε for

(the right) Xε which is 1
2hex|log ε|‖(·, ·)‖

2
L2×L2 , and we can hope that (3.31) is true: it would

follow from (3.32) by duality, just like in Section 3.3.
The relation (3.33) should hold provided there is no excess energy. Indeed, first of

all
∫
|∇uε|2 should not really be understood as the energy over the whole domain but
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only as the concentration near the vortices (the defect measure for the L2 convergence
of ∇uε as in [SS3]). Then the first equality in (3.33) is expected to hold if there is no
excess energy, as in Corollary 4 of [SS3]. This corresponds to the fact that then the
vortex core energy is isotropic (because the optimal case is that of radial vortices), then∫
|∇u · e|2 =

∫
|∇u · e⊥|2 = 1

2

∫
|∇u|2 along any unit direction e. This is the equivalent of

the “equipartition of energy” for Allen-Cahn. The second equality in (3.33) corresponds to
establishing that 1

2hex|log ε| |∇uε|
2 ⇀ 1

2
µ in the sense of measures. This is the same as saying

that the energy measure (the limit of the defect measure of 1
2hex|log ε| |∇uε|

2) coincides with
the topological measure, which is the same as saying there is no excess energy.

The second relation (1.4) in the scheme is here (formally): if (uε, Aε)
S
⇀ µ then

(3.34)
1

2hex|log ε|

∫
Ω

|∆u+
u

ε2
(1− |u|2)|2 + |∇⊥h+ 〈iu,∇Au〉|2 ≥

∫
Ω

|∇hµ|2 dµ.

Indeed the formal gradient of (3.27) with respect to the Wasserstein metric is ∇hµ, which
should be measured in L2

µ. But the right-hand side of (3.34) does not make sense if µ is
not a regular measure. In [AS], we show how this can be replaced by a slope that allows
to give a weaker meaning to

∫
Ω
|∇hµ|2 dµ. The relation (3.34) can potentially be proved

following the method of [SS2]: this works formally, provided the same conditions as above
hold, i.e. the energy measure and the topological measure can be identified.

This example thus has a lot of ressemblance with those examined above. In partic-
ular the issues that one faces to establish the sufficient conditions (1.3)-(1.4) are similar
questions of equipartition of energy, energy-excess, and identification of the energetic and
topological measures. In the case of Allen-Cahn and Cahn-Hilliard this is the question of
multiplicity of interfaces, and in the case of Ginzburg-Landau this is the question of col-
lisions or exit of vortices, which can happen instantaneously (in the case of large number
of vortices) or not. One gets into a difficult loop: the Γ-convergence of gradient flows will
establish that no energy-excess appears, but to prove it holds, we need to control precisely
the energy-excess.

It shouldn’t be a surprise to encounter these issues, which are usual in the study of
these problems. In some cases one can succeed in getting around them or solving them, as
done for example in [I, BOS1, MR1, WT, SS2].

Note that this scheme of Γ-convergence of gradient flows was initially introduced to
understand via a general underlying principle “why” solutions to gradient flows converge
to their limiting counterpart. All in all, even when it cannot be applied rigorously, this
scheme provides an indication of inequalities (the conditions (1.3)–(1.4)) which should
hold and thus opens the way to many potential conjectures. In all the examples we have
examined (Ginzburg-Landau with finite number of vortices, Allen-Cahn, Cahn-Hilliard), it
turns out that these conjectures have already been proved or seem to be true. Finally, giving
rigorous applications of this scheme, in particular applying it in the metric space setting,
and finding other examples of interest, also potentially leads to many open questions.

26



References

[ABC] N. Alikakos, P. Bates, X. Chen, Convergence of the Cahn-Hilliard equation to the
Hele-Shaw model. Arch. Rational Mech. Anal. 128 (1994), no. 2, 165-205.

[Am] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci, XL Mem. Mat. Appl.
(5) (1995) 191-246.
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