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Test for poolability of the data

Introduction I

Restricted model: represents a behavioral equation with the same parameters
over time and across individuals.

Unrestricted model: is the same behavioral equation but with different parameters
across time or individuals.

Note: we restrict to test poolability of the data for the case of pooling across individuals
(pooling over time can be obtained in a similar fasion).

The restricted panel data regression model:

yit = α+ X T
it β + uit i = 1, . . . ,N, t = 1, . . . ,T ,

uit = µi + νit i = 1, . . . ,N, t = 1, . . . ,T .

The unrestricted panel data regression model:

yit = αi + X T
it βi + uit i = 1, . . . ,N, t = 1, . . . ,T ,

uit = µi + νit i = 1, . . . ,N, t = 1, . . . ,T .
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Test for poolability of the data

Introduction II

Why do we pool data?

Pooling lead to widen database, and therefore we can obtain better and more
reliable estimates of the parameters.

Panel data allows to study individual and time effects.

Panel data models are popular in applied economics (they allow to control for
individual heterogeneity).
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Test for poolability of the data

Vector formulation of restricted and unrestricted model I

The unrestricted panel data regression model:

yi = αi + Xiβi + ui = Ziδi + ui , i = 1, . . . ,N,

where yT
i = (yi1, . . . , yiT ), Zi = (ιT ,Xi ) and δi = (αi , βi ).

yi : T × 1, Xi : T × K , Zi : T × (K + 1), δi : (K + 1) × 1, ui : T × 1.

The restricted panel data regression model:

y = αιNT + Xβ + u = Zδ + u,

where Z T = (Z T
1 , . . . ,Z

T
N ) and uT = (uT

1 , . . . , u
T
N ).

y : NT × 1, X : NT × K , Z : NT × (K + 1), δ : (K + 1) × 1, u : NT × 1.

We want to test the hypothesis H0 : δi = δ for all i = 1, . . . ,N.
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Test for poolability of the data

Vector formulation of restricted and unrestricted model II

The unrestricted model can be reformulated as:

y =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZN




δ1
δ2
...
δN

+ u = Z∗δ∗ + u.

In this case Z = Z∗I∗ with I∗ = (ιN ⊗ IK ′ ), K
′

= K + 1.
y : NT × 1, Z∗ : NT × N(K + 1), δ∗ : N(K + 1) × 1, u : NT × 1.

We aim to compare restricted and unrestricted in the forms derived above:

y = Zδ + u

y = Z∗δ∗ + u.
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Test for poolability of the data

Test for poolability under assumption u ∼ N(0, σ2INT ) I

For the restricted model under u ∼ N(0, σ2INT ) the minimum variance unbiased (MVU)
estimator for δ is:

δ̂ols = δ̂mle = (Z T Z )−1Z T y

and therefore

y = Z δ̂ols + e

e = y − Z δ̂ols = (INT − Z (Z T Z )−1Z T )y = My = M(Zδ + u) = Mu.

For the unrestricted model under u ∼ N(0, σ2INT ) MVU estimator for δi is:

δ̂i,ols = δ̂i,mle = (Z T
i Zi )

−1Z T
i yi

and therefore

yi = Zi δ̂i,ols + ei

ei = yi − Zi δ̂i,ols = (IT − Zi (Z T
i Zi )

−1Z T
i )yi = Mi yi = Mi (Ziδi + ui ) = Mi ui .
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Test for poolability of the data

Test for poolability under assumption u ∼ N(0, σ2INT ) II

For the unrestricted model given as y = Z∗δ∗ + u under u ∼ N(0, σ2INT ) MVU
estimator for δi is:

δ̂∗ols = δ̂∗mle = (Z∗T Z∗)−1Z∗T y

and therefore

y = Z∗δ̂∗ols + e∗

e∗ = y − Z∗δ̂∗ols = (INT − Z∗(Z∗T Z∗)−1Z∗T )y = M∗y = M∗(Z∗δ∗ + u) = M∗u.

It can be shown that

M∗ =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · MN

 ,

M and M∗ are idempotent and symmetric matrices with MM∗ = M∗.

Barbora Petrová Test of hypotheses with panel data



Test for poolability of the data

Test for poolability under assumption u ∼ N(0, σ2INT ) III

Chow test extended to the case of N linear regressions (Baltagi (2005))

Under H0 : δi = δ for i = 1, . . . ,N and u ∼ N(0, σ2INT ), the statistic Fobs given as

Fobs =
(eT e − e∗T e∗)/(tr(M)− tr(M∗)

e∗T e∗/tr(M∗)
=

(eT e − eT
1 e1 − . . .− eT

Nen)/(K
′
(N − 1))

(eT
1 e1 + . . .+ et

Nen)/N(T − K ′ )

is distributed as an F ((N − 1)K
′
,N(T − K

′
). Hence the critical region for this test is

defined as {Fobs > F ((N − 1)K
′
,N(T − K

′
;α0)} where α0 denotes the level if

significance of the test.

Proof. Using properties of matrices M and M∗ one can easily derive:

eT e − e∗T e∗ = (Mu)T (Mu) − (M∗u)T (M∗u) = uT Mu − uT M∗u = uT (M − M∗)u,

e∗T e∗ = uT M∗u.

Since M∗ and (M − M∗) are idempotent and u ∼ N(0, σ2INT ), uT (M − M∗)u/σ2 follows χ2

distribution with tr(M − M∗) degrees of freedom, and similarly, uT M∗u/σ2 follows χ2 distribution
with tr(M∗) degrees of freedom.
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Test for poolability of the data

Test for poolability under assumption u ∼ N(0, σ2INT ) IV

Matrices M and M∗ are idempotent and therefore:

tr(M) = r(M) = NT − K
′
,

tr(M∗) = r(M∗) = NT − K
′
N = N(T − K

′
),

tr(M − M∗) = tr(M) − tr(M∗) = K
′
(N − 1).

To finish the proof it remains to note that uT (M − M∗)u and uT M∗u are independent variable,
(M − M∗)M∗ = 0. Statistic Fobs , as the ration of two independent random variables with χ2

distribution both divided by their degrees of freedom, has to follow F distribution.
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Test for poolability of the data

Test for poolability under assumption u ∼ N(0,Ω) I

In the general case u ∼ N(0,Ω) one seeks for a suitable transformation of the model
so as the Chow test can be applied. Namely, consider that Ω = σ2Σ and multiply
restricted as well as unrestricted models by Σ−1/2, then we get:

ȳ = Z̄δ + ū,

ȳ = Z̄∗δ∗ + ū,

where ȳ = Σ−1/2y , Z̄ = Σ−1/2Z , ū = Σ−1/2u and Z̄∗ = Σ−1/2Z∗. In this case

E(ūūT ) = E(Σ−1/2uuT Σ−1/2T ) =′ Sigma−1/2E(uuT )Σ−1/2T = σ2INT .

For the restricted and unrestricted reformulated models we gain have:

ˆ̄δols = (Z̄ T Z̄ )−1Z̄ T ȳ , ē = ȳ − Z̄ ˆ̄δols, ē = M̄ȳ = M̄ū,
ˆ̄δ∗ols = (Z̄∗T Z̄∗)−1Z̄∗T ȳ , ē∗ = ȳ − Z̄∗ ˆ̄δ∗ols, ē∗ = M̄∗ȳ = M̄∗ū.
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Test for poolability of the data

Test for poolability under assumption u ∼ N(0,Ω) II

In order to apply Chow test, we need to verify:

Z̄ = Z̄∗I∗,

M̄, M̄∗ are symmetric and idempotent and M̄M̄∗ = M̄∗, where
M̄ = INT − Z̄ (Z̄ T Z̄ )−1Z̄ T and M̄∗ = INT − Z̄∗(Z̄∗T Z̄∗)−1Z̄∗T .

Roy-Zellner test for poolability (Baltagi (2005))

Under H0 : δi = δ for i = 1, . . . ,N and u ∼ N(0,Ω) the statistic Fobs given as

Fobs =
(ēT ē − ē∗T ē∗)/(tr(M̄)− tr(M̄∗)

ē∗T ē∗/tr(M̄∗)

is distributed as an F ((N − 1)K
′
,N(T − K

′
). Hence the critical region for this test is

defined as {Fobs > F ((N − 1)K
′
,N(T − K

′
;α0)} where α0 denotes the level if

significance of the test.
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Test for individual and time effects

Introduction I

All presented tests are dedicated for two-way error component model given as:

yit = α+ X T
it β + uit i = 1, . . . ,N, t = 1, . . . ,T ,

uit = µi + λt + νit i = 1, . . . ,N, t = 1, . . . ,T ,

for which µi ∼ IID(0, σ2
µ), λ ∼ IID(0, σ2

λ) and νit ∼ IID(0, σ2
ν).

We want to test the hypotheses:

Ha
0 : σ2

µ = 0,

Hb
0 : σ2

λ = 0,

Hc
0 : σ2

µ = σ2
λ = 0

Hd
0 : σ2

µ = 0|σ2
λ > 0

He
0 : σ2

λ = 0|σ2
µ > 0.
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Test for individual and time effects

Introduction II

All presented test statistics stem from the likelihood function, which under assumption
of normality has the following form:

L(δ, θ) = constant−
1
2

log |Ω| −
1
2

uT Ω−1u,

where θT = (σ2
µ, σ

2
λ, σ

2
ν) and Ω is given as

Ω = σ2
µ(IN ⊗ JT ) + σ2

λ(JN ⊗ IT ) + σ2
ν INT .

Breusch and Pagan (1980) derived a Lagrange multiplier (LM) statistic to test
Hc

0 : σµ = σ2
λ = 0 based on the Fisher score and the Fisher information matrix.

In the following text we denote as θ̃mle MLE of θ under Hc
0 , similarly Ω̃ MLE of Ω under

Hc
0 . Note that Ω̃ = σ̃2

ν INT where σ̃2
ν = ũT ũ/NT and ũ are the OLS residuals.
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Test for individual and time effects

Introduction III

Derivation of the Fisher score and the Fisher information matrix. It has been shown that

∂L
∂θr

= −
1
2

tr(Ω−1(∂Ω/∂θr )) +
1
2

(uT Ω−1(∂Ω/∂θr )Ω−1u).

In our specific case:

∂Ω/∂θ1 = (IN ⊗ JT ), ∂Ω/∂θ2 = (JN ⊗ IT ), ∂Ω/∂θ3 = INT .

Using tr(IN ⊗ JT ) = tr(JN ⊗ IT ) = tr(INT ) = NT , one gets:

D(θ̃) =

[
∂L
∂θ

]
θ̃mle

= −
NT
2σ̃2

ν

 1 − ũT (IN⊗JT )ũ

ũT ũ

1 − ũT (JN⊗IT )ũ

ũT ũ
0

 .
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Test for individual and time effects

Introduction IV

In order to calculate the information matrix for this model we need

E
(

∂2L
∂θs∂θr

)
= −

1
2

tr
(

Ω−1(∂Ω/∂θr )Ω−1(∂Ω/∂θs)
)

Using tr((IN ⊗ JT )(JN ⊗ IT )) = tr(JNT ) = NT , tr(IN ⊗ JT )2 = NT 2 and tr(JN ⊗ IT )2 = N2T , the
information matrix for this model is:

J(θ̃) = E
[
−

∂2L
∂θr∂θs

]
θ̃mle

=
NT
2σ̃4

ν

 T 1 1
1 N 1
1 1 1


with

J−1(θ̃) =
σ̃4
ν

NT (N − 1)(T − 1)

 (N − 1) 0 (1 − N)
0 (T − 1) (1 − T )

(1 − N) (1 − T ) (NT − 1)

 .
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Test for individual and time effects

The Breusch-Pagan test I

1. The Breusch-Pagan test (Breusch and Pagan (1980))

Under Hc
0 : σ2

µ = σ2
λ = 0, the Breusch-Pagan test statistic LM given as:

LM =
NT

2(T − 1)

(
1−

ũT (IN ⊗ JT )ũ
ũT ũ

)2

+
NT

2(N − 1)

(
1−

ũT (JN ⊗ IT )ũ
ũT ũ

)2

is asymptotically distributed as χ2
2.

Proof. The statistic can be obtain as: LM = D̃T J̃−1D̃.
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Test for individual and time effects

The Breusch-Pagan test II

Notes on the Breusch-Pagan test:

The test is very popular (it requires only calculation of OLS residuals ũ.

The test statistic LM1,

LM1 =
NT

2(T − 1)

(
1−

ũT (IN ⊗ JT )ũ
ũT ũ

)2

is asymptotically distributed as χ2
1 and can be used to test Ha

0 : σ2
µ = 0.

The test statistic LM2,

LM2 =
NT

2(N − 1)

(
1−

ũT (JN ⊗ IT )ũ
ũT ũ

)2

is asymptotically distributed as χ2
1 and can be used to test Hb

0 : σ2
λ = 0.

Both test statistic LM1 and LM2 can be applied on condition σ2
λ = 0 and σ2

µ = 0.
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Test for individual and time effects

Other test for individual and time effects I

The problem with the Breusch-Pagan test is that it assumes that the alternative
hypothesis is two-sided, but variance are nonnegative, thus the alternative hypothesis
should be one-sided.

The Honda tests (Honda (1985))

Under hypothesis Ha
0 : σ2

µ = 0, the Honda test statistic HO given as:

HO ≡ A =

√
NT

2(T − 1)

(
1−

ũT (IN ⊗ JT )ũ
ũT ũ

)

has the asymptotic normal distribution N(0, 1).
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Test for individual and time effects

Other test for individual and time effects II

Under hypothesis Hb
0 : σ2

λ, the Honda test statistic HO given as:

HO ≡ B =

√
NT

2(N − 1)

(
1−

ũT (JN ⊗ IT )ũ
ũT ũ

)

has the asymptotic normal distribution N(0, 1).

Under hypothesis Hc
0 : σ2

µ = σ2
λ = 0, the Honda test statistic HO given as:

HO = (A + B)/
√

2

has the asymptotic normal distribution N(0, 1).

Barbora Petrová Test of hypotheses with panel data



Test for individual and time effects

Other test for individual and time effects III

King and Wu (1997) suggested the alternative test statistic to testing
Hc

0 : σ2
µ = σ2

λ = 0.

The King and Wu test (King and Wu (1997))

Under hypothesis Hc
0 : σ2

µ = σ2
λ = 0, the King and Wu test statistic KW given as:

KW =

√
T − 1

√
N + T − 2

A +

√
N − 1

√
N + T − 2

B

has the asymptotic normal distribution N(0, 1).
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Test for individual and time effects

Other test for individual and time effects IV

Moulton and Randolph (1989) suggested an alternative standardized Lagrange
multiplier test, because they revealed poor performance of Honda tests (especially if
the number of regressors is high).

The standardized Lagrange multiplier test (Moulton and Randolph (1989))

Under hypothesis Ha
0 : σ2

µ = 0 or Hb
0 : σ2

λ = 0, the standardized Lagrange multiplier
test statistic SLM given as:

SLM =
HO − E(HO)√

var(HO)

has the asymptotic normal distribution N(0, 1).
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Test for individual and time effects

Other test for individual and time effects V

Gourieroux, Holly, and Monfort (1982) note that A and B can be negative for a specific
application and suggest corrected test for testing Hc

0 : σ2
µ = σ2

λ = 0.

The Gourieroux, Holly and Monfort test (Gourieroux, Holly, and Monfort (1982))

Under hypothesis Hc
0 : σ2

µ = σ2
λ = 0, the Gourieroux, Holly and Monfort test statistic

GLM is given as:

χ2
m =


A2 + B2 if A > 0,B > 0
A2 if A > 0,B ≤ 0
B2 if A ≤ 0,B > 0
0 if A ≤ 0,B ≤ 0

χ2
m denotes the mixed χ2 distribution. Under the null hypothesis,

χ2
m ∼

1
4
χ2(0) +

1
2
χ2(1) +

1
4
χ2(2),

where χ2(0) equals 0 with probability one.
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Test for individual and time effects

Other test for individual and time effects VI

When using above tests for Ha
0 : σ2

µ = 0, one implicitly assumes that σ2
λ = 0. This may

lead to incorrect decisions especially when the variance σ2
λ is large.

the conditional LM tests (Baltagi and Li (1992))

Under hypothesis Hd
0 : σ2

µ = 0 (allowing σ2
λ > 0), the conditional LM test given as:

LMµ =

√
2σ̃2

2 σ̃
2
ν√

T (T − 1)(σ̃4
ν + (N − 1)σ̃4

2)
D̃µ,

where

D̃µ =
T

2σ̃2
2

(
ũT (J̄N ⊗ J̄T )ũ

σ̃2
2

− 1

)
+

T (N − 1)

2σ̃2
ν

(
ũT (EN ⊗ J̄T )ũ

(N − 1)σ̃2
ν

− 1

)

with σ̃2
2 = ũT (J̄N ⊗ IT )ũ/T and σ̃2

ν = ũT (EN ⊗ IT )ũ/T (N − 1), is asymptotically
distributed as N(0, 1).
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Test for individual and time effects

Other test for individual and time effects VII

Under hypothesis He
0 : σ2

λ = 0 (allowing σ2
µ > 0), the conditional LM test given as:

LMλ =

√
2σ̃2

1 σ̃
2
ν√

N(N − 1)(σ̃4
ν + (T − 1)σ̃4

1)
D̃λ,

where

D̃λ =
N

2σ̃2
1

(
ũT (J̄N ⊗ J̄T )ũ

σ̃2
1

− 1

)
+

N(T − 1)

2σ̃2
ν

(
ũT (J̄N ⊗ ET )ũ

(T − 1)σ̃2
ν

− 1

)

with σ̃2
1 = ũT (IN ⊗ J̄T )ũ/N and σ̃2

ν = ũT (IN ⊗ ET )ũ/N(T − 1), is asymptotically
distributed as N(0, 1).
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Test for individual and time effects

Other test for individual and time effects VIII

ANOVA F tests can be used as universal tests for testing each of the considered
hypotheses.

The ANOVA F tests

The ANOVA F test statistics have the following form:

F =
yT MD(DT MD)−1DT My/(p − r)

yT Gy/(NT − (k̃ + p − r))
,

where M = Z (Z T Z )−1Z T and G,D, k̃ , p, r are chosen depending on hypothesis
tested. Under the null hypothesis, this statistic has a F distribution with p − r and
NT − ( ˜(k + p − r) degrees of freedom.
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Test for individual and time effects

Other test for individual and time effects IX

The likelihood ratio tests can be used as universal tests for testing each of the
considered hypotheses.

The likelihood ratio tests

The one-sided likelihood ratio LR tests have the following form:

LR = −2 log
(

l(res)

l(unres)

)
where l(res) denotes the restricted maximum likelihood value (under the null
hypothesis), while l(unres) denotes the unrestricted maximum likelihood value. For
Ha

0 ,H
b
0 ,H

d
0 and He

0 , LR is distributed as 1
2χ

2(0) + 1
2χ

2(1) and for Hc
0 as

1
4χ

2(0) + 1
2χ

2(1) + 1
4χ

2(2).
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Test for individual and time effects

Comparison of the tests I

Baltagi and Li (1992) carried out a Monte Carlo simulation in order to compare
performance of presented tests on two-way error component model.

They obtained the following results:

When Ha
0 : σ2

µ = 0 is true and σ2
λ is large, all usual tests (BP, HO, KW , SLM,

GMH) preformed badly (they ignore the fact that σ2
λ > 0).

When σ2
µ >> 0 all tests performed well in rejecting Ha

0 , but for small σ2
µ the power

of the tests decreases as σ2
λ increases.

when testing Hd
0 : σ2

µ = 0|σ2
λ > 0, LMµ, LR and F performed well. Moreover, the

power of the tests increases as σ2
λ increases.

Overspecifying the model, i. e. assuming the model to be two-way error
component when it is one-way, does not hurt the power of tests LMµ, LR or F .
Therefore, one should not ignore σ2

λ > 0 when testing σ2
µ = 0.

When testing Hc
0 : σ2

µ = σ2
λ = 0 all tests are possible, but GHM and F are

recommended.
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Test for individual and time effects

Comparison of the tests II

Ha
0 Hb

0 Hc
0 Hd

0 He
0

σ2
µ = 0 σ2

λ = 0 σ2
µ = σ2

λ = 0 σ2
µ = 0|σ2

λ > 0 σ2
λ = 0|σ2

µ > 0

BP X X X - -
HO X X X - -
KW X X X - -
SLM X X - - -
GHM - - X - -
F X X X X X
LR X X X X X
LMµ - - - X -
LMλ - - - - X

Table: Suitability of the tests

How to proceed when seeking for the most proper model:

STEP 1 Testing Hc
0 : σ2

µ = σ2
λ = 0 by GHM. If Hc

0 is not rejected, then use OLS. If Hc
0

is rejected, continue to STEP 2.

STEP 2 Calculate LMµ and LMλ to test Hd
0 and He

0 . Depending on the results apply
one-way or two-way error component model to data.
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Hausman’s specification test

Introduction I
Firstly, we will consider random one-way error component model whose critical
assumption is that E(uit |Xit ) = 0.

We intend to test the hypothesis H0 : E(uit |Xit ) = 0.

All test presented in this section are based on comparing estimates β̂GLS , β̂within and
β̂between.

β̂GLS is derived from the following model:

yit = α+ X T
it β + uit i = 1, . . . ,N, t = 1, . . . ,T ,

Ω = E(uT u),

Ω−1/2y = Ω−1/2αιNT + Ω−1/2Xβ + Ω−1/2Zµµ+ Ω−1/2ν

β̂GLS = (X T Ω−1X)−1X T Ω−1y .

β̂within is derived from the following model:

yit − ȳi· = (Xit − X̄i·)
Tβ + (νit − ν̄i·) i = 1, . . . ,N, t = 1, . . . ,T ,

Q = (IN ⊗ ET ),

Qy = QXβ + Qν

β̂within = (X T QX)−1X T Qy .
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Hausman’s specification test

Introduction II

β̂between is derived from the following model:

ȳi· = α+ X̄ T
i· β + ūi· i = 1, . . . ,N,

P = (IN ⊗ J̄T ),

Py = PαιNT + PXβ + PZµµ+ Pν,

β̂between = (X T PX)−1X T Py .
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Hausman’s specification test

Hausman’s specification test I

In the case E(uit |Xit ) 6= 0, the GLM estimator β̂GLM becomes biased and inconsistent
for β, whereas the Within transformation leaves the Within estimator β̂within unbiased
and consistent for β.

The test is based on the difference between β̂GLS and β̂within:

q̂1 = β̂GLS − β̂within

= (β̂GLS − β)− (β̂within − β)

= (X T Ω−1X)−1X T Ω−1u − (X T QX)−1X T Qu.

To derive the test statistic we need to calculated the mean and variance of q̂1.
Obviously, E(q̂1) = 0. In order to calculate the variance, we proceed as follows:

cov(β̂GLS , q̂1) = cov(β̂GLS , β̂GLS − β̂within)

= var(β̂GLS) + cov(β̂GLS , β̂within)

= (X T Ω−1X)−1 − (X T Ω−1X)−1X T Ω−1E(uuT )QX(X T QX)−1

= (X T Ω−1X)−1 − (X T Ω−1X)−1 = 0
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Hausman’s specification test II

β̂within = β̂GLS − q̂1

var(β̂within) = var(β̂GLS) + var(q̂1)

var(q̂1) = var(β̂within)− var(β̂GLS)

= σ2
ν(X T QX)−1 − (X T Ω−1X)−1.

Hausman’s specification test (Hausman (1978))

Under H0 : E(uit |Xit ) = 0, the Hausman’s specification test statistic given as:

m1 = q̂T
1 (var(q̂1))−1q̂1

is asymptotically distributed as χ2
K , where K denoted the dimension of slope vector β.
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An alternative asymptotically equivalent test I

Consider the following regression:

σνΩ−1/2y = σνΩ−1/2Xβ + QXγ + ω

y∗ = X∗β + X̃γ + ω.

Then the Hausman’s test (β̂within = β̂GLS) is equivalent to test whether γ = 0. To the
later one can apply standard Wald test for omission of variables X̃ .

Performing OLS on the above stated mode, one gets the estimates:(
β̂
γ̂

)
=

(
X T (Q + φ2P)X X T QX

X T QX X T QX

)−1 ( X T (Q + φ2P)y
X T Qy

)
,

β̂ = β̂between = (X T PX)−1X T Py

γ̂ = (X T QX)−1X T Qν − (X T PX)−1XPu

= β̂within − β̂between.

where σνΩ−1/2 = Q + φP and φ = σν/σ1.
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An alternative asymptotically equivalent test II

The alternative statistic is based on q̂3 = γ̂ = β̂within − β̂between for which

E(q̂3) = 0

var(q̂3) = E(q̂3q̂T
3 ) = σ2

ν(X T QX)−1 + σ2
1(X T PX)−1

= var(β̂within) + var(β̂between)

The alternative specification test

Under H0 : E(uit |Xit ) = 0, the alternative specification test statistic given as:

m3 = q̂T
3 (var(q̂3))−1q̂3

is asymptotically distributed as χ2
K , where K denoted the dimension of slope vector β.

The test m1 and m3 are numerically exactly identical and are also identical with the
statistic m2 = q̂T

2 (var(q̂2))−1q̂2, where q̂2 = β̂GLS − β̂between. This follows from the
relationship between the estimators:

β̂GLS = W1β̂within + W2β̂between.
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Hausman’s test for the two-way error component model

The Hausman’s test for the two-way error component model is based on difference
between the fixed effects estimator (with both time and individual dummies) and the
two-way random effects GLS estimator, i. e. the Within and GLS estimators.

The equivalent tests cannot be executed anymore, since there are two Between
estimators. However there are other type of equivalences. Kang (1985) classifies five
testable hypothesis, which consider between time periods estimator β̂T and between
cross section estimator β̂C :

Assume µi fixed and test E(λt |Xit ) = 0 based upon β̂within − β̂T .

Assume µi random and test E(λt |Xit ) = 0 based upon β̂T − β̂GLS .

Assume λt fixed and test E(µi |Xit ) = 0 based upon β̂within − β̂C .

Assume λt random and test E(µi |Xit ) = 0 based upon β̂C − β̂GLS .

Test E(µi |Xit ) = E(λt |Xit ) = 0 upon β̂GLS − β̂within, where β̂GLS is the estimates
assuming both µi and λt random and β̂within is the estimates assuming both µi
and λt fixed.
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Grunfeld investment equation I

Grunfeld (1958) considered the following investment equation for 10 large US
manufacturing firms over 20 years, 1935 - 1954:

Iit = α+ β1Fit + β2Cit + uit , i = 1, . . . , 10, t = 1, . . . , 20,

Iit : real gross investment for firm i in year t ,
Fit : the real value of the firm (shares outstanding),
Cit : the real value of the capital stock

In order to find a proper model we need to answer the following questions:

Can we use the restricted model, can we pool the data across firms or/and time?

If we choose the restricted model, are there any individual and time effects and
should we use one-way or two-way error component model?

If we choose the restricted model with random individual or/and time effects, do
disturbances uit contain invariant effect which are unobservable and uncorrelated
with explanatory variables?
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Tests for poolability of the data

RRSS URSS Fobs Distribution Quantile
Across firms 1 755 850.48 324 728.57 27.75 F(27, 170) 1.55
Across firms* 523 478.15 324 728.57 5.78 F(18, 170) 1.62
Across time 1 755 850.48 1 205 817.97 1.12 F(57, 140) 1.42
Across time* 523 478.15 1 205 817.97 -2.08 F(38, 140) 1.49

Table: Poolability of Grunfeld investment data across firms and time under assumption
u ∼ N(0, σ2INT ), (* denotes poolbility allowing varying intercept).

Fobs Distribution Quantile
Across firms 4.35 F(27, 170) 1.55
Across time 2.72 F(57, 140) 1.42

Table: Poolability of Grunfeld investment data across firms and time under assumption
u ∼ N(0,Ω).
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Tests for individual and time effects

Ha
0 Hb

0 Hc
0 Hd

0 He
0

σ2
µ = 0 σ2

λ = 0 σ2
µ = σ2

λ = 0 σ2
µ = 0|σ2

λ > 0 σ2
λ = 0|σ2

µ > 0

BP 798.162 6.454 804.615 - -
(3.841) (3.841) (5.991)

HO 28.252 -2.540 18.181 - -
(1.645) (1.645) (1.645)

KW 28.252 -2.540 21.832 - -
(1.645) (1.645) (1.645)

SLM 32.661 -2.433 - - -
(1.645) (1.645)

GHM - - 798.162 - -
(4.231)

F 49.177 0.235 17.403 52.672 1.142
(1.930) (1.645) (1.543) (1.648) (1.935)

LR 193.091 0 193.108 193.108 0.017
(2.706) (2.706) (4.231) (2.706) (2.706)

LMµ - - - 28.252 -
(2.706)

LMλ - - - - 0.110
(2.706)

Table: Tests for individual and time effects for Grunfeld investment data
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Hausman’s specification test

m1 m2 m3

2.3304 2.1314 2.1725
(5.9915) (5.9915) (5.9915)

Table: Hausman’s test Grunfeld investment data modelled as one-way error component model (with
individual effects).
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Conclusion

Based on the tests executed we arrive at the following conclusions:

The tests reject poolability across firms as well as poolability across time.

GHM test rejects hypothesis σ2
µ = σ2

λ = 0. LMµ and LMλ tests revealed that
σ2
λ = 0 and σ2

µ 6= 0. Therefore if we decide to model Grunfeld data using panel
data model, the model should be formulated as:

Iit = α+ β1Fit + β2Cit + µi + νit , i = 1, . . . , 10, t = 1, . . . , 20,

where µi are random effects.

Hausman’s test and its alternative do not reject the hypothesis E(uit |Xit ) and for
estimating the regression parameters we can use GLS estimator. Thus the
coefficients of the model are:

α̂ = −57.83

β̂1 = 0.11

β̂2 = 0.31
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Thank you for your attention
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