Summary of 1. risk theory

Cramer-Lundberg model
- inter arrival times have exponential distribution with parameter A
- iid. claims X; with mean p, df. F and positive support
- initial capital u and income rate ¢
+ risk proces
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where F{*(z) = [ 1= F"™(y)dy/(n p)
and F™* denotes n—th convolution of df. F

Theorem 1.2.2 (Craner-Lundberg theorem)
for sufficiently light tails exists v > 0 such that:
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ruin probability is exponentialy bounded:
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and condition fooo x e"*F(z)dz < oo yields approximation:
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small claim distribution: exponential, gamma, truncated normal
for exponential distribution:



proof of (1.11)
multiplying (1.20) by e™*" and integrating over (0, c0) yields on rhs:
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which together with

(1 - Fys) = -1
and
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yields:
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where Mg(s) stands for moment generating function of compound geometric

process, with probability of success 1 — pA/c and claim size distribution Fy
uniqueness of laplace tranformation gives:
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detailed explanation in Risk Modelling in General Insurance: From Princi-
ples to Practice; Gray, Pitts



heavy-tailed distributions
+ reularly varying function h € R,

lim k)

T—00 h(aj) =1

+ slowly varying function: o =0

Corollary 1.3.2
if F(x) =2 *L(z) for « > 0 and L € Ry then

Fr(z) ~ nF(x), T — 00
which for maximum M,, from n iid. X; and sum S,,:
P(M,, > z) ~nF(z), T — 00

P(S, > z) = F"*(x)

says, that the tail of maximum determines tail of sum
and from the (1.11) follows
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which is natural ruin estimate whenever F is regularly varying
- pareto, burr, loggamma, truncated stable

Definition 1.3.83
subexponential df. F' € S if

lim F f(x) =n
T—00 F

Definition 1.3.8 Cramer-Lundberg theorem for large claims

for subexponential integrated tail distribution (F; € S)
- lognormal, benktander I and II, weibull ( 7 < 1)



