Summary of 1. risk theory

Cramer- $Lundberg\ model$

- inter arrival times have exponential distribution with parameter λ
- iid. claims X_i with mean μ , df. F and positive support
- initial capital u and income rate c
- + risk proces

$$U(t) = u + c t - \sum_{i=1}^{N(t)} X_i$$

+ ruin probability

$$\psi(u) = P(U(t) < 0, \text{ for some } t)$$

$$1 - \psi(u) = \left(1 - \frac{\mu\lambda}{c}\right) \sum_{n=0}^{\infty} \left(\frac{\mu\lambda}{c}\right)^n F_I^{n*}(u)$$

(1.11)

where $F_I^{n*}(x)=\int_0^x 1-F^{n*}(y)dy/(n~\mu)$ and F^{n*} denotes n-th convolution of df. F

Theorem 1.2.2 (Craner-Lundberg theorem) for sufficiently light tails exists $\nu > 0$ such that:

$$\int_0^\infty e^{\nu x} (1 - F(x)) dx = \frac{c}{\lambda}$$

ruin probability is exponentialy bounded:

$$\psi(u) \le e^{-\nu u}$$

and condition $\int_0^\infty x \ e^{\nu x} \overline{F}(x) dx < \infty$ yields approximation:

$$\lim_{u \to \infty} e^{\nu u} \psi(u) = \left[\frac{\nu}{c/\lambda - \mu} \int_0^\infty x \ e^{\nu x} (1 - F(x)) dx \right]$$

small claim distribution: exponential, gamma, truncated normal for exponential distribution:

$$\psi(u) = \frac{\mu\lambda}{c} \exp\left[-u\left(\frac{1}{\mu} - \frac{\lambda}{c}\right)\right]$$

proof of (1.11)

multiplying (1.20) by e^{-su} and integrating over $(0, \infty)$ yields on rhs:

$$\int_0^\infty \delta'(u)e^{-su}du = -\delta(0) + s\underbrace{\int_0^\infty \delta(u)e^{-su}du}_{\tilde{\delta}(s)}$$

and on lhs

$$\frac{\lambda}{c} \left(\int_0^\infty \delta(u) e^{-su} du - \int_0^\infty \int_0^u \delta(u - x) dF(x) e^{-su} du \right) =$$

$$= \frac{\lambda}{c} \left(\tilde{\delta}(s) - \int_0^\infty \int_x^\infty \delta(u - x) e^{-su} du \ dF(x) \right) =$$

$$= \frac{\lambda}{c} \left(\tilde{\delta}(s) - \int_0^\infty \int_0^\infty \delta(u) e^{-s(u + x)} du \ dF(x) \right) =$$

$$= \frac{\lambda}{c} \tilde{\delta}(s) \left(1 - \tilde{f}(s) \right)$$

equating rhs = lhs gives

$$-\delta(0) + s\tilde{\delta}(s) = \frac{\lambda}{c}\tilde{\delta}(s)\left(1 - \tilde{f}(s)\right)$$

which together with

$$(1-F)\tilde{s}(s) = \frac{1-\tilde{f}(s)}{s}$$

and

$$f_I(x) = \frac{1 - F_X(x)}{u}$$

yields:

$$\tilde{\delta}(s) = \frac{1}{s} \underbrace{\frac{1 - \mu \lambda/c}{1 - \mu \lambda/c \ \tilde{f}_I(s)}}_{M_S(-s)}$$

where $M_S(s)$ stands for moment generating function of compound geometric process, with probability of success $1 - \mu \lambda/c$ and claim size distribution F_I uniqueness of laplace transformation gives:

$$\delta(u) = \left(1 - \frac{\mu\lambda}{c}\right) \sum_{n=0}^{\infty} \left(\frac{\mu\lambda}{c}\right)^n F_I^{n*}(u)$$

detailed explanation in Risk Modelling in General Insurance: From Principles to Practice; Gray, Pitts

heavy-tailed distributions + reularly varying function $h \in \mathcal{R}_{\alpha}$

$$\lim_{x \to \infty} \frac{h(tx)}{h(x)} = t^{\alpha}$$

+ slowly varying function: $\alpha = 0$

Corollary 1.3.2

if $\overline{F}(x) = x^{-\alpha}L(x)$ for $\alpha \geq 0$ and $L \in \mathcal{R}_0$ then

$$\overline{F^{n*}}(x) \sim n\overline{F}(x), \qquad x \to \infty$$

which for maximum M_n from n iid. X_i and sum S_n :

$$P(M_n > x) \sim n\overline{F}(x), \qquad x \to \infty$$

$$P(S_n > x) = \overline{F^{n*}}(x)$$

says, that the tail of maximum determines tail of sum and from the (1.11) follows

$$\frac{\psi(u)}{\overline{F_I}(u)} = \left(1 - \frac{\mu\lambda}{c}\right) \sum_{n=0}^{\infty} \left(\frac{\mu\lambda}{c}\right)^n \frac{\overline{F_I^{n*}}(u)}{\overline{F_I}(u)}$$

$$\rightarrow \left(1 - \frac{\mu\lambda}{c}\right) \sum_{n=0}^{\infty} \left(\frac{\mu\lambda}{c}\right)^n n = \frac{\mu\lambda}{c - \mu\lambda}, \qquad u \rightarrow \infty$$

which is natural ruin estimate whenever $\overline{F_I}$ is regularly varying - **pareto**, burr, loggamma, truncated stable

Definition 1.3.3 subexponential df. $F \in \mathcal{S}$ if

$$\lim_{x \to \infty} \frac{\overline{F^{n*}}(x)}{\overline{F}} = n$$

Definition 1.3.3 Cramer-Lundberg theorem for large claims

$$\psi(u) \sim \frac{\mu \lambda}{c - \mu \lambda} \overline{F}_I(u), \qquad u \to \infty$$

for subexponential integrated tail distribution $(\overline{F}_I \in S)$ - lognormal, benktander I and II, weibull ($\tau < 1$)