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Abstract. We generalize Hill’s lemma in order to obtain a large family of C-
filtered submodules from a single C-filtration of a module. We use this to prove
the following generalization of Kaplansky’s structure theorem for projective

modules: for any ring R, a cotorsion pair (A,B) in Mod-R is of countable

type if and only if every module M ∈ A is A≤ω-filtered. We also prove rank
versions of these results for torsion-free modules over commutative domains.

As an application, we solve a problem of Bazzoni and Salce [3] by showing
that strongly flat modules over any valuation domain coincide with the exten-
sions of free modules by divisible torsion-free modules. Another application

yields a short proof of the structure of Matlis localizations of commutative
rings.

Introduction

In [11], Hill invented an ingenious method of constructing a large family of
subgroups from a single infinite continuous chain of abelian p-groups. Later on,
Fuchs and Lee extended the method to the general setting of arbitrary modules over
arbitrary rings (including a rank version for torsion-free modules over commutative
domains), [9, XVI.§8], [7]. Similar constructions were used in connection with
Shelah’s Singular Compactness Theorem in [4] and [5].

More recently, Šaroch and the second author [14] noticed an extra property of
the Hill method (see property (H3) below). In Theorems 6 and 7 of Section 1, we
discover an additional feature: the family is always a complete sublattice of the
submodule lattice.

Hill’s method provides a powerful tool for extending structure theory of various
classes of modules from the countable (rank) case to the arbitrary one. It is applied
either directly or in conjunction with the Shelah’s Singular Compactness Theorem,
see e.g. [9, XVI.§8], [7], [14].

Here, we first apply Hill’s method to extend a theorem of Kaplansky on projec-
tive modules to the setting of cotorsion pairs. Kaplansky’s theorem says that any
projective module is a direct sum of countably generated modules. Considering
the cotorsion pair (Proj-R,Mod-R) cogenerated by R, we can rephrase the theo-
rem by saying that each module M ∈ Proj-R is (Proj-R)≤ω-filtered (see below for
unexplained terminology).

Theorem 10 in Section 2 shows that the same holds for an arbitrary cotorsion
pair (A,B) in Mod-R cogenerated by a set of < κ presented modules (where κ is a
regular uncountable cardinal): each module M ∈ A is A<κ-filtered. We also prove
a rank version of this result in Lemma 16.

Date: January 24, 2006.
2000 Mathematics Subject Classification. 13F30, 16D70, 16E30 (primary), 13B30, 13C11,

13G05, 16D40, 20K20 (secondary).
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Section 3 deals with applications to strongly flat modules over valuation domains.
Bazzoni and Salce [3] proved that any countable rank strongly flat module M has
the following property: M contains a free submodule F such that M/F is torsion-
free divisible. Theorem 17 shows that the property characterizes abitrary strongly
flat modules. This answers in the positive a question raised in [3]. (The property
was known to hold by [3, Theorem 3.15] for any valuation domain, but restricted
to strongly flat modules M of rank ≤ ℵ1, and by [10, Theorem 3.3], for all strongly
flat modules M , but restricted to Matlis valuation domains).

The application in Section 4 yields a short proof of the fact that the localization,
Q = RS−1, of a commutative ring R in a set S of regular elements is a Matlis local-
ization if and only if Q/R decomposes (as R-module) into a direct sum of countably
presented modules. This result, first proved in [1], extends Lee’s characterization
of Matlis domains [12] as well as its generalization to localizations of commutative
domains by Fuchs and Salce [8].

Let R be a (unital associative) ring. Denote by Mod-R the category of all (right
R-) modules, and by Proj-R the full subcategory of all projective modules.

A filtration is a continuous well-ordered chain of modules (Mα | α ≤ σ) with
M0 = 0. A filtration is called a C-filtration for a class of modules C if in addition
Mα+1/Mα is isomorphic to an element of C for each α < σ. A module M is C-filtered
if there is a C-filtration (Mα | α ≤ σ) such that M = Mσ.

For an infinite cardinal κ and a class of modules A, denote by A<κ and A≤κ the
subclass of all < κ-presented, and ≤ κ-presented, respectively, modules from A.

A pair of classes of modules C = (A,B) is a cotorsion pair provided that A
and B are orthogonal with respect to the Ext1-functor, and they are maximal
with this property, that is, A = {A ∈ Mod-R | Ext1R(A,B) = 0 ∀B ∈ B} and
B = {B ∈ Mod-R | Ext1R(A,B) = 0 ∀A ∈ A}. Cotorsion pairs were introduced by
Salce in his pioneering work [13].

A cotorsion pair C is cogenerated by a class of modules C provided that B =
{B ∈ Mod-R | Ext1R(C,B) = 0 ∀C ∈ C}. Moreover, C is of countable type if C is
cogenerated by a set of countably presented modules.

1. Generalized Hill Lemma

We start by recalling Hill’s notion of a closed subset with respect to a filtration.

Definition 1. Let M be a filtration (Mα | α ≤ σ) together with a family of
modules (Aα | α < σ) such that Mα+1 = Mα + Aα for each α < σ. A subset S of
σ is closed if every β ∈ S satisfies

Mβ ∩ Aβ ⊆
∑

α∈S,α<β

Aα.

The height, ht(x), of an element x ∈ Mσ is defined as the least ordinal α < σ such
that x ∈ Mα+1. For any subset S of σ, we define

M(S) =
∑

α∈S

Aα.

For each ordinal α ≤ σ, we have Mα =
∑

β<α Aβ , so α (= {β < σ | β < α}) is

a closed subset of σ. The following lemma is inspired by the proof of [14, Lemma
1.4]:

Lemma 2. Let M be as in Definition 1, S be a closed subset of σ, and x ∈ M(S).
Let S′ = {α ∈ S | α ≤ ht(x)}. Then x ∈ M(S′).
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Proof. Let x ∈ M(S). Then x = x1 + · · · + xk where xi ∈ Aαi
for some αi ∈ S,

1 ≤ i ≤ k. W.l.o.g., α1 < · · · < αk, and αk is minimal possible.
If αk > ht(x), then xk = x − x1 − · · · − xk−1 ∈ Mαk

∩ Aαk
⊆

∑

α∈S,α<αk
Aα

since S is closed, in contradiction with the minimality of αk. ¤

As an immediate consequence, we get

Corollary 3. Let M be as in Definition 1, S be a closed subset of σ, and x ∈ M(S).
Then ht(x) ∈ S.

An important implication is the following lemma.

Lemma 4. Let M be as in Definition 1, and let Si, i ∈ I, be a family of closed
subsets of σ. Then

M(
⋂

i∈I

Si) =
⋂

i∈I

M(Si)

Proof. Let T =
⋂

i∈I Si. Clearly, M(T ) ⊆
⋂

i∈I M(Si). Suppose there is an x ∈
⋂

i∈I M(Si) such that x 6∈ M(T ), and choose such an x of minimal height. Then
x = y + z for some y ∈ Aht(x) and z ∈ Mht(x). By Corollary 3, ht(x) ∈ Si for
all i ∈ I, so ht(x) ∈ T , and y ∈ M(T ). Then z ∈

⋂

i∈I M(Si), z 6∈ M(T ) and
ht(z) < ht(x), in contradiction with the minimality. ¤

Now, we can prove the additional property of closed subsets mentioned in the
Introduction:

Proposition 5. Let M be as in Definition 1, and let Si, i ∈ I, be a family of
closed subsets of σ. Then both the union and the intersection of this family are
again closed in σ. That is, closed subsets of σ form a complete sublattice of 2σ.

Proof. As for the union, if β ∈ S =
⋃

i∈I Si, then β ∈ Si for some i ∈ I, and
Mβ ∩ Aβ ⊆

∑

α∈Si,α<β Aα ⊆
∑

α∈S,α<β Aα.

For the intersection, let β ∈ T =
⋂

i∈I Si. Then Mβ ∩ Aβ ⊆ M(Si ∩ β) for each
i ∈ I. Therefore, Lemma 4 implies that

Mβ ∩ Aβ ⊆
⋂

i∈I

M(Si ∩ β) = M(T ∩ β)

which exactly says that T is closed. ¤

The following is the main result of this section:

Theorem 6. (Generalized Hill Lemma) Let R be a ring, κ an infinite regular
cardinal and C a set of < κ-presented modules. Let M be a union of a C-filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mα ⊆ · · · ⊆ Mσ = M

for some ordinal σ. Then there is a family F of submodules of M such that:

(H1) Mα ∈ F for all α ≤ σ.
(H2) F is closed under arbitrary sums and intersections (that is, F is a complete

sublattice of the lattice of submodules of M).
(H3) Let N,P ∈ F such that N ⊆ P . Then there exists a C-filtration (P̄γ | γ ≤ τ)

of the module P̄ = P/N such that τ ≤ σ, and for each γ < τ there is an β <
σ with P̄γ+1/P̄γ isomorphic to Mβ+1/Mβ, and P̄γ+1 = P̄γ + (Aβ + N)/N .

(H4) Let N ∈ F and X be a subset of M of cardinality < κ. Then there is a
P ∈ F such that N ∪ X ⊆ P and P/N is < κ-presented.

Proof. Let M denote the filtration (Mα | α ≤ σ) together with an arbitrary family
of < κ-generated modules (Aα | α < σ) such that for each α < σ:

Mα+1 = Mα + Aα,
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as in Definition 1. We claim that

F = {M(S) | S a closed subset of σ}

is the desired family F .
Property (H1) is clear, since each ordinal α ≤ σ is a closed subset of σ. Property

(H2) follows by Proposition 5 and Lemma 4.
Property (H3) is proved as in [14]: we have N = M(S) and P = M(T ) for some

closed subsets S, T . Since S ∪ T is closed, we can assume that S ⊆ T . For each
β ≤ σ, put

Fβ = N +
∑

α∈T\S,α<β

Aα = M(S ∪ (T ∩ β)) and F̄β = Fβ/N.

Clearly, (F̄β | β ≤ σ) is a filtration of P̄ = P/N such that F̄β+1 = F̄β +(Aβ +N)/N
for β ∈ T \ S and F̄β+1 = F̄β otherwise. Let β ∈ T \ S. Then

F̄β+1/F̄β
∼= Fβ+1/Fβ

∼= Aβ/(Fβ ∩ Aβ),

and

Fβ ∩ Aβ ⊇ (
∑

α∈T,α<β

Aα) ∩ Aβ = Mβ ∩ Aβ .

On the other hand, if x ∈ Fβ ∩ Aβ then ht(x) ≤ β, so x ∈ M(T ′) by Lemma 2,
where T ′ = {α ∈ S ∪ (T ∩ β) | α ≤ β}. By Proposition 5, we get x ∈ Mβ because
β 6∈ S. Hence Fβ ∩ Aβ = Mβ ∩ Aβ and F̄β+1/F̄β

∼= Aβ/(Mβ ∩ Aβ) ∼= Mβ+1/Mβ .
The filtration (P̄γ | γ ≤ τ) is obtained from (F̄β | β ≤ σ) by removing possible
repetitions and (H3) follows. Denote by τ ′ the ordinal type of the well-ordered set
(T \ S,<). Notice that the length τ of the filtration can be taken as 1 + τ ′ (as the
ordinal sum, hence τ = τ ′ for τ ′ infinite).

For property (H4), we first prove that every subset of σ of cardinality < κ is
contained in a closed subset of cardinality < κ. Because κ is an infinite regular
cardinal, by Proposition 5, it is enough to prove this only for one-element subsets of
σ. That is, to prove that every β < σ is contained in a closed subset of cardinality
< κ. We induct on β. For β < κ, just take S = β + 1. Otherwise, the short exact
sequence

0 → Mβ ∩ Aβ → Aβ → Mβ+1/Mβ → 0

shows that Mβ ∩ Aβ is < κ generated. Thus, Mβ ∩ Aβ ⊆
∑

α∈S0
Aα for a subset

S0 ⊆ β of cardinality < κ. Moreover, we can assume that S0 is closed in σ by
inductive premise, and put S = S0 ∪ {β}. To show that S is closed, it suffices to
check the definition for β. But Mβ ∩ Aβ ⊆ M(S0) =

∑

α∈S,α<β Aα.

Finally, let N = M(S) where S closed in σ, and let X be a subset of M of
cardinality < κ. Then X ⊆

∑

α∈T Aα for a subset T of σ of cardinality < κ. By
the preceding paragraph, we can assume that T is closed in σ. Let P = M(S ∪ T ).
Then P/N is C-filtered by property (H3), and the filtration can be chosen indexed
by 1+ the ordinal type of T \ S, which is less than κ. In particular, P/N is < κ-
presented. ¤

Remark. (cf. [7, Remark 2.2]) The proof of property (H3) for the family F in
Theorem 6 has the following additional property: if for β ∈ T \S, Aβ can be chosen
as a complement to Mβ in Mβ+1, then (Aβ + N)/N will be a complement of P̄γ

in P̄γ+1 in the filtration of P̄ . This follows from the fact that in this case (in the
proof of (H3)) Fβ ∩ Aβ = Mβ ∩ Aβ = 0, so Fβ/N ∩ (Aβ + N)/N = 0̄.

We will also need a rank version of the Generalized Hill Lemma for torsion-free
modules over commutative domains.
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Let R be a commutative domain and M a torsion-free module. We define the
rank, rkX, of a subset X ⊆ M as the torsion-free rank of the submodule 〈X〉 of M
generated by X. Note that rkX ≤ card(X).

Theorem 7. (Rank version of the Generalized Hill lemma) Let R be a commu-
tative domain, κ an infinite regular cardinal and C a set of torsion-free R-modules.
Let M be a union of a C-filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mα ⊆ · · · ⊆ Mσ = M

for some ordinal σ. Assume moreover that for each α < σ there is a submodule
Aα of M of rank < κ such that Mα+1 = Mα + Aα. Then there is a family F of
submodules of M such that the properties (H1), (H2), and (H3) from Theorem 6
hold true. Moreover, the following rank version of property (H4) holds:

(H4∗) Let N ∈ F and X be a subset of M with rkX < κ. Then there are P ∈ F
and a submodule A ⊆ M of rank < κ such that N ∪X ⊆ P and P = N +A.

Proof. Denote M the filtration (Mα | α ≤ σ) together with the family (Aα | α < σ)
as in Definition 1. Put

F = {M(S) | S a closed subset of σ}.

The properties (H1), (H2) and (H3) are proved exactly as in Theorem 6. For
(H4∗), consider N ∈ F and X ⊆ M with rkX < κ. Note first that we can w.l.o.g.
assume that the cardinality of X is < κ. To see this, take a maximal R-independent
subset B of 〈X〉. Then B has cardinality < κ and 〈B〉 is an essential submodule
of 〈X〉. Then, for a module P ∈ F containing B, the inclusion 〈X〉 →֒ M induces
a map f : 〈X〉/〈B〉 → M/P . Then f = 0 since 〈X〉/〈B〉 is torsion, but M/P is
torsion-free by property (H3). Hence also X ⊆ P .

Now, we continue as in the proof of property (H4) in Theorem 6. We prove that
every subset of σ of cardinality < κ is contained in a closed subset of cardinality
< κ. It is again enough to prove that every β < σ is contained in a closed subset
T of cardinality < κ. We induct on β. For β < κ, we take T = β + 1. Otherwise,
Aβ∩Mβ has rank < κ, so we can find by inductive premise a closed subset T ′ ⊆ β of
cardinality < κ such that Mβ ∩Aβ ⊆ M(T ′). Then it suffices to take T = T ′∪{β}.

Finally, if N = M(S) and X ⊆ M(T ) where S, T are closed and T is of cardinality
< κ, we put A = M(T \ S) and P = N + A. Clearly, P = M(S ∪ T ) and A satisfy
the claim of (H4∗). ¤

Remark 8. Notice the following difference between the assumptions of the two
versions of the Generalized Hill Lemma. The assumption of C consisting of < κ-
presented modules in Theorem 6 already guarantees existence of a family of < κ-
generated modules A = (Aα | α < σ) such that Mα+1 = Mα + Aα for each α < σ
(in fact, in the proof of Theorem 6, and in its applications, the particular choice of
A does not really matter).

On the other hand, if we just assume that Mα+1/Mα has rank < κ for each
α < σ in Theorem 7, there need not exist any family of modules A = (Aα | α < σ)
such that Mα+1 = Mα + Aα and Aα has rank < κ for each α < σ.

Indeed, assume that κ > ℵ0 and the minimal number of R-generators of Q is
λ ≥ κ. So there is an exact sequence 0 → K ⊆ F → Q → 0 where F is free of
rank λ. Since K is torsion-free, there is a filtration (Mα | α ≤ σ) of K such that
Mα+1/Mα is torsion-free of rank 1 for each α < σ. Define Mσ+1 = F .

Assume that Aσ ⊆ F has rank < λ. Then Aσ is contained in a free direct
summand G of F of rank < λ, so (Aσ + K)/K ⊆ (G + K)/K $ F/K because
Q ∼= F/K is not < λ-generated. So certainly there is no Aσ of rank < κ such that
Mσ+1 = Mσ + Aσ.
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2. Kaplansky Theorem for Cotorsion Pairs

Let R be a ring and C = (A,B) a cotorsion pair in Mod-R cogenerated by a set C
containing R. Then A coincides with the class of all direct summands of C-filtered
modules (cf. [16, Theorem 2.2]). Our goal is to remove the term ‘direct summands’
in this characterization of A on the account of replacing the set C by a suitable
small subset of A.

The following application of Theorem 6 is crucial:

Lemma 9. Let κ be an uncountable regular cardinal and C a set of < κ-presented
modules. Denote by A the class of all direct summands of C-filtered modules. Then
every module in A is A<κ-filtered.

Proof. Let K ∈ A, so there is a C-filtered module M such that M = K⊕L for some
L ⊆ M . Denote by πK : M → K and πL : M → L the corresponding projections.
Let F be the family of submodules of M as in Theorem 6. We proceed in two steps:

Step I: By induction, we construct a filtration (Nα | α ≤ τ) of M such that

(1) Nα ∈ F ,
(2) Nα = πK(Nα) + πL(Nα), and
(3) Nα+1/Nα is < κ-presented

for all α < τ .
First, N0 = 0, and Nβ =

⋃

α<β Nα for all limit ordinals β ≤ τ . Suppose we

have Nα $ M and we wish to construct Nα+1. Take x ∈ M \ Nα; by property
(H4), there is Q0 ∈ F such that Nα ∪ {x} ⊆ Q0 and Q0/Nα is < κ-presented.
Let X0 be a subset of Q0 of cardinality < κ such that the set {x + Nα | x ∈ X0}
generates Q0/Nα. Put Z0 = πK(Q0) ⊕ πL(Q0). Clearly Q0/Nα ⊆ Z0/Nα. Since
πK(Nα), πL(Nα) ⊆ Nα, the module Z0/Nα is generated by the set

{x + Nα | x ∈ πK(X0) ∪ πL(X0)}.

Thus, we can find Q1 ∈ F such that Z0 ⊆ Q1 and Q1/Nα is < κ-presented.
Similarly, we infer that Z1/Nα is < κ-generated for Z1 = πK(Q1) ⊕ πL(Q1), and
find Q2 ∈ F with Z1 ⊆ Q2 and Q2/Nα a < κ-presented module. In this way, we
obtain a chain Q0 ⊆ Q1 ⊆ . . . such that for all i < ω: Qi ∈ F , Qi/Nα is < κ-
presented, and πK(Qi) + πL(Qi) ⊆ Qi+1. It is easy to see that Nα+1 =

⋃

i<ω Qi

satisfies the properties (1)–(3).

Step II: By condition (2), we have

πK(Nα+1) + Nα = πK(Nα+1) ⊕ πL(Nα)

and similarly for L. Hence

(πK(Nα+1)+Nα)∩(πL(Nα+1)+Nα) = (πK(Nα+1)⊕πL(Nα))∩(πL(Nα+1)⊕πK(Nα))

=
(

πK(Nα+1) ∩ (πL(Nα+1) ⊕ πK(Nα))
)

⊕ πL(Nα) = πK(Nα) ⊕ πL(Nα) = Nα

and

Nα+1/Nα = (πK(Nα+1) + Nα)/Nα ⊕ (πL(Nα+1) + Nα)/Nα.

By condition (1), Nα+1/Nα is C-filtered. Since

(πK(Nα+1) + Nα)/Nα
∼= πK(Nα+1)/πK(Nα),

πK(Nα+1)/πK(Nα) is isomorphic to a direct summand of a C-filtered module, so
πK(Nα+1)/πK(Nα) ∈ A. By condition (3), πK(Nα+1)/πK(Nα) is < κ-presented.
We conclude that (πK(Nα+1) | α ≤ τ) is the desired A<κ-filtration of K = πK(Nτ ).

¤

Now, we can easily prove the main result of this section:
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Theorem 10. Let R be a ring, κ an uncountable regular cardinal, and C = (A,B)
a cotorsion pair of R-modules. Then the following statements are equivalent:

(1) C is cogenerated by a class of < κ-presented modules.
(2) Every module in A is A<κ-filtered.

Proof. (1) =⇒ (2). Let C be a class of < κ-presented modules cogenerating C.
W.l.o.g., C is a set, and R ∈ C. Then, by [16, Theorem 2.2], A consists of all direct
summands of C-filtered modules. So statement (2) follows by Lemma 9.

(2) =⇒ (1). It is well-known that every A-filtered module is again in A (see
e.g. [6, Lemma 1]). Thus, (2) implies that C is cogenerated by the class A<κ. ¤

In particular, for κ = ℵ1, we get

Corollary 11. Let R be a ring. A cotorsion pair (A,B) is of countable type if and
only if every module M ∈ A is A≤ω-filtered.

As another immediate corollary, for the cotorsion pair (Proj-R, Mod-R) cogener-
ated by R, we obtain the Kaplansky theorem on the structure of projective modules:

Corollary 12. Every projective module over an arbitrary ring is a direct sum of
countably generated projective modules.

Remark. In general, it is not possible to extend the results in this section to κ = ℵ0,
since there are rings which admit countably generated projective modules that are
not direct sums of finitely generated projective modules.

3. Strongly flat modules

In this section, R is a commutative domain with the quotient field Q. We denote
by (SF ,MC) the cotorsion pair in Mod-R cogenerated by Q. The modules in SF
are called strongly flat. They are flat (since Q is flat), hence torsion-free.

A (torsion-free) module M is called free-by-divisible provided there exist cardinals
κ, λ and an exact sequence 0 → R(κ) → M → Q(λ) → 0. In [16, Proposition 2.8],
strongly flat modules were characterized as the direct summands of free-by-divisible
modules. Our goal is to remove the term ‘direct summand’ in this characterization
in the case when R is a valuation domain.

First, we need a characterization of free-by-divisible modules:

Lemma 13. Let R be a domain and M a module. Then M is free-by-divisible if
and only if M is {R,Q}-filtered.

Proof. The only if-part is clear. For the if-part, let (Mα | α ≤ σ) be an {R,Q}-
filtration of M .

By induction on α ≤ σ, we define ordinals µα and να, and a well-ordered di-

rect system of exact sequences 0 → R(µα) iα→ Mα
πα→ Q(να) → 0 and embeddings

(fα, gα, hα) (α ≤ σ), as follows. First, µ0 = ν0 = 0.
If Mα+1/Mα

∼= R then Mα+1 = Mα ⊕ xαR where AnnR(xα) = 0, and we take
µα+1 = µα + 1, να+1 = να, let fα : R(µα) →֒ R(µα+1) and gα : Mα →֒ Mα+1 be the
inclusions, iα+1 be the extension of iα mapping the extra free generator to xα, and
put hα = id.

If Mα+1/Mα
∼= Q, we consider the pushout of the embedding gα : Mα →֒ Mα+1

and of πα:
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0 0
↓ ↓

0 → R(µα) iα−→ Mα
πα−→ Q(να) → 0

‖fα ↓gα ↓hα

0 → R(µα) iα+1

−→ Mα+1
πα+1

−→ X → 0
↓ ↓
Q == Q
↓ ↓
0 0

Since Ext1R(Q,Q(να)) = 0, the right hand column splits, so w.l.o.g. X = Q(να+1),
and we take µα+1 = µα, να+1 = να + 1.

If α is a limit ordinal, we take the direct limit of the direct system of exact

sequences 0 → R(µβ) iβ

→ Mβ → Q(νβ) → 0 with the embeddings (fβ , gβ , hβ) (β < α),
so µα = supβ<α µβ and να = supβ<α νβ .

Finally, the sequence 0 → R(µσ) iσ→ Mσ
πσ→ Q(νσ) → 0 shows that M = Mσ is

free-by-divisible. ¤

Lemma 13 does not guarantee validity of the assumptions of the rank version of
the Generalized Hill Lemma (see Remark 8). However, in our particular setting,
we have:

Lemma 14. Let R be a valuation domain and P be a free-by-divisible module. Then
there are an {R,Q}-filtration P = (Pα | α ≤ σ) of P , and a sequence of submodules
(Aα | α < σ) of P , such that Aα has countable rank and Pα+1 = Pα + Aα for each
α < σ.

Proof. We will prove the lemma in three steps:

Step I: By assumption, there is an exact sequence 0 → R(κ) ⊆
→ P → Q(λ) → 0 for

some cardinals κ and λ. We put σ = κ + λ (the ordinal sum). By induction on α,
we will construct the sequence (Aα | α < σ) together with the filtration P – the
latter simply by taking Pα =

∑

β<α Aβ . This is easy in case κ = 0 or λ = 0, so we
will assume that κ > 0 and λ > 0.

For α < κ, we take Aα as the α’th copy of R in the canonical direct sum
decomposition of R(κ). For α ≥ κ, we need some preparation first.

Step II: Take any submodule R(κ) ⊆ N ⊆ P such that N/R(κ) ∼= Q. We claim
that there is a countable rank submodule A ⊆ N such that R(κ)+A = N . Consider
the pushout of the inclusions i : R(κ) →֒ N and and j : R(κ) →֒ Q(κ):

0 → R(κ) i
−→ N

p↾N
−→ Q → 0

↓j ↓⊆ ‖

0 → Q(κ) ⊆
−→ X

p
−→ Q → 0

Since Ext1R(Q,Q(κ)) = 0, the second row splits. Let k : Q → X be the splitting
monomorphism with pk = idQ. Let Y = Im(k). Then X = Q(κ) ⊕ Y .

If Q is countably generated, we take any countable subset S of N such that
R(κ) + 〈S〉 = N and put A = 〈S〉.

If Q is not countably generated, then – since R is a valuation domain – there
are a regular uncountable cardinal ρ and a set {rγ | γ < ρ} ⊆ R with the following
two properties:

(1) {r−1
γ | γ < ρ} generates Q as an R-module, and

(2) rγ is divisible by rδ, but rγ does not divide rδ, for each δ < γ.
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That is, (rγR | γ < ρ) is a strictly descending chain of principal right ideals with
zero intersection.

For each γ < ρ, let nγ ∈ N ⊆ X be such that p(nγ) = r−1
γ . Then nγ ∈ X

decomposes as nγ = qγ + k(r−1
γ ) where qγ ∈ Q(κ) = Ker(p). By property (1),

R(κ) + 〈nγ | γ < ρ〉 = N . Since R(κ) ⊆ Ker(p ↾ N), we can w.l.o.g. assume that

(∗) all the (finitely many) non-zero components of qγ in the direct sum Q(κ)

belong to Q \ R.

Denote by Iγ (⊆ κ) the support of qγ . By property (2), for each δ < γ, there is a

(non-invertible) element rγδ ∈ R such that rγδ · r
−1
γ = r−1

δ , and hence rγδqγ − qδ ∈

Ker(p ↾ N) = R(κ). By (∗), it follows that Iδ ⊆ Iγ .
We claim that there is a finite set I ⊆ κ such that Iγ ⊆ I for all γ < ρ. If not,

there is a countably infinite set {xn | n < ω} ⊆ κ such that for each n < ω there is
γn < ρ with xn ∈ Iγn

. Since ρ is regular and uncountable, there exists γ < ρ such
that γn < γ for all n < ω. But then Iγ ⊇

⋃

n<ω Iγn
⊇ {xn | n < ω} is infinite, a

contradiction.
This proves that nγ ∈ Q(I) ⊕ Y for each γ < ρ. Let A = 〈nγ | γ < ρ〉. Then A

is a submodule of N of finite rank, and R(κ) + A = N .

Step III: We enumerate the copies of Q in Q(λ) = P/R(κ) by ordinals < λ. Then for
each τ < λ, there is a unique module Nτ such that R(κ) ⊆ Nτ ⊆ P and Nτ/R(κ) is
the τ ’th copy of Q in P/R(κ). The modules Aκ+τ (τ < λ) are defined by induction
on τ < λ as follows.

First, for τ = 0, we take N = N0, construct A as in Step II for this choice of N ,
and put Aκ = A. Then R(κ) + Aκ = N0.

If α = κ + τ for an ordinal 0 < τ < λ then, by induction, we already have an

exact sequence 0 → R(κ) ⊆
→ Pα → Q(τ) → 0 where Pα =

∑

β<α Aβ . Moreover,

Nτ ∩ Pα = R(κ). We take N = Nτ , construct A as in Step II for this choice
of N , and put Aα = A. Then R(κ) + Aα = Nτ , and Pα+1 = Pα + Nτ . So
Pα+1/Pα

∼= N/(N ∩ Pα) = N/R(κ) ∼= Q and we have the exact sequence 0 →
R(κ) → Pα+1 → Q(τ+1) → 0.

Finally, by construction, P =
⋃

α<σ Pα. ¤

The following result was proved in [3, Theorem 3.13]:

Lemma 15. Let R be a valuation domain and M a module of countable rank. Then
M is strongly flat if and only if M is free-by-divisible.

Before characterizing strongly flat modules of any rank over valuation domains,
we will apply the rank version of the Generalized Hill Lemma in order to obtain a
rank version of Lemma 9:

Lemma 16. Let R be a commutative domain, κ be an uncountable regular cardinal
and C a set of torsion-free R-modules. Denote by A the class of all direct summands
of the modules M satisfying:

(†) there is a C-filtration (Mα | α ≤ σ) of M and a family of modules (Aα | α < σ)
of rank < κ such that Mα+1 = Mα + Aα for each α < σ.

Then every module in A is filtered by modules from A of rank < κ.

Proof. The proof is very similar to the one for Lemma 9. Let K ∈ A; that is, there
is a module M = K ⊕ L with a C-filtration (Mα | α ≤ σ) and a family of modules
(Aα | α < σ) as above. Denote by πK : M → K and πL : M → L the projections.

We will construct a filtration (Nα | α ≤ τ) of M such that
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(1) Nα ∈ F ,
(2) Nα = πK(Nα) + πL(Nα), and
(3) Nα+1/Nα has rank < κ

for all α < τ ; the rest of the proof then follows as in Step II of Lemma 9.
Let F be a family of submodules of M given by Theorem 7. We will construct

the filtration by induction. By definition, N0 = 0 and Nβ =
⋃

α<β Nα for limit

ordinals β. Suppose we have constructed Nα $ M for some α and let x ∈ M \Mα.
Let A0 ⊆ M be a submodule of rank < κ such that A0 ∈ F and x ∈ A0. Then the
module πK(A0) + πL(A0) has also rank < κ, so there is a module A1 ∈ F of rank
< κ such that πK(A0) + πL(A0) ⊆ A1. Iterating this process, we obtain a chain

x ∈ A0 ⊆ A1 ⊆ A2 ⊆ . . .

of submodules of M with rank < κ such that πK(Ai) + πL(Ai) ⊆ Ai+1 for i < ω.
Put A =

⋃

i<ω Ai. Then clearly A has rank < κ and A = πK(A) + πL(A). Hence
Nα+1 = Nα + A has the required properties. ¤

Now, we can extend Lemma 15 to modules of arbitrary rank, giving a positive
answer to the problem of Bazzoni and Salce:

Theorem 17. Let R be a valuation ring and M be a module. Then M is strongly
flat if and only if M is free-by-divisible.

Proof. The if-part is clear since both R and Q are strongly flat, and strongly flat
modules are closed under arbitrary direct sums and extensions.

For the only-if part, let M be strongly flat. By [16, Proposition 2.8], M is
a direct summand in a free-by-divisible module P . By Lemma 14, strongly flat
modules form a class A as in Lemma 16 for C = {R,Q} and κ = ℵ1. Thus, M
is filtered by countable rank strongly flat modules. But such modules are {R,Q}-
filtered by Lemma 15. Hence, M is free-by-divisible by Lemma 13. ¤

4. Matlis localizations of commutative rings

In this section, R denotes a commutative ring, S a multiplicative subset in R
consisting of regular elements (= non-zero-divisors), and Q the localization RS−1.

Q is a Matlis localization provided that Q has projective dimension ≤ 1 (as R-
module). For example, if R is a domain and S = R \ {0}, then the quotient field
Q = RS−1 is a Matlis localization if and only if R is a Matlis domain in the sense
of [9, IV.§4].

Our goal here is to apply the Generalized Hill Lemma to a simple proof of a
characterization of Matlis localizations given in [1].

We will first need some preliminary definitions and results. We start with
Hamsher’s notion of a restriction, and Griffith’s of a G(ℵ0)-family:

A submodule N of a module M is a restriction if for each prime (equivalently,
maximal) ideal p of R, the localization Np of N at p satisfies Np = 0 or Np = Mp.

A family S of submodules of a module M is a G(ℵ0)-family provided that 0,M ∈
S, S is closed under unions of chains, and if N ∈ S and X is a countable subset
of M then there exists N ′ ∈ S such that N ∪ X ⊆ N ′ and N ′/N is countably
generated.

Lemma 18. Let R be a commutative ring, S a multiplicative subset in R consisting
of regular elements, and Q = RS−1.

(1) The set S of all restrictions of the R-module Q/R is a G(ℵ0)-family of
submodules of Q/R.

(2) If N is a restriction of Q/R such that (Q/R)/N has projective dimension
≤ 1, then N is a direct summand in Q/R.
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Proof. (1) is proved in [1, p.543], and (2) in [1, Proposition 3.10]. ¤

Another ingredient is the notion of an (infinitely generated) tilting module. Re-
call that an R-module T is tilting provided that

(T1) T has projective dimension ≤ 1,
(T2) Ext1R(T, T (κ)) = 0 for all cardinals κ, and
(T3) there is an exact sequence 0 → R → T0 → T1 → 0 such that T0 and T1 are

direct summands in (possibly infinite) direct sums of copies of T .

We arrive at the main result of this section:

Theorem 19. ([1, Theorem 1.1]) Let R be a commutative ring, S a multiplicative
subset in R consisting of regular elements, and Q = RS−1. Then the following
conditions are equivalent:

(1) Q is a Matlis localization.
(2) T = Q ⊕ Q/R is a tilting R-module.
(3) Q/R decomposes into a direct sum of countably presented R-submodules.

Proof. Assume (1). We will verify conditions (T1)–(T3) for T . First, the projective
dimension of Q, Q/R, and hence of T , is ≤ 1 by the assumption, so (T1) holds.
(T3) holds since there is the exact sequence 0 → R → Q → Q/R → 0. In order to
prove (T2), in view of (T1), it suffices to show that Ext1R(Q/R,Q(κ)) = 0 for each
cardinal κ. However, Ext1R(Q,Q(κ)) ∼= Ext1Q(Q,Q(κ)) = 0 since Q is a localization

of R. So in order to prove that Ext1R(Q/R,Q(κ)) = 0, it suffices to show that any
f ∈ HomR(R,Q(κ)) extends to some g ∈ HomR(Q,Q(κ)) = HomQ(Q,Q(κ)). But
we can simply define g(q) = f(1)q for all q ∈ Q.

Assume (2). Consider the cotorsion pair (A,B) cogenerated by T . By [2], each
module in A is A≤ω-filtered. In particular, this holds for Q/R ∈ A. Let F be
a family corresponding to a A≤ω-filtration of Q/R by Theorem 6. Let G be the
intersection of F with the G(ℵ0)-family of restrictions of Q/R coming from Lemma
18.1.

Then there is a filtration (Gα | α ≤ σ) of Q/R such that Gα ∈ G for all α ≤ σ and
Gα+1/Gα is countably presented. In particular, Gα is a restriction of Q/R = Gσ

such that (Q/R)/Gα ∈ A, so (Q/R)/Gα has projective dimension ≤ 1. By Lemma
18.2, Gα is a direct summand in Q/R, and hence in Gα+1, for each α < σ. This
yields a decomposition of Q/R into a direct sum of copies of the countably presented
modules Gα+1/Gα (α < σ).

The implication (3) ⇒ (1) is well known, cf. [1, Proposition 7.1]. ¤
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