2. Computations

2.1. Find all singularities of $f=y^{2}+y-x^{3}+x^{2}-x+1 \in \mathbb{F}_{3}[x, y]$ and compute the genus of the AFF over \mathbb{F}_{3} given by $f(\alpha, \beta)=0$.

10 points
2.2. Let $f=y^{2}-\left(x^{3}-x+1\right) \in \mathbb{C}[x, y]$ and $A=1 P_{(1,1)}+3 P_{(0,1)}+5 P_{(-1,1)}-8 P_{\infty}$. Explain why A is a well-defined divisor and compute $\operatorname{deg}(A)$. Is A principal?

5 points
2.3. Let $w=y^{2}-x^{3} \in \mathbb{F}_{7}[x, y]$. Find an \mathbb{F}_{7}-isomorphism of fields $\mathbb{F}_{7}(z) \rightarrow \mathbb{F}_{7}\left(V_{f}\right)$.

5 points

3. Proofs

3.1. If L is an AFF over $K, P \in \mathbb{P}_{L / K}$, prove that \mathcal{O}_{P} is a uniquely defined discrete valuation ring and that $\operatorname{deg} P$ is finite.

10 points
3.2. Formulate and proof the assertion characterizing eliptic Weierstrass equiation polynomials.

10 points

