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Abstract. This paper describes properties of three particular classes of rings determined
by their idempotents and units. It is shown that right UG rings, i.e. rings in which any
two generators of each principal right ideal are associated, contains local rings and regular
rings of stable range 1. Semiperfect and von Neumann regular rings satisfy necessarily the
condition Pr, which says that every principal right ideal is generated by a sum of a unit
and an idempotent. Finally, idun-semicommutative rings, generalizing semicommutative
condition by restriction on sums of units and of idempotents, contains all local and abelian
regular rings.

1. Introduction

Units and idempotents present key tools for description and understanding structure of

important classes of rings, such as clean, von Neumann regular or local rings. The main

goal of this paper is to describe three particular classes of rings determined by properties

of their idempotents and units on background of von Neumann regular and local rings.

All these classes of rings include classical and widely studied ones, namely, right UG rings,

defined by the condition aR = bR implies a = bu for some u ∈ U(R), generalizes domains

and von Neumann regular rings, rings satisfying the condition Pr, which says that every

right ideal is generated by a sum of an idempotent and an invertible element, generalizes

the notion of clean rings and, finally, idun-semicommutative rings satisfying the condition

xy = 0 whenever xvy = 0 for every idempotent and unit v, generalizes semicommutative

rings.

If we consider the class of all von Neumann regular rings, note that while Pr-rings

generalize von Neumann regular ones (Example 3.3(2)), regular UG rings are precisely

unit regular ones (Theorem 2.1) and regular idun-semicommutative rings are characterized
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as abelian regular (Theorem 4.7). Local rings forms one extreme class from the point of

view of idempotents and units, since all their elements outside from the Jacobson radical are

units and they contain trivial idempotents only. Note that local rings are UG rings and they

satisfies the condition Pr (Example 3.3(1), Proposition 2.4(2)) and idun-semicommutative

local rings are precisely semicommutative local rings.

Throughout this paper, R will be an associative ring with identity, U(R) its group of

units, J(R) its Jacobson radical and Id(R) its set of idempotents. The left and right

annihilators of a subset X of a ring are denoted by rR(x) and lR(x), respectively. Recall

that an element a ∈ R is (unit-)regular if a = aba (a = aua) for some b ∈ R (u ∈ U(R))

and R is called a (unit-)regular ring if every element is (unit-)regular.

If a, b are elements of a ring R and u ∈ U(R) such that a = bu, then a and b are called

right associated. Clearly, right associated elements a and b are right multiples of each

other, or they generate the same principal right ideals aR and bR. Note that R is a UG

ring provided its every principal right ideal is uniquely generated up to associativity, i.e.,

a, b ∈ R are right associated whenever aR = bR. The research of UG rings was started by

Kaplansky ([9]) (see also [10]). By Marks [11], a von Neumann regular ring is unit-regular

if and only if it is a left (right) UG ring (see also [10, Corollary 2.10 ]) and Theorem 2.1

extends this observation for any von Neumann regular ring R, namely R is unit-regular

if and only if R has stable range 1 if and only if R is left(right) UG. Although the ring

R = End(VD) is not left UG, where VD is a vector space of countably infinite dimension

over a division ring D, it holds true for each a, b ∈ R that the condition Ra = Rb implies

a = (e+ u)b for a unit u and an idempotent e (cf. Example 2.2).

This motivates the definition of the conditions Pr and Pl. Recall that R satisfies Pr (or

Pl) if for every r ∈ R there exists u ∈ U(R) and e ∈ Id(R) such that rR = (e + u)R (or

Rr = R(e+ u)). It is easy to see that local and regular rings satisfy the properties Pr and

Pl (cf. Example 3.3). Recall that a ring R is clean if every element r of R is clean, i.e.

there exist an idempotent e ∈ R and an element t ∈ U(R) such that r = e + t [13]. Note

that every clean ring satisfies the properties Pr and Pl.

A ring R is semiperfect if R/J(R) is semisimple and all idempotent of R/J(R) lifts

modulo J(R). We prove in Theorem 3.8 that every semiperfect ring satisfies the properties



ON RINGS DETERMINED BY THEIR IDEMPOTENTS AND UNITS 3

Pr and Pl. We also give description of the properties Pr and Pl in particular classes of rings.

Namely, a domain R satisfies the property Pr if and only if R = U(R) ∪ (U(R) + U(R))

(Proposition 3.4). Furthermore, if R/J(R) is unit regular and every idempotent of R/J(R)

lifts modulo J(R), then R satisfies the properties Pr and Pl Proposition 3.7.

Recall that a ring R is said to be semicommutative if xy = 0 implies xRy = 0 for each

x, y ∈ R or, equivalently, if the right (left) annihilator of each element of R is an ideal.

We introduce the notions of idun-semicommutative rings which are obtained by formally

replacing the whole ring in the above definitions, by Id(R) + U(R); a ring R is called

idun-semicommutative if xy = 0 implies x(Id(R) + U(R))y = 0 for all x, y ∈ R. As it

is remarked we show that every local ring is idun-semicommutative (Corollary 4.12) and

regular idun-semicommutative rings are precisely abelian regular ones (Theorem 4.7)

Finally, let A and B be two rings with identity, K an ideal of B and f : A → B a ring

homomorphism. We consider the subring of A×B, defined by A ./f K := {(a, f(a)+k)|a ∈
A, k ∈ K} which is called amalgamated construction of with A with B along K with respect

to f . In [7], clean-like properties of the amalgamation ring A ./f K of A with B along

K with respect to f . We examine closure properties of the amalgamation construction

A ./f K and decomposition for the classes of UG, Pr and semicommutative rings.

2. UG rings

Recall that a ring R every principal right ideal is uniquely generated up to associativity

We should point out that it is apparently unknown whether right UG is equivalent to left

UG. For instance, all domains have (left and right) UG.

Let us recall that a ring R has stable range 1 if for any a, b ∈ R with aR + bR = R,

there exists x ∈ R such that a+ bx ∈ U(R). We show that every ring with stable range 1

is left (and right) UG, while the converse fails as Z is UG:

Theorem 2.1. The following are equivalent for any von Neumann regular ring R:

(1) R is unit-regular.

(2) R has stable range 1.

(3) R is left(right) UG.
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Proof. The equivalence (1) ⇔ (2) follows from [6, Proposition 4.12] and the equivalence

(1)⇔ (3) is proved in [11, Theorem]. �

Example 2.2. We have shown that von Neumann regular rings need not be UG. Suppose

VD is a vector space of countably infinite dimension over a division ring D. Hence End(VD)

is a von Neumann regular ring which is not unit-regular, which implies that End(VD) is

not a left UG ring by Theorem 2.1.

A topological space X is called strongly zero-dimensional if X is a non-empty completely

regular Hausdorff space and every finite functionally open cover {Ui}ki=1 of the space X

has a finite open refinement {Vi}mi=1 such that Vi
⋂
Vj = ∅, whenever i 6= j. A T1-space X

which has a base consisting of closed sets is called zero-dimensional.

Let us construct an example of a non-regular UG ring.

Example 2.3. Every unit-regular ring is left (right) UG by Theorem 2.1. For the converse,

let X be a zero-dimensional space which is not a strongly zero-dimensional (e.g., Dowker’s

example, see [5, 6.2.20]). In [4], Canfell showed that if X is a zero-dimensional space then

C(X) is a UG ring. On the other hand, C(X) is not clean (see, [2, Theorem 2.5] or [12,

Theorem 13]). Hence C(X) is a UG ring which is not unit-regular.

Now, we formulate several closure properties of the class of all UG rings.

Proposition 2.4. Let Ri, i ∈ Λ, and R be rings.

(1) If R is local, then it is left and right UG.

(2)
∏

i∈ΛRi is a UG ring if and only if Ri is UG for each i ∈ Λ.

(3) Every commutative perfect left and right UG.

(4) Every domain is left and right UG.

Proof. (1) Let R be a local ring and a, b ∈ R such that aR = bR 6= 0. Denote by π : R→ aR

the projection π(r) = ar for each r ∈ R and put I = Ker π. If b = au and a = bv, then

π(uv) = a. Since bR = aR, we have π(1) = π(uv), hence uv + I = 1 + I ∈ R/I and so

1− uv ∈ I ⊆ J(R). Then uv /∈ J(R) which means that uv is a unit in R. The symmetric

argument says that vu is a unit, hence u, v ∈ U(R).
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(2) This follows from the fact that a
∏

i∈Λ Ri =
∏

i∈Λ πi(a)Ri for natural projections πi.

(3) Since commutative perfect rings are isomorphic to finite products of local rings, the

assertion follows from (1) and (2).

(4) If aR = bR for nonzero a, b ∈ R, then there are r, s ∈ R for which ar = b and a = bs.

Hence a(rs− 1) = 0 and b(rs− 1) = 0, which implies r, s ∈ U(R). �

Let us make one easy observation on the amalgamation construction and then a descrip-

tion of closure properties of UG rings in case of the amalgamated rings.

Lemma 2.5. If A and B be a pair of rings, f : A→ B be an injective ring homomorphism

and K be a proper ideal of B with f(A) ∩K = 0, then the rings A ./f K and f(A) + K

are isomorphic.

Proof. Desired isomorphism is induced by the canonical projection πB : A×B → B. �

Theorem 2.6. Let A and B be a pair of rings, f : A → B be a ring homomorphism and

K be a proper ideal of B. Then the followings hold.

(1) Let A be a UG ring. If, for every a ∈ A and i, j ∈ K such that (f(a)+i)(f(A)+K) =

(f(a) + j)(f(A) + K), there exists k ∈ K satisfying 1 + k ∈ U(f(A) + K) and

j − i = (f(a) + i)k, then A ./f K is a UG ring.

(2) If A ./f K is a UG ring, then so is A.

(3) If f is injective, A reduced and K is a nil ideal, then A ./f K is a UG ring if and

only if f(A) +K is a UG ring.

Proof. Let R := A ./f K.

(1) Suppose that (a, f(a) + i)R = (b, f(b) + j)R for a, b ∈ A and i, j ∈ K. Then there

exists u ∈ U(A) such that au− b by the hypothesis, hence (u, f(u)) ∈ U(R) and

(a, f(a) + i)(u, f(u)) = (au, f(a)f(u) + if(u)) = (b, f(b) + if(u)).

Since (b, f(b) + if(u))R = (b, f(b) + j)R, we get

(f(b) + j)(f(A) +K) = (f(b) + if(u))(f(A) +K).

Then, by the hypothesis, there there exists k ∈ K satisfying 1 + k ∈ U(f(A) + K) and

j − if(u) = (f(b) + if(u))k, hence f(b) + j = (f(b) + if(u))(1 + k). Now, the element
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v = (u, f(u)) · (1, 1 + k) = (u, f(u) + f(u)k) ∈ U(R) satisfies (a, f(a) + i)v = (b, f(b) + j)

as desired.

(2) Suppose that R is a UG ring and let xA = yA for x, y ∈ A. Then it is easy to

compute that (x, f(x))R = (y, f(y))R, hence there (u1, u2) ∈ U(R) such that (x, f(x)) =

(y, f(y))(u1, u2) by the hypothesis. Since u1 ∈ U(A) and xu1 = y, the ring A is UG.

(3) Since f(A) ∩K = 0, Lemma 2.5 implies that A ./f K ∼= f(A) +K. �

Finally, the following example illustrates possible relations between rings A ./f K and

f(A) +K.

Example 2.7. Let E be any ring which is not UG, e.g. the endomorphism ring from

Example 2.2 and A = Z〈xr, r ∈ E〉 the free polynomial ring in noncommuting variables

{vr | r ∈ E}. Then a map xr → r induces a surjective ring homomorphism f : A → E,

where A is a UG ring by Proposition 2.4(4). It shows that a factor of a UG ring need not

be UG and, moreover, the example of a UG ring A ./f 0 ∼= A such that f(A) + 0 ∼= E is

not UG.

3. Rings satisfying the condition Pr

Recall the definition of the properties Pr and Pl:

Pr: For every r ∈ R there exists u ∈ U(R) and e ∈ Id(R) such that rR = (e+ u)R

Pl: For every r ∈ R there exists u ∈ U(R) and e ∈ Id(R) such that Rr = R(e+ u)

We start the section with an easy reformulation of the definition.

Lemma 3.1. A ring R satisfies the (right) property Pr if and only if for every r ∈ R there

exist u ∈ U(R) and e ∈ Id(R) such that rR = (1 + eu−1)R.

Proof. Clearly, there exists u ∈ U(R) and e ∈ Id(R) such that rR = (e + u)R if and only

if rR = (1 + eu−1)R. �

Let us formulate several elementary observation about sets Id(R), U(R) and J(R).

Lemma 3.2. Let R be a ring.

(1) If j ∈ J(R), then jR = (1 + (j − 1))R where 1 ∈ Id(R) and j − 1 ∈ U(R).
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(2) If u ∈ U(R), then uR = (0 + u)R where 0 ∈ Id(R) and u ∈ U(R).

(3) If e ∈ Id(R), then eR = (−1 + (1− e))R where 1− e ∈ Id(R) and −1 ∈ U(R).

(4) If r = u + v ∈ U(R) + U(R), then rR = (1 + vu−1)R where 1 ∈ Id(R) and

vu−1 ∈ U(R).

Example 3.3. (1) Every clean ring satisfies the properties Pr and Pl.

(2) Every local ring satisfies the properties Pr and Pl. Indeed, since R = U(R) ∪ J(R)

for a local ring R, the assertion follows from Lemma 3.2(1) and (2).

(3) Every von Neumann regular ring satisfies the properties Pr and Pl by Lemma 3.2(3).

(4) According to Zhang and Tong [15] an element of ring is G-clean if it is the sum of a

unit regular element and a unit. Equivalently, a ring is G-clean if every element is a unit

multiple of a clean element. Remark that if a ring has the property that every element

has a right unit multiple that is clean, then this also satisfying Pr. Hence due to the facts

about the right UG property, there are rings satisfying Pr which are not G-clean.

Now we can describe domains satisfying Pr:

Proposition 3.4. Let R be a ring.

(1) If Id(R) = {0, 1}, then R satisfies the property Pr if and only if for each r ∈
R \ U(R) there exists u ∈ U(R) such that rR = (1 + u)R.

(2) If R is a domain, then R satisfies Pr if and only if R = U(R) ∪ (U(R) + U(R)).

Proof. (1) It follows from the definition and Lemma 3.2(2).

(2) Note that Id(R) = {0, 1} since R is a domain and that 0 = 1+(−1) ∈ U(R)+U(R).

If r ∈ R\(U(R)∪{0}) and R satisfies the property Pr, then there exists u ∈ U(R) such that

rR = (1 + u)R by (1). Hence there exist s, t ∈ R such that rs = (1 + u) and (1 + u)t = r

which implies rst = r and (1 + u)ts = (1 + u). As R is a domain we get that st = 1 and

ts = 1, hence t ∈ U(R). Now r = t+ ut ∈ U(R) + U(R).

If R = U(R) ∪ (U(R) + U(R)), then R satisfies the property Pr by Lemma 3.2(2) and

(4). �

Example 3.5. Let X be a connected space. C(X) satisfies the property Pr if and only

if is UG. Indeed, it is well-known that X is connected if and only if 0 and 1 are the only
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idempotents in C(X), so C(X) satisfies the property Pr if and only if is UG by Proposition

3.4.

Example 3.6. (1) The ring of integers Z is a UG ring which is not Pr by Proposition

3.4(2).

(2) The von Neumann regular ring End(VD) in Example 2.2 satisfies Pr which is not

UG .

For a ring R, we recall that u ∈ U(R) if and only if u+ J(R) ∈ U(R/J(R)).

The following closure properties of the class of rings satisfying Pr will then be used in

the description of semiperfect and amalgamated ring.

Proposition 3.7. Let R, Ri (i ∈ Λ) be rings and I be an ideal of R.

(1) If R satisfies Pr, then R/I satisfies the property Pr .

(2)
∏

i∈ΛRi satisfies the property Pr if and only if each Ri satisfies Pr for each i ∈ Λ.

(3) If R/J(R) is unit regular and every idempotent of R/J(R) lifts modulo J(R), then

R satisfies both the properties Pr and Pl .

(4) If R is a commutative ring, then the polynomial ring R[x] does not satisfy Pr.

Proof. (1) The assertion follows from the fact that the homomorphic images of idempotents

are idempotents and the homomorphic images of units are units.

(2) Let R =
∏

i∈ΛRi. By (1), it suffices to prove the reverse implication. If r = (ri)i∈Λ ∈
R, then there are ei ∈ Id(Ri) and ui ∈ U(Ri) such that riR = (ei+ui)R. Now, it is obvious

that rR = ((ei)i∈Λ + (ui)i∈Λ)R = (ei + ui)i∈ΛR where (ei)i∈Λ ∈ Id(R) and (ui)i∈Λ ∈ U(R).

(3) Let a ∈ R. Then there exists u ∈ U(R), e ∈ Id(R), and j ∈ J(R) such that

au = e + j, Thus a(−u) = (1 − e) − (1 + j), and so aR = ((1 − e) − (1 + j))R with

(1− e) ∈ Id(R) and −(1 + j) ∈ U(R) which proves that R satisfies the property Pr.

(4) Assume that R[x] satisfies the property Pr. Then there exists a maximal ideal

I of R such that R/I[x] is a domain which satisfies the property Pr by (1). Clearly

x /∈ U(R/I[x]) ∪ {0}. If x = u + v ∈ U(R/I[x]) + U(R/I[x]), then xv−1 − uv−1 = 1, a

contradiction. �
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By Example 3.3(1), every von Neumann regular ring satisfies the properties Pr and Pl.

Recall that a ring R is semiperfect if R/J(R) is semisimple and all idempotent of R/J(R)

lifts modulo J(R) and R is right max if every nonzero right module contains a maximal

submodule. An ideal I ⊂ R is right T-nilpotent, provided for every sequence a1, a2, · · · ,∈ I
there exists n such that anan−1 · · · a1 = 0.

Theorem 3.8. Every semiperfect ring and every commutative max ring satisfy both the

properties Pr and Pl.

Proof. Since any semisimple ring is unit regular, we can easily say that semiperfect rings

satisfy the properties Pr and Pl by Proposition 3.7(3).

If R is a commutative max ring, then J(R) is T-nilpotent by [1, Remark 28.5] and

R/J(R) is commutative regular by [14], hence R satisfies the properties Pr and Pl by

Proposition 3.7(3) again. �

Corollary 3.9. Every right perfect ring satisfies Pr and Pl.

Theorem 3.10. Let A and B be a pair of rings, f : A→ B be a ring homomorphism and

K be a proper ideal of B. Then the followings hold.

(1) If A is a clean ring and K is nil, then A ./f K is clean and so it satisfies Pr.

(2) If A ./f K satisfies the property Pr, then both A and f(A) +K satisfy Pr.

Proof. Put R := A ./f K.

(1) Suppose that A is a clean ring and let (x, f(x)+t) ∈ R. Then x = e+u for e ∈ Id(A),

u ∈ U(A), hence f(x) = f(e+ u) = f(e) + f(u) satisfying

f(e) ∈ Id(f(A)) ⊆ Id(f(A) +K) and f(u) ∈ U(f(A)) ⊆ U(f(A) +K).

Note that K is a nil ideal of the ring f(A)+K, which implies f(u)+t ∈⊆ U(f(A)+K), and

so (u, f(u)+t) ∈ U(R) by [7, Lemma 2.5(2)]. Thus (x, f(x)+t) = (e, f(e))+(u, f(u)+t) ∈
Id(R) + U(R).

(2) Consider the canonical projections πA : A× B → A and πB : A× B → B. Clearly,

πA(R) = A and πB(R) = f(A) + K. Thus A and f(A) + K satisfy the property Pr by

Proposition 3.7(1). �
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4. Idun-semicommutative Rings

Recall that a ringR is called idun-semicommutative if xy = 0 implies x(Id(R)+U(R))y =

0 for all x, y ∈ R.

Proposition 4.1. Semicommutative rings are idun-semicommutative. The converse is

true for clean rings.

Proof. Let R be a semicommutative ring and let xy = 0 for any x, y ∈ R. Semicommuta-

tivity of R gives us x(Id(R) + U(R))y ⊆ xRy = 0, as desired.

Since R = Id(R) + U(R) for any clean ring R, the converse is clear. �

A ring R is said to be reduced if it contains no non-zero nilpotent elements. Equivalently,

a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies

x = 0.

Example 4.2. Every reduced ring is semi-commutative, hence idun-semicommutative. In,

particular, every product of domains is idun-semicommutative.

Now, we formulate equivalent conditions to the idun-semicommutativity.

Proposition 4.3. Let R be a ring. The following statements are equivalent:

(1) R is an idun-semicommutative ring,

(2) for any x ∈ R, (Id(R) + U(R))rR(x) ⊆ rR(x),

(3) for any x ∈ R, lR(x)(Id(R) + U(R)) ⊆ lR(x),

(4) for any x ∈ R, (Id(R) + U(R))rR(x) = rR(x),

(5) for any x ∈ R, lR(x)(Id(R) + U(R)) = lR(x),

(6) for any x ∈ R, (Id(R) + U(R))rR(x) = rR(x)(Id(R) + U(R)),

(7) for any x ∈ R, lR(x)(Id(R) + U(R)) = (Id(R) + U(R))lR(x).

Proof. It is enough to prove the equivalence (1) ⇔ (2) ⇔ (4) ⇔ (6), as the UG condition

is left-right symmetric, hence the equivalence (1) ⇔ (3) ⇔ (5) ⇔ (7) follows from the

symmetric argument.

(1) ⇒ (2) Let x ∈ R, e ∈ Id(R) and u ∈ U(R) with r ∈ rR(x). Since xr = 0 and R is

idun-semicommutative, we get x(e+ u)r = 0. Thus (e+ u)r ∈ rR(x), as desired.
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(2)⇒ (4) As 1 = 0+1 ∈ Id(R)+U(R), we obtain rR(x) ⊆ (Id(R)+U(R))rR(x) ⊆ rR(x)

which implies the equality.

(4) ⇒ (6) Since rR(x) is a right ideal, we obtain the inclusion rR(x)(Id(R) + U(R)) ⊆
rR(x). As 1 = 0 + 1 ∈ Id(R) + U(R) we have rR(x)(Id(R) + U(R)) = rR(x) = (Id(R) +

U(R))rR(x).

(6) ⇒ (1) Let xy = 0 for x, y ∈ R and e ∈ Id(R), u ∈ U(R). As y ∈ rR(x), we get

(e+ u)y ∈ rR(x)(Id(R) + U(R)), hence x(e+ u)y = 0. �

Proposition 4.4. Idun-semicommutative rings are abelian.

Proof. Let R be an idun-semicommutative ring and e ∈ Id(R). We have rR(1 − e) = eR.

By Lemma 4.3(4), we obtain (Id(R) + U(R))eR = eR . Clearly, 1 − (1 − e)re is a unit

for every r ∈ R. Then (e+ (1− (1− e)re) ∈ (Id(R) + U(R)) and (e+ (1− (1− e)re)e =

(e+ (e− (1− e)re) ∈ eR = rR(1− e). Thus we obtain (1− e)(e+ (e− (1− e)re) = 0 which

implies −(1 − e)re = 0 and re = ere. Similarly, we get er = ere by rR(e) = (1 − e)R.

Hence er = re, i.e., the idempotent e is central. �

We can formulate an easy consequence of the last assertion:

Corollary 4.5. Let R be a ring and n be a natural number. Then the matrix ring Mn(R)

is idun-semicommutative if and only if R is idun-semicommutative and n = 1.

In the following two observations, we give some conclusion for the converse of 4.4.

Proposition 4.6. The following conditions are equivalent for a ring R:

(1) R is idun-semicommutative,

(2) R is abelian and urR(x) = rR(x) for each u ∈ U(R) and x ∈ R,

(3) R is abelian and lR(x)u = lR(x) for each u ∈ U(R) and x ∈ R.

Proof. (1) ⇒ (2) R is abelian by Proposition 4.4. If u ∈ U(R) and x ∈ R, then urR(x) ⊆
rR(x) and u−1rR(x) ⊆ rR(x) by Proposition 4.3(2). Hence rR(x) ⊆ urR(x) and so urR(x) =

rR(x).

(2) ⇒ (1) Since Id(R)rR(x) = Id(R)rR(x) ⊆ rR(x) and U(R)rR(x) ⊆ rR(x), then

(Id(R) + U(R))rR(x) ⊆ rR(x) for each x ∈ R as rR(x) is a right ideal, R is idun-

semicommutative by Proposition 4.3(2).
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(1)⇔ (3) The argument is symmetric using Proposition 4.3(3). �

Theorem 4.7. The following conditions are equivalent for a Von Neumann regular ring

R:

(1) R is idun-semicommutative,

(2) R is abelian,

(3) R is semicommutative.

Proof. (1)⇒ (2) The implication follows from Proposition 4.4.

(2) ⇒ (3) If xy = 0, then there exist a central idempotent e such that yR = eR = Re,

hence 0 = xyR = xReR = xRy.

(3)⇒ (1) The implication is clear. �

We recall two natural generalizations of commutative rings.

A ring R is called symmetric if abc = 0 implies acb = 0 for all a, b, c ∈ R, and R is called

is reversible if, for any a, b ∈ R, ab = 0 if and only if ba = 0.

Proposition 4.8. Every reversible rings is idun-semicommutative.

Proof. Let be R reversible ring. Assume that ab = 0 for any a, b ∈ R. Since R is reversible,

we get ba = 0. Hence ba(e + u) = 0 for e ∈ Id(R) and u ∈ U(R). Clearly, a(e + u)b = 0,

which implies that R is an idun-semicommutative ring. �

As each symmetric ring is reversible we obtain the following consequence.

Corollary 4.9. Every symmetric ring is idun-semicommutative.

In the following assertion, we collect three several algebraic properties of idun-semicommutative

rings.

Proposition 4.10. Let R, Ri (i ∈ Λ) be rings and I be an ideal of R.

(1) Any subring of an idun-semicommutative ring is idun-semicommutative as well.

(2)
∏

i∈ΛRi is idun-semicommutative if and only if Ri is idun-semicommutative for

each i ∈ Λ.
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(3) If R is an idun-semicommutative ring, then J(R)rR(x) ⊆ rR(x) for each x ∈ R.

(4) If R is an idun-semicommutative ring and e ∈ Id(R), then the corner ring eRe is

idun-semicommutative.

Proof. (1) If S is a subring of an idun-semicommutative ring R and x, y ∈ S ⊆ R such

that xy = 0, then x(Id(S) + U(S))y ⊆ x(Id(R) + U(R))y = 0, since Id(S) ⊆ Id(R) and

U(S) ⊆ U(R).

(2) Let us denote by πithe canonical projection for each i ∈ I.

The necessity: Let αi, βi ∈ Ri and αiβi = 0 and let α, β ∈
∏

n∈ΛRn for which πi(α) = αi,

πi(β) = βi and πj(α) = πj(β) = 0 for all j 6= i. Then αβ = 0, hence α(Id(R)+U(R))β = 0

by the hypothesis. Since πi(Id(R)) = Ri and πi(U(R)) = U(Ri), we have αiπi(Id(R) +

U(R))βi = 0 as desired.

The sufficiency: Suppose that α = (αi)i∈Λ, β = (βi)i∈Λ ∈
∏

i∈ΛRi such that αβ = 0.

Then αiβi = 0 for each i ∈ Λ. Since Ri is idun-semicommutative, we get αi(Id(Ri) +

U(Ri))βi = 0. Hence α(Id(R)+U(R))β = 0, it shows that
∏

i∈ΛRi is idun-semicommutative.

(3) Let R be an idun-semicommutative ring. Assume that j ∈ J(R) and y ∈ rR(x).

Then 1 − j = 0 + (1 − j) ∈ Id(R) + U(R). By the hypothesis , we get x(1 − j)y = 0.

Therefore xjy = 0, so jy ∈ rR(x). It shows that J(R)rR(x) ⊆ rR(x).

(4) Let R be an idun-semicommutative ring. Suppose exe, eye ∈ eRe and (exe)(eye) = 0.

Since R is an idun-semicommutative ring, (exe)(Id(R) + U(R))(eye) = 0. Then

(exe)(e(Id(R) + U(R))e)(eye) = 0.

Thus

(exe)(Id(eRe) + U(eRe))(eye) ⊆ (exe)(eId(R)e+ eU(R)e)(eye) = 0,

so eRe is an idun-semicommutative ring. �

If X is a subset of R we denote by 〈X〉 the subgroup of the abelian group (R,+,−, 0)

generated by the set X.

Theorem 4.11. Let R = 〈U(R) ∪ Id(R) ∪ J(R)〉. Then R = 〈U(R) ∪ Id(R)〉 and R is

idun-semicommutative if and only if R is semicommutative.
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Proof. If j ∈ J(R), then j − 1 ∈ U(R), hence j ∈ 〈U(R) ∪ Id(R)〉. It proves that

J(R) ⊆ 〈U(R) ∪ Id(R)〉.
Let R be idun-semicommutative and x ∈ R. It is enough to prove that rR(x) is two

sided ideal. Clearly it is left ideal, hence 〈rR(x)〉 = rR(x). Then by Proposition 4.10(3) we

have (Id(R) + U(R))rR(x) = rR(x), hence

RrR(x) = 〈U(R) ∪ Id(R)〉rR(x) = 〈(Id(R) + U(R))rR(x)〉 = 〈rR(x)〉 = rR(x).

We have proved that rR(x) is two-sided ideal for each x ∈ R, thus R is semicommutative.

The reverse implication is obvious. �

Corollary 4.12. A local ring is idun-semicommutative if and only if it is semicommutative.

Example 4.13. By Gerasimov and Sakhaev’s Example ([8]) there exist some semilocal

rings with no non-trivial idempotents satisfying U(R)rR(x) ⊆ rR(x) for each x ∈ R which

is not local containing x, y such that xy = 0 and xRy 6= 0 is idun-semicommutative but

non-semicommutative.

Proposition 4.14. A semiperfect ring is idun-semicommutative if and only if it is semi-

commutative.

Proof. By Proposition 4.1 it is enough to prove the direct implication. Since R semiperfect

and idun-semicommutative, it is semiperfect and abelian by Proposition 4.4, hence there

exists a sequence of central orthogonal idempotents e1, . . . en such that R ∼=
∏

i eiR where

eiR is a local idun-semicommutative ring by Proposition 4.10(4). Since eiR is semicom-

mutative by Corollary 4.12, then it is easy to see that R ∼=
∏

i eiR is semicommutative as

well. �

To conclude the paper we formulate an observation and an example on closure properties

of amalgamation constructions and decompositions of idun-semicommutative rings.

Theorem 4.15. Let A and B be a pair of rings, f : A→ B be a ring homomorphism and

K be a proper ideal of B. Then the followings hold.

(1) If A and f(A) +K are idun-semicommutative, then so is A ./f K.

(2) If A ./f K is idun-semicommutative, then so is A.
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(3) If f is injective, A reduced and K is a nil ideal, then A ./f K is idun-semicommutative

if and only if f(A) +K is so.

Proof. (1) If A and f(A)+K are idun-semicommutative, then the product A× (f(A)+K)

is idun-semicommutative by Proposition 4.10(2). Since A ./f K is a subring of the ring

A× (f(A) +K), it is idun-semicommutative by Proposition 4.10(1).

(2) As A is isomorphic to a subring of the idun-semicommutative ring A ./f K, it is is

idun-semicommutative by Proposition 4.10(1).

(3) A ./f K ∼= f(A) +K by Lemma 2.5 since f(A) ∩K = 0. �

Example 4.16. Similarly as in Example 2.7 we denote by E a ring which is not idun-

semicommutative, for example a matrix ring over a field F consisting 2× 2 where xy = 0

and xuy 6= 0 for

x =

(
1 0
0 0

)
, y =

(
0 0
0 1

)
∈ Id(E), u =

(
0 1
1 0

)
∈ U(E).

If A = F 〈x11, x12, x21, x22〉 denotes the free polynomial ring in noncommuting variables

over F , then any mapping of variables onto a F -basis of E can be extended to a surjective

ring homomorphism f : A → E, where A is a domain, hence an idun-semicommutative

ring. Repeating the argument of Example 2.7 A ./f 0 ∼= A is an idun-semicommutative

ring with a non-idun-semicommutative factor f(A) + 0 ∼= E .
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