ESSENTIALLY ADS MODULES AND RINGS

M. TAMER KOŞAN, TRUONG CONG QUYNH, AND JAN ŽEMLIČKA

Abstract

This paper introduces the notion of essentially ADS (e-ADS) modules. Basic structural properties and examples of e-ADS modules are presented. In particular, it is proved that (1) The class of all e-ADS modules properly contains all ADS as well as automorphism invariant modules. e-ADS modules serves also as a tool for characterization of various classes of rings. It is shown that: (2) R is a QF-ring if and only if every projective right R-module is e-ADS; (3) R is a semisimple Artinian ring if and only if every e-ADS module is injective. The final part of this paper describes properties of e-ADS rings, which allow to prove a criterion of e-ADS modules for non-singular rings: (4) Let R be a right non-singular ring and Q be its the right maximal ring of quotients. Then R is a right e-ADS ring if and only if either $e Q \not \not 二(1-e) Q$ for any idempotent $e \in R$ or $R \cong \mathbb{M}_{2}(A)$ for a suitable right automorphism invariant ring A.

1. Introduction

The absolute direct summand (ADS) property for modules was introduced by Fuchs in [6] and recently was intensively studied by Alahmadi, Jain and Leroy in [1]. Recall that a right module M over a ring R is said to be ADS if for every decomposition $M=S \oplus T$ and every complement T^{\prime} of S, we have $M=S \oplus T^{\prime}$.

In recent works [5, 8, 12], the notion of automorphism invariant modules was shown to be and important tool for finding correspondences between various concept of injectivity. A module M is called automorphism invariant if it is invariant under automorphisms of its injective hull, equivalently if every isomorphism between two essential submodules of M extends to an automorphism of M [8]. Quasi-injective modules are automorphism invariant. Assume that an R-module M has a decomposition $M=S \oplus T$ such that T^{\prime} is a complement of $S, T^{\prime} \cap T=0$ and $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$. It is easy to see (cf. Lemma 2.4) that $E(S) \cong E(T)$, where E denotes the injective hull. In light of this observation, we define essentially ADS-modules (shortly e-ADS), as an R-module M such that for every decomposition $M=S \oplus T$ of M and every complement T^{\prime} of S with $T^{\prime} \cap T=0$ and $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$, we have $M=S \oplus T^{\prime}$. This definition naturally generalizes both notions mentioned above. Furthermore, recall that when a module M is quasi-continuous, for each decomposition $M=A \oplus B, A$ and B are relatively injective. This property of modules is known to be equivalent to ADS modules ([1, Lemma 3.1]) and automorphism invariant modules ([8, Theorem 5]). Since an R-module M is e-ADS if and only if for each decomposition $M=A \oplus B, A$ and B are relatively automorphism invariant (see Lemma 2.8), e-ADS modules arise as a

[^0]generalization of quasi-continuous modules, ADS modules as well as automorphism invariant modules. The goal of this paper is to present a list of significant structural properties of e-ADS modules and to exhibit relations with other notions. We show that e-ADS as well as automorphism invariant or ADS modules have a description in the language of the lattice theory (Lemmas 2.1, 2.15, 4.4). Important for further study is the division of the class of e-ADS modules into trivial and non-trivial case (cf. Theorem 2.9). Moreover it is proved in Theorem 2.9 that, if $E(A) \neq E(B)$ for each decomposition $M=A \oplus B$, then M is e-ADS. On the other hand if M is an e-ADS module with a decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant. This result is key to our work and is used to characterize many well-known classes of modules in terms of e-ADS modules. For example, we show in Theorem 2.18 that for an e-ADS module M with a decomposition $M=A \oplus B$ such that $E(A) \cong E(B), M$ satisfies the exchange property if and only if $\operatorname{End}(M)$ is semiregular.

The final part of the article is devoted to rings which are e-ADS as right modules over themselves. By applying elementary lattice theoretical tools on rings induced by idempotents we characterize when non-singular rings are e-ADS. Based on the key observation that a non-trivial e-ADS ring is isomorphic to a 2×2 full matrix ring over an automorphism invariant ring (Lemma 4.9) we prove a characterization of non-singular e-ADS rings. Namely, a non-singular ring is e-ADS if and only if it is either trivial e-ADS or it is a product of a self-injective ring and a matrix ring $M_{2}(S)$ over an automorphism invariant ring S with many central idempotents (Theorem 4.11).

Throughout this article, unless otherwise stated, all rings have unity and all modules are unital. For a submodule N of M, we use $N \leq M(N<M)$ to mean that N is a submodule of M (respectively, proper submodule), and we write $N \leq^{e} M$ to indicate that N is an essential submodule of M. For any term not defined here the reader is referred to [2], [4] and [9].

2. e-ADS MODULES

Let M and N be two modules. The module M is called automorphism N invariant if for any essential submodule A of N, any essential monomorphism from A to M can be extended to some $g \in \operatorname{Hom}(N, M)$ ([12]).

We note that M is automorphism invariant if M is automorphism M-invariant by [8, Theorem 2].
Lemma 2.1. Let M and N be modules and $X=M \oplus N$. The following conditions are equivalent:
(1) M is automorphism N-invariant.
(2) For any complement K of M in X with $K \cap N=0$ and $M \cap(K \oplus N) \leq^{e} M$, the module X has a decomposition $X=M \oplus K$.

Proof. Consider the natural projections $\pi_{M}: X \rightarrow M$ and $\pi_{N}: X \rightarrow N$. Note that $\pi_{M}(K)=M \cap(K+N)$ for each submodule K of X.
$(1) \Rightarrow(2)$ Let K be a complement of M in X with $K \cap N=0$ and $\pi_{M}(K) \leq^{e} M$. Clearly, $M \oplus K=M \oplus \pi_{N}(K)$ so that $\pi_{N}(K)$ is essential in N. Consider the homomorphism $\theta: \pi_{N}(K) \rightarrow \pi_{M}(K)$ defined by $\theta(n)=m$ whenever $k=m+n \in K$ for $k \in K, m \in M, n \in N$. It is easy to see that θ is an isomorphism ($K \cap N=0$ by the assumption). Since M is automorphism N-invariant, the homomorphism θ can
be extended to some $g: N \rightarrow M$. Set $T:=\{n+g(n) \mid n \in N\}$. Clearly, $M \oplus T=X$ and T contains K essentially by modularity. Since K is a complement, we obtain $T=K$.
$(2) \Rightarrow(1)$ Let A be an essential submodule of N and $f: A \rightarrow M$ be an essential monomorphism. Set $H:=\{a-f(a) \mid: a \in A\}$. Clearly, $H \cap N=0, H \cap M=0$ and $\pi_{M}(H)=f(A)$ is essential in M. Then $M \oplus H=M \oplus \pi_{N}(H)=M \oplus A$, which is essential in X. Let K be a complement of M in X containing H. Then $H \leq^{e} K$. Hence $K \cap N=0$ because $H \cap N=0$. Moreover, $\pi_{M}(H) \leq \pi_{M}(K)$ which implies that $\pi_{M}(K) \leq^{e} M$. By the assumption, we have $M \oplus K=X$. Now let $\pi: M \oplus K \rightarrow M$ be the projection. Then writing an element $a \in A$ in the form $a=a-f(a)+f(a)$, the restriction of π to N is the desired extension of f.

Lemma 2.2 ([12, Theorem 2.2]). The following are equivalent for modules M and N :
(1) M is automorphism N-invariant.
(2) $\alpha(N) \leq M$ for every isomorphism $\alpha: E(N) \rightarrow E(M)$.

As an immediate consequence of Lemmas 2.1 and 2.2 , we obtain the following observation.

Corollary 2.3. If M and N are relatively automorphism invariant modules and $E(M) \cong E(N)$, then $M \cong N$
Lemma 2.4. Let M be a module with a decomposition $M=S \oplus T$. If T^{\prime} is a complement of S with $T^{\prime} \cap T=0$ and $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$, then $T \oplus T^{\prime} \leq^{e} M$ and $E(S) \cong E(T)$.

Proof. Note that $S \oplus T^{\prime} \leq^{e} M$ because T^{\prime} is a complement of S. Since

$$
T \oplus\left[S \cap\left(T^{\prime} \oplus T\right)\right] \subseteq T \oplus T^{\prime} \text { and } T \oplus\left[S \cap\left(T^{\prime} \oplus T\right)\right] \leq^{e} T \oplus S=M
$$

we get $T \oplus T^{\prime} \leq^{e} M$. Moreover, the injective hulls $E(S), E(T)$ and $E\left(T^{\prime}\right)$ can be taken as submodules of the injective hull $E(M)$ such that $S \leq^{e} E(S), T \leq^{e} E(T)$ and $T^{\prime} \leq^{e} E\left(T^{\prime}\right)$. Since $S \cap T^{\prime}=0=T \cap T^{\prime}$, it is easy to see that

$$
E(S) \cap E\left(T^{\prime}\right)=0=E(T) \cap E\left(T^{\prime}\right)
$$

On the other hand,

$$
E(S)+E\left(T^{\prime}\right)=E(M)=E(T)+E\left(T^{\prime}\right)
$$

because both $E(S)+E\left(T^{\prime}\right)=E(S) \oplus E\left(T^{\prime}\right)$ and $E(T)+E\left(T^{\prime}\right)=E(T) \oplus E\left(T^{\prime}\right)$ are injective submodules of $E(M)$, and both $S \oplus T^{\prime}$ and $T \oplus T^{\prime}$ are essential in $E(M)$. Thus

$$
\begin{aligned}
E(T) \cong\left(E(T)+E\left(T^{\prime}\right)\right) / E\left(T^{\prime}\right) & =E(M) / E\left(T^{\prime}\right) \\
& =\left(E(S)+E\left(T^{\prime}\right)\right) / E\left(T^{\prime}\right) \cong E(S)
\end{aligned}
$$

In light of Lemma 2.4, we call M an essentially ADS-module, shortly e-ADS, if for every decomposition $M=S \oplus T$ of M and every complement T^{\prime} of S with $T^{\prime} \cap T=0$ and $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$, we have $M=S \oplus T^{\prime}$.

Clearly, ADS-modules are e-ADS. The following examples show that the converse is not true in general and that the class of e-ADS modules is not closed under taking direct summands, respectively.

Example 2.5. Let T be a torsion abelian group which is not divisible and put $M:=\mathbb{Z} \oplus T$. Then every decomposition $M=A \oplus B$ contains a subgroup which is isomorphic to \mathbb{Z} while the second is torsion, hence $E(A) \neq E(B)$. By Lemma 2.4, there exists no a decomposition satisfying the hypothesis of the definition of e-ADS exists. So that the conditions for having an e-ADS modules are vacuously satisfied and the module is e-ADS. Hence it is an e-ADS abelian group.

On the other hand, since T is not divisible, we obtain T is not \mathbb{Z}-injective and so M is not ADS by [1, Lemma 3.1].

Example 2.6. Put $M:=\mathbb{Z} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2}}$ for some prime number p. Then M is e-ADS by Example 2.5. Since \mathbb{Z}_{p} is not automorphism $\mathbb{Z}_{p^{2}}$-invariant, we obtain that $Z_{p} \oplus \mathbb{Z}_{p^{2}}$ is not e-ADS by Lemma 2.8.

Let us mention the following equivalent conditions for a module to be e-ADS.
Theorem 2.7. The following conditions are equivalent for a module M :
(1) M is $e-A D S$.
(2) For every decomposition $M=S \oplus T$, if T^{\prime} is a complement of S in M and T is a complement of T^{\prime} in M, then $M=S \oplus T^{\prime}$.
Proof. (1) \Rightarrow (2) Suppose that $M=S \oplus T$ is a decomposition of M, T^{\prime} is complement of S and T is a complement of T^{\prime} in M. Then $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$ since $T \oplus T^{\prime} \leq^{e} M$. By (1), we have $M=S \oplus T^{\prime}$.
(2) \Rightarrow (1) Let $M=S \oplus T$ of M and $S \cap\left(T^{\prime} \oplus T\right) \leq^{e} S$ for a complement T^{\prime} of S with $T^{\prime} \cap T=0$. By Lemma 2.4, $T \oplus T^{\prime} \leq^{e} M$. Since T is a direct summand of M, we get T is a complement of T^{\prime} in M. By (2), we have $M=S \oplus T^{\prime}$.

In [1, Lemma 3.1], it is shown that an R-module M is ADS if and only if for each decomposition $M=A \oplus B, A$ and B are mutually injective.

Lemma 2.8. An R-module M is $e-A D S$ if and only if for each decomposition $M=A \oplus B, A$ and B are relatively automorphism invariant.

Proof. This is clear from Lemma 2.1.
The following characterization proves to be quite useful.
Theorem 2.9. Let M be an R-module.
(1) If $E(A) \neq E(B)$ for each decomposition $M=A \oplus B$, then M is $e-A D S$.
(2) If M is an $e-A D S$ module with a decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

Proof. (1) This follows from Lemmas 2.2 and 2.8.
(2) By Lemma 2.8 and Corollary 2.3, we have $A \cong B$. Thus A is automorphism A-invariant, i.e. automorphism invariant.

In the following observation, we continue to obtain equivalent conditions for a module to be e-ADS

Theorem 2.10. The following conditions are equivalent for a module M :
(1) M is $e-A D S$,
(2) Assume that M has a decomposition $M=A \oplus B$. For any isomorphism $f \in \operatorname{Hom}(E(B), E(A))$, the module M has a decomposition $M=A \oplus X$, where $X=\{b+f(b) \mid b \in B, f(b) \in A\}$.
(3) For every decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$, the module $A \cong B$ is automorphism invariant.
(4) Either $E(A) \not \equiv E(B)$ for every decomposition $M=A \oplus B$ or there exists an automorphism invariant module X for which $M \cong X \oplus X$ and for every two decompositions $X=P_{1} \oplus Q_{1}=P_{2} \oplus Q_{2}$ with $E\left(P_{1}\right) \oplus E\left(P_{2}\right) \cong$ $E\left(Q_{1}\right) \oplus E\left(Q_{2}\right)$ we have $\left(P_{1} \oplus P_{2}\right) \cong\left(Q_{1} \oplus Q_{2}\right)$ is automorphism invariant.

Proof. (1) \Rightarrow (2) We show that $X=\{b+f(b) \mid b \in B, f(b) \in A\}$ is a complement of A in M. Notice that $A \cap X=0, X \cap B=0$ and $A \cap(X \oplus B) \leq^{e} A$. Let L be a submodule of M such that $L \cap A=0$ and $X \leq L$. Consider the natural projections π_{A} and π_{B} of M onto A and B, respectively.
Claim: $\pi_{A}(x)=f \pi_{B}(x)$ for all $x \in L$: Assume that there exists $x \in L$ such that $\left(\pi_{A}-f \pi_{B}\right)(x) \neq 0$. Since $A \leq^{e} E(A)$, there exists $r \in R$ such that $0 \neq$ $\left(\pi_{A}-f \pi_{B}\right)(x r) \in A$. As $x r \in L$ and $\pi_{B}(x r)+f \pi_{B}(x r) \in X \subseteq L$, we have

$$
\pi_{A}(x r)-f \pi_{B}(x r)=x r-\left(\pi_{B}(x r)+f \pi_{B}(x r)\right) \in A \cap L=0
$$

a contradiction. Thus $\pi_{A}(x)=f \pi_{B}(x)$ for all $x \in L$.
For $x \in L$, we have

$$
x=\pi_{A}(x)+\pi_{B}(x)=f\left(\pi_{B}(x)\right)+\pi_{B}(x) \in X
$$

which implies $L \subseteq X$.
(2) \Rightarrow (3) If the module M has a decomposition $M=A \oplus B$ for an isomorphism $f \in \operatorname{Hom}(E(B), E(A))$, we obtain $M=A \oplus X$ with $X=\{b+f(b) \mid b \in B, f(b) \in$ $A\}$. Clearly, $f(B) \leq A$ and hence A is automorphism B-invariant by Lemma 2.2. Symmetrically, $f(A) \leq B$ and so A is automorphism and $A \cong B$.
$(3) \Rightarrow(1)$ This is a direct consequence of Lemma 2.8.
$(1) \Rightarrow(4)$ This follows from Theorem 2.9(2).
$(4) \Rightarrow(3)$ If $E(A) \neq E(B)$ for each decomposition $M=A \oplus B$, there is nothing to prove. Assume that M has a decomposition $M=X_{1} \oplus X_{2}$ for submodules X_{1} and X_{2} of M such that $X \cong X_{1} \cong X_{2}$. We suppose furthermore that M has an another decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$. By [3, Theorem 3], both the modules X_{1}, X_{2} and M satisfy the exchange property. Thus there exist submodules $P_{1} \subseteq A, Q_{1} \subseteq B$ such that $M=X_{1} \oplus P_{1} \oplus Q_{1}$. Note that $X_{2} \cong M / X_{1} \cong P_{1} \oplus Q_{1}$ is automorphism invariant, hence there exist submodules $P_{2} \subseteq A, Q_{2} \subseteq B$ such that $M=P_{1} \oplus Q_{1} \oplus P_{2} \oplus Q_{2}$. Clearly, as $P_{1} \oplus P_{2} \subseteq A$ and $Q_{1} \oplus Q_{2} \subseteq B$, we get $A=P_{1} \oplus P_{2}$ and $B=Q_{1} \oplus Q_{2}$, hence

$$
E\left(P_{1}\right) \oplus E\left(P_{2}\right) \cong E\left(P_{1} \oplus P_{2}\right) \cong E(A)
$$

and

$$
E\left(Q_{1}\right) \oplus E\left(Q_{2}\right) \cong E\left(Q_{1} \oplus Q_{2}\right) \cong E(B)
$$

Now, since $E(A) \cong E(B)$, the hypothesis of (4) implies that $A \cong B$ is automorphism invariant.

For modules M and N, N is said to be M-injective if every homomorphism from each submodule of M to N extends to a homomorphism from M to N, and
M and N are called relatively injective if N is M-injective and M is N-injective. The module M is called quasi-injective if M is M-injective. It is well-known that a module is quasi-injective if and only if it is invariant under automorphisms and idempotent endomorphisms of its injective hull.

In [8], Lee and Zhou discussed when an automorphism invariant module is quasiinjective or injective and they obtained the following observation.
Lemma 2.11 ([8, Theorem 5]). If $M \oplus N$ is automorphism invariant, then M and N are relatively injective.

Combining Lemmas 2.8 and 2.11, we have
Corollary 2.12. Every automorphism invariant module is e-ADS.
The following example shows that the converse of Corollary 2.12 is not true in general.

Example 2.13. Take any continuous module M which is not quasi-injective (e.g. if R is the ring of all sequences of real numbers that are eventually rational, then R_{R} is continuous but not quasi-injective), then clearly M is ADS (and hence e-ADS) but not automorphism invariant.

We recall Example 2.6. It also shows that e-ADS modules are not closed with respect to general direct summands. On the other hand, Corollary 2.12 and Theorem 2.9 prove that the class of all e-ADS modules is closed under taking some important cases of direct summands. We can then show:

Corollary 2.14. Let M be an e-ADS module. If M has a decomposition $M=$ $A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

In view of the claim of Theorem 2.9, we say that a module M is trivial e-ADS if it has no a decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$.

The following observation shows that the trivial e-ADS modules can be described using lattices of their submodules.
Proposition 2.15. Let M be a module. Then M is trivial e-ADS if and only if for every decomposition $M=A \oplus B$ no complement of A is a complement of B.

Proof. Suppose that the module M has a decomposition $M=A \oplus B$ such that $E(A) \cong E(B)$. The isomorphism $\varphi: E(B) \cong E(A)$ implies that the restriction of φ on $C=\varphi^{-1}(A) \cap N$ forms an essential monomorphism $\psi: C \rightarrow A$. Put $H:=\{c-\varphi(c) \mid: a \in C\}$. Now if we follow the same way as in the proof of (2) \Rightarrow (1) of Lemma 2.1, we have fixed a complement K of B containing H. Since $K \cap B=0$ and $A \cap(K+B) \leq^{e} A$, we obtain that K is complement of B.

Conversely, suppose that M has a decomposition $M=A \oplus B$ and K is simultaneously complement of A and B. Then

$$
E(M)=E(A) \oplus E(K)=E(B) \oplus E(K),
$$

hence $E(A) \cong E(B)$ (here we notice that all injective hulls are considered as submodules of $E(A)$).

Now, we provide several useful necessary conditions of trivial e-ADS modules.
Lemma 2.16. Let M be a nonzero module. If every idempotent of $\operatorname{End}(M)$ can be extended to a central idempotent of $\operatorname{End}(E(M))$, then M is trivial e-ADS.

Proof. Suppose that M has a decomposition $M=A \oplus B$ and consider an idempotent $e \in \operatorname{End}(M)$ defined by the rule $e(a+b)=a$ for all $a \in A, b \in B$. By the hypothesis, there exists a central idempotent $\tilde{e} \in \operatorname{End}(E(M))$ satisfying $\tilde{e}(m)=e(m)$ for each $m \in M$. Now, assume that we have an isomorphism $i: E(A) \rightarrow E(B)$ and extend it to an endomorphism $j \in \operatorname{End}(E(M))$ such that $j(a+b)=i(a)$ for all $a \in E(A)$ and $b \in E(B)$. Since $A \neq 0 \neq B$ by the hypothesis and i is an isomorphism, $i(A) \cap B$ is essential in $E(B)$, hence there exists nonzero element $a \in A$ for which $0 \neq i(a) \in B$. As \tilde{e} is central, i.e. $\tilde{e} j=j \tilde{e}$, we have

$$
0 \neq i(a)=j(a)=j e(a)=j \tilde{e}(a)=\tilde{e} j(a)=e i(a)=0
$$

a contradiction.

Since every idempotent endomorphism of a module M can be extended to an idempotent endomorphism of $E(M)$ we obtain the following consequence:

Corollary 2.17. If M is a nonzero module such that every idempotent of $\operatorname{End}(E(M))$ is central, then M is trivial e-ADS.

A right R-module M is said to satisfy the exchange property if for every right R-module A and any two direct sum decompositions $A=M_{1} \oplus N=\oplus_{i \in I} A_{i}$ with $M_{1} \cong M$, there exist submodules B_{i} of A_{i} such that $A=M_{1} \oplus\left(\oplus_{i \in I} B_{i}\right)$.

A ring R is called semiregular if, for every $a \in R$, there exists $b \in R$ such that $b a b=b$ and and $a-a b a \in J(R)$ ([10]).
Theorem 2.18. Let M be a non trivial $e-A D S$ module. Then
(1) M satisfies the exchange property.
(2) End (M) is semiregular.

Proof. (1) By Theorem 2.9(2), we obtain $M \cong A \oplus A$ where A is automorphism invariant. Moreover, A satisfies the exchange property by [3, Theorem 3]. Hence M satisfies the exchange property because the class of modules satisfying the exchange property is closed under taking finite direct sums.
(2) It follows from Theorem 2.9(2), [3, Proposition 1] and [11, Theorem 29].

Recall an easy observation about central idempotents.
Lemma 2.19. Let A and B be direct summands of a module M and f a central idempotent of $\operatorname{End}(M)$. If $A \cong B$, then $f(A) \cong f(B)$.

Proof. Let $\varphi: A \rightarrow B$ be an isomorphism and consider the natural projection $\pi_{A}: M \rightarrow A$ and the natural embedding $\nu_{B}: B \rightarrow M$. Put $h=\nu_{B} \varphi \pi_{A} \in \operatorname{End}(M)$. Since f is a central idempotent we get $h=f h f \oplus(1-f) h(1-f)$, hence $f h f$ induces an isomorphisms between $f(A)$ and $f(B)$.

Note that direct sums of two e-ADS modules need not be e-ADS (as it can be illustrated, e.g. by the direct sum of two trivial e-ADS modules \mathbb{Z}_{2} and \mathbb{Z}_{4}). The following theorem shows some kind of restrictive closure property of e-ADS modules.

Theorem 2.20. Let M be a trivial $e-A D S$ and N a nontrivial $e-A D S$ module. If $\operatorname{Hom}(E(M), E(N))=0=\operatorname{Hom}(E(N), E(M))$, then $M \oplus N$ is trivial e-ADS.

Proof. Let $X=M \oplus N$ and assume that there exists a decomposition $X=A \oplus B$ such that $E(A)$ and $E(B)$ are isomorphic. Note that we may suppose all modules and their injective hulls as submodules of $E(X)$.

Since N satisfies exchange property by Theorem 2.18, there exist submodules $C \subseteq A$ and $D \subseteq B$ such that $X=N \oplus C \oplus D$. Obviously, $M \cong X / N \cong C \oplus D$. Thus $E(M) \cong E(C) \oplus E(D)$ where $E(C)$ and $E(D)$ are considered as submodules of $E(A)$ and $E(B)$, respectively. Note that there are injective submodules $E_{A} \subseteq E(A)$ and $E_{B} \subseteq E(B)$ for which $E_{A} \oplus E(C)=E(A)$ and $E_{B} \oplus E(D)=E(B)$. Now it is easy to see that $E(N) \cong E_{A} \oplus E_{B}$. By the hypothesis, we get $\operatorname{End}(E(X)) \cong$ $\operatorname{End}(E(M)) \times \operatorname{End}(E(N))$, hence there exists a central idempotent $f \in \operatorname{End}(E(X))$ for which $f(E(X))=E(M)$ and $(1-f)(E(X))=E(N)$. By Lemma 2.19, we obtain that $f(E(A)) \cong f(E(B))$. As $f(E(A))=E(C)$ and $f(E(B))=E(D)$, a contradiction.

3. Classes of e-ADS modules and some ring conditions

Let $\sigma[M]$ denote the Wisbauer category of a module M, i.e. the full category of R-Mod consisting of submodules of quotients of direct sums of copies of M (see [14]).

Theorem 3.1. The following conditions are equivalent for a module M :
(1) M is semisimple.
(2) Every module in $\sigma[M]$ is $e-A D S$.
(3) Every finitely generated module in $\sigma[M]$ is $e-A D S$.
(4) Every 4 -generated module in $\sigma[M]$ is $e-A D S$.

Proof. (1) $\Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ are clear.
(4) \Rightarrow (1) Let $N \in \sigma[M]$ be a cyclic module and $x \in M$. Then

$$
(N \oplus x R) \oplus(N \oplus x R)
$$

is a 4 -generated module in $\sigma[M]$ and hence is e-ADS by the hypothesis. By Lemma 2.8, $N \oplus x R$ is automorphism $N \oplus x R$-invariant and N is $x R$-injective by Lemma 2.11. By [9, Theorem 1.4], N is M-injective. Thus M is semisimple by [4, Corollary 7.14].

Theorem 3.1 gives immediately the following.
Corollary 3.2. A ring R is semisimple Artinian if and only if every 4 -generated R-module is e-ADS.

The following observation gives an another characterization of e-ADS modules in the category $\sigma[M]$.

Theorem 3.3. The following conditions are equivalent for a module M :
(1) M is semisimple.
(2) The direct sum of every two $e-A D S$ modules in $\sigma[M]$ is $e-A D S$.
(3) Every e-ADS module in $\sigma[M]$ is M-injective.
(4) The direct sum of any family of $e-A D S$ modules in $\sigma[M]$ is $e-A D S$.

Proof. (1) \Rightarrow (4) \Rightarrow (2) They are obvious.
$(2) \Rightarrow(3)$ Let N be an e-ADS module. By our assumption, $\left(N \oplus E_{M}(N)\right) \oplus$ $\left(N \oplus E_{M}(N)\right)$ is e-ADS. Then $N \oplus E_{M}(N)$ is automorphism invariant. Hence N is $E_{M}(N)$-injective by Lemma 2.11. It follows that N is M-injective.
$(3) \Rightarrow(1)$ We consider a family $\left\{S_{i} \mid i \in \mathbb{N}\right\}(\subset \sigma[M])$ of simple right R-modules. It follows that $\oplus_{i \in \mathbb{N}} S_{i}$ is semisimple and so is e-ADS. By (3), $\oplus_{i \in \mathbb{N}} S_{i}$ is M-injective. Therefore $\oplus_{i \in \mathbb{N}} S_{i}$ is a direct summand of $\oplus_{i \in \mathbb{N}} E_{M}\left(S_{i}\right)$. But $\oplus_{i \in \mathbb{N}} S_{i}$ is essential in $\oplus_{i \in \mathbb{N}} E_{M}\left(S_{i}\right)$ and then $\oplus_{i \in \mathbb{N}} S_{i}=\oplus_{i \in \mathbb{N}} E_{i}$ is M-injective. Thus M is locally Noetherian. We can write $E_{M}(M)=\oplus_{i \in I} K_{i}$ for some indecomposable right R modules K_{i} in $\sigma[M]$ by [14, 27.4]. We have that every K_{i} is M-injective and obtain that every K_{i} is uniform. For each $i \in I$, let $0 \neq x \in K_{i}$. Since K_{i} is uniform, $x R$ is uniform as well, hence $x R$ is e-ADS. Then $x R$ is M-injective by (3). It follows that $x R$ is a direct summand of K_{i} and we have $x R=K_{i}$. Thus K_{i} is simple for all $i \in I$. That means $E_{M}(M)$ is semisimple. Thus M is semisimple.

Corollary 3.4. The following conditions are equivalent for a ring R :
(1) R is semisimple Artinian.
(2) The direct sum of every two e-ADS modules is e-ADS.
(3) Every e-ADS module is injective.
(4) The direct sum of any family of e-ADS modules is e-ADS.

We note that if $M \oplus E(M)$ is e-ADS for an R-module M, then $M \cong E(M)$ by Theorem 2.9 and so M is injective.

Theorem 3.5. The following conditions are equivalent for a ring R :
(1) R is right Noetherian.
(2) The direct sum of injective right R-modules is $e-A D S$.
(3) For any injective right R-module $X, X^{(\mathbb{N})}$ is e-ADS.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$ They are obvious.
(3) \Rightarrow (1) Let X be an injective module. Clearly, $X \oplus E\left(R_{R}\right)$ is also injective. Let $M=X \oplus E\left(R_{R}\right)$. Since $4 \cdot|\mathbb{N}|=|\mathbb{N}|$, we obtain that $\left(M^{(\mathbb{N})}\right)^{(4)} \cong M^{(\mathbb{N})}$. By (3), $M^{(\mathbb{N})} \oplus M^{(\mathbb{N})}$ is automorphism invariant. It follows that $M^{(\mathbb{N})}$ is quasi-injective. On the other hand, $X^{(\mathbb{N})}$ is isomorphic to a direct summand of $M^{(\mathbb{N})}$. It implies that $X^{(\mathbb{N})}$ is $E\left(R_{R}\right)$-injective and so $X^{(\mathbb{N})}$ is injective. Hence R is right Noetherian.

A ring R is called a right V-ring if every simple right R-module is injective.
Theorem 3.6. The following conditions are equivalent for a ring R :
(1) R is a right V-ring,
(2) $S \oplus E(S)$ is e-ADS for every simple right R-module S.

Proof. (1) $\Rightarrow(2)$ This is obvious.
$(2) \Rightarrow(1)$ Assume that $S \oplus E(S)$ is e-ADS for every simple right R-module S.
Let S be a simple right R-module. By the hypothesis, $S \oplus E(S)$ is e-ADS. Then, by Theorem $2.9(1), S \cong E(S)$, and so S is injective.
Theorem 3.7. The following conditions are equivalent for a ring R :
(1) R is a QF-ring.
(2) Every projective right R-module is $e-A D S$.
(3) Every essential extension of any free right R-module is $e-A D S$.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) are obvious.
$(2) \Rightarrow(1)$ Let I be a non-empty set. Clearly $\left(R^{(I)}\right)^{4}$ is also a projective module. By (2), $R^{(I)} \oplus R^{(I)}$ is automorphism invariant. It follows that $R^{(I)}$ is quasi-injective. Therefore $R^{(I)}$ is injective. Thus R is Σ-injective and so R is a QF-ring.
(3) \Rightarrow (1) Let F be a free right R-module. Then $F \oplus E(F)$ is an essential extension of a free right module F^{2}. By (3), $F \oplus E(F)$ is e-ADS, hence F is injective. Now we have proved that every projective right R-module is injective. Thus R is QF by the Faith-Walker theorem.

4. The Structure of e-ADS Rings

We say that a ring R is right $e-\mathrm{ADS}$ if it is an e-ADS module over itself. A right e-ADS ring R is called trivial if R_{R} is trivial e-ADS, i.e. the module R_{R} does not have a decomposition $R_{R}=A \oplus B$ such that $E(A) \cong E(B)$. Otherwise R is said to be a nontrivial e-ADS ring.

Let R be a ring, e be an idempotent of $R, S:=e R e$ and $n \in \mathbb{N}$. Denote by $\mathcal{L}\left(e R^{n}\right)$ the lattice of all submodules of the projective R-module $e R^{n}$, and $\mathcal{L}\left(S^{n}\right)$ the lattice of all submodules of the free module S^{n}. Define two mappings

$$
\Phi: \mathcal{L}\left(e R^{n}\right) \rightarrow \mathcal{L}\left(S^{n}\right)
$$

and

$$
\Psi: \mathcal{L}\left(S^{n}\right) \rightarrow \mathcal{L}\left(e R^{n}\right)
$$

by the rules

$$
\Phi(I)=I e, \quad \Psi(J)=J R
$$

for arbitrary $I \in \mathcal{L}\left(e R^{n}\right)$ and $J \in \mathcal{L}\left(S^{n}\right)$.
Lemma 4.1. Φ and Ψ are well-defined monotonic mappings. Moreover, Φ is a lattice homomorphism and Ψ is compatible with the operation + .

Proof. Straightforward from the above notation.
Note that the inclusion $\Psi\left(J_{1} \cap J_{2}\right) \subseteq \Psi\left(J_{1}\right) \cap \Psi\left(J_{2}\right)$ holds generally for arbitrary $J_{1}, J_{2} \in \mathcal{L}\left(S^{n}\right)$ but the following example shows that the reverse need not be true.

Example 4.2. Let $R=\left\{\left(a_{i j}\right) \in M_{3 \times 3}(\mathbb{Q}) \mid a_{31}=a_{32}=0\right\}$ be a subring of matrix ring $M_{3 \times 3}(\mathbb{Q})$. Put $e:=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), f:=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), g:=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, $S:=e R e, J_{1}:=f S$, and $J_{2}:=g S$. Then it is easy to see that

$$
J_{1} \cap J_{2}=0
$$

and

$$
J_{1} R \cap J_{2} R=\left\{\left.\left(\begin{array}{lll}
0 & 0 & u \\
0 & 0 & v \\
0 & 0 & 0
\end{array}\right) \right\rvert\, u, v \in \mathbb{Q}\right\} .
$$

Thus $\left(J_{1} \cap J_{2}\right) R \neq J_{1} R \cap J_{2} R$.
Lemma 4.3. Let R be a ring and $e \in R$ be an idempotent such that $R e R=R$. Then Φ and Ψ are mutually inverse lattice isomorphisms.

Proof. Let $S:=$ ReR. Since both Φ and Ψ are monotonic, it is enough to show that $\Phi \Psi$ and $\Psi \Phi$ are identity mappings on $\mathcal{L}(S)$ and $\mathcal{L}(e R)$, respectively. Let $I \in \mathcal{L}(e R)$ and $J \in \mathcal{L}(S)$. Since $R e R=R$, we get

$$
\Psi \Phi(I)=I e R=I R e R=I R=I
$$

On the other hand $S=e R e$ and $J=J e$ imply that

$$
\Phi \Psi(J)=J R e=J e R e=J S=J
$$

Recall that essentiality of modules can be expressed as a condition of lattices of submodules:

Lemma 4.4. Let $A \subseteq B$ are submodules of a module M. Then $A \leq^{e} B$ if and only if there exists no submodule $C \subseteq B$ such that $A \cap C=0$.

Proof. This is well known.
The following general consequence is a special case of [15, Theorem 1.2] for the lattice isomorphism from Lemma 4.3.

Corollary 4.5. Let R and S be rings, M an R-module, N an S-module and K, L submodules of M. Suppose that $\phi: \mathcal{L}\left(M_{R}\right) \rightarrow \mathcal{L}\left(N_{S}\right)$ is an isomorphism of lattices of all submodules of M and N. Then K is a complement of L if and only if $\phi(K)$ is a complement of $\phi(L)$.

Lemmas 4.4, 2.1, 2.15 and Corollary 4.5 show that e-ADS, trivial e-ADS and relative automorphism invariant are lattice conditions. Thus the assertions of the following theorem hold true because lattices of all submodules of M and N are isomorphic.
Theorem 4.6. Let R and S be rings, M an R-module and N an S-module. Assume $\phi: \mathcal{L}\left(M_{R}\right) \rightarrow \mathcal{L}\left(N_{S}\right)$ is an isomorphism of lattices.
(1) M is (trivial) $e-A D S$ if and only if N is a (trivial) $e-A D S$.
(2) If $M=A \oplus B$, then $N=\phi(A) \oplus \phi(B)$ and A is B-automorphism invariant if and only if $\phi(A)$ is $\phi(B)$-automorphism invariant.
Let $n \in \mathbb{N}$ and e be an idempotent of a ring R such that $R e R=R$. Recall that $L\left(e R_{R}^{n}\right)$ and $L\left(S_{S}^{n}\right)$ are isomorphic lattices by Lemma 4.3 for every $n \in \mathbb{N}$, where $S=e R e$.

Theorem 4.7. Let R be a ring, $n \in \mathbb{N}$ and $e \in R$ be an idempotent such that $R e R=R$.
(1) $e R_{R}^{n}$ is a (trivial) e-ADS module if and only if $e R^{n} e$ is (trivial) $e-A D S$ as a right eRe-module.
(2) Let $e R^{n}=A \oplus B$. Then A is B-automorphism invariant if and only if $A e$ is Be-automorphism invariant.
(3) $e R$ is automorphism invariant if and only if S_{S} is automorphism invariant, where $S=e$ Re.
Proof. (1) and (2) follow immediately from Theorem 4.6.
(3) It suffices to apply (2) for the decomposition $e R^{2}=e R \oplus e R$.

The next observation shows that the class of e-ADS rings is closed under taking finite products.

Proposition 4.8. If R_{1} and R_{2} are e-ADS rings, then $R_{1} \times R_{2}$ is e-ADS as well.
Proof. Put $R:=R_{1} \times R_{2}$ and let e_{i} be orthogonal central idempotents such that $R_{i}=R e_{i}$ for $i=1,2$. It is easy to see that $e_{1}+e_{2}=1, E(R)=E\left(R_{1}\right) \oplus E\left(R_{2}\right)$ and $E\left(R_{i}\right)=E(R) e_{i}$ for $i=1,2$. Suppose that $R=A \oplus B$ is a module decomposition, $C \leq^{e} A, D \leq^{e} B$ and $f: C \rightarrow D$ is an isomorphism. Then $f_{i}: C e_{i} \rightarrow D e_{i}$ defined by $f_{i}(r)=r e_{i}$ is an isomorphism for each $i=1,2$. We note that $C e_{i} \leq^{e} A e_{i}$ and
$D e_{i} \leq^{e} B e_{i}$ for each $i=1,2$. By the hypothesis, there exist extensions $g_{i}: A e_{i} \rightarrow$ $B e_{i}$ of f_{i}. Clearly, $g=g_{1} \oplus g_{2}: A \rightarrow B$ extends f.

We denote the set of all $n \times n$ matrices over a ring R by $M_{n}(R)$.
Lemma 4.9. If R is a non-trivial $e-A D S$ ring, then there exists a right automorphism invariant ring S such that $R \cong M_{2}(S)$.

Proof. Since R is a non-trivial e-ADS ring, there exists an idempotent $e \in R$ for which $E(e R) \cong E((1-e) R)$. Thus $e R \cong(1-e) R$ is automorphism invariant by Theorem 2.9. Put $S:=e R e$. Then

$$
R \cong \operatorname{End}(e R \oplus e R) \cong M_{2}(S)
$$

and S is a right automorphism invariant ring by Theorem 4.7(3).
Let R be a ring. Recall that R is said to be right non-singular if its right singular ideal $Z(R)=\{r \in R: r I=0$ for some essential right ideal I of $R\}$ is zero, and R is called normal if if moreover its idempotents are central. Note that every abelian regular ring or every product of rings without non-trivial idempotents can serve as elementary examples of normal rings.
Proposition 4.10. Let R be a right non-singular normal automorphism invariant ring. Then
(1) R is trivial e-ADS,
(2) $M_{2}(R)$ is non-trivial e-ADS.

Proof. Denote by Q the maximal right ring of quotients R. Obviously $e Q=E(e R)$ for every idempotent e.
(1) As every central idempotent of R is a central idempotent of Q, the assertion follows from Lemma 2.16.
(2) By Theorem 4.7 it is enough to prove that $M=R \oplus R$ is a non-trivial e-ADS module. Clearly, M cannot be trivial. So it suffices to prove Theorem 2.10(4). Suppose $R=e_{i} R \oplus f_{i} R$ for every $i=1,2$, where (e_{i}, f_{i}) is a pair of orthogonal idempotents such that $e_{1} Q \oplus e_{2} Q \cong f_{1} Q \oplus f_{2} Q$. We claim that $A:=e_{1} R \oplus e_{2} R \cong$ $B:=f_{1} R \oplus f_{2} R$ (and that A is automorphism invariant).

Since R is a normal ring, i.e., all idempotents e_{i}, f_{i} of R, are central for each $i=1,2$, we have

$$
\begin{aligned}
e_{i} Q & =e_{i} e_{j} Q \oplus e_{i} f_{j} Q \\
f_{i} Q & =f_{i} e_{j} Q \oplus f_{i} f_{j} Q
\end{aligned}
$$

for $i \neq j$. Hence $Q=e_{1} e_{2} Q \times e_{1} f_{2} Q \times f_{1} e_{2} Q \times f_{1} f_{2} Q$, where there is no nonzero homomorphism between two distinct components. Thus

$$
E(A)=e_{1} Q+e_{2} Q \cong\left(e_{1} e_{2} Q\right)^{(2)} \oplus e_{1} f_{2} Q \oplus e_{2} f_{1} Q
$$

and

$$
E(B)=f_{1} Q+f_{2} Q \cong\left(f_{1} f_{2} Q\right)^{(2)} \oplus e_{1} f_{2} Q \oplus e_{2} f_{1} Q
$$

We have observed that $\operatorname{Hom}\left(e_{1} e_{2} Q, E(B)\right)=0$ as well as $\operatorname{Hom}\left(e_{1} e_{2} Q, E(B)\right)=0$ which implies that $e_{1} e_{2}=0=f_{1} f_{2}$. Hence

$$
E(A) \cong e_{1} f_{2} Q \oplus e_{2} f_{1} Q \cong E(B)
$$

and so

$$
A \cong e_{1} f_{2} R \oplus e_{2} f_{1} R \cong B
$$

Finally, since $e_{1} f_{2} R \oplus e_{2} f_{1} R$ is isomorphic to a direct summand of R which is automorphism invariant, we obtain that A is automorphism invariant by [8, Lemma $4]$.

We finish the section with the following criterion.
Theorem 4.11. Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:
(1) R is right $e-A D S$,
(2) Either $e Q \not \equiv(1-e) Q$ for any idempotent $e \in R$ or $R \cong M_{2}(S)$ for a suitable right automorphism invariant ring S,
(3) Either $e Q \not \approx(1-e) Q$ for any idempotent $e \in R$ or $R \cong T \times M_{2}(S)$ for a suitable self-injective ring T and a normal right automorphism invariant ring S.

Proof. (1) \Rightarrow (2) If R is a right trivial e-ADS ring, then $Q \cong E(R)$ has no a decomposition $Q=A \oplus B$ with a isomorphic summand, which implies that $e Q \not \approx$ $(1-e) Q$ for any idempotent $e \in R$.

If R is a non-trivial e-ADS ring, then there exists a right automorphism invariant ring S such that $R \cong M_{2}(S)$ by Lemma 4.9.
(2) \Rightarrow (3) Assume $R \cong M_{2}\left(S_{0}\right)$ for a right automorphism invariant ring S_{0}. Clearly, S_{0} is, moreover, non-singular, hence there exists a right selfinjective ring S_{1} and a normal right automorphism invariant ring S such that $S_{0} \cong S_{1} \times S$ by [5, Theorem 7]. Now it is easy to see that

$$
M_{2}\left(S_{0}\right) \cong M_{2}\left(S_{1}\right) \times M_{2}(S)
$$

and $T=M_{2}\left(S_{0}\right)$ is self-injective by [7, Corollary 9.3$]$.
$(3) \Rightarrow(1)$ We remark that the first condition implies that R is a trivial e-ADS ring. Suppose that $R \cong T \times M_{2}(S)$ where T is a self-injective ring and S is a normal right automorphism invariant ring. Note that T is an e-ADS ring and $M_{2}(S)$ is e-ADS by Lemma 4.10. So, R is right e-ADS by Lemma 4.8.

Corollary 4.12. Every simple non-trivial right e-ADS ring is necessarily selfinjective.
Proof. It follows from Theorem 4.11 and [5, Corollary 10].

References

1. A. Alahmadi, S. K. Jain, A. Leroy: ADS modules, J. Algebra, 352(2012), 215-222.
2. F. W. Anderson, K. R. Fuller: Rings and Categories of Modules, Springer-Verlag, New York, 1974.
3. P. A. Guil Asensio and A. K. Srivastava: Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), 101-106.
4. N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer: Extending Modules, Pitman Research Notes in Math., 1996.
5. N. Er, S. Singh, A. K. Srivastava: Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), 223-229.
6. L. Fuchs: Infinite Abelian Groups, vol. I, Pure Appl. Math., Ser. Monogr. Textb., vol. 36, Academic Press, New York, San Francisco, London, 1970.
7. K. R. Goodearl: Von Neumann Regular Rings, Pitman, London, 1979.
8. T. K. Lee and Y. Zhou: Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12(2) (2013).
9. S. H. Mohammed, B. J. Müller: Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press, 1990.
10. W. K. Nicholson: Semiregular modules and rings, . Can. J. Math. 28(1976), 1105-1120.
11. W. K. Nicholson, Y. Zhou: Semiregular Morphisms , Commun. Algebra, 34(2006) 219-233.
12. T. C. Quynh and M. T. Koşan: ADS-modules and rings, Commun. Algebra, 42(8)(2014), 3541-3551.
13. T. C. Quynh and M. T. Koşan: On automorphism-invariant modules, J. Algebra and its Appl., 14 (5) (2015), 1550074 (11 pages).
14. R. Wisbauer: Foundations of Module and Ring Theory, Gordon and Breach, Reading 1991.
15. J. M. Zelmanowitz: Correspondences of closed submodules, Proc. Amer. Math. Soc. 124 (1996), 2955-2960.

Department of Mathematics, Gebze Technical University, 41400 Gebze/Kocaeli, Turkey
E-mail address: mtkosan@gtu.edu.tr tkosan@gmail.com
Department of Mathematics, Danang University, 459 Ton Duc Thang, DaNang city,

Vietnam

E-mail address: tcquynh@live.com
Department of Algebra, Charles University in Prague, Faculty of Mathematics and
Physics Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail address: zemlicka@karlin.mff.cuni.cz

[^0]: 2010 Mathematics Subject Classification. 16D40, 16E50.
 Key words and phrases. essentially ADS-modules and ring, automorphism invariant modules and ring.

