ESSENTIALLY ADS MODULES AND RINGS

M. TAMER KOŞAN, TRUONG CONG QUYNH, AND JAN ŽEMLIČKA

ABSTRACT. This paper introduces the notion of essentially ADS (e-ADS) modules. Basic structural properties and examples of e-ADS modules are presented. In particular, it is proved that (1) The class of all e-ADS modules properly contains all ADS as well as automorphism invariant modules. e-ADS modules serves also as a tool for characterization of various classes of rings. It is shown that: (2) R is a QF-ring if and only if every projective right R-module is e-ADS; (3) R is a semisimple Artinian ring if and only if every e-ADS modules injective. The final part of this paper describes properties of e-ADS rings, which allow to prove a criterion of e-ADS modules for non-singular rings: (4) Let R be a right non-singular ring and Q be its the right maximal ring of quotients. Then R is a right e-ADS ring if and only if either $eQ \ncong (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(A)$ for a suitable right automorphism invariant ring A.

1. INTRODUCTION

The absolute direct summand (ADS) property for modules was introduced by Fuchs in [6] and recently was intensively studied by Alahmadi, Jain and Leroy in [1]. Recall that a right module M over a ring R is said to be ADS if for every decomposition $M = S \oplus T$ and every complement T' of S, we have $M = S \oplus T'$.

In recent works [5, 8, 12], the notion of automorphism invariant modules was shown to be and important tool for finding correspondences between various concept of injectivity. A module M is called automorphism invariant if it is invariant under automorphisms of its injective hull, equivalently if every isomorphism between two essential submodules of M extends to an automorphism of M [8]. Quasi-injective modules are automorphism invariant. Assume that an R-module M has a decomposition $M = S \oplus T$ such that T' is a complement of S, $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^{e} S$. It is easy to see (cf. Lemma 2.4) that $E(S) \cong E(T)$, where E denotes the injective hull. In light of this observation, we define essentially ADS-modules (shortly e-ADS), as an R-module M such that for every decomposition $M = S \oplus T$ of M and every complement T' of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^{e} S$, we have $M = S \oplus T'$. This definition naturally generalizes both notions mentioned above. Furthermore, recall that when a module M is quasi-continuous, for each decomposition $M = A \oplus B$, A and B are relatively injective. This property of modules is known to be equivalent to ADS modules ([1, Lemma 3.1]) and automorphism invariant modules ([8, Theorem 5]). Since an *R*-module M is e-ADS if and only if for each decomposition $M = A \oplus B$, A and B are relatively automorphism invariant (see Lemma 2.8), e-ADS modules arise as a

²⁰¹⁰ Mathematics Subject Classification. 16D40, 16E50.

Key words and phrases. essentially ADS-modules and ring, automorphism invariant modules and ring .

generalization of quasi-continuous modules, ADS modules as well as automorphism invariant modules. The goal of this paper is to present a list of significant structural properties of e-ADS modules and to exhibit relations with other notions. We show that e-ADS as well as automorphism invariant or ADS modules have a description in the language of the lattice theory (Lemmas 2.1, 2.15, 4.4). Important for further study is the division of the class of e-ADS modules into trivial and non-trivial case (cf. Theorem 2.9). Moreover it is proved in Theorem 2.9 that, if $E(A) \not\cong E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS. On the other hand if Mis an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant. This result is key to our work and is used to characterize many well-known classes of modules in terms of e-ADS modules. For example, we show in Theorem 2.18 that for an e-ADS module M with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, Msatisfies the exchange property if and only if End(M) is semiregular.

The final part of the article is devoted to rings which are e-ADS as right modules over themselves. By applying elementary lattice theoretical tools on rings induced by idempotents we characterize when non-singular rings are e-ADS. Based on the key observation that a non-trivial e-ADS ring is isomorphic to a 2 × 2 full matrix ring over an automorphism invariant ring (Lemma 4.9) we prove a characterization of non-singular e-ADS rings. Namely, a non-singular ring is e-ADS if and only if it is either trivial e-ADS or it is a product of a self-injective ring and a matrix ring $M_2(S)$ over an automorphism invariant ring S with many central idempotents (Theorem 4.11).

Throughout this article, unless otherwise stated, all rings have unity and all modules are unital. For a submodule N of M, we use $N \leq M$ (N < M) to mean that N is a submodule of M (respectively, proper submodule), and we write $N \leq^{e} M$ to indicate that N is an essential submodule of M. For any term not defined here the reader is referred to [2], [4] and [9].

2. *e*-ADS modules

Let M and N be two modules. The module M is called automorphism N-invariant if for any essential submodule A of N, any essential monomorphism from A to M can be extended to some $g \in Hom(N, M)$ ([12]).

We note that M is automorphism invariant if M is automorphism M-invariant by [8, Theorem 2].

Lemma 2.1. Let M and N be modules and $X = M \oplus N$. The following conditions are equivalent:

- (1) M is automorphism N-invariant.
- (2) For any complement K of M in X with $K \cap N = 0$ and $M \cap (K \oplus N) \leq^{e} M$, the module X has a decomposition $X = M \oplus K$.

Proof. Consider the natural projections $\pi_M : X \to M$ and $\pi_N : X \to N$. Note that $\pi_M(K) = M \cap (K+N)$ for each submodule K of X.

(1) \Rightarrow (2) Let K be a complement of M in X with $K \cap N = 0$ and $\pi_M(K) \leq^e M$. Clearly, $M \oplus K = M \oplus \pi_N(K)$ so that $\pi_N(K)$ is essential in N. Consider the homomorphism $\theta : \pi_N(K) \to \pi_M(K)$ defined by $\theta(n) = m$ whenever $k = m + n \in K$ for $k \in K, m \in M, n \in N$. It is easy to see that θ is an isomorphism $(K \cap N = 0)$ by the assumption). Since M is automorphism N-invariant, the homomorphism θ can be extended to some $g: N \to M$. Set $T := \{n + g(n) | n \in N\}$. Clearly, $M \oplus T = X$ and T contains K essentially by modularity. Since K is a complement, we obtain T = K.

(2) \Rightarrow (1) Let A be an essential submodule of N and $f: A \to M$ be an essential monomorphism. Set $H := \{a - f(a) | : a \in A\}$. Clearly, $H \cap N = 0$, $H \cap M = 0$ and $\pi_M(H) = f(A)$ is essential in M. Then $M \oplus H = M \oplus \pi_N(H) = M \oplus A$, which is essential in X. Let K be a complement of M in X containing H. Then $H \leq^e K$. Hence $K \cap N = 0$ because $H \cap N = 0$. Moreover, $\pi_M(H) \leq \pi_M(K)$ which implies that $\pi_M(K) \leq^e M$. By the assumption, we have $M \oplus K = X$. Now let $\pi: M \oplus K \to M$ be the projection. Then writing an element $a \in A$ in the form a = a - f(a) + f(a), the restriction of π to N is the desired extension of f. \Box

Lemma 2.2 ([12, Theorem 2.2]). The following are equivalent for modules M and N:

- (1) M is automorphism N-invariant.
- (2) $\alpha(N) \leq M$ for every isomorphism $\alpha : E(N) \to E(M)$.

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain the following observation.

Corollary 2.3. If M and N are relatively automorphism invariant modules and $E(M) \cong E(N)$, then $M \cong N$

Lemma 2.4. Let M be a module with a decomposition $M = S \oplus T$. If T' is a complement of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^{e} S$, then $T \oplus T' \leq^{e} M$ and $E(S) \cong E(T)$.

Proof. Note that $S \oplus T' \leq^{e} M$ because T' is a complement of S. Since

 $T \oplus [S \cap (T' \oplus T)] \subseteq T \oplus T'$ and $T \oplus [S \cap (T' \oplus T)] \leq^{e} T \oplus S = M$,

we get $T \oplus T' \leq^{e} M$. Moreover, the injective hulls E(S), E(T) and E(T') can be taken as submodules of the injective hull E(M) such that $S \leq^{e} E(S)$, $T \leq^{e} E(T)$ and $T' \leq^{e} E(T')$. Since $S \cap T' = 0 = T \cap T'$, it is easy to see that

$$E(S) \cap E(T') = 0 = E(T) \cap E(T').$$

On the other hand,

$$E(S) + E(T') = E(M) = E(T) + E(T')$$

because both $E(S) + E(T') = E(S) \oplus E(T')$ and $E(T) + E(T') = E(T) \oplus E(T')$ are injective submodules of E(M), and both $S \oplus T'$ and $T \oplus T'$ are essential in E(M). Thus

$$E(T) \cong (E(T) + E(T'))/E(T') = E(M)/E(T') = (E(S) + E(T'))/E(T') \cong E(S).$$

In light of Lemma 2.4, we call M an essentially ADS-module, shortly e-ADS, if for every decomposition $M = S \oplus T$ of M and every complement T' of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^{e} S$, we have $M = S \oplus T'$.

Clearly, ADS-modules are e-ADS. The following examples show that the converse is not true in general and that the class of e-ADS modules is not closed under taking direct summands, respectively.

Example 2.5. Let T be a torsion abelian group which is not divisible and put $M := \mathbb{Z} \oplus T$. Then every decomposition $M = A \oplus B$ contains a subgroup which is isomorphic to \mathbb{Z} while the second is torsion, hence $E(A) \not\cong E(B)$. By Lemma 2.4, there exists no a decomposition satisfying the hypothesis of the definition of e-ADS exists. So that the conditions for having an e-ADS modules are vacuously satisfied and the module is e-ADS. Hence it is an e-ADS abelian group.

On the other hand, since T is not divisible, we obtain T is not \mathbb{Z} -injective and so M is not ADS by [1, Lemma 3.1].

Example 2.6. Put $M := \mathbb{Z} \oplus \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ for some prime number p. Then M is e-ADS by Example 2.5. Since \mathbb{Z}_p is not automorphism \mathbb{Z}_{p^2} -invariant, we obtain that $Z_p \oplus \mathbb{Z}_{p^2}$ is not e-ADS by Lemma 2.8.

Let us mention the following equivalent conditions for a module to be e-ADS.

Theorem 2.7. The following conditions are equivalent for a module M:

- (1) M is e-ADS.
- (2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

Proof. (1) \Rightarrow (2) Suppose that $M = S \oplus T$ is a decomposition of M, T' is complement of S and T is a complement of T' in M. Then $S \cap (T' \oplus T) \leq^e S$ since $T \oplus T' \leq^e M$. By (1), we have $M = S \oplus T'$.

(2) \Rightarrow (1) Let $M = S \oplus T$ of M and $S \cap (T' \oplus T) \leq^{e} S$ for a complement T' of S with $T' \cap T = 0$. By Lemma 2.4, $T \oplus T' \leq^{e} M$. Since T is a direct summand of M, we get T is a complement of T' in M. By (2), we have $M = S \oplus T'$. \Box

In [1, Lemma 3.1], it is shown that an *R*-module *M* is ADS if and only if for each decomposition $M = A \oplus B$, *A* and *B* are mutually injective.

Lemma 2.8. An *R*-module *M* is *e*-*ADS* if and only if for each decomposition $M = A \oplus B$, *A* and *B* are relatively automorphism invariant.

Proof. This is clear from Lemma 2.1.

The following characterization proves to be quite useful.

Theorem 2.9. Let M be an R-module.

- (1) If $E(A) \ncong E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.
- (2) If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

Proof. (1) This follows from Lemmas 2.2 and 2.8.

(2) By Lemma 2.8 and Corollary 2.3, we have $A \cong B$. Thus A is automorphism A-invariant, i.e. automorphism invariant.

In the following observation, we continue to obtain equivalent conditions for a module to be e-ADS.

Theorem 2.10. The following conditions are equivalent for a module M:

- (1) M is e-ADS,
- (2) Assume that M has a decomposition $M = A \oplus B$. For any isomorphism $f \in Hom(E(B), E(A))$, the module M has a decomposition $M = A \oplus X$, where $X = \{b + f(b) | b \in B, f(b) \in A\}$.
- (3) For every decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, the module $A \cong B$ is automorphism invariant.
- (4) Either $E(A) \not\cong E(B)$ for every decomposition $M = A \oplus B$ or there exists an automorphism invariant module X for which $M \cong X \oplus X$ and for every two decompositions $X = P_1 \oplus Q_1 = P_2 \oplus Q_2$ with $E(P_1) \oplus E(P_2) \cong$ $E(Q_1) \oplus E(Q_2)$ we have $(P_1 \oplus P_2) \cong (Q_1 \oplus Q_2)$ is automorphism invariant.

Proof. (1) \Rightarrow (2) We show that $X = \{b + f(b) | b \in B, f(b) \in A\}$ is a complement of A in M. Notice that $A \cap X = 0, X \cap B = 0$ and $A \cap (X \oplus B) \leq^e A$. Let L be a submodule of M such that $L \cap A = 0$ and $X \leq L$. Consider the natural projections π_A and π_B of M onto A and B, respectively.

Claim: $\pi_A(x) = f\pi_B(x)$ for all $x \in L$: Assume that there exists $x \in L$ such that $(\pi_A - f\pi_B)(x) \neq 0$. Since $A \leq^e E(A)$, there exists $r \in R$ such that $0 \neq (\pi_A - f\pi_B)(xr) \in A$. As $xr \in L$ and $\pi_B(xr) + f\pi_B(xr) \in X \subseteq L$, we have

$$\pi_A(xr) - f\pi_B(xr) = xr - (\pi_B(xr) + f\pi_B(xr)) \in A \cap L = 0,$$

a contradiction. Thus $\pi_A(x) = f \pi_B(x)$ for all $x \in L$.

For $x \in L$, we have

$$x = \pi_A(x) + \pi_B(x) = f(\pi_B(x)) + \pi_B(x) \in X,$$

which implies $L \subseteq X$.

(2) \Rightarrow (3) If the module *M* has a decomposition $M = A \oplus B$ for an isomorphism $f \in Hom(E(B), E(A))$, we obtain $M = A \oplus X$ with $X = \{b + f(b) | b \in B, f(b) \in A\}$. Clearly, $f(B) \leq A$ and hence *A* is automorphism *B*-invariant by Lemma 2.2. Symmetrically, $f(A) \leq B$ and so *A* is automorphism and $A \cong B$.

 $(3) \Rightarrow (1)$ This is a direct consequence of Lemma 2.8.

 $(1) \Rightarrow (4)$ This follows from Theorem 2.9(2).

 $(4) \Rightarrow (3)$ If $E(A) \not\cong E(B)$ for each decomposition $M = A \oplus B$, there is nothing to prove. Assume that M has a decomposition $M = X_1 \oplus X_2$ for submodules X_1 and X_2 of M such that $X \cong X_1 \cong X_2$. We suppose furthermore that M has an another decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$. By [3, Theorem 3], both the modules X_1, X_2 and M satisfy the exchange property. Thus there exist submodules $P_1 \subseteq A, Q_1 \subseteq B$ such that $M = X_1 \oplus P_1 \oplus Q_1$. Note that $X_2 \cong M/X_1 \cong P_1 \oplus Q_1$ is automorphism invariant, hence there exist submodules $P_2 \subseteq A, Q_2 \subseteq B$ such that $M = P_1 \oplus Q_1 \oplus P_2 \oplus Q_2$. Clearly, as $P_1 \oplus P_2 \subseteq A$ and $Q_1 \oplus Q_2 \subseteq B$, we get $A = P_1 \oplus P_2$ and $B = Q_1 \oplus Q_2$, hence

$$E(P_1) \oplus E(P_2) \cong E(P_1 \oplus P_2) \cong E(A)$$

 and

$$E(Q_1) \oplus E(Q_2) \cong E(Q_1 \oplus Q_2) \cong E(B).$$

Now, since $E(A) \cong E(B)$, the hypothesis of (4) implies that $A \cong B$ is automorphism invariant.

For modules M and N, N is said to be M-injective if every homomorphism from each submodule of M to N extends to a homomorphism from M to N, and M and N are called relatively injective if N is M-injective and M is N-injective. The module M is called quasi-injective if M is M-injective. It is well-known that a module is quasi-injective if and only if it is invariant under automorphisms and idempotent endomorphisms of its injective hull.

In [8], Lee and Zhou discussed when an automorphism invariant module is quasiinjective or injective and they obtained the following observation.

Lemma 2.11 ([8, Theorem 5]). If $M \oplus N$ is automorphism invariant, then M and N are relatively injective.

Combining Lemmas 2.8 and 2.11, we have

Corollary 2.12. Every automorphism invariant module is e-ADS.

The following example shows that the converse of Corollary 2.12 is not true in general.

Example 2.13. Take any continuous module M which is not quasi-injective (e.g. if R is the ring of all sequences of real numbers that are eventually rational, then R_R is continuous but not quasi-injective), then clearly M is ADS (and hence e-ADS) but not automorphism invariant.

We recall Example 2.6. It also shows that e-ADS modules are not closed with respect to general direct summands. On the other hand, Corollary 2.12 and Theorem 2.9 prove that the class of all e-ADS modules is closed under taking some important cases of direct summands. We can then show:

Corollary 2.14. Let *M* be an e-ADS module. If *M* has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then *A* is e-ADS.

In view of the claim of Theorem 2.9, we say that a module M is trivial e-ADS if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.

The following observation shows that the trivial e-ADS modules can be described using lattices of their submodules.

Proposition 2.15. Let M be a module. Then M is trivial e-ADS if and only if for every decomposition $M = A \oplus B$ no complement of A is a complement of B.

Proof. Suppose that the module M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$. The isomorphism $\varphi : E(B) \cong E(A)$ implies that the restriction of φ on $C = \varphi^{-1}(A) \cap N$ forms an essential monomorphism $\psi : C \to A$. Put $H := \{c - \varphi(c) \mid : a \in C\}$. Now if we follow the same way as in the proof of $(2) \Rightarrow (1)$ of Lemma 2.1, we have fixed a complement K of B containing H. Since $K \cap B = 0$ and $A \cap (K + B) \leq^e A$, we obtain that K is complement of B.

Conversely, suppose that M has a decomposition $M = A \oplus B$ and K is simultaneously complement of A and B. Then

$$E(M) = E(A) \oplus E(K) = E(B) \oplus E(K),$$

hence $E(A) \cong E(B)$ (here we notice that all injective hulls are considered as submodules of E(A)).

Now, we provide several useful necessary conditions of trivial e-ADS modules.

Lemma 2.16. Let M be a nonzero module. If every idempotent of End(M) can be extended to a central idempotent of End(E(M)), then M is trivial e-ADS.

6

Proof. Suppose that M has a decomposition $M = A \oplus B$ and consider an idempotent $e \in \operatorname{End}(M)$ defined by the rule e(a+b) = a for all $a \in A, b \in B$. By the hypothesis, there exists a central idempotent $\tilde{e} \in \operatorname{End}(E(M))$ satisfying $\tilde{e}(m) = e(m)$ for each $m \in M$. Now, assume that we have an isomorphism $i : E(A) \to E(B)$ and extend it to an endomorphism $j \in \operatorname{End}(E(M))$ such that j(a+b) = i(a) for all $a \in E(A)$ and $b \in E(B)$. Since $A \neq 0 \neq B$ by the hypothesis and i is an isomorphism, $i(A) \cap B$ is essential in E(B), hence there exists nonzero element $a \in A$ for which $0 \neq i(a) \in B$. As \tilde{e} is central, i.e. $\tilde{e}j = j\tilde{e}$, we have

$$0 \neq i(a) = j(a) = je(a) = j\tilde{e}(a) = \tilde{e}j(a) = ei(a) = 0,$$

a contradiction.

Since every idempotent endomorphism of a module M can be extended to an idempotent endomorphism of E(M) we obtain the following consequence:

Corollary 2.17. If M is a nonzero module such that every idempotent of End(E(M)) is central, then M is trivial e-ADS.

A right *R*-module *M* is said to satisfy the exchange property if for every right *R*-module A and any two direct sum decompositions $A = M_1 \oplus N = \bigoplus_{i \in I} A_i$ with $M_1 \cong M$, there exist submodules B_i of A_i such that $A = M_1 \oplus (\bigoplus_{i \in I} B_i)$.

A ring R is called *semiregular* if, for every $a \in R$, there exists $b \in R$ such that bab = b and and $a - aba \in J(R)$ ([10]).

Theorem 2.18. Let M be a non trivial e-ADS module. Then

- (1) M satisfies the exchange property.
- (2) End(M) is semiregular.

Proof. (1) By Theorem 2.9(2), we obtain $M \cong A \oplus A$ where A is automorphism invariant. Moreover, A satisfies the exchange property by [3, Theorem 3]. Hence M satisfies the exchange property because the class of modules satisfying the exchange property is closed under taking finite direct sums.

(2) It follows from Theorem 2.9(2), [3, Proposition 1] and [11, Theorem 29]. \Box

Recall an easy observation about central idempotents.

Lemma 2.19. Let A and B be direct summands of a module M and f a central idempotent of End(M). If $A \cong B$, then $f(A) \cong f(B)$.

Proof. Let $\varphi : A \to B$ be an isomorphism and consider the natural projection $\pi_A : M \to A$ and the natural embedding $\nu_B : B \to M$. Put $h = \nu_B \varphi \pi_A \in \text{End}(M)$. Since f is a central idempotent we get $h = fhf \oplus (1-f)h(1-f)$, hence fhf induces an isomorphisms between f(A) and f(B).

Note that direct sums of two e-ADS modules need not be e-ADS (as it can be illustrated, e.g. by the direct sum of two trivial e-ADS modules \mathbb{Z}_2 and \mathbb{Z}_4). The following theorem shows some kind of restrictive closure property of e-ADS modules.

Theorem 2.20. Let M be a trivial e-ADS and N a nontrivial e-ADS module. If $\operatorname{Hom}(E(M), E(N)) = 0 = \operatorname{Hom}(E(N), E(M))$, then $M \oplus N$ is trivial e-ADS.

Proof. Let $X = M \oplus N$ and assume that there exists a decomposition $X = A \oplus B$ such that E(A) and E(B) are isomorphic. Note that we may suppose all modules and their injective hulls as submodules of E(X).

Since N satisfies exchange property by Theorem 2.18, there exist submodules $C \subseteq A$ and $D \subseteq B$ such that $X = N \oplus C \oplus D$. Obviously, $M \cong X/N \cong C \oplus D$. Thus $E(M) \cong E(C) \oplus E(D)$ where E(C) and E(D) are considered as submodules of E(A) and E(B), respectively. Note that there are injective submodules $E_A \subseteq E(A)$ and $E_B \subseteq E(B)$ for which $E_A \oplus E(C) = E(A)$ and $E_B \oplus E(D) = E(B)$. Now it is easy to see that $E(N) \cong E_A \oplus E_B$. By the hypothesis, we get $\operatorname{End}(E(X)) \cong$ $\operatorname{End}(E(M)) \times \operatorname{End}(E(N))$, hence there exists a central idempotent $f \in \operatorname{End}(E(X))$ for which f(E(X)) = E(M) and (1 - f)(E(X)) = E(N). By Lemma 2.19, we obtain that $f(E(A)) \cong f(E(B))$. As f(E(A)) = E(C) and f(E(B)) = E(D), a contradiction.

3. Classes of e-ADS modules and some ring conditions

Let $\sigma[M]$ denote the Wisbauer category of a module M, i.e. the full category of *R*-Mod consisting of submodules of quotients of direct sums of copies of *M* (see [14]).

Theorem 3.1. The following conditions are equivalent for a module M:

- (1) M is semisimple.
- (2) Every module in $\sigma[M]$ is e-ADS.
- (3) Every finitely generated module in $\sigma[M]$ is e-ADS.
- (4) Every 4-generated module in $\sigma[M]$ is e-ADS.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are clear.

(4) \Rightarrow (1) Let $N \in \sigma[M]$ be a cyclic module and $x \in M$. Then

$$(N \oplus xR) \oplus (N \oplus xR)$$

is a 4-generated module in $\sigma[M]$ and hence is e-ADS by the hypothesis. By Lemma 2.8, $N \oplus xR$ is automorphism $N \oplus xR$ -invariant and N is xR-injective by Lemma 2.11. By [9, Theorem 1.4], N is M-injective. Thus M is semisimple by [4, Corollary 7.14].

Theorem 3.1 gives immediately the following.

Corollary 3.2. A ring R is semisimple Artinian if and only if every 4-generated R-module is e-ADS.

The following observation gives an another characterization of e-ADS modules in the category $\sigma[M]$.

Theorem 3.3. The following conditions are equivalent for a module M:

- (1) M is semisimple.
- (2) The direct sum of every two e-ADS modules in $\sigma[M]$ is e-ADS.
- (3) Every e-ADS module in $\sigma[M]$ is M-injective.
- (4) The direct sum of any family of e-ADS modules in $\sigma[M]$ is e-ADS.

Proof. $(1) \Rightarrow (4) \Rightarrow (2)$ They are obvious.

(2) \Rightarrow (3) Let N be an e-ADS module. By our assumption, $(N \oplus E_M(N)) \oplus (N \oplus E_M(N))$ is e-ADS. Then $N \oplus E_M(N)$ is automorphism invariant. Hence N is $E_M(N)$ -injective by Lemma 2.11. It follows that N is M-injective.

 $(3) \Rightarrow (1)$ We consider a family $\{S_i | i \in \mathbb{N}\} (\subset \sigma[M])$ of simple right *R*-modules. It follows that $\bigoplus_{i \in \mathbb{N}} S_i$ is semisimple and so is e-ADS. By $(3), \bigoplus_{i \in \mathbb{N}} S_i$ is *M*-injective. Therefore $\bigoplus_{i \in \mathbb{N}} S_i$ is a direct summand of $\bigoplus_{i \in \mathbb{N}} E_M(S_i)$. But $\bigoplus_{i \in \mathbb{N}} S_i$ is essential in $\bigoplus_{i \in \mathbb{N}} E_M(S_i)$ and then $\bigoplus_{i \in \mathbb{N}} S_i = \bigoplus_{i \in \mathbb{N}} E_i$ is *M*-injective. Thus *M* is locally Noetherian. We can write $E_M(M) = \bigoplus_{i \in I} K_i$ for some indecomposable right *R*modules K_i in $\sigma[M]$ by [14, 27.4]. We have that every K_i is *M*-injective and obtain that every K_i is uniform. For each $i \in I$, let $0 \neq x \in K_i$. Since K_i is uniform, xRis uniform as well, hence xR is e-ADS. Then xR is *M*-injective by (3). It follows that xR is a direct summand of K_i and we have $xR = K_i$. Thus K_i is simple for all $i \in I$. That means $E_M(M)$ is semisimple. Thus *M* is semisimple. \Box

Corollary 3.4. The following conditions are equivalent for a ring R:

- (1) R is semisimple Artinian.
- (2) The direct sum of every two e-ADS modules is e-ADS.
- (3) Every e-ADS module is injective.
- (4) The direct sum of any family of e-ADS modules is e-ADS.

We note that if $M \oplus E(M)$ is e-ADS for an *R*-module *M*, then $M \cong E(M)$ by Theorem 2.9 and so *M* is injective.

Theorem 3.5. The following conditions are equivalent for a ring R:

- (1) R is right Noetherian.
- (2) The direct sum of injective right R-modules is e-ADS.
- (3) For any injective right R-module X, $X^{(\mathbb{N})}$ is e-ADS.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ They are obvious.

 $(3) \Rightarrow (1)$ Let X be an injective module. Clearly, $X \oplus E(R_R)$ is also injective. Let $M = X \oplus E(R_R)$. Since $4 \cdot |\mathbb{N}| = |\mathbb{N}|$, we obtain that $(M^{(\mathbb{N})})^{(4)} \cong M^{(\mathbb{N})}$. By (3), $M^{(\mathbb{N})} \oplus M^{(\mathbb{N})}$ is automorphism invariant. It follows that $M^{(\mathbb{N})}$ is quasi-injective. On the other hand, $X^{(\mathbb{N})}$ is isomorphic to a direct summand of $M^{(\mathbb{N})}$. It implies that $X^{(\mathbb{N})}$ is $E(R_R)$ -injective and so $X^{(\mathbb{N})}$ is injective. Hence R is right Noetherian. \Box

A ring R is called a right *V*-ring if every simple right R-module is injective.

Theorem 3.6. The following conditions are equivalent for a ring R:

- (1) R is a right V-ring,
- (2) $S \oplus E(S)$ is e-ADS for every simple right R-module S.

Proof. (1) \Rightarrow (2) This is obvious.

 $(2) \Rightarrow (1)$ Assume that $S \oplus E(S)$ is e-ADS for every simple right *R*-module *S*. Let *S* be a simple right *R*-module. By the hypothesis, $S \oplus E(S)$ is e-ADS. Then, by Theorem 2.9(1), $S \cong E(S)$, and so *S* is injective.

Theorem 3.7. The following conditions are equivalent for a ring R:

- (1) R is a QF-ring.
- (2) Every projective right R-module is e-ADS.
- (3) Every essential extension of any free right R-module is e-ADS.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are obvious.

(2) \Rightarrow (1) Let *I* be a non-empty set. Clearly $(R^{(I)})^4$ is also a projective module. By (2), $R^{(I)} \oplus R^{(I)}$ is automorphism invariant. It follows that $R^{(I)}$ is quasi-injective. Therefore $R^{(I)}$ is injective. Thus *R* is Σ -injective and so *R* is a QF-ring. $(3) \Rightarrow (1)$ Let F be a free right R-module. Then $F \oplus E(F)$ is an essential extension of a free right module F^2 . By (3), $F \oplus E(F)$ is e-ADS, hence F is injective. Now we have proved that every projective right R-module is injective. Thus R is QF by the Faith-Walker theorem.

4. The Structure of e-ADS rings

We say that a ring R is right e-ADS if it is an e-ADS module over itself. A right e-ADS ring R is called trivial if R_R is trivial e-ADS, i.e. the module R_R does not have a decomposition $R_R = A \oplus B$ such that $E(A) \cong E(B)$. Otherwise R is said to be a nontrivial e-ADS ring.

Let R be a ring, e be an idempotent of R, S := eRe and $n \in \mathbb{N}$. Denote by $\mathcal{L}(eR^n)$ the lattice of all submodules of the projective R-module eR^n , and $\mathcal{L}(S^n)$ the lattice of all submodules of the free module S^n . Define two mappings

$$\Phi: \mathcal{L}(eR^n) \to \mathcal{L}(S^n)$$

and

$$\Psi: \mathcal{L}(S^n) \to \mathcal{L}(eR^n)$$

by the rules

$$\Phi(I) = Ie, \quad \Psi(J) = JR$$

for arbitrary $I \in \mathcal{L}(eR^n)$ and $J \in \mathcal{L}(S^n)$.

Lemma 4.1. Φ and Ψ are well-defined monotonic mappings. Moreover, Φ is a lattice homomorphism and Ψ is compatible with the operation +.

Proof. Straightforward from the above notation.

Note that the inclusion $\Psi(J_1 \cap J_2) \subseteq \Psi(J_1) \cap \Psi(J_2)$ holds generally for arbitrary $J_1, J_2 \in \mathcal{L}(S^n)$ but the following example shows that the reverse need not be true.

Example 4.2. Let $R = \{(a_{ij}) \in M_{3\times 3}(\mathbb{Q}) | a_{31} = a_{32} = 0\}$ be a subring of matrix ring $M_{3\times 3}(\mathbb{Q})$. Put $e := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $f := \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $g := \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $S := eRe, J_1 := fS$, and $J_2 := gS$. Then it is easy to see that

$$J_1 \cap J_2 = 0$$

 and

$$J_1 R \cap J_2 R = \{ \begin{pmatrix} 0 & 0 & u \\ 0 & 0 & v \\ 0 & 0 & 0 \end{pmatrix} \mid u, v \in \mathbb{Q} \}.$$

Thus $(J_1 \cap J_2)R \neq J_1R \cap J_2R$.

Lemma 4.3. Let R be a ring and $e \in R$ be an idempotent such that ReR = R. Then Φ and Ψ are mutually inverse lattice isomorphisms.

Proof. Let S := ReR. Since both Φ and Ψ are monotonic, it is enough to show that $\Phi\Psi$ and $\Psi\Phi$ are identity mappings on $\mathcal{L}(S)$ and $\mathcal{L}(eR)$, respectively. Let $I \in \mathcal{L}(eR)$ and $J \in \mathcal{L}(S)$. Since ReR = R, we get

$$\Psi\Phi(I) = IeR = IReR = IR = I.$$

On the other hand S = eRe and J = Je imply that

$$\Phi\Psi(J) = JRe = JeRe = JS = J.$$

Recall that essentiality of modules can be expressed as a condition of lattices of submodules:

Lemma 4.4. Let $A \subseteq B$ are submodules of a module M. Then $A \leq^{e} B$ if and only if there exists no submodule $C \subseteq B$ such that $A \cap C = 0$.

Proof. This is well known.

The following general consequence is a special case of [15, Theorem 1.2] for the lattice isomorphism from Lemma 4.3.

Corollary 4.5. Let R and S be rings, M an R-module, N an S-module and K, L submodules of M. Suppose that $\phi : \mathcal{L}(M_R) \to \mathcal{L}(N_S)$ is an isomorphism of lattices of all submodules of M and N. Then K is a complement of L if and only if $\phi(K)$ is a complement of $\phi(L)$.

Lemmas 4.4, 2.1, 2.15 and Corollary 4.5 show that e-ADS, trivial e-ADS and relative automorphism invariant are lattice conditions. Thus the assertions of the following theorem hold true because lattices of all submodules of M and N are isomorphic.

Theorem 4.6. Let R and S be rings, M an R-module and N an S-module. Assume $\phi : \mathcal{L}(M_R) \to \mathcal{L}(N_S)$ is an isomorphism of lattices.

- (1) M is (trivial) e-ADS if and only if N is a (trivial) e-ADS.
- (2) If $M = A \oplus B$, then $N = \phi(A) \oplus \phi(B)$ and A is B-automorphism invariant if and only if $\phi(A)$ is $\phi(B)$ -automorphism invariant.

Let $n \in \mathbb{N}$ and e be an idempotent of a ring R such that ReR = R. Recall that $L(eR_R^n)$ and $L(S_S^n)$ are isomorphic lattices by Lemma 4.3 for every $n \in \mathbb{N}$, where S = eRe.

Theorem 4.7. Let R be a ring, $n \in \mathbb{N}$ and $e \in R$ be an idempotent such that ReR = R.

- (1) eR_R^n is a (trivial) e-ADS module if and only if eR^ne is (trivial) e-ADS as a right eRe-module.
- (2) Let $eR^n = A \oplus B$. Then A is B-automorphism invariant if and only if Ae is Be-automorphism invariant.
- (3) eR is automorphism invariant if and only if S_S is automorphism invariant, where S = eRe.

Proof. (1) and (2) follow immediately from Theorem 4.6.

(3) It suffices to apply (2) for the decomposition $eR^2 = eR \oplus eR$.

The next observation shows that the class of e-ADS rings is closed under taking finite products.

Proposition 4.8. If R_1 and R_2 are e-ADS rings, then $R_1 \times R_2$ is e-ADS as well.

Proof. Put $R := R_1 \times R_2$ and let e_i be orthogonal central idempotents such that $R_i = Re_i$ for i = 1, 2. It is easy to see that $e_1 + e_2 = 1$, $E(R) = E(R_1) \oplus E(R_2)$ and $E(R_i) = E(R)e_i$ for i = 1, 2. Suppose that $R = A \oplus B$ is a module decomposition, $C \leq^e A$, $D \leq^e B$ and $f : C \to D$ is an isomorphism. Then $f_i : Ce_i \to De_i$ defined by $f_i(r) = re_i$ is an isomorphism for each i = 1, 2. We note that $Ce_i \leq^e Ae_i$ and

 $De_i \leq^e Be_i$ for each i = 1, 2. By the hypothesis, there exist extensions $g_i : Ae_i \rightarrow Be_i$ of f_i . Clearly, $g = g_1 \oplus g_2 : A \rightarrow B$ extends f.

We denote the set of all $n \times n$ matrices over a ring R by $M_n(R)$.

Lemma 4.9. If R is a non-trivial e-ADS ring, then there exists a right automorphism invariant ring S such that $R \cong M_2(S)$.

Proof. Since R is a non-trivial e-ADS ring, there exists an idempotent $e \in R$ for which $E(eR) \cong E((1-e)R)$. Thus $eR \cong (1-e)R$ is automorphism invariant by Theorem 2.9. Put S := eRe. Then

$$R \cong \operatorname{End}(eR \oplus eR) \cong M_2(S)$$

and S is a right automorphism invariant ring by Theorem 4.7(3).

Let R be a ring. Recall that R is said to be right non-singular if its right singular ideal $Z(R) = \{r \in R : rI = 0 \text{ for some essential right ideal } I \text{ of } R\}$ is zero, and Ris called normal if if moreover its idempotents are central. Note that every abelian regular ring or every product of rings without non-trivial idempotents can serve as elementary examples of normal rings.

Proposition 4.10. Let R be a right non-singular normal automorphism invariant ring. Then

(1) R is trivial e-ADS,

(2) $M_2(R)$ is non-trivial e-ADS.

Proof. Denote by Q the maximal right ring of quotients R. Obviously eQ = E(eR) for every idempotent e.

(1) As every central idempotent of R is a central idempotent of Q, the assertion follows from Lemma 2.16.

(2) By Theorem 4.7 it is enough to prove that $M = R \oplus R$ is a non-trivial e-ADS module. Clearly, M cannot be trivial. So it suffices to prove Theorem 2.10(4). Suppose $R = e_i R \oplus f_i R$ for every i = 1, 2, where (e_i, f_i) is a pair of orthogonal idempotents such that $e_1 Q \oplus e_2 Q \cong f_1 Q \oplus f_2 Q$. We claim that $A := e_1 R \oplus e_2 R \cong B := f_1 R \oplus f_2 R$ (and that A is automorphism invariant).

Since R is a normal ring, i.e., all idempotents e_i , f_i of R, are central for each i = 1, 2, we have

$$e_iQ = e_ie_jQ \oplus e_if_jQ$$

 $f_iQ = f_ie_jQ \oplus f_if_jQ$

for $i \neq j$. Hence $Q = e_1 e_2 Q \times e_1 f_2 Q \times f_1 e_2 Q \times f_1 f_2 Q$, where there is no nonzero homomorphism between two distinct components. Thus

$$E(A) = e_1Q + e_2Q \cong (e_1e_2Q)^{(2)} \oplus e_1f_2Q \oplus e_2f_1Q$$

and

$$E(B) = f_1 Q + f_2 Q \cong (f_1 f_2 Q)^{(2)} \oplus e_1 f_2 Q \oplus e_2 f_1 Q.$$

We have observed that $\operatorname{Hom}(e_1e_2Q, E(B)) = 0$ as well as $\operatorname{Hom}(e_1e_2Q, E(B)) = 0$ which implies that $e_1e_2 = 0 = f_1f_2$. Hence

$$E(A) \cong e_1 f_2 Q \oplus e_2 f_1 Q \cong E(B)$$

and so

$$A \cong e_1 f_2 R \oplus e_2 f_1 R \cong B.$$

Finally, since $e_1f_2R \oplus e_2f_1R$ is isomorphic to a direct summand of R which is automorphism invariant, we obtain that A is automorphism invariant by [8, Lemma 4].

We finish the section with the following criterion.

Theorem 4.11. Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

- (1) R is right e-ADS,
- (2) Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(S)$ for a suitable right automorphism invariant ring S,
- (3) Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong T \times M_2(S)$ for a suitable self-injective ring T and a normal right automorphism invariant ring S.

Proof. (1) \Rightarrow (2) If R is a right trivial e-ADS ring, then $Q \cong E(R)$ has no a decomposition $Q = A \oplus B$ with a isomorphic summand, which implies that $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$.

If R is a non-trivial e-ADS ring, then there exists a right automorphism invariant ring S such that $R \cong M_2(S)$ by Lemma 4.9.

(2) \Rightarrow (3) Assume $R \cong M_2(S_0)$ for a right automorphism invariant ring S_0 . Clearly, S_0 is, moreover, non-singular, hence there exists a right selfinjective ring S_1 and a normal right automorphism invariant ring S such that $S_0 \cong S_1 \times S$ by [5, Theorem 7]. Now it is easy to see that

$$M_2(S_0) \cong M_2(S_1) \times M_2(S)$$

and $T = M_2(S_0)$ is self-injective by [7, Corollary 9.3].

(3) \Rightarrow (1) We remark that the first condition implies that R is a trivial e-ADS ring. Suppose that $R \cong T \times M_2(S)$ where T is a self-injective ring and S is a normal right automorphism invariant ring. Note that T is an e-ADS ring and $M_2(S)$ is e-ADS by Lemma 4.10. So, R is right e-ADS by Lemma 4.8.

Corollary 4.12. Every simple non-trivial right e-ADS ring is necessarily self-injective.

Proof. It follows from Theorem 4.11 and [5, Corollary 10].

References

- 1. A. Alahmadi, S. K. Jain, A. Leroy: ADS modules, J. Algebra, 352(2012), 215-222.
- 2. F. W. Anderson, K. R. Fuller: Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- 3. P. A. Guil Asensio and A. K. Srivastava: Automorphism-invariant modules satisfy the exchange property , J. Algebra, 388 (2013), 101-106.
- 4. N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer: Extending Modules, Pitman Research Notes in Math., 1996.
- 5. N. Er, S. Singh, A. K. Srivastava: Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), 223-229.
- L. Fuchs: Infinite Abelian Groups, vol. I, Pure Appl. Math., Ser. Monogr. Textb., vol. 36, Academic Press, New York, San Francisco, London, 1970.
- 7. K. R. Goodearl: Von Neumann Regular Rings, Pitman, London, 1979.
- 8. T. K. Lee and Y. Zhou: Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12(2) (2013).
- 9. S. H. Mohammed, B. J. Müller: Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press, 1990.

14 M. TAMER KOŞAN, TRUONG CONG QUYNH, AND JAN ŽEMLIČKA

10. W. K. Nicholson: Semiregular modules and rings, . Can. J. Math. 28(1976), 1105-1120.

11. W. K. Nicholson, Y. Zhou: Semiregular Morphisms, Commun. Algebra, 34(2006) 219-233.

12. T. C. Quynh and M. T. Koşan: ADS-modules and rings, Commun. Algebra, 42(8)(2014), 3541-3551.

 T. C. Quynh and M. T. Koşan: On automorphism-invariant modules, J. Algebra and its Appl., 14 (5) (2015), 1550074 (11 pages).

14. R. Wisbauer: Foundations of Module and Ring Theory, Gordon and Breach, Reading 1991.

 J. M. Zelmanowitz: Correspondences of closed submodules, Proc. Amer. Math. Soc. 124 (1996), 2955-2960.

Department of Mathematics, Danang University, 459 Ton Duc Thang, DaNang city, Vietnam

E-mail address: tcquynh@live.com

DEPARTMENT OF ALGEBRA, CHARLES UNIVERSITY IN PRAGUE, FACULTY OF MATHEMATICS AND PHYSICS SOKOLOVSKÁ 83, 186–75 PRAHA 8, CZECH REPUBLIC

E-mail address: zemlicka@karlin.mff.cuni.cz