KERNELS OF HOMOMORPHISMS BETWEEN UNIFORM QUASI-INJECTIVE MODULES

M. TAMER KOŞAN, TRUONG CONG QUYNH, AND JAN ŻEMLICKA

ABSTRACT. In this paper, we study the behaviour of endomorphism rings of indecomposable (uniform) quasi-injective modules. A very natural question here is, for a morphism $f: A \to B$, with A, B indecomposable (uniform) quasi-injective right *R*-modules, and $g: E(A) \to E(B)$ an extension of f where E(-) denotes the injective hull, what is the relation between kernels of f and g, their monogeny classes and their upper parts?

1. INTRODUCTION

It is well known by the so-called Krull-Schmidt theorem that if we consider the direct sum of modules $M = M_1 \oplus M_2 \oplus \cdots \oplus M_k$ such that for all i the rings $\operatorname{End}_R(M_i)$ are local (i.e. they have a unique maximal ideal), then the above direct decomposition of Minto a direct sum of indecomposable modules is unique up to an isomorphism and up to a permutation.

Several classes of modules satisfying a weak form of the Krull-Schmidt property have been found recently in the literature. For instance, such a weak form holds for the classes of uniserial modules [4], of cyclically presented modules over a local ring [4], of kernels of homomorphisms between indecomposable injective modules [7], and cyclically finitely presented modules of the projective dimension ≤ 1 [9]. In all these cases, the following holds: there are two equivalence relations \sim and \equiv on the class such that, for any two finite families $\{A_1, \dots, A_m\}$ and $\{B_1, \dots, B_n\}, \bigoplus_{i=1}^m A_i \cong \bigoplus_{j=1}^n B_j$ if and only if m = nand there exist two bijections $\sigma, \tau : \{1, \dots, m\} \to \{1, \dots, n\}$ such that $A_i \sim B_{\sigma(i)}$ and $A_i \equiv B_{\tau(i)}$ for every $i = 1, \dots, n$.

All rings are assumed to be associative and with nonzero identity element; all modules are assumed to be unitary. Let R be a ring, M be a right R-module, and let N be a submodule of the module M. If $N \cap K \neq 0$ for any nonzero submodule K in M, then Nis called an essential submodule in M, and we say that M is an essential extension of the module N. If M is an injective module and N is an essential submodule in M, then M is called the injective hull of the module N. The injective hull is unique up to isomorphism and it is denoted by E(N). A submodule X of the module M is said to be closed in Mif X = Y for every submodule Y in M that is an essential extension of the module X. A

²⁰¹⁰ Mathematics Subject Classification. 16N20, 15A33.

 $Key\ words\ and\ phrases.$ Monogeny class, Semilocal rings, Direct-sum decompositions, Krull-Schmidt Theorem, Semilocal category, Preadditive category .

December 21, 2020.

module M is said to be uniform if any two nonzero submodules of M have the nonzero intersection, i.e., M does not have proper closed submodules. We refer to [2], [5], [10] and [11] for all the undefined notions in this paper.

For a module N, a module M is said to be injective with respect to N or N-injective if for any submodule K in N, every homomorphism $\alpha : K \to M$ can be extended to a homomorphism $\overline{\alpha} : N \to M$, i.e. $\overline{\alpha}|_K = \alpha$. Note that a module is injective if it is injective with respect to each module. A module is said to be quasi-injective or self-injective provided it is injective with respect to itself. It is well known that a module M is quasi-injective if and only if $f(M) \subseteq M$ for any endomorphism f of the injective hull of the module M (see [8] or [11, 17.11]). It is clear that every injective module is quasi-injective. Every finite cyclic group is a quasi-injective noninjective module over the ring of integers.

Notice that, for a non-zero quasi-injective module M, M is uniform (equivalently, M is indecomposable) iff E(M) is uniform (equivalently, E(M) is indecomposable) iff End(E(M))is a local ring. So, a natural question to ask is what happens when one considers uniform quasi-injective modules. Hence, the purpose of this article is to study, in an abstract setting, these weak forms of the finite weak Krull-Schmidt theorem for uniform quasi-injective modules, by applying tools and concepts of [6, 7].

2. Some Construction Lemmas and Notations

We start by recalling the following well-known characterizations of quasi-injective modules (see, for example, [8, Theorem 1.1] and [11, 17.9]).

Lemma 2.1. The following conditions are equivalent for a right R-module M:

- (1) M is quasi-injective,
- (2) $\alpha(M) \subseteq M$ for each $\alpha \in \text{End}(E(M))$,
- (3) M is subbimodule of the bimodule $_{\operatorname{End}(E(M))}E(M)_R$,
- (4) $\operatorname{Tr}(M, E(M)) = M$.

Lemma 2.2. The following conditions are equivalent for a non-zero quasi-injective module *M*:

- (1) M is uniform,
- (2) M is indecomposable,
- (3) E(M) is uniform,
- (4) E(M) is indecomposable,
- (5) $\operatorname{End}(M)$ is a local ring,
- (6) $\operatorname{End}(E(M))$ is a local ring.

For right *R*-modules *M* and *N*, if $f \in \text{Hom}(M, N)$ and *K* is a submodule of *M*, then $f|_K \in \text{Hom}(K, N)$ denotes the restriction of *f* on *K*.

Lemma 2.3. Let M be a uniform quasi-injective module, N be a non-zero submodule of M and $f \in End(M)$. Then the following conditions are equivalent:

- (1) f is an automorphism,
- (2) f is injective,
- (3) $f|_N$ is injective.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ The implications are trivial.

 $(3) \Rightarrow (1)$ Let $f|_N$ be injective. Then ker $f|_N = \ker f \cap N = 0$. Now ker f = 0 and so f is injective because M is uniform. Thus f induces an isomorphism of M onto f(M), say $g: f(M) \to M$, such that $gf = \operatorname{id}_M$. Since M is quasi-injective, there exists an extension $\overline{g} \in \operatorname{End}(M)$ of g. Clearly, \overline{g} is an isomorphism and $\overline{g}f = \operatorname{id}_M$, which implies that f is an isomorphisms as well.

Similar argument as in the previous proof give us the following elementary but useful result.

Lemma 2.4. If M and be M' are uniform relatively injective modules and N a non-zero submodule of M, then any monomorphism $N \to M'$ extends to an isomorphism $M \to M'$.

Example 2.5. Let p be a prime number and n a natural number. Since $E(\mathbb{Z}_{p^m}) = \mathbb{Z}_{p^{\infty}}$ and $\alpha(\mathbb{Z}_{p^m}) \subseteq \mathbb{Z}_{p^m}$ for each $\alpha \in \operatorname{End}(\mathbb{Z}_{p^{\infty}})$, the \mathbb{Z} -module \mathbb{Z}_{p^m} is uniform quasi-injective but it is not injective.

By Lemma 2.2, $\operatorname{End}(E(M))$ of an indecomposable (a uniform) quasi-injective module M is local.

Proposition 2.6. Assume M is an indecomposable (a uniform) quasi-injective module. Then

(1) $\operatorname{End}(M)$ is a local ring with the maximal ideal

 $J(\operatorname{End}(M)) = \{ f \in \operatorname{End}(M) \mid f \text{ is non-injective} \}.$

(2) $\operatorname{End}(M)/J(\operatorname{End}(M)) \cong \operatorname{End}(E(M))/J(\operatorname{End}(E(M))).$

Proof. (1) By Lemmas 2.2 and 2.3, the ring End(E(M)) is local with the maximal ideal

$$J(\operatorname{End}(E(M))) = \{ f \in \operatorname{End}(E(M)) \mid f \text{ is non-injective} \}.$$

(2) Clearly, the map ρ : End $(E(M)) \to$ End(M) defined by the rule $\rho(f) = f|_M$, which is well-defined by Lemma 2.1, is a ring homomorphism onto End(M). Now it is easy to say that End $(M) \cong$ End $(E(M))/\ker \rho$ is local as well and

$$J(\operatorname{End}(M)) = \rho(J(\operatorname{End}(E(M)))) = \{f \in \operatorname{End}(M) \mid f \text{ is non-injective}\}\$$

by Lemma 2.3.

For non-zero non-injective homomorphisms $\varphi : M_1 \to M_2$ and $\varphi' : M'_1 \to M'_2$, and $f \in \text{Hom}(\ker \varphi, \ker \varphi')$, we fix the following notations that will be used throughout the paper:

$$\begin{aligned}
\kappa_1(f) &= \{ f_1 \in \operatorname{Hom}(M_1, M_1') \mid f_1|_{\ker \varphi} = f \} \\
\kappa_2(f) &= \{ f_2 \in \operatorname{Hom}(M_2, M_2') \mid \exists f_1 \in \kappa_1(f) : \varphi' f_1 = f_2 \varphi \}.
\end{aligned}$$

Lemma 2.7. Non-zero non-injective homomorphisms $\varphi : M_1 \to M_2$ and $\varphi' : M'_1 \to M'_2$, and $f \in \operatorname{Hom}(\ker \varphi, \ker \varphi')$ satisfies the following properties:

- (1) If M'_1 is M_1 -injective and M'_2 is M_2 -injective, then $\kappa_1(f) \neq \emptyset$ and $\kappa_2(f) \neq \emptyset$.
- (2) If $f_1, g_1 \in \kappa_1(f)$, then $f_1 g_1$ is not injective.
- (3) If M'_1 is uniform and $f_2, g_2 \in \kappa_2(f)$, then $f_2 g_2$ is not injective.

Proof. (1) Since ker φ is a submodule of M_1 and f can be viewed as a homomorphism to M'_1 , the existence of $f_1 \in \kappa_1(f)$ follows immediately from the M_1 -injectivity of M'_1 . If $f_1 \in \kappa_1(f)$, then there exists $\overline{f_1} \in \operatorname{Hom}(\varphi(M_1), \varphi'(M'_1))$ satisfying $\overline{f_1}\varphi = \varphi'f_1$. Thus $\overline{f_1}$ can be extended to $f_2 \in \operatorname{Hom}(M_2, M'_2)$ such that $f_2\varphi = \varphi'f_1$ by the M_2 -injectivity of M'_2 . (2) This is clear since ker $\varphi \subseteq \ker(f_1 - g_1)$.

(3) Let $f_1, g_1 \in \kappa_1(f)$ and $f_2, g_2 \in \kappa_2(f)$ such that $f_2\varphi = \varphi'f_1$ and $g_2\varphi = \varphi'g_1$. Assume that $f_2 - g_2$ is injective and denote by $\overline{\varphi} \in \operatorname{Hom}(M_1/\ker\varphi, M_2)$ the injective homomorphism induces by the homomorphism φ . Then there exists a homomorphism g such that the diagram

$$\begin{array}{ccc} M_1/\ker\varphi & \xrightarrow{\overline{\varphi}} & M_2 \\ & & & & \downarrow \\ g & & & \downarrow \\ M_1' & \xrightarrow{\varphi'} & M_2' \end{array}$$

commutes. Since $\varphi' g = (f_2 - g_2)\overline{\varphi}$ is injective, [5, Lemma 6.26(a)] implies that φ' is injective, a contradiction.

In the following result, we consider the case when $\varphi = \ker \varphi'$, hence $M_1 = M'_1, M_2 = M'_2$ and $\ker \varphi = \ker \varphi'$.

Proposition 2.8. Let $M_1 = M'_1$, $M_2 = M'_2$ be indecomposable (uniform) quasi-injective modules, ker $\varphi = \ker \varphi'$ and $f \in \operatorname{End}(\ker \varphi)$. Then the following conditions are equivalent:

- (1) f is an automorphism,
- (2) all homomorphisms of $\kappa_1(f)$ and $\kappa_2(f)$ are injective,
- (3) there exist homomorphisms $f_1 \in \kappa_1(f)$ and $f_2 \in \kappa_2(f)$ which are injective.

Proof. $(1) \Rightarrow (2)$ The implication is clear.

 $(2) \Rightarrow (3)$ The implication is an easy consequence of Lemma 2.7.

 $(3) \Rightarrow (1)$ We follow arguments of the proof of [7, Theorem 2.1]. Note that the existence of the injective map $f_1 \in \kappa_1(f)$ implies that f is injective, so all homomorphisms of $\kappa_1(f)$ are injective. Hence there are injective homomorphisms $f_1 \in \kappa_1(f)$ and $f_2 \in \kappa_2(f)$ such that the diagram with exact rows commutes:

$$0 \longrightarrow \ker \varphi \longrightarrow M_1 \xrightarrow{\varphi} M_2$$
$$\downarrow f \qquad \qquad \downarrow f_1 \qquad \qquad \downarrow f_2$$
$$0 \longrightarrow \ker \varphi \longrightarrow M_1 \xrightarrow{\varphi} M_2$$

Clearly, it induces the commutative diagram

$$0 \longrightarrow \ker \varphi \longrightarrow M_{1} \xrightarrow{\varphi} \varphi(M_{1}) \longrightarrow 0$$
$$\downarrow f \qquad \qquad \downarrow f_{1} \qquad \qquad \downarrow \overline{f_{1}} \\ 0 \longrightarrow \ker \varphi \longrightarrow M_{1} \xrightarrow{\varphi} \varphi(M_{1}) \longrightarrow 0$$

with exact rows where $\overline{f_1}$ is injective. Since f_1 is an isomorphism by Lemma 2.3, f is an isomorphism by the Snake lemma.

3. The Endomorphism ring

Theorem 3.1. Let M_1, M_2 be indecomposable (uniform) quasi-injective modules, and let $\varphi: M_1 \to M_2$ be a non-zero non-injective morphism with $E := \operatorname{End}(\ker \varphi)$. Set

 $I_1 = \{ f \in E \mid f \text{ is non-injective} \}$

and

 $I_2 = \{ f \in E \mid \exists f_2 \in \kappa(f) : f_2 \text{ is non-injective} \}.$

Then I_1 and I_2 are completely prime maximal ideals of E, and

$$I_1 = \{ f \in E \mid \exists f_1 \in \kappa_1(f) \text{ is non-injective} \},\$$
$$I_2 = \{ f \in E \mid \exists f_1 \in \kappa_1(f), \ker \varphi \subsetneq f_1^{-1}(\ker \varphi) \}$$

Moreover,

- (1) if $I_1 \subseteq I_2$, then E is local with the maximal ideal I_2 ,
- (2) if $I_2 \subseteq I_1$, then E is local with the maximal ideal I_1 ,
- (3) if I_1 and I_2 are not comparable, then E is semilocal such that $J(E) = I_1 \cap I_2$ and $E/J(E) \cong E/I_1 \times E/I_2$.

Proof. We define mappings $\rho_i: E \to \operatorname{End}(M_i)/J(\operatorname{End}(m_i))$ for i = 1, 2 by the rule

$$\rho_i(f) = f_i + J(\operatorname{End}(m_i))$$

for $f_i \in \kappa_i(f)$. The correctness of the definition follows from Proposition 2.6 and Lemma 2.7. Moreover, ker $\rho_i = I_i$ and it is completely prime ideals since $\operatorname{End}(M_i)/J(\operatorname{End}(M_i))$ are division rings. Since I_1 and I_2 are proper ideals, $I_1 \cup I_2$ contains noninvertible elements and all elements of $E \setminus (I_1 \cup I_2)$ are invertible by Proposition 2.8. Thus every proper right ideal of E is contained in $I_1 \cup I_2$. If I_1 and I_2 are comparable, then it holds true either the case (1) or (2).

If they are not comparable, then $J(E) = I_1 \cap I_2$ and I_1 and I_2 are two maximal ideals of E. Now it is easy to see that $E/J(E) \cong E/I_1 \times E/I_2$ by the Chinese reminder theorem. \Box

Let A and B be two modules. According to [4] and [7], we say that

• A and B have the same monogeny class, denoted by $[A]_m = [B]_m$, if there exist a monomorphism $A \to B$ and a monomorphism $B \to A$;

• A and B have the same upper part, denoted by $[A]_u = [B]_u$, if there exist a homomorphism $\phi : E(A) \to E(B)$ and a homomorphism $\psi : E(B) \to E(A)$ such that $\phi^{-1}(B) = A$ and $\psi^{-1}(A) = B$.

Lemma 3.2. Let M_1 , M_2 , M'_1 and M'_2 be indecomposable quasi-injective modules with M_1, M'_1 relative injective and M_2, M'_2 relative injective. If $\varphi : M_1 \to M_2$ and $\varphi' : M'_1 \to M_2$ are non-injective homomorphisms, then $\ker(\varphi) \cong \ker(\varphi')$ if and only if either $\varphi = \varphi' = 0$ and $M_1 \cong M'_1$, or there exist isomorphisms $f_1 : M_1 \to M'_1$ and $f_2 : M_2 \to M'_2$ such that $\varphi' f_1 = f_2 \varphi$.

Proof. Suppose that there exists an isomorphism $f : ker(\varphi) \to ker(\varphi')$. Since the indecomposable (uniform) module M'_1 is M_1 -injective, f extends to a monomorphism $f_1 : M_1 \to M'_1$. Clearly, f_1 is an isomorphism. It is also easy to see that the isomorphism f_1 induces the isomorphism $\bar{f}_1 : M_1/ker(\varphi) \to M'_1/ker(\varphi')$. Since the indecomposable (uniform) module M'_2 is M_2 -injective, there exists a homomorphism $f_2 : M_2 \to M'_2$ such that the following diagram is commutative:

$$\begin{array}{cccc} 0 & \longrightarrow & M_1/ker(\varphi) & \stackrel{\varphi}{\longrightarrow} & M_2 \\ & & & & & \\ & & & & & \\ f_1 & & & & f_2 \\ 0 & \longrightarrow & M_1'/ker(\varphi') & \stackrel{\bar{\varphi'}}{\longrightarrow} & M_2' \end{array}$$

where $\bar{\varphi}$ and $\bar{\varphi'}$ are monomorphisms induced by φ and φ' . Thus, we have a commutative diagram with exact rows

$$0 \longrightarrow ker(\varphi) \longrightarrow M_1 \xrightarrow{\varphi} M_2$$

$$f \qquad f_1 \qquad f_2 \quad f_$$

Now, we have the following two cases:

(i) If $\varphi = 0$, then $ker(\varphi) = M_1$ and $ker(\varphi') = M'_1$. They imply that $M_1 \cong M'_1$ and $\varphi' = 0$.

(ii) If $\varphi \neq 0$, then $M_1/ker(\varphi) \neq 0$. From the isomorphism \overline{f}_1 , we infer that f_2 is an isomorphism.

The converse follows immediately from Proposition 2.8.

Proposition 3.3. Let M_1, M_2, M'_1, M'_2 be quasi-injective indecomposable modules such that the modules M_1, M'_1 are relative injective and the modules M_2, M'_2 are relative injective. If $\varphi: M_1 \to M_2, \varphi: M'_1 \to M'_2$ are arbitrary homomorphisms, then $ker(\varphi) \cong ker(\varphi')$ if and only if $[ker(\varphi)]_m = [ker(\varphi')]_m$ and $[ker(\varphi)]_u = [ker(\varphi')]_u$.

Proof. It is enough to prove the reverse implication. The proof follows the arguments of [7, Lemma 2.4].

One can easily check that this observation holds if one of the two homomorphisms φ , φ' is a monomorphism. Thus, we can suppose that both φ and φ' are non-injective.

Assume that $[ker(\varphi)]_m = [ker(\varphi')]_m$ and $[ker(\varphi)]_u = [ker(\varphi')]_u$. Then, there are a monomorphism $f : ker(\varphi) \to ker(\varphi')$ and a homomorphism $k : E(ker(\varphi)) \to E(ker(\varphi'))$ such that $k^{-1}(ker(\varphi')) = ker(\varphi)$. Note that M'_1 is M_1 -injective, $ker(\varphi)$ is essential in M_1 and $ker(\varphi')$ is essential in M'_1 . Therefore, k induces, by the restriction, a homomorphism $h_1 : M_1 \to M'_1$ and $h_1^{-1}(ker(\varphi')) = ker(\varphi)$. If f is an isomorphism, we are done. Thus, we can assume that the monomorphism f is not an isomorphism between $ker(\varphi)$ and $ker(\varphi')$. Inasmuch as the indecomposable module M'_1 is M_1 -injective, the monomorphism f extends to an isomorphism $f_1 : M_1 \to M'_1$ by Lemma 2.4. Now, the isomorphism f_1 induces the isomorphism $\bar{f}_1 : M_1/ker(\varphi) \to M'_1/ker(\varphi')$ such that the following diagram is commutative:

$$0 \longrightarrow ker(\varphi) \longrightarrow M_{1} \longrightarrow M_{1}/ker(\varphi)$$

$$f \downarrow \qquad f_{1} \downarrow \qquad f_{1} \downarrow$$

$$0 \longrightarrow ker(\varphi') \longrightarrow M'_{1} \longrightarrow M'_{1}/ker(\varphi')$$

By the Snake lemma, one can check that $ker(\bar{f}_1) \cong coker(f)$. We have that f is not an epimorphism and obtain that \bar{f}_1 is not a monomorphism.

By our construction, we have that $h_1(ker(\varphi)) \subseteq ker(\varphi')$, and so h_1 induces, by the restriction, a homomorphism $h : ker(\varphi) \to ker(\varphi')$. Thus, we have a commutative diagram

From $h_1^{-1}(ker(\varphi')) = ker(\varphi)$, we infer that \bar{h}_1 is a monomorphism. We have the following two cases:

Case 1. h_1 is an isomorphism. Then, the Snake lemma gives that $ker(\bar{h}_1) \cong coker(h)$, and so h is an epimorphism. On the other hand, h_1 is an extension of h, we obtain that h is a monomorphism. We deduce that h is an isomorphism or $ker(\varphi) \cong ker(\varphi')$.

Case 2. h_1 is not an isomorphism. We have that M_1 is M'_1 -injective and M'_1 is an indecomposable module and obtain that h_1 is not a monomorphism. It follows that h is not a monomorphism, since $ker(\varphi)$ is essential in M_1 . From the sum of the two previous commutative diagrams, we get the following commutative diagram

$$0 \longrightarrow ker(\varphi) \longrightarrow M_{1} \longrightarrow M_{1}/ker(\varphi) \longrightarrow 0$$

$$f_{h} \downarrow \qquad f_{1+h_{1}} \downarrow \qquad f_{1+\bar{h}_{1}} \downarrow$$

$$0 \longrightarrow ker(\varphi') \longrightarrow M'_{1} \longrightarrow M'_{1}/ker(\varphi') \longrightarrow 0$$

Now, we show that $f_1 + h_1$ is a monomorphism. In fact, let x be an element of M_1 with $(f_1 + h_1)(x) = 0$. Then, we have that $f_1(x) = -h_1(x)$. Since M_1 is uniform, $ker(h_1)$ is essential in M_1 . Suppose that x is nonzero. Then, there exists an element $r \in R$ such that $xr \neq 0$ and $h_1(xr) = 0$, and so $f_1(xr) = 0$. Inasmuch as f_1 is a monomorphism, we get xr = 0, a contradiction. It shows that $f_1 + h_1$ is a monomorphism. By the hypothesis, M_1 is M'_1 -injective and M'_1 is indecomposable we immediately obtain that $f_1 + h_1$ is an isomorphism. Thus, the restriction f + h of $f_1 + h_1$ to $ker(\varphi)$ is a monomorphism. Similarly, \bar{f}_1 non-injective, \bar{h}_1 injective and $M'_1/ker(\varphi) \cong im(\varphi) \subseteq M_2$ uniform imply that $\bar{f}_1 + \bar{h}_1$ is a monomorphism. From the Snake lemma, f + h is an epimorphism. We deduce that f + h is an isomorphism, and so $ker(\varphi) \cong ker(\varphi')$.

Recall from [6, Section 4.14] that a semilocal category is a preadditive category with a nonzero object such that the endomorphism ring of every nonzero object is a semilocal ring.

Facchini in [6, Section 4.15] remarked that if R is a semilocal ring and $\pi : R \to R/J(R)$ is the canonical projection of R onto R modulo its Jacobson radical, then $\pi : R \to R/J(R)$ is a surjective local morphism, so that $V(\pi) : V(R) \to V(R/J(R))$ is an injective divisor homomorphism by [6, Proposition 3.29]. Moreover, the injective divisor homomorphism $V(\pi)$ is a morphism of monoids with order-units of $(V(R), \langle R_R \rangle)$ into $(V(R/J(R)), \langle R/J(R) \rangle)$.

According to Facchini [6, Page 142-143], if \mathcal{A}, \mathcal{B} are additive categories and $F : \mathcal{A} \to \mathcal{B}$ is an additive functor, we say that F is:

(1) direct-summand reflecting if for every pair A, B of objects of \mathcal{A} with F(A) isomorphic to a direct summand of F(B), A is isomorphic to a direct summand of B. (Here, if A and B are objects of an additive category \mathcal{C} , we say that A is isomorphic to a direct summand of B if there exists an object C of \mathcal{C} such that B is a biproduct of A and C.) (2) weakly direct-summand reflecting if for every pair A, B of objects of \mathcal{A} with F(A) isomorphic to a direct summand of F(B), there exists an object C of A with F(C) = 0 and A isomorphic to a direct summand of $B \oplus C$.

Notice that

- (a) direct-summand reflecting implies weakly direct-summand reflecting
- (b) every additive functor $F : \mathcal{A} \to \mathcal{B}$ induces a monoid homomorphism $V(F) : V(\mathcal{A}) \to V(\mathcal{B})$ between the (possibly large) additive monoids $V(\mathcal{A})$ and $V(\mathcal{B})$. The functor F is isomorphism reflecting if and only if V(F) is an injective mapping, essentially surjective if and only if V(F) is a surjective mapping, and it is direct-summand reflecting if and only if the monoid morphism V(F) is a divisor homomorphism, weakly direct-summand reflecting if and only if the monoid morphism V(F) is a monoid isomorphism.

Finally, if C is a full subcategory of Mod-R, we denote the full subcategory of Mod-R whose objects are all modules that are isomorphic to direct summands of finite direct sums of modules in Ob(C) by \overline{C} . If C is a semilocal category, then \overline{C} is also semilocal (see [6, Page 297]).

In a preadditive category \mathcal{A} with a nonzero object, we denote its Jacobson radical by \mathcal{J} .

Proposition 3.4. Let $\varphi_i : M_{i1} \to M_{i2}$ $(i = 1, 2, ..., n, n \ge 2)$ and $\varphi' : M'_1 \to M'_2$ be n + 1 non-injective homomorphisms between indecomposable quasi-injective modules $M_{i1}, M_{i2}, M'_1, M'_2$ such that M_{i1}, M'_1 are relative injective and M_{i2}, M'_2 are relative injective. Suppose that $ker(\varphi')$ is isomorphic to a direct summand of $\bigoplus_{i=1}^n ker(\varphi_i)$, but $ker(\varphi') \not\cong$ $ker(\varphi_i)$ for every i = 1, 2, ..., n. Then there are two distinct indices i, j = 1, 2, ..., n such that $[ker(\varphi')]_m = [ker(\varphi_i)]_m$ and $[ker(\varphi')]_u = [ker(\varphi_j)]_u$.

Proof. By Theorem 3.1, $\ker(\varphi_i)$ for i = 1, ..., n and the modules $\ker(\varphi')$ are all modules whose endomorphism rings are semilocal of type ≤ 2 . Set

$$\mathcal{A} := \mathrm{add}(\bigoplus_{i=1}^n \ker(\varphi')),$$

i.e. \mathcal{A} contains all direct summands of finite direct sums of modules isomorphic to ker (φ_i) }, so that \mathcal{A} is a semilocal full subcategory of Mod-R. Therefore the canonical monoid morphism $V(\mathcal{A}) \to V(\mathcal{A}/\mathcal{J}(\mathcal{A}))$ is an injective divisor homomorphism, because the canonical projection functor $\mathcal{A} \to \mathcal{A}/\mathcal{J}(\mathcal{A})$ is an isomorphism-reflecting direct-summand reflecting functor by the previous paragraphs. Therefore, the rest follows from [6, Theorem 9.10] and [6, Proposition 9.14]

Lemma 3.5. Let $\varphi : M_1 \to M_2, \varphi' : M'_1 \to M'_2$ and $\varphi'' : M''_1 \to M''_2$ be non-injective homomorphisms between indecomposable quasi-injective modules such that M_1, M'_1, M''_1 are relative injective and M_2, M'_2, M''_2 are relative injective.

If we assume $[ker(\varphi)]_m = [ker(\varphi')]_m$ and $[ker(\varphi)]_u = [ker(\varphi'')]_u$, then the following hold: (1) $ker(\varphi) \oplus D \cong ker(\varphi') \oplus ker(\varphi'')$ for some module D.

- (2) The module D in (1) is unique up to isomorphism and is the kernel of a noninjective morphism between indecomposable quasi-injective modules.
- (3) $[D]_m = [ker(\varphi'')]_m$ and $[D]_u = [ker(\varphi')]_u$

Proof. (1) By the hypothesis, there exist monomorphisms $f : ker(\varphi) \to ker(\varphi')$ and $g : ker(\varphi') \to ker(\varphi)$, and homomorphisms $k_1 : E(ker(\varphi)) \to E(ker(\varphi''))$ and $k_2 : E(ker(\varphi'')) \to E(ker(\varphi))$ such that $k_1^{-1}(ker(\varphi'')) = ker(\varphi)$ and $k_2^{-1}(ker(\varphi)) = ker(\varphi'')$. We have that M_1, M'_1, M''_1 are relative injective and we obtain that $k_1(M_1) \leq M''_1$ and $k_1(M''_1) \leq M_1$.

Call $h_1 := k_1|_{M_1}$ and $l_1 := k_2|_{M_1''}$. Clearly, $h_1 \in \text{Hom}(M_1, toM_1'')$, $l_1 \in \text{Hom}(M_1'', M_1]$ and $h_1^{-1}(ker(\varphi'')) = ker(\varphi)$ and $l_1^{-1}(ker(\varphi)) = ker(\varphi'')$. Let $h : ker(\varphi) \to ker(\varphi'')$ be the restriction of h_1 and $l : ker(\varphi'') \to ker(\varphi)$ be the restriction of l_1 .

We have the following cases:

Case 1. $g \circ f$ is an isomorphism. Then f splits, and so f is an isomorphism, since both $ker(\varphi)$ and $ker(\varphi')$ are uniform. Now $D := ker(\varphi'')$ has the required properties.

Case 2. $l \circ h$ is an isomorphism. Then, both l and h are isomorphisms. We deduce that $ker(\varphi) \cong ker(\varphi')$. If $D := ker(\varphi')$, then D has the required properties.

Case 3. Neither $g \circ f$ nor $l \circ h$ are isomorphisms. By the assumption,

$$I_1 = \{ \alpha \in \operatorname{End}(ker(\varphi)) \mid \alpha \text{ is non-injective} \}$$

and

$$I_2 = \{ \alpha \in \operatorname{End}(ker(\varphi)) \mid \exists \alpha_2 \in \kappa_2(\alpha) : \alpha_2 \text{ is non-injective} \}$$

are completely prime maximal ideals of $\operatorname{End}(\ker(\varphi'))$, we get $g \circ f$ is a monomorphism, hence it does not belongs to the ideal I_1 . Inasmuch as $g \circ f$ is not an isomorphism we infer that $g \circ f \in I_2$. On the other hand, we have that $I_2 = \{\alpha \in \operatorname{End}(\ker(\varphi)) \mid \ker \varphi \subsetneq \alpha_1^{-1}(\ker \varphi)\}$ by Theorem 3.1, so it follows that $l \circ h \notin I_2$. Similarly, we get $l \circ h \in I_1$. From this, we immediately obtain that $g \circ f + l \circ h \notin I_1 \cup I_2$. Thus, $g \circ f + l \circ h$ is an automorphism of $\ker(\varphi)$. Then the composite homomorphism of the homomorphisms

$$ker(\varphi) \xrightarrow{\begin{pmatrix} f \\ h \end{pmatrix}} ker(\varphi') \oplus ker(\varphi'') \xrightarrow{(g \circ f + l \circ h)^{-1} \circ \begin{pmatrix} g & l \end{pmatrix}} ker(\varphi)$$

is the identity homomorphism, and so $ker(\varphi) \oplus D \cong ker(\varphi') \oplus ker(\varphi'')$ for some *R*-module *D*.

(2) Assume that $ker(\varphi) \oplus D \cong ker(\varphi') \oplus ker(\varphi'') \cong ker(\varphi) \oplus D'$. Since $End(ker(\varphi))$ is a semilocal endomorphism ring by Theorem 3.1, we obtain that $D \cong D'$ by [5, Corollary 4.6], hence we have shown that the module D is unique up to isomorphism.

Next, we show that D is the kernel of a non-injective homomorphism between indecomposable quasi-injective modules. In fact, let $M = M'_1 \oplus M''_1$. Hence M is quasi-injective. Let \widehat{N} denote the injective hull of N in $\sigma[M]$, i.e. M-injective hull of N ([11, 17.8]). From the M-injectivity of M_1 , M'_1 and M''_1 , we have $\widehat{ker(\varphi)} = M_1$, $\widehat{ker(\varphi')} = M'_1$ and $\widehat{ker(\varphi'')} = M''_1$. The isomorphism $ker(\varphi) \oplus D \cong ker(\varphi') \oplus ker(\varphi'')$ reduces an isomorphism $ker(\widehat{\varphi}) \oplus D \cong ker(\varphi') \oplus ker(\varphi'')$, and so

10

$$M_1 \oplus \widehat{D} = ker(\varphi) \oplus D \cong ker(\varphi') \oplus ker(\varphi'') = M'_1 \oplus M''_1.$$

From $[ker(\varphi)]_m = [ker(\varphi')]_m$, we obtain that M_1 is embeddable into M'_1 and M'_1 is embeddable into M_1 . It follows that $M_1 \cong M'_1$ by [10, Theorem 3.17]. By the direct-sum cancellation of modules with semilocal endomorphism rings again, we infer that $\widehat{D} \cong M''_1$. On the other hand, we have the isomorphism

$$(M_1 \oplus \widehat{D})/(ker(\varphi) \oplus D) \cong (M'_1 \oplus M''_1)/(ker(\varphi') \oplus ker(\varphi'')),$$

and so

 $[M_1/ker(\varphi)] \oplus [\widehat{D}/D] \cong [M_1'/ker(\varphi')] \oplus [M_1"/ker(\varphi'')] \cong im(\varphi') \oplus im(\varphi'')$

is embeddable into $M' := M'_2 \oplus M''_2$. Similarly, from the above argument for M_2, M'_2, M''_2 we have $M_2 \oplus \widehat{D/D} \cong M'_2 \oplus M''_2$ in $\sigma[M']$. Since $[ker(\varphi)]_u = [ker(\varphi'')]_u$ and M_1, M''_1 are relatively injective, there are homomorphisms $\alpha : M_1 \to M''_1$ and $\beta : M_1$ " $\to M_1$ such that $\alpha^{-1}(ker(\varphi'')) = ker(\varphi)$ and $\beta^{-1}(ker(\varphi)) = ker(\varphi'')$. It shows that there exist monomorphisms $M_1/ker(\varphi) \to M''_1/ker(\varphi'')$ and $M''_1/ker(\varphi'') \to M_1/ker(\varphi)$. Thus, there are monomorphisms $M_2 \to M''_2$ and $M''_2 \to M_2$, and so $M_2 \cong M''_2$ by [10, Theorem 3.17]. Then, we infer that $\widehat{D/D} \cong M'_2 = M'_1/ker(\varphi')$ in $\sigma[M']$. If $\varphi' = 0$, then $D = \widehat{D} \cong M''_1$. Now, D is the kernel of the zero homomorphism $M''_1 \to M''_2$. If $\varphi' \neq 0$, then D is the kernel of the composite morphism $\widehat{D} \to \widehat{D}/D \to \widehat{D}/D$. Note that $\widehat{D} \cong M''_1$ and $\widehat{D}/D \cong M'_2$. We deduce that it is the kernel of a non-injective morphism between indecomposable quasiinjective modules.

(3) From the proof of (2), we have that D is the kernel of either $M_1'' \to M_2''$ or $M_1'' \to M_2'$. **Case 1.** If $D \cong ker(\varphi')$, then $ker(\varphi) \cong ker(\varphi')$ and so D has the required properties. Similarly, it is true for the case $D \cong ker(\varphi'')$.

Case 2. If $D \not\cong ker(\varphi')$ and $D \not\cong ker(\varphi'')$, then we can apply Proposition 3.4 to the direct summand D of $ker(\varphi') \oplus ker(\varphi'')$, and so we get that either $[D]_m = [ker(\varphi'')]_m$ and $[D]_u = [ker(\varphi')]_u$ or $[D]_m = [ker(\varphi')]_m$ and $[D]_u = [ker(\varphi'')]_u$. Suppose that $[D]_u = [ker(\varphi'')]_u$. From Proposition 3.3, we obtain that $D \cong ker(\varphi)$. Thus, by Proposition 3.4 applied to the direct summands $ker(\varphi')$ and $ker(\varphi'')$ of $ker(\varphi) \oplus D$, we imply that the modules $ker(\varphi'), ker(\varphi''), ker(\varphi)$ and D have the same monogeny part and the same upper part. We deduce that $ker(\varphi') \cong ker(\varphi'') \cong ker(\varphi) \cong D$, which is a contradiction.

Theorem 3.6. (Weak Krull-Schmidt theorem) Let $\varphi_i : M_{i1} \to M_{i2}, i = 1, 2, ..., n$, and $\varphi'_j : M'_{j1} \to M'_{j2}, j = 1, 2, ..., k$, be non-injective homomorphisms between indecomposable quasi-injective modules $M_{i1}, M_{i2}, M_{j1}, M_{j2}$ such that M_{i1}, M'_{j1} are relative injective and M_{i2}, M'_{j2} are relative injective. Then $\bigoplus_{i=1}^{n} ker(\varphi_i) \cong \bigoplus_{j=1}^{k} ker(\varphi'_j)$ if and only if n = k and there exist two permutations σ, τ of $\{1, 2, ..., n\}$ such that $[ker(\varphi_i)]_m = [ker(\varphi'_{\sigma(i)})]_m$ and $[ker(\varphi_i)]_u = [ker(\varphi'_{\tau(i)})]_u$ for every i = 1, 2, ..., n.

Proof. We notice that the kernels $ker(\varphi_i)$ and $ker(\varphi'_j)$ are uniform modules. If $\bigoplus_{i=1}^n ker(\varphi_i) \cong \bigoplus_{j=1}^k ker(\varphi'_j)$, then they have the same Goldie dimension, and so n = k. In order to show that the existence of the permutations σ and τ , we use induction on n. The case n = 1 being trivial. Assume that $ker(\varphi_i)$ is isomorphic to some $ker(\varphi'_j)$. Cancelling the isomorphic modules $ker(\varphi_i)$ and $ker(\varphi'_j)$ (cancellation of modules holds because they have semilocal endomorphism rings), we can clearly proceed by induction. Then, we can suppose that $ker(\varphi_i) \cong ker(\varphi'_j)$ for every i, j = 1, 2, ..., n. Note that $End(ker(\varphi_i))$ and $End(ker(\varphi'_j))$ are not local.

Now $ker(\varphi_1)$ is isomorphic to a direct summand of $\bigoplus_{j=1}^n ker(\varphi'_j)$. From Proposition 3.4, we infer that there exist two distinct indices $i, j = 1, 2, \ldots, n$ such that $[ker(\varphi_1)]_m = [ker(\varphi'_i)]_m$ and $[ker(\varphi_1)]_u = [ker(\varphi'_j)]_u$. Without loss of generality we may suppose i = 1 and j = 2. Now we can proceed as in [1, Theorem 5.3] using Lemma 3.5 instead of [1, Lemma 5.2].

References

- B. Amini, A. Amini and A. Facchini: Equivalence of diagonal matrices over local rings. J. Algebra 320(3) (2008) 1288-1310.
- [2] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- [3] S. Ecevit, A. Facchini, M. T. Koşan: Direct sums of infinitely many kernels. J. Aust. Math. Soc. 89(2) (2010) 199-214.
- [4] A. Facchini: Krull-Schmidt fails for serial modules. Trans. Amer. Math. Soc. 348(11) (1996) 4561-4575.
- [5] A. Facchini: Module theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Mathematics, vol. 167 (Birkhäuser Verlag, Basel, Switzerland, 1998).
- [6] A. Facchini: Semilocal Categories and Modules with Semilocal Endomorphism Rings, Progress in Math. 331, Birkhäuser Verlag, Basel, 2019
- [7] A. Facchini, S. Ecevit, M. T. Koşan: Kernels of morphisms between indecomposable injective modules. Glasgow Math. J. 52A (2010) 69-82.
- [8] R. E. Johnson, E. T. Wong: Quasi-injective modules and irreducible rings. J. Lond. Math. Soc. 36(1961) 260-268.
- [9] A. Kor, M. T. Koşan: A note on the endomorphism ring of finitely presented modules of the projective dimension ≤ 1. Hacettepe Math. J. 43(6) (2014),985-991
- [10] S. H. Mohamed and B. J. Müller: Continuous and Discrete Modules. Cambridge Univ. Press. (1990).
- [11] R. Wisbauer: Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia (1991).

(M. Tamer Koşan) Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey

Email address: mtamerkosan@gazi.edu.tr, tkosan@gmail.com

(Truong Cong Quynh) DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF DANANG - UNIVERSITY OF SCIENCE AND EDUCATION, 459 TON DUC THANG, DANANG CITY, VIETNAM *Email address*: tcquynh@ued.udn.vn

(Jan Žemlička) DEPARTMENT OF ALGEBRA, CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECH REPUBLIC

Email address: zemlicka@karlin.mff.cuni.cz