GROUP RINGS THAT ARE UJ RINGS
M. TAMER KOSAN AND JAN ZEMLICKA

ABSTRACT. The set A(R) of all elements 7 of a ring R such that 1+ ru is a
unit for every unit u extends the Jacobson radical J(R). R is a UJ ring (AU
ring, respectively) if its units are of the form 1+ J(R) (14 A(R), respectively).
Using a local characterization of AU rings, we describe structure of group rings
that are UJ rings; if RG is a UJ group ring, then R is a UJ ring, G is a 2-group
and, for every nontrivial finitely generated subgroup H of G, the commutator
subgroup of H is proper subgroup of H. Conversely, if R is a UJ ring and G
a locally finite 2-group, then RG is a UJ ring. In particular, if G is solvable,
RG is a UJ ring if and only if R is UJ and G is a 2-group.

1. INTRODUCTION

It is well known that the Jacobson radical J(R) of a unital associative ring R
can be characterized as the set of all elements j € R such that 1+ jr is a unit
for every r € R (see e.g. [1, Theorem 15.3]). From this fact immediately follows
an observation that the set 1+ J(R) forms a normal subgroup of the group of all
units U(R). Rings over which the groups U(R) and 1 + J(R) coincide are called
UJ rings in this paper (cf. [6]). Structure of UJ rings and possibility of their
application in various questions of non-commutative ring theory were studied in
several recent works [3, 6, 7, 9].

The recalled criterion for elements of the Jacobson radical offers a natural
extension of the Jacobson radical, which is the set

AR)={reR|VuecU(R):1+ruecU(R)}.

However A(R) is not necessarily an ideal in general, it forms a non-unital subring
of R (see [9, Lemma 1]), and 1+ A(R) is a normal subgroup of U(R) containing
14 J(R). A ring R satisfying the condition U(R) = 1+ A(R) is said to be a AU
ring (cf. [7]). Note that every UJ-ring is a AU ring and the inclusion is strict
by [7, Example 2.2]. AU rings and the set A(R) in general are studied in papers
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[7, 9] and structural knowledge of both the notions seems to be useful for further
research of UJ rings as it is shown below.

The present paper has two main objectives: to give a local characterization of
AU rings and, as a consequence, to describe structure of UJ group rings. The
main result of the section 2 is Theorem 2.11 which characterizes AU rings R using
the notion of a rationally closed subring. If RG is a UJ group ring, we prove that
the ring R is necessarilly a UJ ring, G is a 2-group, and a commutator subgroup
of any nontrivial finitely generated subgroup of G is proper (Theorem 3.2(3)).
Conversely, Theorem 3.7 shows that RG is a UJ ring if R is a UJ ring and G
a locally finite 2-group. As a consequence, we obtain a necessary and sufficient
condition for RG to be a UJ-ring when G is a solvable group (Corollary 3.9).

In the sequel, R is an associative ring with unity and G be a group. Fro non-
explained terminology we refer to [10] for ring theory, [12] for group rings and
[13] for group theory.

2. AU RINGS

We begin with recalling the basic description and properties of A(R)

AR) ={reR|YVueUR):r+uecU(R)}
={reR|VYueUR):1+ruecU(R)}
={reR|VueUR):1+urecU(R)}

by [9, Lemma 1, Corollary 9]:

Lemma 2.1. For any ring R, we have:
(1) A(R) is a non-unital subring of R.
(2) A(R) is an ideal of R if and only if A(R) = J(R).
(3) ur,ru € A(R) for any r € A(R) and u € U(R).
(4) A(TLie; Ri) = ILic; A(R;) for any system of rings R;,i € 1.
(5) A(R[z]/(2")) = A(R)[z]/(2").
(6) A(R[[]]) = A(R)[[2]]-

The following, based on easy matrix computation and [9, Theorem 3], collects
basic properties of the subring T'(R) of a ring R generated by all units U(R).

Lemma 2.2. For any ring R, we have:
(1) U(R) = U(T(R)),
(2) TM,(R)) = M,,(R) for each n > 1,
(3) A(R) = A(T(R)) = J(T'(R)).
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The following observation characterizes AU rings in the language of the subring
T(R).

Theorem 2.3. The following conditions are equivalent for a ring R:
(1) R is a AU ring,

(2) U(R) +U(R) = A(R),

(3) UR) N (U(R) + U(R)) =0 and U(R) + U(R) + U(R) C U(R),
(4) T(R)/J(T(R)) = Ty,

(5) T(R) is a UJ ring.

(2)= (3) ThlS is clear, since
U(R)NA(R) =0,
1+ A(R) =U(R)

and
u+ A(R) =u(l+ A(R)) =uU(R) = U(R)

for each u € U(R).
(3)=(4) Put D :=U(R)+U(R). Then D+ U(R) CU(R) and DNU(R) = 0 by
the hypothesis. Moreover

U(R)U(R) = U(R),

DD=D+DCD,

U(R)D = DU(R) = D,

which implies that

T(R)=U(R)UD,
D =T\ U(R) is the unique maximal ideal of T'(R) and

UR)=1+(-1)+U(R)C1+DCU(R)+ D CU(R).

Hence T'(R) = (1+D)UD is alocal ring with J(R) = D and T(R)/J(T(R)) = Fs.
(4)=(5) Clearly, 1 + J(T(R)) C U(T(R)). Conversely, if a € U(T(R)) = U(R),
then a+J(T(R)) € U(T(R)/J(T(R))) = {1+J(T(R))} by the hypothesis. Hence
a+ J(T(R)) =1+ J(T(R)), which implies that U(T'(R)) =1+ J(T(R)).
(5)=(1) The equalities U(R) = U(T(R)) = 1+ J(T(R)) = 1 + A(R) follows
immediately from the hypothesis and Lemma 2.2. 0

The proof of (3)=>(4) of Theorem 2.3 can be formulated as the following con-
sequence (cf. [7, Example 2.2(2)]).
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Corollary 2.4. R is a AU ring if and only if T(R) is a local ring such that
T(R)/J(T(R)) = F,.

Since U(R) = U(R]z]) and so T(R) = T'(R[z]) for any domain R, we obtain
another consequence of Theorem 2.3:

Corollary 2.5. Let R be a domain. Then R[z| is AU if and only if R is so.
Proof. This follows immediately from Corollary 2.4 and Lemmas 2.2 and 2.1. [

By applying Lemma 2.2 we can significantly shorten the proof of [7, Theorem
2.5].

Corollary 2.6. Let R be a ring. Then M, (R) is a AU ring if and only if n =1
and R is a AU ring.

Proof. Let n > 1. By Lemma 2.2(2), T'(M,,(R)) = M,,(R). Now, we suppose that
M, (R) is a AU ring. Then it is local by Corollary 2.4, which contradicts to the
hypothesis that n > 1. Thus n =1 and R = M (R) is a AU ring.

The converse is obvious. 0

Recall that a Morita context is a 4-tuple (]ilf Ag), where A and B are rings,

AMp and g N4 are bimodules, and there exist context products M x N — A and
N x M — B written multiplicatively as (w, z) = wz and (z,w) = zw, such that

A M
( N B) is an associative ring with the obvious matrix operations. A Morita

A M
context ( N B) is called trivial if the context products are trivial, i.e., MN =0
and NM =0 (see [11, p. 1993]). We have

A M\ _
(N B>_T(A><B,M€9N),

where (j\lf ]\BJ) is a trivial Morita context by [5].

Recall that a radical class R is called hereditary if R € SR implies [ € R for
arbitrary two sided ideal I of R. A radical, say I, is called left strong if I € T’
implies TR* € I for arbitrary left ideal I of R, where the usual extension of a
ring R obtained by adjoining unity is denoted by R*. And a radical is called an
N-radical if it contains all nilpotent rings and is left hereditary and left strong
(see [4]).



GROUP RINGS THAT ARE UJ RINGS 5

Theorem 2.7. Let R = (;3 ]\B4> be a Morita context. Then R is a AU ring if

and only if A, B are AU rings, MN C J(A) and NM C J(B).

14 0
Proof. Put e := ( 64 O)' Note that e and 1 — e are idempotents, and there are

canonical ring isomorphisms A = eRe and B = (1 — e)R(1 —e).

(:=) Suppose that R is a AU ring. Then A = eRe and B = (1 —e)R(1 — ¢)

are AU rings by [7, Proposition 2.6]. Since Ly m ) la 0 € U(R) for
0 13 n 1B

0 M

each m € M and n € N, it is easy to obtain that (N 0

) C A(R) and so

;_ (MN M
"\ N NM

) C A(R). Note that [ is an ideal of R, hence I C J(R).

As late 0 € J(R) for each x € MN and y € NM, we get that
0 1B+y

lu+2€U(A)and 1p+y € J(B) hence x € J(A) and y € J(B).
(«:) Let A, B be AU rings, MN C J(A) and MN C J(B). Since the Jacobson
radical is an N-radical by [4, Examples 3.6.1(iii), 3.18.6(i) and Theorem 3.18.12],

the ideal I = (]\f\[N N]\;\[/[) of the ring R is contained in J(R) by [4, Theorem

3.18.14]. Hence R is a AU ring if and only if R/ is a AU ring by [7, Proposition
2.4(5)]. Since R/I =2 A/MN x B/NM where A/MN and B/NM are AU rings,
the conclusion follows from [7, Proposition 2.4]. O

Let us formulate an easy consequence of [7, Example 2.2] and [9, Theorem 11].

Lemma 2.8. Let R be a AU ring. Then R is a UJ-ring if and only if A(R) =
J(R).

A homomorphism of rings S — R is said to be local if it carries non-units to
non-units, that is, the image of S\ U(S) lies in R\ U(R). A rationally closed
subring of R is a subring S such that U(S) = S N U(R), which is equivalent to
the condition that the inclusion map S — R is a local homomorphism.

Lemma 2.9. Let R be a ring.

(1) If S is a rationally closed subring of R, then A(R) NS C A(S). Further-
more, A(R) N Z(R) C A(Z(R)), where Z(R) is the center of R.

(2) Ewvery rationally closed subring of a AU ring is a AU ring.

(3) Ewvery rationally closed subring of a UJ-ring is a UJ-ring.
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(4) If S;, i € I, are rationally closed subrings of R, then (\;c; Si s a rationally
closed subring of R.

Proof. (1) This is proved in [9, Proposition 6.

(2) Let S be a rationally closed subring of of a AU ring R. Since U(R)+U(R) =
A(R) by Theorem 2.3 and U(S) = U(R) N S, we obtain that U(S) 4+ U(S) C
A(R)N S C A(S) which implies that U(S) N (U(S) + U(S)) = 0. Furthermore,
U(S)+U(S)+U(S) CU(R)NS = U(S), hence S is a AU ring by Theorem 2.3(3).
(3) This is proved in [6, Proposition 2.1]. It also follows directly from (1) and
Lemma 2.8.

(4) Obviously, U(N,5) € M,U(S) = NU(R) A S) = UR) N, 5, On
the other hand, if u € (), U(S;) € U(R), then u™' € S; for all ¢ € I, and so

Corollary 2.10. The center of a AU ring is a AU ring.
Let S be a subring of a ring R and F' C U(R). We define
Cs(F) := ﬂ{A C R | A is a rationally closed subring of R with SU F C A}.

Note that R is a rationally closed subring of itself and that Cs(F) forms a ratio-
nally closed subring of R by Lemma 2.9(4).

We finish the section by characterization of AU rings by its finitely generated
rationally closed subrings.

Theorem 2.11. Let R be a ring and S a rationally closed subring of R. The
following conditions are equivalent:

(1) R is a AU ring,

(2) Cs(F) is a AU ring for every finite set F CU(R)\ S,

(3) Cs({u,v}) is a AU ring for every pair u,v € U(R) \ S.

(4) For every pair u,v € U(R) \ S, there exists a rationally closed subring A
containing S U {u,v} which is a AU ring.

Proof. (1)=-(2) Since Cs(F') is rationally closed by Lemma 2.9(4) and R is a AU
ring, we get that S and Cg(F) are AU rings by Lemma 2.9(3).

(2)=(3) and (3)=-(4) The implications are obvious.

(4)=(1) By Theorem 2.3 it is enough to show that U(R) N (U(R) + U(R)) = 0
and that U(R) + U(R)+ U(R) C U(R).

Assume that there exists u, v, w € U(R) such that u+v = w. Note that uw ™!+
vw™' = 1. Let A be a rationally closed AU subring containing S U {uw ™!, vw=1}.
As Luw™ vw™ € U(A), we get that 1 = uw ™' +ovw™ € U(A)N(U(A)+U(A)),
which contradicts to the hypothesis that A is a AU ring by Theorem 2.3.
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Now assume that there exists u,v,w € U(R) such that u +v +w ¢ U(R).
Let A be a rationally closed AU subring containing S U {uw™!,vw™'} Then
uww™t +vw ™ +1 ¢ U(R), a contradiction (with the fact that the AU ring A
satisfies uw ™ +ow '+ 1€ U(A)+ U(A)+ U(A) =U(A) C U(R)). O

3. GROUP RINGS OVER UJ AND AU RINGS

Given a ring R and a group GG, we denote the group ring of G over R by RG.
An arbitrary element of RG, say o € RG, is of the form a = ) geG Tgg Where
ry € Rand {g € G| ry # 0} is finite.

First, recall a well-known observation on rationally closed subrings of a group
ring.

Lemma 3.1. Let R be a ring, G a group and H a subgroup of G. Then RH is
a rationally closed subring of the group ring RG.

Let R be aring, G a group, and H a subgroup of G. We will denote by A(H, G)
the left ideal of RG generated by the set {1 —h| | h € H}. Put A(G) = A(G, G)
and recall that A(G, H) is finitely generated whenever H is a finitely generated
left ideal [12, Lemma 3.3.2]. Moreover, if H is a normal subgroup of G, then
A(G,H) is a two-sided ideal and R(G/H) = RG/A(G,H) by [12, Corollary
3.3.5].

For every group H we will denote by H' the commutator subgroup of H, i.e.
the subgroup generated by all elements of the form 'y~ 'ay. Note that H’' forms
a fully invariant subgroup of H such that H/H’ is commutative.

Let us formulate necessary conditions for group AU and UJ rings:

Theorem 3.2. Let R be a ring and G a group. The following holds for a group
ring RG:
(1) Let H be a subgroup and N be a normal subgroup of G. If RG is a UJ
ring, then RH and R(G/N) are UJ rings.
(2) If RG is a AU ring, then R is a AU ring and G is a 2-group.
(3) If RG is a UJ ring, then R is a UJ ring, G is a 2-group and, for every
nontrivial finitely generated subgroup H of G, H' # H where H' is a
commutator subgroup of H.

Proof. (1) By Lemmas 2.9(3) and 3.1, we obtain that RH is a UJ ring. Since
NA(G,N) C A(G) C J(RG), we have R(G/N) = RG/A(G, N) is a UJ ring by
[12, Corollary 3.3.5] and [6, Proposition 1.3(5)].

(2) Let g € G. Then R{g) and R = R{lg} are rationally closed subrings of
RG by Lemma 3.1. By Lemma 2.9(2), both are AU rings.
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If (g) is an infinite cyclic group, then
l+g+¢*cUG)+UG)+U(G) =U(G).

Hence there exist integers a < b and ¢; € R with ¢, # 0 # ¢, such that 1 =
S g (1+ g+ ¢2) = cag” + Zf:iﬂ d;g' + cpg*? for suitable d; € R, i € Z, a
contradiction. If there exists an element of G such that its order is divisible by
an odd prime, say p, then there exists an element g of G with o(g) = p. Since

"0 g" € URG) by Theorem 2.3(3) and (1 — g) - 32070 g° = 0, we get that
1 —g =0, a contradiction.

(3) By (1), the rings R = R{1ls} and RH are UJ rings. As RG is a AU ring,
we get that G is a 2-group by (2).

Let H be a nontrivial finitely generated subgroup of G. Note that H C U(RH)
and A(H) is an ideal of the UJ ring RH which is finitely generated as a left ideal
of the UJ ring RH by [12, Lemma 3.3.2]. It implies that

J(RH)A(H) € J(A(H)) C A(H)
and
A(H) CU(RH)+U(RH) = J(RH)
by Theorem 2.3 and Lemma 2.8. Furthermore
L—aly ey =27y (1 —y)(1 —2) = (1 - 2)(1 - y)] € A(H)
for every x,y € H, which implies that A(H') C A(H)?. We have shown that
A(H") C A(H)* C J(RH)A(H) € A(H).
Thus H' # H. O

Example 3.3. Let G be a finitely generated simple 2-group which is infinite
(for example, a simple factor of a minimal finite index subgroup of an infinite
Burnside 2-group). Then G’ = G, hence the group ring FoG is not a UJ ring by
Theorem 3.2(3).

Question 3.4. Does the converse of Theorem 3.2(3)?

Recall an observation on the Jacobson radical of a group ring which will appear
useful in the sequel.

Lemma 3.5. [2, Lemma 4] If R is a ring and G a locally finite group, then
J(R) C J(R)G C J(RG).

Now we are able to formulate a criterion for UJ group rings over finite 2-groups.
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Proposition 3.6. If R is a UJ ring and G is a locally finite 2-group, then RG
is a UJ group ring.

Proof. First, we will prove that RH is a UJ ring for every finitely generated
subgroup H of G.

Let R be a UJ ring and H finitely generated subgroup of the locally finite
2-group GG. Then H is a finite 2-group and 2 € J(R) C J(RH) by [6, Proposition
1.3(1)] and Lemma 3.5. Hence RH is UJ if and only if RH/2RH = (R/2R)H is
UJ ring by [6, Proposition 1.3(5)]. By factoring 2R if necessary, we may assume
that characteristic of R is 2.

Suppose that H is of order 2* and we will prove by induction on k that RH is
a UJ ring.

If £ = 0, there is nothing to prove. Let us suppose that the assertion is true
for £ — 1. It is well known that any finite 2-group has a non-trivial centre and
a central subgroup is always normal (cf. e.g. [13, 1.6.13]), hence the group H
contains a central subgroup (g) of order 2. Then 1 — g is a central nilpotent
element, because (1—g)? = 2(1—g) = 0, so 1 — g belongs to the Jacobson radical
J(RH). Thus RH is UJ if and only if RH/((1 — g)RH) is UJ by [6, Proposition
1.3(5)]. Since RH/((1 — g)RH) = R(H/{g)) by [12, Corollary 3.3.5], where the
group H/{(g) is of order 2*=* RH/((1 — g)RH) is a UJ ring by the induction
hypothesis.

Now, we show that RG is a AU ring. By Theorem 2.11 and Lemma 3.1 it is
enough to prove that for every pair u,v € U(RG) \ R there exists a AU rationally
closed subring containing R U {u,v}. Since for every u,v € U(RG) there exists
a finite subgroup H of G such that u,v € U(RG) N RH = U(RH), the ring
RH, which is a UJ ring by the first part of the proof, is a AU ring. Then
Theorem 2.11(4) implies that RG is a AU ring.

Finally, denote by F the set of all finite subgroups of G. Then U(RG) =
Upger U(RH), and hence

A(RG) =U(RG)+ U(RG)
= Uner(U(RH) + U(RH))
= UHE]—‘ A(RH)
= UHe]—‘ J(RH)
by Lemma 2.8. It is easy to see that A(RG) = |Jyer J(RH) is an ideal, which
implies that A(RG) = J(RG) by [9, Lemma 1(4)]. Thus RG is a UJ ring by
applying Lemma 2.8 again. U

Let us formulate the main result of the paper:
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Theorem 3.7. Let G be a locally finite 2-group. Then RG is a UJ ring if and
only if R is a UJ ring.

Proof. The direct implication is proved by Proposition 3.6 and the converse fol-
lows from Theorem 3.2(3). O

Example 3.8. Let R be Fy or Fy[[z]] or the trivial extension T'(Fy, F2). Then R
is UJ by [6, Lemma 1.1, Example 1.2, Corollary 1.5 and Theorem 2.8]. If G is an
elementary abelian 2-group, then RG is a UJ ring by Theorem 3.7.

Note that a solvable 2-group is locally finite by [13, 5.4.11]. We have the
following corollary which generalizes [3, Theorem 5.3| and answers [3, Problem
2].

Corollary 3.9. Let R be a ring and G a solvable group. Then RG is UJ if and
only if R is UJ and G is a 2-group.

Proof. (:=) This follows immediately from Theorem 3.2(3).

(«<:) Since any subgroup of a solvable group is solvable and every finitely gen-
erated solvable 2-group is finite by [13, 5.4.13], every solvable 2-group is locally
finite. Thus the assertion follows from Theorem 3.7. 0
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