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Abstract. The set ∆(R) of all elements r of a ring R such that 1 + ru is a

unit for every unit u extends the Jacobson radical J(R). R is a UJ ring (∆U

ring, respectively) if its units are of the form 1+J(R) (1+∆(R), respectively).

Using a local characterization of ∆U rings, we describe structure of group rings

that are UJ rings; if RG is a UJ group ring, then R is a UJ ring, G is a 2-group

and, for every nontrivial finitely generated subgroup H of G, the commutator

subgroup of H is proper subgroup of H. Conversely, if R is a UJ ring and G

a locally finite 2-group, then RG is a UJ ring. In particular, if G is solvable,

RG is a UJ ring if and only if R is UJ and G is a 2-group.

1. Introduction

It is well known that the Jacobson radical J(R) of a unital associative ring R

can be characterized as the set of all elements j ∈ R such that 1 + jr is a unit

for every r ∈ R (see e.g. [1, Theorem 15.3]). From this fact immediately follows

an observation that the set 1 + J(R) forms a normal subgroup of the group of all

units U(R). Rings over which the groups U(R) and 1 + J(R) coincide are called

UJ rings in this paper (cf. [6]). Structure of UJ rings and possibility of their

application in various questions of non-commutative ring theory were studied in

several recent works [3, 6, 7, 9].

The recalled criterion for elements of the Jacobson radical offers a natural

extension of the Jacobson radical, which is the set

∆(R) = {r ∈ R | ∀u ∈ U(R) : 1 + ru ∈ U(R)}.

However ∆(R) is not necessarily an ideal in general, it forms a non-unital subring

of R (see [9, Lemma 1]), and 1 + ∆(R) is a normal subgroup of U(R) containing

1 + J(R). A ring R satisfying the condition U(R) = 1 + ∆(R) is said to be a ∆U

ring (cf. [7]). Note that every UJ-ring is a ∆U ring and the inclusion is strict

by [7, Example 2.2]. ∆U rings and the set ∆(R) in general are studied in papers
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[7, 9] and structural knowledge of both the notions seems to be useful for further

research of UJ rings as it is shown below.

The present paper has two main objectives: to give a local characterization of

∆U rings and, as a consequence, to describe structure of UJ group rings. The

main result of the section 2 is Theorem 2.11 which characterizes ∆U rings R using

the notion of a rationally closed subring. If RG is a UJ group ring, we prove that

the ring R is necessarilly a UJ ring, G is a 2-group, and a commutator subgroup

of any nontrivial finitely generated subgroup of G is proper (Theorem 3.2(3)).

Conversely, Theorem 3.7 shows that RG is a UJ ring if R is a UJ ring and G

a locally finite 2-group. As a consequence, we obtain a necessary and sufficient

condition for RG to be a UJ-ring when G is a solvable group (Corollary 3.9).

In the sequel, R is an associative ring with unity and G be a group. Fro non-

explained terminology we refer to [10] for ring theory, [12] for group rings and

[13] for group theory.

2. ∆U rings

We begin with recalling the basic description and properties of ∆(R)

∆(R) = {r ∈ R | ∀u ∈ U(R) : r + u ∈ U(R)}
= {r ∈ R | ∀u ∈ U(R) : 1 + ru ∈ U(R)}
= {r ∈ R | ∀u ∈ U(R) : 1 + ur ∈ U(R)}

by [9, Lemma 1, Corollary 9]:

Lemma 2.1. For any ring R, we have:

(1) ∆(R) is a non-unital subring of R.

(2) ∆(R) is an ideal of R if and only if ∆(R) = J(R).

(3) ur, ru ∈ ∆(R) for any r ∈ ∆(R) and u ∈ U(R).

(4) ∆(
∏

i∈I Ri) =
∏

i∈I ∆(Ri) for any system of rings Ri, i ∈ I.

(5) ∆(R[x]/(xn)) = ∆(R)[x]/(xn).

(6) ∆(R[[x]]) = ∆(R)[[x]].

The following, based on easy matrix computation and [9, Theorem 3], collects

basic properties of the subring T (R) of a ring R generated by all units U(R).

Lemma 2.2. For any ring R, we have:

(1) U(R) = U(T (R)),

(2) T (Mn(R)) = Mn(R) for each n > 1,

(3) ∆(R) = ∆(T (R)) = J(T (R)).
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The following observation characterizes ∆U rings in the language of the subring

T (R).

Theorem 2.3. The following conditions are equivalent for a ring R:

(1) R is a ∆U ring,

(2) U(R) + U(R) = ∆(R),

(3) U(R) ∩ (U(R) + U(R)) = ∅ and U(R) + U(R) + U(R) ⊆ U(R),

(4) T (R)/J(T (R)) ∼= F2,

(5) T (R) is a UJ ring.

Proof. (1)⇔(2) This is proved in [7, Proposition 2.3].

(2)⇒(3) This is clear, since

U(R) ∩∆(R) = ∅,

1 + ∆(R) = U(R)

and

u+ ∆(R) = u(1 + ∆(R)) = uU(R) = U(R)

for each u ∈ U(R).

(3)⇒(4) Put D := U(R) +U(R). Then D+U(R) ⊆ U(R) and D ∩U(R) = ∅ by

the hypothesis. Moreover

U(R)U(R) = U(R),

DD = D +D ⊆ D,

U(R)D = DU(R) = D,

which implies that

T (R) = U(R) ∪D,
D = T \ U(R) is the unique maximal ideal of T (R) and

U(R) = 1 + (−1) + U(R) ⊆ 1 +D ⊆ U(R) +D ⊆ U(R).

Hence T (R) = (1+D)∪D is a local ring with J(R) = D and T (R)/J(T (R)) ∼= F2.

(4)⇒(5) Clearly, 1 + J(T (R)) ⊆ U(T (R)). Conversely, if a ∈ U(T (R)) = U(R),

then a+J(T (R)) ∈ U(T (R)/J(T (R))) = {1+J(T (R))} by the hypothesis. Hence

a+ J(T (R)) = 1 + J(T (R)), which implies that U(T (R)) = 1 + J(T (R)).

(5)⇒(1) The equalities U(R) = U(T (R)) = 1 + J(T (R)) = 1 + ∆(R) follows

immediately from the hypothesis and Lemma 2.2. �

The proof of (3)⇒(4) of Theorem 2.3 can be formulated as the following con-

sequence (cf. [7, Example 2.2(2)]).
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Corollary 2.4. R is a ∆U ring if and only if T (R) is a local ring such that

T (R)/J(T (R)) ∼= F2.

Since U(R) = U(R[x]) and so T (R) = T (R[x]) for any domain R, we obtain

another consequence of Theorem 2.3:

Corollary 2.5. Let R be a domain. Then R[x] is ∆U if and only if R is so.

Proof. This follows immediately from Corollary 2.4 and Lemmas 2.2 and 2.1. �

By applying Lemma 2.2 we can significantly shorten the proof of [7, Theorem

2.5].

Corollary 2.6. Let R be a ring. Then Mn(R) is a ∆U ring if and only if n = 1

and R is a ∆U ring.

Proof. Let n > 1. By Lemma 2.2(2), T (Mn(R)) = Mn(R). Now, we suppose that

Mn(R) is a ∆U ring. Then it is local by Corollary 2.4, which contradicts to the

hypothesis that n > 1. Thus n = 1 and R ∼= M1(R) is a ∆U ring.

The converse is obvious. �

Recall that a Morita context is a 4-tuple

(
A M

N B

)
, where A and B are rings,

AMB and BNA are bimodules, and there exist context products M ×N → A and

N ×M → B written multiplicatively as (w, z) = wz and (z, w) = zw, such that(
A M

N B

)
is an associative ring with the obvious matrix operations. A Morita

context

(
A M

N B

)
is called trivial if the context products are trivial, i.e., MN = 0

and NM = 0 (see [11, p. 1993]). We have(
A M

N B

)
∼= T (A×B,M ⊕N),

where

(
A M

N B

)
is a trivial Morita context by [5].

Recall that a radical class R is called hereditary if R ∈ R implies I ∈ R for

arbitrary two sided ideal I of R. A radical, say Γ, is called left strong if I ∈ Γ

implies IR∗ ∈ Γ for arbitrary left ideal I of R, where the usual extension of a

ring R obtained by adjoining unity is denoted by R∗. And a radical is called an

N -radical if it contains all nilpotent rings and is left hereditary and left strong

(see [4]).
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Theorem 2.7. Let R =

(
A M

N B

)
be a Morita context. Then R is a ∆U ring if

and only if A,B are ∆U rings, MN ⊆ J(A) and NM ⊆ J(B).

Proof. Put e :=

(
1A 0

0 0

)
. Note that e and 1− e are idempotents, and there are

canonical ring isomorphisms A ∼= eRe and B ∼= (1− e)R(1− e).
(:⇒) Suppose that R is a ∆U ring. Then A ∼= eRe and B ∼= (1 − e)R(1 − e)

are ∆U rings by [7, Proposition 2.6]. Since

(
1A m

0 1B

)
,

(
1A 0

n 1B

)
∈ U(R) for

each m ∈ M and n ∈ N , it is easy to obtain that

(
0 M

N 0

)
⊆ ∆(R) and so

I =

(
MN M

N NM

)
⊆ ∆(R). Note that I is an ideal of R, hence I ⊆ J(R).

As

(
1A + x 0

0 1B + y

)
∈ J(R) for each x ∈ MN and y ∈ NM , we get that

1A + x ∈ U(A) and 1B + y ∈ J(B) hence x ∈ J(A) and y ∈ J(B).

(⇐:) Let A,B be ∆U rings, MN ⊆ J(A) and MN ⊆ J(B). Since the Jacobson

radical is an N -radical by [4, Examples 3.6.1(iii), 3.18.6(i) and Theorem 3.18.12],

the ideal I =

(
MN M

N NM

)
of the ring R is contained in J(R) by [4, Theorem

3.18.14]. Hence R is a ∆U ring if and only if R/I is a ∆U ring by [7, Proposition

2.4(5)]. Since R/I ∼= A/MN ×B/NM where A/MN and B/NM are ∆U rings,

the conclusion follows from [7, Proposition 2.4]. �

Let us formulate an easy consequence of [7, Example 2.2] and [9, Theorem 11].

Lemma 2.8. Let R be a ∆U ring. Then R is a UJ-ring if and only if ∆(R) =

J(R).

A homomorphism of rings S → R is said to be local if it carries non-units to

non-units, that is, the image of S \ U(S) lies in R \ U(R). A rationally closed

subring of R is a subring S such that U(S) = S ∩ U(R), which is equivalent to

the condition that the inclusion map S → R is a local homomorphism.

Lemma 2.9. Let R be a ring.

(1) If S is a rationally closed subring of R, then ∆(R) ∩ S ⊆ ∆(S). Further-

more, ∆(R) ∩ Z(R) ⊆ ∆(Z(R)), where Z(R) is the center of R.

(2) Every rationally closed subring of a ∆U ring is a ∆U ring.

(3) Every rationally closed subring of a UJ-ring is a UJ-ring.
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(4) If Si, i ∈ I, are rationally closed subrings of R, then
⋂

i∈I Si is a rationally

closed subring of R.

Proof. (1) This is proved in [9, Proposition 6].

(2) Let S be a rationally closed subring of of a ∆U ring R. Since U(R) +U(R) =

∆(R) by Theorem 2.3 and U(S) = U(R) ∩ S, we obtain that U(S) + U(S) ⊆
∆(R) ∩ S ⊆ ∆(S) which implies that U(S) ∩ (U(S) + U(S)) = ∅. Furthermore,

U(S)+U(S)+U(S) ⊆ U(R)∩S = U(S), hence S is a ∆U ring by Theorem 2.3(3).

(3) This is proved in [6, Proposition 2.1]. It also follows directly from (1) and

Lemma 2.8.

(4) Obviously, U(
⋂

i Si) ⊆
⋂

i U(Si) =
⋂

i(U(R) ∩ Si) = U(R) ∩
⋂

i Si. On

the other hand, if u ∈
⋂

i U(Si) ⊆ U(R), then u−1 ∈ Si for all i ∈ I, and so

u ∈ U(
⋂

i Si). �

Corollary 2.10. The center of a ∆U ring is a ∆U ring.

Let S be a subring of a ring R and F ⊆ U(R). We define

CS(F ) :=
⋂
{A ⊆ R | A is a rationally closed subring of R with S ∪ F ⊆ A}.

Note that R is a rationally closed subring of itself and that CS(F ) forms a ratio-

nally closed subring of R by Lemma 2.9(4).

We finish the section by characterization of ∆U rings by its finitely generated

rationally closed subrings.

Theorem 2.11. Let R be a ring and S a rationally closed subring of R. The

following conditions are equivalent:

(1) R is a ∆U ring,

(2) CS(F ) is a ∆U ring for every finite set F ⊆ U(R) \ S,

(3) CS({u, v}) is a ∆U ring for every pair u, v ∈ U(R) \ S.

(4) For every pair u, v ∈ U(R) \ S, there exists a rationally closed subring A

containing S ∪ {u, v} which is a ∆U ring.

Proof. (1)⇒(2) Since CS(F ) is rationally closed by Lemma 2.9(4) and R is a ∆U

ring, we get that S and CS(F ) are ∆U rings by Lemma 2.9(3).

(2)⇒(3) and (3)⇒(4) The implications are obvious.

(4)⇒(1) By Theorem 2.3 it is enough to show that U(R) ∩ (U(R) + U(R)) = ∅
and that U(R) + U(R) + U(R) ⊆ U(R).

Assume that there exists u, v, w ∈ U(R) such that u+v = w. Note that uw−1+

vw−1 = 1. Let A be a rationally closed ∆U subring containing S∪{uw−1, vw−1}.
As 1, uw−1, vw−1 ∈ U(A), we get that 1 = uw−1 +vw−1 ∈ U(A)∩(U(A)+U(A)),

which contradicts to the hypothesis that A is a ∆U ring by Theorem 2.3.
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Now assume that there exists u, v, w ∈ U(R) such that u + v + w /∈ U(R).

Let A be a rationally closed ∆U subring containing S ∪ {uw−1, vw−1} Then

uw−1 + vw−1 + 1 /∈ U(R), a contradiction (with the fact that the ∆U ring A

satisfies uw−1 + vw−1 + 1 ∈ U(A) + U(A) + U(A) = U(A) ⊂ U(R)). �

3. Group rings over UJ and ∆U rings

Given a ring R and a group G, we denote the group ring of G over R by RG.

An arbitrary element of RG, say α ∈ RG, is of the form α =
∑

g∈G rgg where

rg ∈ R and {g ∈ G| rg 6= 0} is finite.

First, recall a well-known observation on rationally closed subrings of a group

ring.

Lemma 3.1. Let R be a ring, G a group and H a subgroup of G. Then RH is

a rationally closed subring of the group ring RG.

Let R be a ring, G a group, and H a subgroup of G. We will denote by ∆(H,G)

the left ideal of RG generated by the set {1− h| | h ∈ H}. Put ∆(G) = ∆(G,G)

and recall that ∆(G,H) is finitely generated whenever H is a finitely generated

left ideal [12, Lemma 3.3.2]. Moreover, if H is a normal subgroup of G, then

∆(G,H) is a two-sided ideal and R(G/H) ∼= RG/∆(G,H) by [12, Corollary

3.3.5].

For every group H we will denote by H ′ the commutator subgroup of H, i.e.

the subgroup generated by all elements of the form x−1y−1xy. Note that H ′ forms

a fully invariant subgroup of H such that H/H ′ is commutative.

Let us formulate necessary conditions for group ∆U and UJ rings:

Theorem 3.2. Let R be a ring and G a group. The following holds for a group

ring RG:

(1) Let H be a subgroup and N be a normal subgroup of G. If RG is a UJ

ring, then RH and R(G/N) are UJ rings.

(2) If RG is a ∆U ring, then R is a ∆U ring and G is a 2-group.

(3) If RG is a UJ ring, then R is a UJ ring, G is a 2-group and, for every

nontrivial finitely generated subgroup H of G, H ′ 6= H where H ′ is a

commutator subgroup of H.

Proof. (1) By Lemmas 2.9(3) and 3.1, we obtain that RH is a UJ ring. Since

N∆(G,N) ⊆ ∆(G) ⊆ J(RG), we have R(G/N) ∼= RG/∆(G,N) is a UJ ring by

[12, Corollary 3.3.5] and [6, Proposition 1.3(5)].

(2) Let g ∈ G. Then R〈g〉 and R ∼= R{1G} are rationally closed subrings of

RG by Lemma 3.1. By Lemma 2.9(2), both are ∆U rings.
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If 〈g〉 is an infinite cyclic group, then

1 + g + g2 ∈ U(G) + U(G) + U(G) = U(G).

Hence there exist integers a ≤ b and ci ∈ R with ca 6= 0 6= cb such that 1 =∑b
i=a cig

i(̇1 + g + g2) = cag
a +

∑b+1
i=a+1 dig

i + cbg
b+2 for suitable di ∈ R, i ∈ Z, a

contradiction. If there exists an element of G such that its order is divisible by

an odd prime, say p, then there exists an element g of G with o(g) = p. Since∑p−1
i=0 g

i ∈ U(RG) by Theorem 2.3(3) and (1 − g) ·
∑p−1

i=0 g
i = 0, we get that

1− g = 0, a contradiction.

(3) By (1), the rings R ∼= R{1G} and RH are UJ rings. As RG is a ∆U ring,

we get that G is a 2-group by (2).

Let H be a nontrivial finitely generated subgroup of G. Note that H ⊆ U(RH)

and ∆(H) is an ideal of the UJ ring RH which is finitely generated as a left ideal

of the UJ ring RH by [12, Lemma 3.3.2]. It implies that

J(RH)∆(H) ⊆ J(∆(H)) ( ∆(H)

and

∆(H) ⊆ U(RH) + U(RH) = J(RH)

by Theorem 2.3 and Lemma 2.8. Furthermore

1− x−1y−1xy = x−1y−1[(1− y)(1− x)− (1− x)(1− y)] ∈ ∆(H)2

for every x, y ∈ H, which implies that ∆(H ′) ⊆ ∆(H)2. We have shown that

∆(H ′) ⊆ ∆(H)2 ⊆ J(RH)∆(H) ( ∆(H).

Thus H ′ 6= H. �

Example 3.3. Let G be a finitely generated simple 2-group which is infinite

(for example, a simple factor of a minimal finite index subgroup of an infinite

Burnside 2-group). Then G′ = G, hence the group ring F2G is not a UJ ring by

Theorem 3.2(3).

Question 3.4. Does the converse of Theorem 3.2(3)?

Recall an observation on the Jacobson radical of a group ring which will appear

useful in the sequel.

Lemma 3.5. [2, Lemma 4] If R is a ring and G a locally finite group, then

J(R) ⊆ J(R)G ⊆ J(RG).

Now we are able to formulate a criterion for UJ group rings over finite 2-groups.
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Proposition 3.6. If R is a UJ ring and G is a locally finite 2-group, then RG

is a UJ group ring.

Proof. First, we will prove that RH is a UJ ring for every finitely generated

subgroup H of G.

Let R be a UJ ring and H finitely generated subgroup of the locally finite

2-group G. Then H is a finite 2-group and 2 ∈ J(R) ⊆ J(RH) by [6, Proposition

1.3(1)] and Lemma 3.5. Hence RH is UJ if and only if RH/2RH ∼= (R/2R)H is

UJ ring by [6, Proposition 1.3(5)]. By factoring 2R if necessary, we may assume

that characteristic of R is 2.

Suppose that H is of order 2k and we will prove by induction on k that RH is

a UJ ring.

If k = 0, there is nothing to prove. Let us suppose that the assertion is true

for k − 1. It is well known that any finite 2-group has a non-trivial centre and

a central subgroup is always normal (cf. e.g. [13, 1.6.13]), hence the group H

contains a central subgroup 〈g〉 of order 2. Then 1 − g is a central nilpotent

element, because (1−g)2 = 2(1−g) = 0, so 1−g belongs to the Jacobson radical

J(RH). Thus RH is UJ if and only if RH/((1− g)RH) is UJ by [6, Proposition

1.3(5)]. Since RH/((1 − g)RH) ∼= R(H/〈g〉) by [12, Corollary 3.3.5], where the

group H/〈g〉 is of order 2k−1, RH/((1 − g)RH) is a UJ ring by the induction

hypothesis.

Now, we show that RG is a ∆U ring. By Theorem 2.11 and Lemma 3.1 it is

enough to prove that for every pair u, v ∈ U(RG)\R there exists a ∆U rationally

closed subring containing R ∪ {u, v}. Since for every u, v ∈ U(RG) there exists

a finite subgroup H of G such that u, v ∈ U(RG) ∩ RH = U(RH), the ring

RH, which is a UJ ring by the first part of the proof, is a ∆U ring. Then

Theorem 2.11(4) implies that RG is a ∆U ring.

Finally, denote by F the set of all finite subgroups of G. Then U(RG) =⋃
H∈F U(RH), and hence

∆(RG) = U(RG) + U(RG)

=
⋃

H∈F(U(RH) + U(RH))

=
⋃

H∈F ∆(RH)

=
⋃

H∈F J(RH)

by Lemma 2.8. It is easy to see that ∆(RG) =
⋃

H∈F J(RH) is an ideal, which

implies that ∆(RG) = J(RG) by [9, Lemma 1(4)]. Thus RG is a UJ ring by

applying Lemma 2.8 again. �

Let us formulate the main result of the paper:
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Theorem 3.7. Let G be a locally finite 2-group. Then RG is a UJ ring if and

only if R is a UJ ring.

Proof. The direct implication is proved by Proposition 3.6 and the converse fol-

lows from Theorem 3.2(3). �

Example 3.8. Let R be F2 or F2[[x]] or the trivial extension T (F2,F2). Then R

is UJ by [6, Lemma 1.1, Example 1.2, Corollary 1.5 and Theorem 2.8]. If G is an

elementary abelian 2-group, then RG is a UJ ring by Theorem 3.7.

Note that a solvable 2-group is locally finite by [13, 5.4.11]. We have the

following corollary which generalizes [3, Theorem 5.3] and answers [3, Problem

2].

Corollary 3.9. Let R be a ring and G a solvable group. Then RG is UJ if and

only if R is UJ and G is a 2-group.

Proof. (:⇒) This follows immediately from Theorem 3.2(3).

(⇐:) Since any subgroup of a solvable group is solvable and every finitely gen-

erated solvable 2-group is finite by [13, 5.4.13], every solvable 2-group is locally

finite. Thus the assertion follows from Theorem 3.7. �
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