GROUP RINGS THAT ARE UJ RINGS

M. TAMER KOŞAN AND JAN ŽEMLIČKA

Abstract

The set $\Delta(R)$ of all elements r of a ring R such that $1+r u$ is a unit for every unit u extends the Jacobson radical $J(R) . R$ is a UJ ring ($\Delta \mathrm{U}$ ring, respectively) if its units are of the form $1+J(R)(1+\Delta(R)$, respectively). Using a local characterization of $\Delta \mathrm{U}$ rings, we describe structure of group rings that are UJ rings; if $R G$ is a UJ group ring, then R is a UJ ring, G is a 2-group and, for every nontrivial finitely generated subgroup H of G, the commutator subgroup of H is proper subgroup of H. Conversely, if R is a UJ ring and G a locally finite 2-group, then $R G$ is a UJ ring. In particular, if G is solvable, $R G$ is a UJ ring if and only if R is UJ and G is a 2-group.

1. Introduction

It is well known that the Jacobson radical $J(R)$ of a unital associative ring R can be characterized as the set of all elements $j \in R$ such that $1+j r$ is a unit for every $r \in R$ (see e.g. [1, Theorem 15.3]). From this fact immediately follows an observation that the set $1+J(R)$ forms a normal subgroup of the group of all units $U(R)$. Rings over which the groups $U(R)$ and $1+J(R)$ coincide are called UJ rings in this paper (cf. [6]). Structure of UJ rings and possibility of their application in various questions of non-commutative ring theory were studied in several recent works $[3,6,7,9]$.

The recalled criterion for elements of the Jacobson radical offers a natural extension of the Jacobson radical, which is the set

$$
\Delta(R)=\{r \in R \mid \forall u \in U(R): 1+r u \in U(R)\} .
$$

However $\Delta(R)$ is not necessarily an ideal in general, it forms a non-unital subring of R (see [9, Lemma 1]), and $1+\Delta(R)$ is a normal subgroup of $U(R)$ containing $1+J(R)$. A ring R satisfying the condition $U(R)=1+\Delta(R)$ is said to be a $\Delta \mathrm{U}$ ring (cf. [7]). Note that every $U J$-ring is a $\Delta \mathrm{U}$ ring and the inclusion is strict by [7, Example 2.2]. $\Delta \mathrm{U}$ rings and the set $\Delta(R)$ in general are studied in papers

[^0][7, 9] and structural knowledge of both the notions seems to be useful for further research of UJ rings as it is shown below.

The present paper has two main objectives: to give a local characterization of $\Delta \mathrm{U}$ rings and, as a consequence, to describe structure of UJ group rings. The main result of the section 2 is Theorem 2.11 which characterizes $\Delta \mathrm{U}$ rings R using the notion of a rationally closed subring. If $R G$ is a UJ group ring, we prove that the ring R is necessarilly a UJ ring, G is a 2 -group, and a commutator subgroup of any nontrivial finitely generated subgroup of G is proper (Theorem 3.2(3)). Conversely, Theorem 3.7 shows that $R G$ is a UJ ring if R is a UJ ring and G a locally finite 2-group. As a consequence, we obtain a necessary and sufficient condition for $R G$ to be a UJ-ring when G is a solvable group (Corollary 3.9).

In the sequel, R is an associative ring with unity and G be a group. Fro nonexplained terminology we refer to [10] for ring theory, [12] for group rings and [13] for group theory.

2. $\Delta \mathrm{U}$ RINGS

We begin with recalling the basic description and properties of $\Delta(R)$

$$
\begin{aligned}
\Delta(R) & =\{r \in R \mid \forall u \in U(R): r+u \in U(R)\} \\
& =\{r \in R \mid \forall u \in U(R): 1+r u \in U(R)\} \\
& =\{r \in R \mid \forall u \in U(R): 1+u r \in U(R)\}
\end{aligned}
$$

by [9, Lemma 1 , Corollary 9$]$:

Lemma 2.1. For any ring R, we have:
(1) $\Delta(R)$ is a non-unital subring of R.
(2) $\Delta(R)$ is an ideal of R if and only if $\Delta(R)=J(R)$.
(3) ur, ru $\in \Delta(R)$ for any $r \in \Delta(R)$ and $u \in U(R)$.
(4) $\Delta\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} \Delta\left(R_{i}\right)$ for any system of rings $R_{i}, i \in I$.
(5) $\Delta\left(R[x] /\left(x^{n}\right)\right)=\Delta(R)[x] /\left(x^{n}\right)$.
(6) $\Delta(R[[x]])=\Delta(R)[[x]]$.

The following, based on easy matrix computation and [9, Theorem 3], collects basic properties of the subring $T(R)$ of a ring R generated by all units $U(R)$.

Lemma 2.2. For any ring R, we have:
(1) $U(R)=U(T(R))$,
(2) $T\left(\mathbb{M}_{n}(R)\right)=\mathbb{M}_{n}(R)$ for each $n>1$,
(3) $\Delta(R)=\Delta(T(R))=J(T(R))$.

The following observation characterizes $\Delta \mathrm{U}$ rings in the language of the subring $T(R)$.

Theorem 2.3. The following conditions are equivalent for a ring R :
(1) R is a ΔU ring,
(2) $U(R)+U(R)=\Delta(R)$,
(3) $U(R) \cap(U(R)+U(R))=\emptyset$ and $U(R)+U(R)+U(R) \subseteq U(R)$,
(4) $T(R) / J(T(R)) \cong \mathbb{F}_{2}$,
(5) $T(R)$ is a UJ ring.

Proof. (1) $\Leftrightarrow(2)$ This is proved in [7, Proposition 2.3].
$(2) \Rightarrow(3)$ This is clear, since

$$
\begin{aligned}
& U(R) \cap \Delta(R)=\emptyset, \\
& 1+\Delta(R)=U(R)
\end{aligned}
$$

and

$$
u+\Delta(R)=u(1+\Delta(R))=u U(R)=U(R)
$$

for each $u \in U(R)$.
$(3) \Rightarrow(4)$ Put $D:=U(R)+U(R)$. Then $D+U(R) \subseteq U(R)$ and $D \cap U(R)=\emptyset$ by the hypothesis. Moreover

$$
\begin{gathered}
U(R) U(R)=U(R) \\
D D=D+D \subseteq D \\
U(R) D=D U(R)=D
\end{gathered}
$$

which implies that

$$
T(R)=U(R) \cup D
$$

$D=T \backslash U(R)$ is the unique maximal ideal of $T(R)$ and

$$
U(R)=1+(-1)+U(R) \subseteq 1+D \subseteq U(R)+D \subseteq U(R)
$$

Hence $T(R)=(1+D) \cup D$ is a local ring with $J(R)=D$ and $T(R) / J(T(R)) \cong \mathbb{F}_{2}$. (4) $\Rightarrow(5)$ Clearly, $1+J(T(R)) \subseteq U(T(R))$. Conversely, if $a \in U(T(R))=U(R)$, then $a+J(T(R)) \in U(T(R) / J(T(R)))=\{1+J(T(R))\}$ by the hypothesis. Hence $a+J(T(R))=1+J(T(R))$, which implies that $U(T(R))=1+J(T(R))$.
(5) $\Rightarrow(1)$ The equalities $U(R)=U(T(R))=1+J(T(R))=1+\Delta(R)$ follows immediately from the hypothesis and Lemma 2.2.

The proof of $(3) \Rightarrow(4)$ of Theorem 2.3 can be formulated as the following consequence (cf. [7, Example 2.2(2)]).

Corollary 2.4. R is a ΔU ring if and only if $T(R)$ is a local ring such that $T(R) / J(T(R)) \cong \mathbb{F}_{2}$.

Since $U(R)=U(R[x])$ and so $T(R)=T(R[x])$ for any domain R, we obtain another consequence of Theorem 2.3:

Corollary 2.5. Let R be a domain. Then $R[x]$ is ΔU if and only if R is so.
Proof. This follows immediately from Corollary 2.4 and Lemmas 2.2 and 2.1.

By applying Lemma 2.2 we can significantly shorten the proof of [7, Theorem 2.5].

Corollary 2.6. Let R be a ring. Then $\mathbb{M}_{n}(R)$ is a ΔU ring if and only if $n=1$ and R is a ΔU ring.

Proof. Let $n>1$. By Lemma 2.2(2), $T\left(\mathbb{M}_{n}(R)\right)=\mathbb{M}_{n}(R)$. Now, we suppose that $\mathbb{M}_{n}(R)$ is a $\Delta \mathrm{U}$ ring. Then it is local by Corollary 2.4, which contradicts to the hypothesis that $n>1$. Thus $n=1$ and $R \cong \mathbb{M}_{1}(R)$ is a $\Delta \mathrm{U}$ ring.

The converse is obvious.
Recall that a Morita context is a 4-tuple $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$, where A and B are rings, ${ }_{A} M_{B}$ and ${ }_{B} N_{A}$ are bimodules, and there exist context products $M \times N \rightarrow A$ and $N \times M \rightarrow B$ written multiplicatively as $(w, z)=w z$ and $(z, w)=z w$, such that $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is an associative ring with the obvious matrix operations. A Morita context $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is called trivial if the context products are trivial, i.e., $M N=0$ and $N M=0$ (see [11, p. 1993]). We have

$$
\left(\begin{array}{cc}
A & M \\
N & B
\end{array}\right) \cong T(A \times B, M \oplus N)
$$

where $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a trivial Morita context by [5].
Recall that a radical class \mathfrak{R} is called hereditary if $R \in \mathfrak{R}$ implies $I \in \mathfrak{R}$ for arbitrary two sided ideal I of R. A radical, say Γ, is called left strong if $I \in \Gamma$ implies $I R^{*} \in \Gamma$ for arbitrary left ideal I of R, where the usual extension of a ring R obtained by adjoining unity is denoted by R^{*}. And a radical is called an N-radical if it contains all nilpotent rings and is left hereditary and left strong (see [4]).

Theorem 2.7. Let $R=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ be a Morita context. Then R is a ΔU ring if and only if A, B are ΔU rings, $M N \subseteq J(A)$ and $N M \subseteq J(B)$.
Proof. Put $e:=\left(\begin{array}{cc}1_{A} & 0 \\ 0 & 0\end{array}\right)$. Note that e and $1-e$ are idempotents, and there are canonical ring isomorphisms $A \cong e R e$ and $B \cong(1-e) R(1-e)$.
$(: \Rightarrow)$ Suppose that R is a $\Delta \mathrm{U}$ ring. Then $A \cong e R e$ and $B \cong(1-e) R(1-e)$ are $\Delta \mathrm{U}$ rings by $\left[7\right.$, Proposition 2.6]. Since $\left(\begin{array}{cc}1_{A} & m \\ 0 & 1_{B}\end{array}\right),\left(\begin{array}{cc}1_{A} & 0 \\ n & 1_{B}\end{array}\right) \in U(R)$ for each $m \in M$ and $n \in N$, it is easy to obtain that $\left(\begin{array}{cc}0 & M \\ N & 0\end{array}\right) \subseteq \Delta(R)$ and so $I=\left(\begin{array}{cc}M N & M \\ N & N M\end{array}\right) \subseteq \Delta(R)$. Note that I is an ideal of R, hence $I \subseteq J(R)$. As $\left(\begin{array}{cc}1_{A}+x & 0 \\ 0 & 1_{B}+y\end{array}\right) \in J(R)$ for each $x \in M N$ and $y \in N M$, we get that $1_{A}+x \in U(A)$ and $1_{B}+y \in J(B)$ hence $x \in J(A)$ and $y \in J(B)$. $(\Leftarrow:)$ Let A, B be $\Delta \mathrm{U}$ rings, $M N \subseteq J(A)$ and $M N \subseteq J(B)$. Since the Jacobson radical is an N-radical by [4, Examples 3.6.1(iii), 3.18.6(i) and Theorem 3.18.12], the ideal $I=\left(\begin{array}{cc}M N & M \\ N & N M\end{array}\right)$ of the ring R is contained in $J(R)$ by [4, Theorem 3.18.14]. Hence R is a $\Delta \mathrm{U}$ ring if and only if R / I is a $\Delta \mathrm{U}$ ring by [7, Proposition $2.4(5)]$. Since $R / I \cong A / M N \times B / N M$ where $A / M N$ and $B / N M$ are $\Delta \mathrm{U}$ rings, the conclusion follows from [7, Proposition 2.4].

Let us formulate an easy consequence of [7, Example 2.2] and [9, Theorem 11].
Lemma 2.8. Let R be a ΔU ring. Then R is a UJ-ring if and only if $\Delta(R)=$ $J(R)$.

A homomorphism of rings $S \rightarrow R$ is said to be local if it carries non-units to non-units, that is, the image of $S \backslash U(S)$ lies in $R \backslash U(R)$. A rationally closed subring of R is a subring S such that $U(S)=S \cap U(R)$, which is equivalent to the condition that the inclusion map $S \rightarrow R$ is a local homomorphism.

Lemma 2.9. Let R be a ring.
(1) If S is a rationally closed subring of R, then $\Delta(R) \cap S \subseteq \Delta(S)$. Furthermore, $\Delta(R) \cap Z(R) \subseteq \Delta(Z(R))$, where $Z(R)$ is the center of R.
(2) Every rationally closed subring of a ΔU ring is a ΔU ring.
(3) Every rationally closed subring of a $U J$-ring is a $U J$-ring.
(4) If $S_{i}, i \in I$, are rationally closed subrings of R, then $\bigcap_{i \in I} S_{i}$ is a rationally closed subring of R.

Proof. (1) This is proved in [9, Proposition 6].
(2) Let S be a rationally closed subring of of a $\Delta \mathrm{U}$ ring R. Since $U(R)+U(R)=$ $\Delta(R)$ by Theorem 2.3 and $U(S)=U(R) \cap S$, we obtain that $U(S)+U(S) \subseteq$ $\Delta(R) \cap S \subseteq \Delta(S)$ which implies that $U(S) \cap(U(S)+U(S))=\emptyset$. Furthermore, $U(S)+U(S)+U(S) \subseteq U(R) \cap S=U(S)$, hence S is a $\Delta \mathrm{U}$ ring by Theorem 2.3(3). (3) This is proved in [6, Proposition 2.1]. It also follows directly from (1) and Lemma 2.8.
(4) Obviously, $U\left(\bigcap_{i} S_{i}\right) \subseteq \bigcap_{i} U\left(S_{i}\right)=\bigcap_{i}\left(U(R) \cap S_{i}\right)=U(R) \cap \bigcap_{i} S_{i}$. On the other hand, if $u \in \bigcap_{i} U\left(S_{i}\right) \subseteq U(R)$, then $u^{-1} \in S_{i}$ for all $i \in I$, and so $u \in U\left(\bigcap_{i} S_{i}\right)$.
Corollary 2.10. The center of $a \Delta U$ ring is a ΔU ring.
Let S be a subring of a ring R and $F \subseteq U(R)$. We define $C_{S}(F):=\bigcap\{A \subseteq R \mid A$ is a rationally closed subring of R with $S \cup F \subseteq A\}$.
Note that R is a rationally closed subring of itself and that $C_{S}(F)$ forms a rationally closed subring of R by Lemma 2.9(4).

We finish the section by characterization of ΔU rings by its finitely generated rationally closed subrings.

Theorem 2.11. Let R be a ring and S a rationally closed subring of R. The following conditions are equivalent:
(1) R is a ΔU ring,
(2) $C_{S}(F)$ is a ΔU ring for every finite set $F \subseteq U(R) \backslash S$,
(3) $C_{S}(\{u, v\})$ is a ΔU ring for every pair $u, v \in U(R) \backslash S$.
(4) For every pair $u, v \in U(R) \backslash S$, there exists a rationally closed subring A containing $S \cup\{u, v\}$ which is a ΔU ring.

Proof. (1) $\Rightarrow(2)$ Since $C_{S}(F)$ is rationally closed by Lemma 2.9(4) and R is a $\Delta \mathrm{U}$ ring, we get that S and $C_{S}(F)$ are $\Delta \mathrm{U}$ rings by Lemma 2.9(3).
$(2) \Rightarrow(3)$ and $(3) \Rightarrow(4)$ The implications are obvious.
$(4) \Rightarrow(1)$ By Theorem 2.3 it is enough to show that $U(R) \cap(U(R)+U(R))=\emptyset$ and that $U(R)+U(R)+U(R) \subseteq U(R)$.

Assume that there exists $u, v, w \in U(R)$ such that $u+v=w$. Note that $u w^{-1}+$ $v w^{-1}=1$. Let A be a rationally closed $\Delta \mathrm{U}$ subring containing $S \cup\left\{u w^{-1}, v w^{-1}\right\}$. As $1, u w^{-1}, v w^{-1} \in U(A)$, we get that $1=u w^{-1}+v w^{-1} \in U(A) \cap(U(A)+U(A))$, which contradicts to the hypothesis that A is a $\Delta \mathrm{U}$ ring by Theorem 2.3.

Now assume that there exists $u, v, w \in U(R)$ such that $u+v+w \notin U(R)$. Let A be a rationally closed $\Delta \mathrm{U}$ subring containing $S \cup\left\{u w^{-1}, v w^{-1}\right\}$ Then $u w^{-1}+v w^{-1}+1 \notin U(R)$, a contradiction (with the fact that the $\Delta \mathrm{U}$ ring A satisfies $\left.u w^{-1}+v w^{-1}+1 \in U(A)+U(A)+U(A)=U(A) \subset U(R)\right)$.

3. Group rings over UJ and $\Delta \mathrm{U}$ rings

Given a ring R and a group G, we denote the group ring of G over R by $R G$. An arbitrary element of $R G$, say $\alpha \in R G$, is of the form $\alpha=\sum_{g \in G} r_{g} g$ where $r_{g} \in R$ and $\left\{g \in G \mid r_{g} \neq 0\right\}$ is finite.

First, recall a well-known observation on rationally closed subrings of a group ring.

Lemma 3.1. Let R be a ring, G a group and H a subgroup of G. Then $R H$ is a rationally closed subring of the group ring $R G$.

Let R be a ring, G a group, and H a subgroup of G. We will denote by $\Delta(H, G)$ the left ideal of $R G$ generated by the set $\{1-h| | h \in H\}$. Put $\Delta(G)=\Delta(G, G)$ and recall that $\Delta(G, H)$ is finitely generated whenever H is a finitely generated left ideal [12, Lemma 3.3.2]. Moreover, if H is a normal subgroup of G, then $\Delta(G, H)$ is a two-sided ideal and $R(G / H) \cong R G / \Delta(G, H)$ by [12, Corollary 3.3.5].

For every group H we will denote by H^{\prime} the commutator subgroup of H, i.e. the subgroup generated by all elements of the form $x^{-1} y^{-1} x y$. Note that H^{\prime} forms a fully invariant subgroup of H such that H / H^{\prime} is commutative.

Let us formulate necessary conditions for group ΔU and UJ rings:
Theorem 3.2. Let R be a ring and G a group. The following holds for a group ring $R G$:
(1) Let H be a subgroup and N be a normal subgroup of G. If $R G$ is a $U J$ ring, then $R H$ and $R(G / N)$ are UJ rings.
(2) If $R G$ is a ΔU ring, then R is a ΔU ring and G is a 2-group.
(3) If $R G$ is a UJ ring, then R is a UJ ring, G is a 2-group and, for every nontrivial finitely generated subgroup H of $G, H^{\prime} \neq H$ where H^{\prime} is a commutator subgroup of H.

Proof. (1) By Lemmas 2.9(3) and 3.1, we obtain that $R H$ is a UJ ring. Since $N \Delta(G, N) \subseteq \Delta(G) \subseteq J(R G)$, we have $R(G / N) \cong R G / \Delta(G, N)$ is a UJ ring by [12, Corollary 3.3.5] and [6, Proposition 1.3(5)].
(2) Let $g \in G$. Then $R\langle g\rangle$ and $R \cong R\left\{1_{G}\right\}$ are rationally closed subrings of $R G$ by Lemma 3.1. By Lemma 2.9(2), both are $\Delta \mathrm{U}$ rings.

If $\langle g\rangle$ is an infinite cyclic group, then

$$
1+g+g^{2} \in U(G)+U(G)+U(G)=U(G)
$$

Hence there exist integers $a \leq b$ and $c_{i} \in R$ with $c_{a} \neq 0 \neq c_{b}$ such that $1=$ $\sum_{i=a}^{b} c_{i} g^{i}\left(1+g+g^{2}\right)=c_{a} g^{a}+\sum_{i=a+1}^{b+1} d_{i} g^{i}+c_{b} g^{b+2}$ for suitable $d_{i} \in R, i \in \mathbb{Z}$, a contradiction. If there exists an element of G such that its order is divisible by an odd prime, say p, then there exists an element g of G with $o(g)=p$. Since $\sum_{i=0}^{p-1} g^{i} \in U(R G)$ by Theorem 2.3(3) and $(1-g) \cdot \sum_{i=0}^{p-1} g^{i}=0$, we get that $1-g=0$, a contradiction.
(3) By (1), the rings $R \cong R\left\{1_{G}\right\}$ and $R H$ are UJ rings. As $R G$ is a $\Delta \mathrm{U}$ ring, we get that G is a 2 -group by (2).

Let H be a nontrivial finitely generated subgroup of G. Note that $H \subseteq U(R H)$ and $\Delta(H)$ is an ideal of the UJ ring $R H$ which is finitely generated as a left ideal of the UJ ring $R H$ by [12, Lemma 3.3.2]. It implies that

$$
J(R H) \Delta(H) \subseteq J(\Delta(H)) \subsetneq \Delta(H)
$$

and

$$
\Delta(H) \subseteq U(R H)+U(R H)=J(R H)
$$

by Theorem 2.3 and Lemma 2.8. Furthermore

$$
1-x^{-1} y^{-1} x y=x^{-1} y^{-1}[(1-y)(1-x)-(1-x)(1-y)] \in \Delta(H)^{2}
$$

for every $x, y \in H$, which implies that $\Delta\left(H^{\prime}\right) \subseteq \Delta(H)^{2}$. We have shown that

$$
\Delta\left(H^{\prime}\right) \subseteq \Delta(H)^{2} \subseteq J(R H) \Delta(H) \subsetneq \Delta(H)
$$

Thus $H^{\prime} \neq H$.
Example 3.3. Let G be a finitely generated simple 2-group which is infinite (for example, a simple factor of a minimal finite index subgroup of an infinite Burnside 2-group). Then $G^{\prime}=G$, hence the group ring $\mathbb{F}_{2} G$ is not a UJ ring by Theorem 3.2(3).

Question 3.4. Does the converse of Theorem 3.2(3)?
Recall an observation on the Jacobson radical of a group ring which will appear useful in the sequel.

Lemma 3.5. [2, Lemma 4] If R is a ring and G a locally finite group, then $J(R) \subseteq J(R) G \subseteq J(R G)$.

Now we are able to formulate a criterion for UJ group rings over finite 2-groups.

Proposition 3.6. If R is a $U J$ ring and G is a locally finite 2-group, then $R G$ is a UJ group ring.

Proof. First, we will prove that $R H$ is a UJ ring for every finitely generated subgroup H of G.

Let R be a UJ ring and H finitely generated subgroup of the locally finite 2-group G. Then H is a finite 2-group and $2 \in J(R) \subseteq J(R H)$ by [6, Proposition 1.3(1)] and Lemma 3.5. Hence $R H$ is UJ if and only if $R H / 2 R H \cong(R / 2 R) H$ is UJ ring by [6, Proposition 1.3(5)]. By factoring $2 R$ if necessary, we may assume that characteristic of R is 2 .

Suppose that H is of order 2^{k} and we will prove by induction on k that $R H$ is a UJ ring.

If $k=0$, there is nothing to prove. Let us suppose that the assertion is true for $k-1$. It is well known that any finite 2 -group has a non-trivial centre and a central subgroup is always normal (cf. e.g. [13, 1.6.13]), hence the group H contains a central subgroup $\langle g\rangle$ of order 2 . Then $1-g$ is a central nilpotent element, because $(1-g)^{2}=2(1-g)=0$, so $1-g$ belongs to the Jacobson radical $J(R H)$. Thus $R H$ is UJ if and only if $R H /((1-g) R H)$ is UJ by $[6$, Proposition 1.3(5)]. Since $R H /((1-g) R H) \cong R(H /\langle g\rangle)$ by [12, Corollary 3.3.5], where the group $H /\langle g\rangle$ is of order $2^{k-1}, R H /((1-g) R H)$ is a UJ ring by the induction hypothesis.

Now, we show that $R G$ is a $\Delta \mathrm{U}$ ring. By Theorem 2.11 and Lemma 3.1 it is enough to prove that for every pair $u, v \in U(R G) \backslash R$ there exists a ΔU rationally closed subring containing $R \cup\{u, v\}$. Since for every $u, v \in U(R G)$ there exists a finite subgroup H of G such that $u, v \in U(R G) \cap R H=U(R H)$, the ring $R H$, which is a UJ ring by the first part of the proof, is a $\Delta \mathrm{U}$ ring. Then Theorem 2.11(4) implies that $R G$ is a $\Delta \mathrm{U}$ ring.

Finally, denote by \mathcal{F} the set of all finite subgroups of G. Then $U(R G)=$ $\bigcup_{H \in \mathcal{F}} U(R H)$, and hence

$$
\begin{aligned}
\Delta(R G) & =U(R G)+U(R G) \\
& =\bigcup_{H \in \mathcal{F}}(U(R H)+U(R H)) \\
& =\bigcup_{H \in \mathcal{F}} \Delta(R H) \\
& =\bigcup_{H \in \mathcal{F}} J(R H)
\end{aligned}
$$

by Lemma 2.8. It is easy to see that $\Delta(R G)=\bigcup_{H \in \mathcal{F}} J(R H)$ is an ideal, which implies that $\Delta(R G)=J(R G)$ by [9, Lemma $1(4)]$. Thus $R G$ is a UJ ring by applying Lemma 2.8 again.

Let us formulate the main result of the paper:

Theorem 3.7. Let G be a locally finite 2-group. Then $R G$ is a $U J$ ring if and only if R is a UJ ring.

Proof. The direct implication is proved by Proposition 3.6 and the converse follows from Theorem 3.2(3).

Example 3.8. Let R be \mathbb{F}_{2} or $\mathbb{F}_{2}[[x]]$ or the trivial extension $T\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. Then R is UJ by [6, Lemma 1.1, Example 1.2, Corollary 1.5 and Theorem 2.8]. If G is an elementary abelian 2 -group, then $R G$ is a UJ ring by Theorem 3.7.

Note that a solvable 2-group is locally finite by [13, 5.4.11]. We have the following corollary which generalizes [3, Theorem 5.3] and answers [3, Problem $2]$.

Corollary 3.9. Let R be a ring and G a solvable group. Then $R G$ is UJ if and only if R is $U J$ and G is a 2-group.

Proof. (\Rightarrow) This follows immediately from Theorem 3.2(3).
$(\Leftarrow:)$ Since any subgroup of a solvable group is solvable and every finitely generated solvable 2 -group is finite by [13, 5.4.13], every solvable 2 -group is locally finite. Thus the assertion follows from Theorem 3.7.

References

[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. New York: SpringerVerlag (1974).
[2] J. Chen, W. K. Nicholson and Y. Zhou: Group rings in which every element is uniquely the sum of a unit and an idempotent, J. Algebra, 306 (2) (2006) 453-460. 88 (2016).
[3] P. V. Danchev, Rings with Jacobson units, Toyama Math. J. 38(2016), 61-74.
[4] B. J. Gardner, R. Wiegandt, Radical Theory of Rings, Pure and App. Math., New York, Basel, Marcel Dekker (2004).
[5] M. T. Koşan: The p.p. property of trivial extensions, J. Algebra Appl., 14(8)(2015) 1550124, 5 pp .
[6] M. T. Koşan, A. Leroy, J. Matczuk: On UJ-rings. Comm. Algebra 46(5)(2018), 2297-2303.
[7] M. T. Koşan, T. C. Quynh, A generalization of $U J$-rings, J. Algebra Appl., in press.
[8] M. T. Koşan, T. C. Quynh, J. Žemlička, UNJ-rings, J. Algebra Appl., 19(9) (2020) 2050170, 11 pp .
[9] A. Leroy, J. Matczuk, Remarks on the Jacobson radical. Rings, modules and codes, 269276, Contemp. Math., 727, Amer. Math. Soc., Providence, RI, 2019.
[10] T. Y. Lam: A First Course in Noncommutative Rings, GTM 131, Springer-Verlag, 1991 (Second Edition, 2001).
[11] M. Marianne: Rings of quotients of generalized matrix rings, Comm. Algebra, 15(10)(1987), 1991- 2015.
[12] C. Polcino Milies, S. Sehgal: An Introduction to Group Rings, Kluwer, Dordrecht (2002).
[13] D.J.S. Robinson: A Course in the Theory of Groups, Springer, New York, 2nd edition (1995).

Department of Mathematics, Gazi University, Ankara, Turkey
Email address: mtamerkosan@gazi.edu.tr tkosan@gmail.com
Department of Algebra, Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 18675 Praha 8, Czechia

Email address: zemlicka@karlin.mff.cuni.cz

[^0]: 2010 Mathematics Subject Classification. Primary 16D40, 16D50, 16D60, 16 S34.
 Key words and phrases. Unit, Jacobson radical, UJ-rings, group ring, trivial Morita context, solvable group, commutator subgroup, locally finite 2-group.

