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1 Background on stochastic processes

1.1 Background and basics

Definition 1.1. Let (Ω,A,P) be a probability space, (S, E) a measurable space, and T ⊂ R, T ̸= ∅.
A family of random variables {Xt, t ∈ T} defined on the same probability space (Ω,A,P) with values
in (S, E) is called a stochastic process or a random process. The space (S, E) is called the state
space of the process {Xt, t ∈ T}. For a fixed ω ∈ Ω, the function X·(ω) : t 7→ Xt(ω), t ∈ T, is called
the trajectory of {Xt, t ∈ T}.

Remark: When T ⊆ Z, we call {Xt, t ∈ T} a discrete-time stochastic process (random sequence,
time series). When T is an interval with endpoints a, b with −∞ ≤ a < b ≤ ∞, we call {Xt, t ∈ T}
a continuous-time stochastic process.

Remark: In the following we will consider mostly real-valued processes, i.e. we set (S, E) = (R,B),
where B is the Borel σ-algebra on R. However, it will often be useful to consider complex-valued
processes, too.

Remark: Finite-dimensional distributions of a real-valued stochastic process {Xt, t ∈ T} are given by
the system of distribution functions

Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn), n ∈ N, t1, . . . , tn ∈ T, x1, . . . , xn ∈ R.

Definition 1.2. Let {Ft1,...,tn , n ∈ N, t1, . . . , tn ∈ T} be a system of functions such that for each
n ∈ N and t1, . . . , tn ∈ T , Ft1,...,tn : Rn → [0, 1] is a distribution function. The system is said to be
consistent if the following properties are fulfilled for each n ≥ 2, t1, . . . , tn ∈ T, x1, . . . , xn ∈ R:

1. Ftπ(1),...,tπ(n)
(xπ(1), . . . , xπ(n)) = Ft1,...,tn(x1, . . . , xn) for each permutation π on the set {1, . . . , n},

2. limxn→∞ Ft1,...,tn(x1, . . . , xn) = Ft1,...,tn−1(x1, . . . , xn−1).

Remark: Any real-valued stochastic process determines a consistent system of distribution functions.
The converse is discussed in the following theorem.

Theorem 1.1 (Daniell-Kolmogorov). Let {Ft1,...,tn , n ∈ N, t1, . . . , tn ∈ T} be a consistent system of
distribution functions. Then there is a probability space (Ω,A,P) and a stochastic process {Xt, t ∈ T}
defined on (Ω,A,P) such that for each n ∈ N, t1, . . . , tn ∈ T and x1, . . . , xn ∈ R it holds that

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = Ft1,...,tn(x1, . . . , xn).

Proof. See Štěpán (1987, Theorem I.9.4) or Kallenberg (2002, Theorem 6.16) for a proof of a more
general version of the theorem.

Example: Using the Daniell-Kolmogorov theorem, we can show the existence of the following random
sequences or processes:

• the sequence {Xt, t ∈ Z} of independent, identically distributed random variables with standard
normal distribution,

• the process {Xt, t ∈ R} of independent, identically distributed random variables with standard
normal distribution,

• the Wiener process {Wt, t ≥ 0}, also called the Brownian motion, see the Definition 1.8 below.
Note that in this case, in addition to the Daniell-Kolmogorov theorem, we need the Kolmogorov
continuity theorem to construct a continuous modification of the process.
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Definition 1.3. A real-valued stochastic process {Xt, t ∈ T} is called Gaussian if for any n ∈ N
and t1, . . . , tn ∈ T the vector (Xt1 , . . . , Xtn)

T has the multivariate normal distribution Nn(mt,Vt),
where mt = (EXt1 , . . . ,EXtn)

T and

Vt = var(Xt1 , . . . , Xtn)
T =


varXt1 cov(Xt1 , Xt2) · · · cov(Xt1 , Xtn)

cov(Xt2 , Xt1) varXt2 · · · cov(Xt2 , Xtn)
...

...
. . .

...
cov(Xtn , Xt1) cov(Xtn , Xt2) · · · varXtn

 .

Remark: A random vector Y = (Y1, . . . , Yn)
T has the multivariate normal distribution Nn(µ,Σ) if

there is a vector µ ∈ Rn, an n × k matrix A and independent random variables Z1, . . . , Zk with
the univariate N (0, 1) distribution such that Σ = AAT and Y = µ+ AZ, where Z = (Z1, . . . , Zk)

T .
Equivalently, Y = (Y1, . . . , Yn)

T has a multivariate normal distribution if for any a1, . . . , an ∈ R the
linear combination a1Y1 + . . .+ anYn has a univariate normal distribution.

Complex-valued random variables

Complex-valued signals are useful e.g. in the fields of communications, optics, acoustics, and more.
They may contain information about the amplitude and phase of a wave in a single object, making
the analysis and manipulation of such signals more efficient and mathematically convenient.

A complex-valued random variable X is defined as X = Y + iZ, where Y,Z are real-valued random
variables and i =

√
−1. Assuming that the expectations EY,EZ exist, we define EX = EY + iEZ.

If the random variables Y and Z have finite second moments, we define

varX = E(X − EX)(X − EX) = E|X − EX|2.

It follows that varX ≥ 0 and hence the variance of a complex variable is a (non-negative) real
number. Similarly, the second moment of X is E|X|2.

Let X1, X2 be complex-valued random variables with finite second moments. Their covariance is
defined as

cov(X1, X2) = E(X1 − EX1)(X2 − EX2).

Daniell-Kolmogorov theorem for complex-valued stochastic processes*

For complex-valued stochastic processes, we need to work with probability measures instead of dis-
tribution functions. There is a version of the Daniell-Kolmogorov theorem which covers this case,
see below. Note that even more general versions of the theorem are also available.

Let {Xt, t ∈ T} be a real-valued or complex-valued process. Its finite-dimensional distributions
{Pt1,...,tn , n ∈ N, t1, . . . , tn ∈ T} are defined by

Pt1,...,tn(B1 × . . .×Bn) = P(Xt1 ∈ B1, . . . , Xtn ∈ Bn)

for n ∈ N, t1, . . . , tn ∈ T and Borel sets B1, . . . , Bn (in R or C). Naturally, this system fulfills the
following properties for each n ≥ 2, t1, . . . , tn ∈ T and Borel sets B1, . . . , Bn:

1. Ptπ(1),...,tπ(n)
(Bπ(1) × . . .×Bπ(n)) = Pt1,...,tn(B1 × . . .×Bn) holds for each permutation π on the

set {1, . . . , n},

2. Pt1,...,tn(B1 × . . .×Bn−1 × R) = Pt1,...,tn−1(B1 × . . .×Bn−1).
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A system of probability measures {Qt1,...,tn , n ∈ N, t1, . . . , tn ∈ T}, defined on appropriate spaces, is
said to be consistent if it has the two properties given above.

Theorem 1.2 (Daniell-Kolmogorov). Let {Qt1,...,tn , n ∈ N, t1 . . . , tn ∈ T} be a consistent system of
probability measures. Then there is a probability space (Ω,A,P) and a stochastic process {Xt, t ∈ T}
defined on (Ω,A,P) such that for each n ∈ N, t1, . . . , tn ∈ T and Borel sets B1, . . . , Bn it holds that

P(Xt1 ∈ B1 . . . , Xtn ∈ Bn) = Qt1,...,tn(B1 × . . .×Bn).

Proof. See Štěpán (1987, Theorem I.9.4) or Kallenberg (2002, Theorem 6.16) for a proof of a more
general version of the theorem.

1.2 Important examples of stochastic processes

Markov processes

Definition 1.4. Let S ⊂ Z be a discrete state space. A stochastic process {Xt, t ∈ T} with the state
space (S, E) is Markov if for each n ∈ N, i0, . . . , in ∈ S and t0, . . . , tn ∈ T such that t0 < t1 < . . . < tn
it holds that

P(Xtn = in|Xtn−1 = in−1, . . . , Xt0 = i0) = P(Xtn = in|Xtn−1 = in−1).

Independent increment processes

Definition 1.5. A (real-valued or complex-valued) stochastic process {Xt, t ∈ T} has independent
increments if for any n ∈ N and t1, . . . , tn ∈ T such that t1 < t2 < . . . < tn, the random variables
Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.

Definition 1.6. A (real-valued or complex-valued) stochastic process {Xt, t ∈ T} has stationary
increments if for any s, t ∈ T, s < t, the distribution of Xt−Xs depends only on t− s. Formally, the
random variables Xt −Xs and Xt+h −Xs+h have the same distribution for any s, t ∈ T and h ∈ R
such that s+ h, t+ h ∈ T .

Definition 1.7. The Poisson process {Nt, t ≥ 0} with parameter λ > 0 is defined by the following
properties:

• N0 = 0 a.s.,

• the process has independent increments,

• for each 0 ≤ s < t the random variable Nt −Ns has the Poisson distribution Po(λ(t− s)).

Remark: The last property implies that {Nt, t ≥ 0} has stationary increments and (in combination
with the first property) that for each t ≥ 0 we have Nt ∼ Po(λt). Furthermore, the Poisson process
is Markov, but it is not strictly nor weakly stationary, as indicated e.g. by the non-constant mean
and variance. Sample realizations of the Poisson process are given in Figure 1.

Definition 1.8. The Wiener process {Wt, t ≥ 0} with parameter σ2 > 0 is defined by the following
properties:

• W0 = 0 a.s.,

• the process has continuous trajectories a.s.,

3



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

t

va
ls

 −
 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

t

va
ls

 −
 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

t

va
ls

 −
 1

Figure 1: Sample realizations of the Poisson process with λ = 10.
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Figure 2: Sample realizations of the Wiener process with σ2 = 1.

• the process has independent increments,

• for each 0 ≤ s < t the random variable Wt −Ws has the normal distribution N (0, σ2(t− s)).

Remark: The last property implies that {Wt, t ≥ 0} has stationary increments and (in combination
with the first property) that for each t ≥ 0 we have Wt ∼ N (0, σ2t). The definition also implies that
the Wiener process is Gaussian – this can be easily proved using the fact that a sum of two inde-
pendent Gaussian random variables is also Gaussian. Furthermore, the Wiener process is Markov,
but it is not strictly nor weakly stationary, as indicated e.g. by the non-constant variance. Sample
realizations of the Wiener process are given in Figure 2.

Martingales

Definition 1.9. Let (Ω,A,P) be a probability space, T ⊂ R, T ̸= ∅. For any t ∈ T , let Ft ⊂ A be a
σ-algebra. A system of σ-algebras {Ft, t ∈ T} such that Fs ⊆ Ft for each s, t ∈ T, s < t, is called a
filtration.

Definition 1.10. Let {Xt, t ∈ T} be a stochastic process defined on (Ω,A,P) and let {Ft, t ∈ T} be a
filtration. We say that {Xt, t ∈ T} is adapted to {Ft, t ∈ T} if for each t ∈ T , Xt is Ft-measurable.
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Remark: In the previous definition, the filtration carries the information about the possible history
of the process. Ft contains all the events that could possibly happen up to (and including) time
t ∈ T .

Definition 1.11. Let {Xt, t ∈ T} be adapted to {Ft, t ∈ T} and E|Xt| < ∞ for each t ∈ T . Then
{Xt, t ∈ T} is said to be Ft-martingale if E[Xt|Fs] = Xs almost surely for each s, t ∈ T, s < t.

Remark: Martingales are useful e.g. for modeling a series of fair games or in survival analysis.

Remark: Wiener process is a martingale.
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2 Autocovariance function and stationarity

2.1 Autocovariance and autocorrelation function

Definition 2.1. Let {Xt, t ∈ T} be a real-valued or complex-valued stochastic process. Let µt = EXt

exist for each t ∈ T . The function {µt, t ∈ T} defined on T is the mean value of the process
{Xt, t ∈ T}. If µt = 0 for each t ∈ T , we say that the process is centered.

Definition 2.2. Let {Xt, t ∈ T} be a real-valued or complex-valued stochastic process with finite
second moments, i.e. E|Xt|2 < ∞ for each t ∈ T . The function R : T × T → C defined as

R(s, t) = cov(Xs, Xt) = E(Xs − µs)(Xt − µt), s, t ∈ T,

is called the autocovariance function of the process {Xt, t ∈ T}.

Remark: As a special case we have R(t, t) = cov(Xt, Xt) = varXt = E|Xt − µt|2, t ∈ T , i.e. R(t, t) is
the variance of the process at time t.

Remark: Two different stochastic processes may have the same autocovariance functions.

Definition 2.3. Let {Xt, t ∈ T} be a real-valued or complex-valued stochastic process with finite
second moments and positive variances. The autocorrelation function of the process {Xt, t ∈ T} is
defined as

r(s, t) =
R(s, t)√

R(s, s)
√
R(t, t)

, s, t ∈ T.

2.2 Strict and weak stationarity

Definition 2.4. A real-valued (or complex-valued) stochastic process {Xt, t ∈ T} is strictly station-
ary if for any n ∈ N, any Borel subsets B1, . . . , Bn of R (or C), any t1, . . . , tn ∈ T and h ∈ R such
that t1 + h, . . . , tn + h ∈ T it holds that

P(Xt1+h ∈ B1, . . . , Xtn+h ∈ Bn) = P(Xt1 ∈ B1, . . . , Xtn ∈ Bn).

Remark: For a real-valued stochastic process {Xt, t ∈ T}, strict stationarity is equivalently de-
fined using the property Ft1+h,...,tn+h(x1, . . . , xn) = Ft1,...,tn(x1, . . . , xn) for each n ∈ N, x1, . . . , xn ∈
R, t1, . . . , tn ∈ T and h ∈ R such that t1 + h, . . . , tn + h ∈ T .

Example: Let {Xt, t ∈ Z} be a sequence of independent, identically distributed random variables.
The sequence is strictly stationary. The proof follows easily from the definition of strict stationarity,
independence, and the fact that the random variables have the same distribution.

Remark: If a process {Xt, t ∈ T} is strictly stationary, all random variables Xt have the same
distribution, i.e. their properties do not change over time. This applies to the expectation, variance,
and covariances (provided they exist), but also to all higher-order moments or any other properties.
This can be too restrictive to be useful in many settings.

Definition 2.5. A stochastic process {Xt, t ∈ T} with finite second moments is weakly stationary
or second-order stationary if µt = µ for each t ∈ T and its autocovariance function fulfills R(s +
h, t+ h) = R(s, t) for each s, t ∈ T and h ∈ R such that s+ h, t+ h ∈ T . If only the latter property
holds, we call the process covariance stationary.

Remark: Weak stationarity of a stochastic process implies that the first- and second-order moment
properties do not change over time. This is in contrast with strict stationarity which implies that all
finite-dimensional distributions do not change over time.
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Example: Let {Xt, t ∈ Z} be a sequence of uncorrelated random variables with zero mean and finite
positive variance varXt = σ2, the same for all t ∈ Z. The sequence is weakly stationary. The
sequence is called the white noise and denoted WN(0, σ2), see Definition 7.1. It will serve as an
important example and building block for constructing various models of time series.

Remark: The autocovariance function of a weakly stationary process can be defined as a function
of a single argument: R̃(t) = R(t, 0) = R(t + h, h) for appropriate values of t, h. Without the risk
of confusion, we will write R(t) in place of R̃(t). Similarly, the autocorrelation function is then
r(t) = R(t)/R(0) for t ∈ T − T (the set of differences of elements of T ).

Theorem 2.1. Let {Xt, t ∈ T} be a strictly stationary stochastic process with finite second moments.
Then {Xt, t ∈ T} is weakly stationary.

Proof. Strict stationarity of {Xt, t ∈ T} implies that Xt1 and Xt2 have the same distribution for any
t1, t2 ∈ T , i.e. P(Xt1 ∈ B) = P(Xt2 ∈ B) for any Borel set B. Since the sequence has finite second
moments, EXt exists and is finite for each t ∈ T and it follows that EXt1 = EXt2 = µ for each
t1, t2 ∈ T .

Similarly, strict stationarity implies that (Xt1 , Xt2)
T and (Xt1+h, Xt2+h)

T have the same distribution
for each t1, t2 ∈ T and h ∈ R such that t1 + h, t2 + h ∈ T . Let R be the autocovariance function of
{Xt, t ∈ T}. It follows that

R(t1, t2) = cov(Xt1 , Xt2) = cov(Xt1+h, Xt2+h) = R(t1 + h, t2 + h) = R(t1 − t2).

Remark: The opposite implication does not hold without additional assumptions, see the following
example.

Example: Let X be a random variable with P(X = −1/4) = 3/4, P(X = 3/4) = 1/4, and define
Xt = (−1)t ·X, t ∈ Z. The sequence {Xt, t ∈ Z} is weakly stationary but it is not strictly stationary.

Theorem 2.2. Let {Xt, t ∈ T} be a real-valued, weakly stationary Gaussian process. Then {Xt, t ∈
T} is strictly stationary.

Proof. We fix n ∈ N, t1, . . . , tn ∈ T and h ∈ R such that t1 + h, . . . , tn + h ∈ T . Weak stationarity
implies that

E(Xt1 , . . . , Xtn)
T = E(Xt1+h, . . . , Xtn+h)

T = (µ, . . . , µ)T = µ,

var(Xt1 , . . . , Xtn)
T = var(Xt1+h, . . . , Xtn+h)

T = Σ,

where the variance matrix Σ consists of the elements Σij = R(ti − tj). Since the process {Xt, t ∈
T} is Gaussian, both vectors (Xt1 , . . . , Xtn)

T and (Xt1+h, . . . , Xtn+h)
T have n-dimensional normal

distribution with vector of mean values µ and variance matrix Σ, meaning they have the same
distribution.

Remark: Assuming strict or weak stationarity or some specific form of the mean value function is
a modeling choice. In practice, we observe a realization of a random sequence or process without
knowing its theoretical properties.

For illustration, consider the simulated random sequence {Xt, t ∈ Z} given in Figure 3. The sequence
clearly contains a periodic component. In the modeling step, the periodic behavior can be attributed
to either the mean value function {µt, t ∈ Z} or the autocovariance function. We may decide to
assume a zero mean, and the resulting estimate of the autocovariance function is given in the left
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Figure 3: Observation of a simulated random sequence. Note that this is a discrete-time sequence,
and the lines joining the corresponding points in the plot are used only for clarity.
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Figure 4: Estimate of the autocovariance function of the random sequence from Figure 3 assuming
a zero mean (left) or assuming an appropriate form of the non-constant mean value function (right).

panel of Figure 4. Alternatively, we may assume that µt = cos(0.3t), t ∈ Z, and the corresponding
estimate of the autocovariance function of the centered sequence {Xt − µt, t ∈ Z} is given in the
right panel of Figure 4. Of course, other modeling choices are also possible. We remark that the
estimation of the autocovariance function will be discussed in Section 11.2.

2.3 Properties of autocovariance functions

Theorem 2.3. Let {Xt, t ∈ T} be a stochastic process with finite second moments. Its autocovariance
function satisfies the following properties:

• R(t, t) ≥ 0, t ∈ T ,

• |R(s, t)| ≤
√

R(s, s)
√

R(t, t), s, t ∈ T .

Proof. For any t ∈ T we have R(t, t) = cov(Xt, Xt) = varXt = E|Xt − EXt|2 ≥ 0. Furthermore, it
follows from the Cauchy-Schwarz inequality that for any s, t ∈ T ,

|R(s, t)| = |E(Xs − EXs)(Xt − EXt)| ≤
(
E|Xs − EXs|2

)1/2 (E|Xt − EXt|2
)1/2

=
√
R(s, s)

√
R(t, t).
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Remark: The second property implies that |r(s, t)| ≤ 1, s, t ∈ T . Furthermore, for a weakly stationary
process we have R(0) ≥ 0, |R(t)| ≤ R(0), t ∈ T .

Definition 2.6. Let f be a complex-valued function defined on T ×T, T ⊂ R. It is positive semidef-
inite if for each n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈ T it holds that

n∑
j=1

n∑
k=1

cj c̄kf(tj , tk) ≥ 0.

The inequality above implies that the double sum takes a real value (i.e. its imaginary part is 0).
Furthermore, let g be a complex-valued function defined on T, T ⊂ R. It is positive semidefinite if
for each n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈ T it holds that

n∑
j=1

n∑
k=1

cj c̄kg(tj − tk) ≥ 0.

Definition 2.7. Let f be a complex-valued function defined on T × T, T ⊂ R. It is Hermitian if
it holds that f(s, t) = f(t, s), s, t ∈ T . For a real-valued function f this is the symmetry property:
f(s, t) = f(t, s), s, t ∈ T . Furthermore, let g be a complex-valued function defined on T, T ⊂ R. It is
Hermitian if it holds that g(−t) = g(t), t ∈ T . For a real-valued function g this is again the symmetry
property: g(−t) = g(t), t ∈ T .

Theorem 2.4. Let f be a positive semidefinite function defined on T × T, T ⊂ R. Then f is
Hermitian.

Proof. The Hermitian property follows from the positive semidefinite property by choosing n =
1, c1 = 1; n = 2, c1 = 1, c2 = 1; and finally n = 2, c1 = 1, c2 = i. Note that for a complex number u,
u ≥ 0 implies u ∈ R, i.e. the imaginary part of u is 0.

Theorem 2.5. Assuming {Xt, t ∈ T} is a stochastic process with finite second moments, its auto-
covariance function is positive semidefinite on T × T .

Proof. Without loss of generality, assume that {Xt, t ∈ T} is centered (changing the mean value does
not change the autocovariance function). In this case R(s, t) = EXsXt, s, t ∈ T .

We choose n ∈ N, t1, . . . , tn ∈ T, c1, . . . , cn ∈ C. Then

0 ≤ E

∣∣∣∣∣
n∑

j=1

cjXtj

∣∣∣∣∣
2

= E

(
n∑

j=1

cjXtj

)(
n∑

k=1

ckXtk

)
=

n∑
j=1

n∑
k=1

cjckEXtjXtk =
n∑

j=1

n∑
k=1

cjckR(tj , tk).

Theorem 2.6. Let R be a (complex-valued) positive semidefinite function on T × T . There is a
stochastic process {Xt, t ∈ T} with finite second moments such that its autocovariance function is R.

Proof. We show the proof for a real-valued function R. For the proof with a complex-valued function
R see e.g. Loève (1963, Chapter X, §34).

Choose n ∈ N, t1, . . . , tn ∈ T . Since R is positive semidefinite, the matrix

Vt =


R(t1, t1) R(t1, t2) . . . R(t1, tn)
R(t2, t1) R(t2, t2) . . . R(t2, tn)

...
...

. . .
...

R(tn, t1) R(tn, t2) . . . R(tn, tn)


9



is also positive semidefinite, and hence it is a valid variance matrix. This means that for n ∈
N, t1, . . . , tn ∈ T , we can consider the n-dimensional Gaussian distribution Nn(0,Vt). From these
we obtain a consistent system of distribution functions. It follows from Theorem 1.2 that there is
a stochastic process {Xt, t ∈ T} with those finite-dimensional distributions. Clearly, the autocovari-
ance function of {Xt, t ∈ T} is R.

Example: The function R(t) = cos t, t ∈ R, is positive semidefinite and hence it is the autocovariance
function of a stochastic process. To prove that, we first write R as a function of two variables:
R(t1, t2) = R(t1− t2) = cos(t1− t2), t1, t2 ∈ R. Then, for a given n ∈ N, t1, . . . , tn ∈ R, c1, . . . , cn ∈ C,

n∑
j=1

n∑
k=1

cjck cos(tj − tk) =

n∑
j=1

n∑
k=1

cjck(cos tj · cos tk + sin tj · sin tk)

=

 n∑
j=1

cj cos tj

( n∑
k=1

ck cos tk

)
+

 n∑
j=1

cj sin tj

( n∑
k=1

ck sin tk

)

=

∣∣∣∣∣∣
n∑

j=1

cj cos tj

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
n∑

j=1

cj sin tj

∣∣∣∣∣∣
2

≥ 0.

Theorem 2.7. Let f, g be positive semidefinite functions on T × T . Then, the sum f + g is also
positive semidefinite.

Proof. Denote h = f + g and choose n ∈ N, t1, . . . , tn ∈ T, c1, . . . , cn ∈ C. Then

n∑
j=1

n∑
k=1

cjckh(tj , tk) =
n∑

j=1

n∑
k=1

cjckf(tj , tk) +
n∑

j=1

n∑
k=1

cjckg(tj , tk) ≥ 0.

Remark: The previous theorems imply that a sum of two autocovariance functions is the autocovari-
ance function of some stochastic process with finite second moments.
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3 Space L2(Ω,A,P)

3.1 Hilbert spaces

Definition 3.1. Let H be a complex vector space. Assume that the mapping ⟨·, ·⟩ : H × H → C
fulfills the following properties for each x, y, z ∈ H and each α ∈ C:

• ⟨x, y⟩ = ⟨y, x⟩,

• ⟨αx, y⟩ = α⟨x, y⟩,

• ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

• ⟨x, x⟩ ≥ 0,

• ⟨x, x⟩ = 0 ⇐⇒ x = o ∈ H.

The mapping is called an inner product and H is called an inner product space.

Definition 3.2. Let H be an inner product space and ⟨·, ·⟩ be the corresponding inner product. The
norm of x ∈ H is defined as ∥x∥ =

√
⟨x, x⟩.

Theorem 3.1. Let H be an inner product space and ∥ · ∥ be the corresponding norm. Then the
following properties hold for each x, y ∈ H and each α ∈ C:

• ∥x∥ ≥ 0,

• ∥x∥ = 0 ⇐⇒ x = o ∈ H,

• ∥αx∥ = |α| · ∥x∥,

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ . . . triangle inequality,

• |⟨x, y⟩| ≤ ∥x∥ · ∥y∥ =
√
⟨x, x⟩

√
⟨y, y⟩ . . .Cauchy-Schwarz inequality.

Proof. See any textbook on functional analysis, e.g. Rudin (2003, Chapter 4).

Definition 3.3. Let {xn, n ∈ N} be a sequence of elements of an inner product space H. The
sequence converges in norm to x ∈ H if ∥xn − x∥ → 0, n → ∞.

Definition 3.4. Let {xn, n ∈ N} be a sequence of elements of an inner product space H. The
sequence is Cauchy if ∥xn − xm∥ → 0, n,m → ∞.

Remark: Note that no limit element is needed for the definition of the Cauchy property.

Definition 3.5. An inner product space H is complete if every Cauchy sequence of its elements
converges in norm to some element of H. A complete inner product space is called a Hilbert space.

Theorem 3.2 (Continuity of the inner product). Let {xn, n ∈ N} and {yn, n ∈ N} be sequences of
elements of an inner product space H. Let x, y ∈ H be such that xn → x, yn → y, n → ∞, in norm.
Then

• ∥xn∥ → ∥x∥, n → ∞,

• ⟨xn, yn⟩ → ⟨x, y⟩, n → ∞.
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Proof. From the triangle inequality we get

∥x∥ = ∥(x− xn) + xn∥ ≤ ∥x− xn∥+ ∥xn∥,
∥xn∥ = ∥(xn − x) + x∥ ≤ ∥xn − x∥+ ∥x∥,

and in combination ∣∣∥xn∥ − ∥x∥
∣∣ ≤ ∥x− xn∥ → 0, n → ∞.

Concerning the second claim, it is proved using the triangle inequality and the Cauchy-Schwarz
inequality:

|⟨xn, yn⟩ − ⟨x, y⟩| = |⟨xn − x+ x, yn − y + y⟩ − ⟨x, y⟩|
= |⟨xn − x, yn − y⟩+ ⟨xn − x, y⟩+ ⟨x, yn − y⟩+ ⟨x, y⟩ − ⟨x, y⟩|
≤ |⟨xn − x, yn − y⟩|+ |⟨xn − x, y⟩|+ |⟨x, yn − y⟩|
≤ ∥xn − x∥ · ∥yn − y∥+ ∥xn − x∥ · ∥y∥+ ∥x∥ · ∥yn − y∥ → 0, n → ∞.

3.2 Construction and properties of L2(Ω,A,P)

Let L be the set of all complex-valued random variables with finite second moment defined on a
probability space (Ω,A,P). L is a complex vector space and the random variable X ≡ 0 is the zero
element.

For X,Y ∈ L we would like to define ⟨X,Y ⟩ = EXY and use it as the inner product on L. However,
this is not possible since it does not hold that ⟨X,X⟩ = 0 ⇐⇒ X ≡ 0. In fact, any random variable
Y for which Y = 0 almost surely fulfills ⟨Y, Y ⟩ = 0.

For the above reason, we first define equivalence classes on L so that X ∼ Y ⇐⇒ P(X = Y ) = 1.
We call the space of equivalence classes L2(Ω,A,P).

At this point, we define the mapping ⟨X,Y ⟩ = EX0Y0, where X,Y ∈ L2(Ω,A,P) are equivalence
classes and X0 ∈ X,Y0 ∈ Y are random variables (representants of the equivalence classes). Clearly,
the value ⟨X,Y ⟩ does not depend on the choice of the representants X0, Y0. In the following we will
work with the equivalence classes and stop distinguishing different representants.

The mapping ⟨·, ·⟩ is an inner product on L2(Ω,A,P). The norm on L2(Ω,A,P) is given by ∥X∥ =√
⟨X,X⟩ =

√
EXX =

(
E|X|2

)1/2
. The convergence on L2(Ω,A,P) is defined as the convergence in

this norm.

Definition 3.6. Let {Xn, n ∈ N} be a sequence of random variables such that E|Xn|2 < ∞. The
sequence converges in the mean square (or in L2) to a random variable X if it converges to X in
L2(Ω,A,P), i.e. ∥Xn −X∥2 = E|Xn −X|2 → 0, n → ∞.

Remark: The mean square limit X of {Xn, n ∈ N} is sometimes denoted X = l.i.m. Xn (limit in the
mean).

Theorem 3.3. The space L2(Ω,A,P) is complete with respect to the norm defined above. Hence,
L2(Ω,A,P) is a Hilbert space.

Proof. See Brockwell and Davis (2006, Section 2.10) or Rudin (2003, Theorem 3.11).

Remark: Mean square convergence implies convergence of the first and second moments. Formally,
for X,X1, X2, . . . ∈ L2(Ω,A,P) it holds that Xn → X,n → ∞, in the mean square ⇒ EXn →
EX,E|Xn|2 → E|X|2, n → ∞. If also Yn → Y, n → ∞, in the mean square, we have EXnYn →
EXY , n → ∞. All these properties follow from the continuity of the inner product.
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3.3 Hilbert space generated by a stochastic process

Definition 3.7. Let {Xt, t ∈ T} be a stochastic process with finite second moments defined on
(Ω,A,P). The linear span of {Xt, t ∈ T} is the set of all finite linear combinations of the random
variables:

M{Xt, t ∈ T} =

{
n∑

k=1

ckXtk , n ∈ N, c1, . . . , cn ∈ C, t1, . . . , tn ∈ T

}
.

Remark: M{Xt, t ∈ T} ⊂ L2(Ω,A,P), and the equivalence classes, inner product, and convergence
are defined as above.

Definition 3.8. The closure M{Xt, t ∈ T} of M{Xt, t ∈ T} consists of all the elements of
M{Xt, t ∈ T} and the mean square limits of all Cauchy sequences of elements of M{Xt, t ∈ T}.

Remark: M{Xt, t ∈ T} is a closed subset of the complete inner product space L2(Ω,A,P) and thus
it is a complete inner product space. It is called the Hilbert space generated by a stochastic process
{Xt, t ∈ T} and denoted H{Xt, t ∈ T}.

3.4 Convergence of processes in L2(Ω,A,P)

Definition 3.9. Let {Xn
t , t ∈ T}n∈N be a collection of stochastic processes in L2(Ω,A,P). The

processes {Xn
t , t ∈ T}n∈N converge in the mean square to a process {Xt, t ∈ T} in L2(Ω,A,P) as

n → ∞, if for each t ∈ T it holds that Xn
t → Xt, n → ∞, in the mean square, i.e. E|Xn

t −Xt|2 →
0, n → ∞.

Theorem 3.4. Centered processes {Xn
t , t ∈ T}n∈N in L2(Ω,A,P) converge in the mean square to a

centered process {Xt, t ∈ T} in L2(Ω,A,P) as n → ∞ if and only if

EXn
t X

m
t → b(t), n,m → ∞,

where b(·) is a finite function on T .

If the processes {Xn
t , t ∈ T}n∈N converge to a process {Xt, t ∈ T} in the mean square as n → ∞, the

autocovariance functions of the processes {Xn
t , t ∈ T}n∈N converge to the autocovariance function of

{Xt, t ∈ T} as n → ∞.

Proof. 1) Assume that {Xn
t , t ∈ T}n∈N → {Xt, t ∈ T}, n → ∞, in the mean square. Then for each

t, t′ ∈ T , Xn
t → Xt, n → ∞, in the mean square, and Xm

t′ → Xt′ , m → ∞, in the mean square.
Continuity of the inner product gives

EXn
t X

m
t′ = ⟨Xn

t , X
m
t′ ⟩ → ⟨Xt, Xt′⟩, n,m → ∞.

We consider the following special cases:

• For t = t′ and n,m → ∞ we have

EXn
t X

m
t → EXtXt = E|Xt|2 = b(t) < ∞,

since {Xt, t ∈ T} is in L2(Ω,A,P). This proves the first part of the first claim.

• For n = m and n → ∞ we have

EXn
t X

n
t′ → EXtXt′ , t, t

′ ∈ T.

Since the processes are centered, this means that Rn(t, t
′) → R(t, t′), n → ∞, where Rn is the

autocovariance function of the process {Xn
t , t ∈ T} and R is the autocovariance function of the

process {Xt, t ∈ T}. This proves the second claim.
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2) Assume that {Xn
t , t ∈ T}n∈N are centered processes in L2(Ω,A,P) for which EXn

t X
m
t → b(t) <

∞, n,m → ∞, for each t ∈ T . For any fixed t ∈ T , the sequence {Xn
t }n∈N has the Cauchy property

since

∥Xn
t −Xm

t ∥2 = E(Xn
t −Xm

t )(Xn
t −Xm

t ) = EXn
t X

n
t − EXn

t X
m
t − EXm

t Xn
t + EXm

t Xm
t →

→ b(t)− b(t)− b(t) + b(t) = 0, n,m → ∞.

The space L2(Ω,A,P) is complete and hence for each t ∈ T there is a random variable Xt ∈
L2(Ω,A,P) such that Xn

t → Xt, n → ∞, in the mean square. Therefore, there is a limiting process
{Xt, t ∈ T} in L2(Ω,A,P).

Finally, we prove that {Xt, t ∈ T} is centered. Fix t ∈ T . Since EXn
t = 0, continuity of the inner

product (Theorem 3.2) implies that also EXt = 0, see the remark below Theorem 3.3. This proves
the second part of the first claim.

Remark: The proof of the previous theorem shows that b(t) = E|Xt|2 = varXt is the variance of the
limiting process {Xt, t ∈ T}.

Theorem 3.5. Let {Xn, n ∈ N} be a sequence of random variables such that Xn ∼ N (µn, σ
2
n) with

µn ∈ R, σ2
n ≥ 0, n ∈ N. Assume that there is X ∈ L2(Ω,A,P) such that Xn → X,n → ∞, in the

mean square. Then X ∼ N (µ, σ2), where µn → µ, σ2
n → σ2, n → ∞.

Proof. The existence of the mean square limit and the continuity of the inner product gives

µn = EXn → EX, n → ∞,

σ2
n = varXn → varX, n → ∞.

We denote µ = EX,σ2 = varX. For a given n ∈ N, the characteristic function of Xn is

φXn(t) = exp

{
iµnt−

1

2
σ2
nt

2

}
, t ∈ R.

For n → ∞, we have the pointwise convergence

φXn(t) → φ(t) = exp

{
iµt− 1

2
σ2t2

}
, t ∈ R.

The limiting function φ(t) is continuous at the origin (in fact, it is continuous everywhere). Lévy’s

continuity theorem gives us that Xn
d→ Z, n → ∞, where Z has the characteristic function φ, i.e.

Z ∼ N (µ, σ2). On the other hand, we already know that Xn → X,n → ∞, in the mean square, and

hence Xn
d→ X,n → ∞. Uniqueness of the limit implies that X ∼ N (µ, σ2).

Remark: The interesting part of the previous theorem is that the normal distribution is preserved by
the mean square convergence.
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4 Mean square continuity

Definition 4.1. Let {Xt, t ∈ T} be a stochastic process with finite second moments, T ⊂ R an open
interval. The process {Xt, t ∈ T} is mean square continuous (or L2-continuous) at point t0 ∈ T , if
E|Xt − Xt0 |2 → 0, t → t0, i.e. Xt → Xt0 , t → t0, in the mean square. The process {Xt, t ∈ T} is
mean square continuous if it is mean square continuous at each point of T .

Remark: A stochastic process {Xt, t ∈ T} with finite second moments which is mean square contin-
uous is also continuous in probability, i.e. Xt → Xt0 , t → t0, in probability.

Theorem 4.1. Let {Xt, t ∈ T} be a centered stochastic process with finite second moments, T ⊂ R
an open interval. Then {Xt, t ∈ T} is mean square continuous if and only if its autocovariance
function R(s, t) is continuous at points [s, t] ∈ T ×T such that s = t (as a function of two variables).

Proof. 1) Let {Xt, t ∈ T} be a centered, mean square continuous process. Since EXt = 0 for each
t ∈ T , we have R(s, t) = EXsXt, s, t ∈ T . For any s0, t0 ∈ T and sequences sn, tn ∈ T, n ∈ N, such
that sn → s, tn → t, n → ∞, we have

|R(sn, tn)−R(s0, t0)| = |EXsnXtn − EXs0Xt0 | = |⟨Xsn , Xtn⟩ − ⟨Xs0 , Xt0⟩| → 0, n → ∞,

since by assumption Xsn → Xs0 , Xtn → Xt0 , n → ∞, in the mean square, and we use Theorem 3.2
(continuity of the inner product).

2) Let R(s, t) be continuous at points [s, t] ∈ T × T such that s = t. Then for each t0 ∈ T and
sequence tn ∈ T, n ∈ N, such that tn → t0, n → ∞, we have

E|Xtn −Xt0 |2 = E(Xtn −Xt0)(Xtn −Xt0) = EXtnXtn − EXtnXt0 − EXt0Xtn + EXt0Xt0

= R(tn, tn)−R(tn, t0)−R(t0, tn) +R(t0, t0) → 0, n → ∞.

It follows that {Xt, t ∈ T} is mean square continuous at point t0 ∈ T for any t0 ∈ T and hence
{Xt, t ∈ T} is mean square continuous.

Theorem 4.2. Let {Xt, t ∈ T} be a stochastic process with finite second moments, T ⊂ R an open
interval, with mean value {µt, t ∈ T} and autocovariance function R(s, t), s, t ∈ T . Then {Xt, t ∈ T}
is mean square continuous if and only if {µt, t ∈ T} is continuous on T and R(s, t) is continuous at
points [s, t] ∈ T × T such that s = t.

Proof. 1) First, assume that {Xt, t ∈ T} is mean square continuous. From Theorem 3.2 we have:

µtn = EXtn → EXt0 = µt0 , n → ∞,

for tn → t0, n → ∞, t0, tn ∈ T, n ∈ N. This means that {µt, t ∈ T} is continuous. Similarly, using
Theorem 3.2 we get for tn, sn, t0, s0 ∈ T such that tn → t0, sn → s0, n → ∞:

EXsnXtn → EXs0Xt0 , n → ∞.

It follows that

R(sn, tn) = EXsnXtn − (EXsn)(EXtn) → EXs0Xt0 − (EXs0)(EXt0) = R(s0, t0), n → ∞.

Note that we have, in fact, shown that R(s, t) is continuous at all points of T × T .

2) Assume now continuity of {µt, t ∈ T} and continuity of R(s, t) at points [s, t] ∈ T × T such that
s = t. For t0, tn ∈ T, n ∈ N, such that tn → t0, n → ∞, it holds that

E|Xtn −Xt0 |2 = E|(Xtn − µtn)− (Xt0 − µt0) + (µtn − µt0)|2.
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Denote Yt = Xt − µt, t ∈ T . The process {Yt, t ∈ T} is a centered stochastic process with the same
autocovariance function R as {Xt, t ∈ T}. It follows by Theorem 4.1 that the process {Yt, t ∈ T} is
mean square continuous. Finally,

E|Xtn −Xt0 |2 = E|(Ytn − Yt0) + (µtn − µt0)|2 ≤ 2E|Ytn − Yt0 |2 + 2 |µtn − µt0 |2 → 0, n → ∞,

and hence the process {Xt, t ∈ T} is mean square continuous.

Theorem 4.3. Let {Xt, t ∈ T} be a weakly stationary stochastic process with the autocovariance
function R(t). Then {Xt, t ∈ T} is mean square continuous if and only if R(t) is continuous at
t = 0.

Proof. The claim follows from Theorem 4.2 and the fact that for weakly stationary processes the
autocovariance function R(s, t) = R(s − t) is continuous at points [s, t] ∈ T × T such that s = t if
and only if R(t) is continuous at 0.

Example: Let {Xt, t ∈ R} be a centered, weakly stationary stochastic process with the autocovariance
function R(t) = cos t, t ∈ R. This process is mean square continuous.

Example: Let {Xt, t ∈ R} be a process of uncorrelated random variables with zero mean and finite
positive variance varXt = σ2, the same for all t ∈ R. We can call this process the continuous-time
white noise. This process is not mean square continuous.

Example: The Wiener process and the Poisson process are both mean square continuous on the
interval (0,∞).

Remark: Mean square continuity is not the same as continuity of trajectories. For example, Wiener
process has continuous trajectories almost surely, Poisson process has piece-wise constant trajectories
with jumps, but both have the same form of the autocovariance function and both are mean square
continuous.

Remark: Related concepts of mean square differentiability and mean square integrability of continuous-
time stochastic processes can be also defined using the mean square limits.
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5 Spectral decomposition of autocovariance functions

Remark: This chapter is not about stochastics at all – it studies properties of positive semidefinite
functions (autocovariance functions) without considering any randomness. The motivation to study
these topics lies e.g. in the field of signal processing, where spectral densities are one of the key
tools. They can be used to find linear filters with the desired properties (for illustration of a simple
low-pass filter, see Figure 16 in Section 7.6).

5.1 Auxiliary results

Lemma 5.1. a) Let µ, ν be finite measures on the σ-algebra of Borel subsets of the interval [−π, π].
If for every t ∈ Z it holds that ∫ π

−π
eitλ dµ(λ) =

∫ π

−π
eitλ dν(λ),

then µ(B) = ν(B) for each Borel set B ⊂ (−π, π) and µ({−π} ∪ {π}) = ν({−π} ∪ {π}).

b) Let µ, ν be finite measure on (R,B). If for every t ∈ R it holds that∫ ∞

−∞
eitλ dµ(λ) =

∫ ∞

−∞
eitλ dν(λ),

then µ(B) = ν(B) for every B ∈ B.

Proof. See Anděl (1976), Section III.1, Theorems 5 and 6.

Remark: The b) part of the previous lemma is equivalent to saying that a characteristic function
determines uniquely the distribution of a random variable. The a) part says a similar thing for
random variables with bounded support.

Lemma 5.2 (Helly theorem). Let {Fn, n ∈ N} be a sequence of non-decreasing, uniformly bounded
functions. Then there is a subsequence {Fnk

, k ∈ N} such that Fnk
→ F, k → ∞, nk → ∞, weakly,

i.e. in the points of continuity of F , where F is a non-decreasing right-continuous function.

Proof. See Rao (1978), Theorem 2c.4, I.

Lemma 5.3 (Helly-Bray theorem). Let {Fn, n ∈ N} be a sequence of non-decreasing, uniformly
bounded functions that, as n → ∞, converges weakly to a non-decreasing, bounded, right-continuous
function F , and limn→∞ Fn(−∞) = F (−∞), limn→∞ Fn(∞) = F (∞). Let f be a continuous bounded
function. Then ∫ ∞

−∞
f(x) dFn(x) →

∫ ∞

−∞
f(x) dF (x), n → ∞.

Proof. See Rao (1978), Theorem 2c.4, II.

Remark: The previous lemmas are traditionally stated for Fn, F being distribution functions. These
results are generalized by the Portmonteau theorem.

Remark: For distribution functions, the assumptions of the Helly-Bray theorem on the limits are
trivially fulfilled. However, they are needed in the general case. Consider e.g., for x ∈ R, Fn(x) =
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I(x ≥ n), F (x) = 0, and f(x) = 1. We have Fn(x) → F (x), n → ∞, for each x ∈ R, but
Fn(∞) = 1, limn→∞ Fn(∞) = 1 and F (∞) = 0. On the other hand,∫ ∞

−∞
f(x) dFn(x) = Fn(∞)− Fn(−∞) = 1− 0 = 1 ↛

∫ ∞

−∞
f(x) dF (x) = 0.

Remark: The integral in the Helly-Bray theorem is the Riemann-Stieltjes integral of a function f
with respect to a function F . If [a, b] is a bounded interval and F is right-continuous, we will consider
in the following that∫ b

a
f(x) dF (x) =

∫
(a,b]

f(x) dF (x) = lim
δ→0+

∫
[a+δ,b]

f(x) dF (x),

i.e. possible jump of the function F at point a does not influence the value of the integral.

5.2 Spectral decomposition of autocovariance functions

Theorem 5.4. A complex-valued function R(t), t ∈ Z, is the autocovariance function of a weakly
stationary random sequence if and only if for any t ∈ Z,

R(t) =

∫ π

−π
eitλ dF (λ), (5.1)

where F is a right-continuous, non-decreasing bounded function on [−π, π] with F (−π) = 0. The
function F is determined uniquely by the formula (5.1) (in the class of functions with the required
properties).

Proof. 1. Assume (5.1) holds for a complex-valued function R defined on Z. Choose n ∈ N,
c1, . . . , cn ∈ C, t1, . . . , tn ∈ Z, and compute:

n∑
j=1

n∑
k=1

cj c̄kR(tj − tk) =
n∑

j=1

n∑
k=1

cj c̄k

∫ π

−π
ei(tj−tk)λ dF (λ)

=

∫ π

−π

 n∑
j=1

n∑
k=1

cj c̄ke
itjλe−itkλ

 dF (λ)

=

∫ π

−π

∣∣∣∣∣∣
n∑

j=1

cje
itjλ

∣∣∣∣∣∣
2

dF (λ) ≥ 0,

because F is a non-decreasing function on [−π, π]. Hence R is a positive semidefinite and it is the
autocovariance function of a random sequence, see Theorem 2.6.

2. Let R be the autocovariance function of a weakly stationary random sequence. Then R(t) is
positive semidefinite, i.e.

n∑
j=1

n∑
k=1

cj c̄kR(tj − tk) ≥ 0 ∀n ∈ N, c1, . . . , cn ∈ C, t1, . . . , tn ∈ Z.

Consider the case tj = j and cj = e−ijλ for a given λ ∈ [−π, π]. It follows that for every n ∈ N and
λ ∈ [−π, π],

φn(λ) =
1

2πn

n∑
j=1

n∑
k=1

e−i(j−k)λR(j − k) ≥ 0.
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By substituting κ = j − k and changing the order of summation, we get that

φn(λ) =
1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)(n− |κ|).

For n ∈ N we now define

Fn(x) =


0, x ≤ −π,∫ x
−π φn(λ) dλ, x ∈ [−π, π],

Fn(π), x ≥ π.

Clearly, Fn(−π) = 0 and Fn is a non-decreasing function on [−π, π] since φn(λ) ≥ 0. We compute
now the value Fn(π):

Fn(π) =

∫ π

−π
φn(λ) dλ =

∫ π

−π

[
1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)(n− |κ|)

]
dλ

=
1

2πn

n−1∑
κ=−n+1

R(κ)(n− |κ|)
∫ π

−π
e−iκλ dλ = R(0),

because for κ ∈ Z, ∫ π

−π
e−iκλ dλ =

{
2π, κ = 0,

0, κ ̸= 0.
(5.2)

The sequence {Fn, n ∈ N} is a sequence of non-decreasing functions, 0 ≤ Fn(x) ≤ R(0) < ∞ for all
x ∈ R, n ∈ N. Lemma 5.2 gives the existence of a subsequence {Fnk

} ⊂ {Fn}, Fnk
→ F̃ weakly (in

the points of continuity of F̃ ) as k → ∞, nk → ∞, where F̃ is a non-decreasing, bounded, right-
continuous function and F̃ (x) = 0, x < −π, and F̃ (x) = R(0), x < π. Note that also F̃ (π) = R(0)
since F̃ is right-hand continuous.

The function F̃ may have jumps both at points −π and π but since the integrand in (5.1) is 2π-
periodic, the jumps have the same effect. For uniqueness of the representation we now define

F (x) =

{
F̃ (x)− F̃ (−π), x ∈ [−π, π),

F̃ (x), otherwise.

From Lemma 5.3 we get, for f(x) = eitx and t ∈ Z,∫ π

−π
eitλ dFnk

(λ) →
∫ π

−π
eitλ dF (λ), k → ∞, nk → ∞.

On the other hand,∫ π

−π
eitλ dFnk

(λ) =

∫ π

−π
eitλφnk

(λ) dλ =

∫ π

−π
eitλ

1

2πnk

nk−1∑
κ=−nk+1

e−iκλR(κ)(nk − |κ|) dλ

=
1

2πnk

nk−1∑
κ=−nk+1

R(κ)(nk − |κ|)
∫ π

−π
ei(t−κ)λ dλ,

and hence we get using Equation (5.2) that∫ π

−π
eitλ dFnk

(λ) =

{
R(t)

(
1− |t|

nk

)
, |t| < nk,

0, otherwise.
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Finally, we get for t ∈ Z:

lim
k→∞

∫ π

−π
eitλ dFnk

(λ) = lim
k→∞

R(t)

(
1− |t|

nk

)
= R(t).

We have shown that the integrals
∫ π
−π e

itλ dFnk
converge both to

∫ π
−π e

itλ dF (λ) and to R(t). We

conclude that R(t) =
∫ π
−π e

itλ dF (λ), t ∈ Z.

To prove uniqueness, suppose that R(t) =
∫ π
−π e

itλ dG(λ), t ∈ Z, where G is a right-continuous,
bounded, non-decreasing function on [−π, π], and that G(−π) = 0. Then

R(t) =

∫ π

−π
eitλ dµF =

∫ π

−π
eitλ dµG, t ∈ Z,

where µF , µG are finite measures on Borel subsets of the interval [−π, π] induced by functions F and
G, respectively. Uniqueness follows from Lemma 5.1: µF (B) = µG(B) for any Borel set B ⊂ (−π, π)
and µF ({−π} ∪ {π}) = µG({−π} ∪ {π}). In our case we have µF ({−π}) = µG({−π}) = 0 and hence
µF = µG and F = G.

Remark: The formula (5.1) is called the spectral decomposition of an autocovariance function of
a weakly stationary random sequence and F is called the spectral distribution function. If there is
a function f(λ) ≥ 0, λ ∈ [−π, π], such that F (λ) =

∫ λ
−π f(x) dx (i.e. if F is absolutely continuous),

then f is called the spectral density. Clearly, f = F ′. If the spectral density exists, we write

R(t) =

∫ π

−π
eitλf(λ) dλ, t ∈ Z.

Remark: If F is piece-wise constant with jumps at points λj of size aj = F (λj) − F (λj−), we have
R(t) =

∫ π
−π e

itλ dF (λ) =
∑

j aje
itλj , t ∈ Z.

Remark: If F has both an absolutely continuous part F1 and a jump part F2, F = F1 + F2, we have
R(t) =

∫ π
−π e

itλ dF (λ) =
∫ π
−π e

itλ dF1(λ) +
∫ π
−π e

itλ dF2(λ) =
∫ π
−π e

itλf1(λ) dλ+
∫ π
−π e

itλ dF2(λ).

Remark: For weakly stationary processes with continuous time we can find a similar representation,
but we need to restrict to autocovariance functions continuous at 0. For simplicity of formulation,
this requirement is traditionally formulated as weakly stationary, centered, mean square continuous
process, see below. However, the process being centered does not play any role here.

Theorem 5.5. A complex-valued function R(t), t ∈ R, is the autocovariance function of a weakly
stationary, centered, mean square continuous random process if and only if for any t ∈ R,

R(t) =

∫ ∞

−∞
eitλ dF (λ), (5.3)

where F is a non-decreasing, right-continuous function on R such that limx→−∞ F (x) = 0 and
limx→∞ F (x) = R(0) < ∞. The function F is determined uniquely by the formula (5.3) (in the class
of functions with the required properties).

Proof. (sketch of proof only)

1) Let R be a complex-valued function on R fulfilling Equation (5.3), where F is a non-decreasing,
right-continuous function with limx→−∞ F (x) = 0 and limx→∞ F (x) = R(0) < ∞. Then R is positive
semidefinite (similarly as in the proof of Theorem 5.4) and continuous (similarly as in the proof of
the continuity of the characteristic function of a random variable).

According to Theorem 2.6, there is a centered, weakly stationary random process with the autoco-
variance function R. Since R is continuous, specifically continuous at point 0, this process is mean
square continuous by Theorem 4.3.
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2) Let R be the autocovariance function of a centered, mean square continuous process. It is positive
semidefinite and continuous at point 0. The function F can be constructed analogously to the proof
of Theorem 5.4. For the proof that R satisfies Equation (5.3), see e.g. Anděl (1976), Section IV.2,
Theorem 2.

Remark: Compare Theorems 5.4 and 5.5: for the representation with discrete time it was enough to
consider F on a bounded interval, with continuous time it is necessary to consider F on R.

Remark: The function F from Equation (5.3) is called the spectral distribution function of a weakly
stationary, mean square continuous stochastic process. If F is absolutely continuous, its derivative
f is called the spectral density and we can write R(t) =

∫∞
−∞ eitλf(λ) dλ, t ∈ R.

Remark: Two different stochastic processes may have the same spectral distribution functions.

5.3 Existence and computation of spectral density

Remark: Below we establish a sufficient (but not necessary) condition for the existence of the spectral
density and an algorithmic way of determining it. We start with an auxiliary lemma.

Lemma 5.6. Let K be a complex-valued function on Z such that
∑∞

t=−∞ |K(t)| < ∞. Then

K(t) =

∫ π

−π
eitλf(λ) dλ, t ∈ Z,

where

f(λ) =
1

2π

∞∑
t=−∞

e−itλK(t), λ ∈ [−π, π].

Proof. Let K be such that
∑∞

t=−∞ |K(t)| < ∞ and define f(λ) = 1
2π

∑∞
t=−∞ e−itλK(t), λ ∈ [−π, π].

Since ∫ π

−π

∞∑
k=−∞

∣∣∣∣ 12π eitλe−ikλK(k)

∣∣∣∣ dλ < ∞

from the summability of K, Fubini theorem gives us that the following “double integral” exists and
we can interchange the order of integration and summation: for a given t ∈ Z,∫ π

−π
eitλf(λ) dλ =

∫ π

−π
eitλ

1

2π

∞∑
k=−∞

e−ikλK(k) dλ

=

∞∑
k=−∞

∫ π

−π

1

2π
ei(t−k)λK(k) dλ

=
1

2π

∞∑
k=−∞

K(k)

∫ π

−π
ei(t−k)λ dλ

= K(t),

where we used (5.2) in the last equality.

Theorem 5.7. Let {Xt, t ∈ Z} be a weakly stationary sequence such that its autocovariance func-
tion R fulfills

∑∞
k=−∞ |R(k)| < ∞. Then the spectral density of {Xt, t ∈ Z} exists and we have

f(λ) =
1

2π

∞∑
k=−∞

e−ikλR(k), λ ∈ [−π, π]. (5.4)
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Proof. Since
∑∞

k=−∞ |R(k)| < ∞, it follows from Lemma 5.6 that

R(t) =

∫ π

−π
eitλf(λ) dλ, t ∈ Z,

where

f(λ) =
1

2π

∞∑
k=−∞

e−ikλR(k), λ ∈ [−π, π].

To prove that f is the spectral density, it is enough to show that f(λ) ≥ 0, λ ∈ [−π, π], and recall
the uniqueness of the spectral decomposition.

We know from the proof of Theorem 5.4 that for every n ∈ N and λ ∈ [−π, π],

φn(λ) =
1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)(n− |κ|) ≥ 0.

We will now show that f(λ) = limn→∞ φn(λ), λ ∈ [−π, π]. For a given n ∈ N and λ ∈ [−π, π], we
have

f(λ)− φn(λ) =
1

2π

∑
|k|≥n

e−ikλR(k) +
1

2πn

n−1∑
k=−n+1

e−ikλR(k)|k|,

and

|f(λ)− φn(λ)| ≤

∣∣∣∣∣∣ 12π
∑
|k|≥n

e−ikλR(k)

∣∣∣∣∣∣+
∣∣∣∣∣ 1

2πn

n−1∑
k=−n+1

e−ikλR(k)|k|

∣∣∣∣∣
≤ 1

2π

∑
|k|≥n

|R(k)|+ 1

2πn

n−1∑
k=−n+1

|R(k)| · |k|.

We see that |f(λ)− φn(λ)| → 0, n → ∞, as the first sum forms the remainder of a convergent series
and the second sum converges to 0 from the Kronecker lemma. As a pointwise limit of non-negative
functions, f is a non-negative function.

Remark: The formula (5.4) is called the inverse formula for computing the spectral density of a weakly
stationary random sequence. It gives the discrete-time Fourier transform of the autocovariance
function R.

Remark: If
∑∞

k=−∞ |R(k)| = ∞, we do not know if the spectral density exists or not. See the exercise
classes for an example of a random sequence with a spectral density but having

∑∞
k=−∞ |R(k)| = ∞.

Theorem 5.8. Let {Xt, t ∈ R} be a centered, weakly stationary, mean square continuous random
process such that its autocovariance function R fulfills

∫∞
−∞ |R(t)| dt < ∞. Then the spectral density

of {Xt, t ∈ R} exists and we have

f(λ) =
1

2π

∫ ∞

−∞
e−itλR(t) dt, λ ∈ R. (5.5)

Proof. The proof is analogous to the computation of a probability density function using the inverse
Fourier transform of the characteristic function, see e.g. Štěpán (1987, Theorem IV.5.3).
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Remark: Equation (5.5) gives the Fourier transform of the autocovariance function R.

Remark: If {Xt, t ∈ R} is real-valued, we have R(t) = R(−t), t ∈ R, and from Equation (5.5) we get
f(λ) = f(−λ), λ ∈ R. A similar property holds in the discrete time case.

Example: Let {Xt, t ∈ Z} be the white noise sequence WN(0, σ2). The sequence is weakly stationary,
centered, with the autocovariance function R(t) = σ2 · δ(t), t ∈ Z, where δ(0) = 1 and δ(t) = 0 for
t ̸= 0. The summability condition

∑∞
t=−∞ |R(t)| = σ2 < ∞ is fulfilled, and according to Theorem 5.7,

the spectral density of {Xt, t ∈ Z} exists. Using the inverse formula (5.4) we get

f(λ) =
1

2π

∞∑
k=−∞

e−ikλR(k) =
1

2π
R(0) =

σ2

2π
, λ ∈ [−π, π].

This means that all frequencies contribute equally; hence the name white noise. By integration of
f(λ) we obtain

F (λ) =


0, λ ≤ −π,
σ2

2π (λ+ π), λ ∈ [−π, π],

σ2, λ ≥ π.

Example: In contrast with the previous example, consider the continuous-time white noise process
{Xt, t ∈ R}, i.e. the process of uncorrelated random variables with zero mean and the same (finite,
positive) variance. It follows that its autocovariance function is R(t) = σ2 · δ(t), t ∈ R. The
process {Xt, t ∈ R} is not mean square continuous and therefore no spectral representation of its
autocovariance function exists.

Example: Consider a weakly stationary sequence with the autocovariance function R(t) = a|t|, t ∈ Z,
for some |a| < 1. Later we will see that this is the autocovariance function of a causal autoregressive
sequence of order 1. Since

∞∑
t=−∞

|R(t)| =
∞∑

t=−∞
|a||t| = 1 + 2

∞∑
t=1

|a|t < ∞,

the spectral density exists and we can use the inverse formula (5.4) to get, for λ ∈ [−π, π],

f(λ) =
1

2π

∞∑
k=−∞

e−ikλa|k| =
1

2π

( ∞∑
k=0

e−ikλak +
0∑

k=−∞
e−ikλa−k − 1

)

=
1

2π

( ∞∑
k=0

(ae−iλ)k +
∞∑
k=0

(aeiλ)k − 1

)
=

1

2π

(
1

1− ae−iλ
+

1

1− aeiλ
− 1

)
=

1

2π

1− aeiλ + 1− ae−iλ − (1− aeiλ − ae−iλ + a2)

(1− ae−iλ)(1− aeiλ)
=

1

2π

1− a2

|1− ae−iλ|2

=
1

2π

1− a2

1− 2a cosλ+ a2
.

Example: Let {Xt, t ∈ R} be a centered, weakly stationary, mean square continuous process with the
spectral distribution function

F (λ) =


0, λ < −1,

1/2, −1 ≤ λ < 1,

1, λ ≥ 1.
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The spectral distribution function F is not absolutely continuous, therefore the spectral density does
not exist. Using the formula (5.3), we get

R(t) =

∫ ∞

−∞
eitλ dF (λ) =

1

2
e−it +

1

2
eit = cos t, t ∈ R.

The process is said to have a discrete spectrum with non-zero values at frequencies λ1 = −1, λ2 = 1.

24



6 Spectral representation of a stochastic process

The tools that we develop in this chapter will be useful in various proofs later in the course. However,
the representation of a random sequence or random process in terms of stochastic integrals can be
used e.g. for making predictions in the spectral domain or filtration of signal and noise.

In general, stochastic integration is a key tool for working with stochastic differential equations which
describe systems influenced by randomness. Examples of such systems include financial markets
(modeling of asset prices or interest rates; see e.g. the Black-Scholes model for option pricing),
signals with noise, biological populations, and more.

6.1 Orthogonal increment processes

Definition 6.1. Let T ⊂ R be an interval and {Xt, t ∈ T} be a stochastic process with finite second
moments. The process {Xt, t ∈ T} is an orthogonal increment process, if for any t1, . . . , t4 ∈ T such
that (t1, t2] ∩ (t3, t4] = ∅ we have

E(Xt2 −Xt1)(Xt4 −Xt3) = 0. (6.1)

Remark: The formula (6.1) means that the random variables Xt2 −Xt1 and Xt4 −Xt3 are orthogonal
in the space L2(Ω,A,P), i.e. ⟨Xt2 −Xt1 , Xt4 −Xt3⟩ = 0.

Remark: In the following we will consider only centered, right-mean square continuous processes on
T = [a, b], i.e. processes such that E|Xt −Xt0 |2 → 0, t → t0+, for any t0 ∈ [a, b).

Theorem 6.1. Let {Zλ, λ ∈ [a, b]} be a centered, orthogonal increment, right-mean square continuous
process, [a, b] a bounded interval. Then there is a unique non-decreasing, right-continuous function F
such that F (λ) = 0 for λ ≤ a, F (λ) = F (b) for λ ≥ b and

F (λ2)− F (λ1) = E|Zλ2 − Zλ1 |2, a ≤ λ1 < λ2 ≤ b. (6.2)

Proof. We start by defining the function F (λ) = E|Zλ − Za|2, λ ∈ [a, b], F (λ) = 0, λ ≤ a, and
F (λ) = F (b), λ ≥ b. We will show that this function is non-decreasing, right-continuous, and
satisfies the conditions of the theorem. Clearly, it is enough to consider λ ∈ [a, b] only.

Let a < λ1 < λ2 ≤ b. We have

F (λ2) = E|Zλ2 − Za|2 = E|(Zλ2 − Zλ1) + (Zλ1 − Za)|2

= E|Zλ2 − Zλ1 |2 + E|Zλ1 − Za|2 + E(Zλ2 − Zλ1)(Zλ1 − Za) + E(Zλ1 − Za)(Zλ2 − Zλ1)

= E|Zλ2 − Zλ1 |2 + F (λ1),

since the increments Zλ2 − Zλ1 and Zλ1 − Za are orthogonal. We have shown that (6.2) holds.
Furthermore, we have F (λ2)− F (λ1) = E|Zλ2 − Zλ1 |2 ≥ 0, meaning that F is non-decreasing.

The function F is also right-continuous, since E|Zλ2 − Zλ1 |2 → 0, λ2 → λ1+, due to the right-mean
square continuity of the process {Zλ, λ ∈ [a, b]}.

Concerning uniqueness, let G be a non-decreasing, right-continuous function that satisfies the as-
sumptions of the theorem. Then G(a) = 0 = F (a), and for λ ∈ (a, b] it holds that G(λ) =
G(λ)−G(a) = E|Zλ2 − Za|2 = F (λ)− F (a) = F (λ), meaning that G = F .

Definition 6.2. The bounded, non-decreasing, right-continuous function F from the previous the-
orem is the distribution function associated with the orthogonal increment process (or associated
distribution function or orthogonal distribution function).
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Example: TheWiener process {Wt, t ∈ [0, T ]} on a bounded interval [0, T ] has independent, stationary
increments. It follows that the process has orthogonal increments. The orthogonal distribution
function is

F (λ) =


0, λ ≤ 0,

σ2λ, 0 ≤ λ ≤ T,

σ2T, λ ≥ T.

Example: Let {W̃λ, λ ∈ [−π, π]} be the transformation of the Wiener process given by W̃λ =

W(λ+π)/2π, λ ∈ [−π, π]. The process {W̃λ, λ ∈ [−π, π]} is a Gaussian process with orthogonal in-
crements and the orthogonal distribution function

F (λ) =


0, λ ≤ −π,
σ2

2π (λ+ π), −π ≤ λ ≤ π,

σ2, λ ≥ π.

Note that we already know this function is the spectral distribution function of a white noise sequence.
Later in this chapter, we will establish a rigorous connection between these two objects.

6.2 Integral with respect to an orthogonal increment process

Background

Let [a, b] be a bounded interval and B([a, b]) the Borel sets on [a, b]. Furthermore, let {Zλ, λ ∈ [a, b]}
be a centered, right-mean square continuous process with orthogonal increments, defined on (Ω,A,P),
F its orthogonal distribution function and µF the finite measure induced by F . This means that for
a set B ∈ B([a, b]) we have µF (B) =

∫
B 1 dF (u), and as a special case we get µF ((c, d]) = F (d)−F (c)

for (c, d] ⊂ [a, b].

Let L2(F ) = L2([a, b],B([a, b]), µF ) be the space of measurable, complex-valued functions f on [a, b]
such that ∫ b

a
|f(λ)|2 dµF (λ) =

∫ b

a
|f(λ)|2 dF (λ) < ∞.

We define classes of equivalence on L2(F ) by the relation f ∼ g ⇐⇒ f = g µF -almost everywhere,

i.e. f ∼ g ⇐⇒
∫ b
a |f(λ) − g(λ)|2 dµF (λ) = 0. As before, working with the classes of equivalence

allows us to define a norm and have unique limits of Cauchy sequences.

The inner product on the classes of equivalence on L2(F ) is defined as

⟨f, g⟩ =
∫ b

a
f(λ)g(λ) dF (λ), f, g ∈ L2(F ).

The norm in L2(F ) is then

∥f∥ =

[∫ b

a
|f(λ)|2 dF (λ)

]1/2
, f ∈ L2(F ).

Convergence in L2(F ) is the convergence in the norm: fn → f in L2(F ) as n → ∞, if ∥fn−f∥2 → 0,

n → ∞, i.e.
∫ b
a |fn(λ)− f(λ)|2 dF (λ) → 0, n → ∞.

The space L2(F ) is complete with respect to the convergence defined above.
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Construction of the integral – simple functions

Let f ∈ L2(F ) be a simple function, i.e. we assume there is n ∈ N, a = λ0 < λ1 < . . . < λn = b and
c1, . . . , cn ∈ C such that

f(λ) =
n∑

k=1

ckJ(λk−1,λk](λ), λ ∈ [a, b],

where JA(·) is the indicator function. For uniqueness of representation, we assume that ck ̸= ck+1

for k = 1, 2, . . . , n− 1.

We define ∫
(a,b]

f(λ) dZ(λ) =
n∑

k=1

ck(Zλk
− Zλk−1

),

which is a random variable in L2(Ω,A,P). Instead of
∫
(a,b] f(λ) dZ(λ) we will write

∫ b
a f(λ) dZ(λ).

In the following we will denote I(f) =
∫ b
a f(λ) dZ(λ).

Theorem 6.2. Let {Zλ, λ ∈ [a, b]} be a centered, right-mean square continuous process with orthog-
onal increments and the orthogonal distribution function F . Let f, g be simple functions in L2(F )
and α, β ∈ C constants. Then

1. E
∫ b
a f(λ) dZ(λ) = 0,

2.
∫ b
a [αf(λ) + βg(λ)] dZ(λ) = α

∫ b
a f(λ) dZ(λ) + β

∫ b
a g(λ) dZ(λ),

3. E
(∫ b

a f(λ) dZ(λ)
)(∫ b

a g(λ) dZ(λ)
)
=
∫ b
a f(λ)g(λ) dF (λ).

Proof. 1. To set the notation, let f(λ) =
∑n

k=1 ckJ(λk−1,λk](λ), λ ∈ [a, b]. Then

E
∫ b

a
f(λ) dZ(λ) = E

n∑
k=1

ck(Zλk
− Zλk−1

) =

n∑
k=1

ckE(Zλk
− Zλk−1

) = 0,

since the process {Zλ, λ ∈ [a, b]} is centered.

2. Without loss of generality, we assume that f, g use the same division a = λ0 < λ1 < . . . < λn = b,
otherwise we use a common refinement of the two divisions. We use the following notation:

f(λ) =
n∑

k=1

ckJ(λk−1,λk](λ), g(λ) =
n∑

k=1

dkJ(λk−1,λk](λ), λ ∈ [a, b].

Then, ∫ b

a
[αf(λ) + βg(λ)] dZ(λ) =

n∑
k=1

(αck + βdk)(Zλk
− Zλk−1

)

= α

n∑
k=1

ck(Zλk
− Zλk−1

) + β
n∑

k=1

dk(Zλk
− Zλk−1

)

= α

∫ b

a
f(λ) dZ(λ) + β

∫ b

a
g(λ) dZ(λ).
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3. Let f, g be as above. Using orthogonality of the increments of {Zλ, λ ∈ [a, b]} we get

E
(∫ b

a
f(λ) dZ(λ)

)(∫ b

a
g(λ) dZ(λ)

)
= E

(
n∑

k=1

ck(Zλk
− Zλk−1

)

) n∑
j=1

dj(Zλj
− Zλj−1

)


=

n∑
k=1

ckdk E|Zλk
− Zλk−1

|2

=

n∑
k=1

ckdk(F (λk)− F (λk−1))

=

∫ b

a
f(λ)g(λ) dF (λ).

Remark: Property 3. in the theorem above is useful for computing the covariance of I(f) and I(g).
Also, note that

EI(f)I(g) = ⟨I(f), I(g)⟩L2(Ω,A,P) = ⟨f, g⟩L2(F ).

This means that the mapping I : L2(F ) → L2(Ω,A,P) is an isometry (see also the analogy of
property 3. for measurable functions in the theorem below).

Construction of the integral – measurable functions

Let f ∈ L2(F ) be a measurable function. The set of simple functions is dense in L2(F ) and its
closure is L2(F ). Hence, there is a sequence of simple functions fn ∈ L2(F ) such that fn → f in
L2(F ), n → ∞.

The integral I(fn) ∈ L2(Ω,A,P) has been defined above. The sequence {I(fn), n ∈ N} is Cauchy in
L2(Ω,A,P) since

E|I(fn)− I(fm)|2 = E(I(fn)− I(fm))(I(fn)− I(fm))

= EI(fn − fm)I(fn − fm)

=

∫ b

a
(fn(λ)− fm(λ))(fn(λ)− fm(λ) dF (λ)

=

∫ b

a
|fn(λ)− fm(λ)|2 dF (λ) → 0, m, n → ∞.

This holds because fn → f, n → ∞, in L2(F ) and hence the sequence {fn, n ∈ N} is Cauchy in
L2(F ).

The space L2(Ω,A,P) is complete. Therefore, there is the mean square limit I(f) = l.i.m.n→∞I(fn) =∫ b
a f(λ) dZ(λ). The limit is called the integral of f with respect to the orthogonal increment process
{Zλ, λ ∈ [a, b]}, or shortly the stochastic integral.

Note that I(f) does not depend on the choice of the approximating sequence {fn, n ∈ N}. To see
that, consider a function f ∈ L2(F ) and let {fn, n ∈ N}, {gn, n ∈ N} be sequences of simple functions
such that fn → f, gn → f, n → ∞, in L2(F ). Then I(fn) → I, I(gn) → J in the mean square, as
n → ∞.

We define the sequence {hn, n ∈ N} = {f1, g1, f2, g2, f3, . . .}. This is a sequence of simple functions
and hn → f, n → ∞, in L2(F ). It follows that {I(hn), n ∈ N} is Cauchy and there is a limiting
random variable K such that I(hn) → K,n → ∞, in the mean square.
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The mean square limit is uniquely determined (recall that we consider the classes of equivalence, not
the random variables themselves). Also, each selected subsequence of a convergent sequence has the
same limit. In our case, I(fn) → K, I(gn) → K,n → ∞, in the means square, and hence I = J = K.

Theorem 6.3. Let {Zλ, λ ∈ [a, b]} be a centered, right-mean square continuous process with orthogo-
nal increments and the orthogonal distribution function F . Let f, g ∈ L2(F ) and α, β ∈ C constants.
Then

1. EI(f) = E
∫ b
a f(λ) dZ(λ) = 0,

2. I(αf + βg) =
∫ b
a [αf(λ) + βg(λ)] dZ(λ) = α

∫ b
a f(λ) dZ(λ) + β

∫ b
a g(λ) dZ(λ) = αI(f) + βI(g),

3. EI(f)I(g) = E
(∫ b

a f(λ) dZ(λ)
)(∫ b

a g(λ) dZ(λ)
)
=
∫ b
a f(λ)g(λ) dF (λ).

Furthermore, let {fn, n ∈ N} ⊂ L2(F ), f ∈ L2(F ). Then

4. fn → f in L2(F ), n → ∞ ⇐⇒ I(fn) → I(f) in L2(Ω,A,P), n → ∞.

Proof. 1. Let f ∈ L2(F ) and {fn, n ∈ N} be a sequence of simple functions in L2(F ) such that
fn → f in L2(F ), n → ∞. Then I(f) = l.i.m.n→∞I(fn), and EI(f) = limn→∞ EI(fn) = 0.

2. Let f, g ∈ L2(F ) and {fn, n ∈ N}, {gn, n ∈ N} be sequences of simple functions in L2(F ) such
that fn → f, gn → g in L2(F ), n → ∞. It follows that I(fn) → I(f), I(gn) → I(g) in L2(Ω,A,P) (in
the mean square).

Consider the simple functions hn = αfn+βgn, n ∈ N. We have hn → h = αf +βg in L2(F ), n → ∞,
since ∫ b

a
|αfn(λ) + βgn(λ)− (αf(λ) + βg(λ))|2 dF (λ)

≤ 2|α|2
∫ b

a
|fn(λ)− f(λ)|2 dF (λ) + 2|β|2

∫ b

a
|gn(λ)− g(λ)|2 dF (λ) → 0, n → ∞.

We have

• hn = αfn + βgn is a simple function,

• I(hn) = I(αfn + βgn) = αI(fn) + βI(gn) by Theorem 6.2,

• hn → h in L2(F ) ⇒ I(hn) → I(h) in L2(Ω,A,P) (by construction of the stochastic integral),

• h = αf + βg is a measurable function,

• I(hn) → αI(f) + βI(g) in L2(Ω,A,P) since

E|αI(fn) + βI(gn)− (αI(f) + βI(g))|2

= E|α(I(fn)− I(f)) + β(I(gn)− I(g))|2

≤ 2|α|2 E|I(fn)− I(f)|2 + 2|β|2 E|I(gn)− I(g)|2 → 0, n → ∞.

It follows that I(hn) → I(h), n → ∞, but at the same time I(hn) → αI(f) + βI(g), n → ∞. The
uniqueness of the limit gives I(h) = αI(f) + βI(g).

3. Let f, g ∈ L2(F ) and {fn, n ∈ N}, {gn, n ∈ N} be sequences of simple functions in L2(F ) such that
fn → f, gn → g in L2(F ), n → ∞. Again, it follows that I(fn) → I(f), I(gn) → I(g) in L2(Ω,A,P).
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Continuity of the inner product in L2(Ω,A,P) gives

EI(fn)I(gn) = ⟨I(fn), I(gn)⟩ → ⟨I(f), I(g)⟩ = EI(f)I(g), n → ∞.

On the other hand, Theorem 6.2 and continuity of the inner product in L2(F ) give

EI(fn)I(gn) =
∫ b

a
fn(λ)gn(λ) dF (λ) = ⟨fn, gn⟩ → ⟨f, g⟩ =

∫ b

a
f(λ)g(λ) dF (λ), n → ∞.

Using the uniqueness of the limit, we see that EI(f)I(g) =
∫ b
a f(λ)g(λ) dF (λ).

4. Let f ∈ L2(F ) and {fn, n ∈ N} be a sequence of simple functions in L2(F ) such that fn → f in
L2(F ), n → ∞. From points 2 and 3 above, we have

E|I(fn)− I(f)|2 = E|I(fn − f)|2 =
∫ b

a
|fn(λ)− f(λ)|2 dF (λ),

which proves the claim.

Remark: The construction of the stochastic integral can be extended to unbounded intervals. Let
{Zλ, λ ∈ R} be a centered, right-mean square continuous process with orthogonal increments. The
function F defined by

F (λ2)− F (λ1) = E|Zλ2 − Zλ1 |2, −∞ < λ1 < λ2 < ∞,

is non-decreasing, right-continuous, and unique (up to an additive constant). If F is bounded,
it induces a finite measure µF , and for a measurable function f such that

∫∞
−∞ |f(λ)|2 dµF (λ) =∫∞

−∞ |f(λ)|2 dF (λ) < ∞, we can define
∫∞
−∞ f(λ) dZ(λ) = l.i.m.

∫ b
a f(λ) dZ(λ) for a → −∞, b → ∞.

6.3 Spectral decomposition of a stochastic process

Under certain assumptions, we can represent a random sequence or a stochastic process using stochas-
tic integrals with respect to an orthogonal increment process.

Theorem 6.4. Let {Zλ, λ ∈ [−π, π]} be a centered, right-mean square continuous process with
orthogonal increments and the orthogonal distribution function F . Let Xt, t ∈ Z, be random variables
defined as

Xt =

∫ π

−π
eitλ dZ(λ).

Then {Xt, t ∈ Z} is a centered, weakly stationary sequence with the spectral distribution function F .

Proof. The orthogonal distribution function F of {Zλ, λ ∈ [−π, π]} is bounded, non-decreasing,
right-continuous, with F (λ) = 0 for λ ≤ −π and F (λ) = F (π) for λ ≥ π. For t ∈ Z we define
a function

et(λ) = eitλ, λ ∈ [−π, π].

Note that this is simply a matter of notation to stress that we treat it as a function of λ. Then
et ∈ L2(F ) since ∫ π

−π
|et(λ)|2 dF (λ) =

∫ π

−π
1 dF (λ) = F (π)− F (−π) < ∞.

30



It follows that Xt =
∫ π
−π e

itλ dZ(λ) is a well-defined random variable for each t ∈ Z.

From Theorem 6.3 we have

EXt = E
∫ π

−π
eitλ dZ(λ) = 0 ∀t ∈ Z

(the sequence is centered) and

E|Xt|2 = E
∣∣∣∣∫ π

−π
eitλ dZ(λ)

∣∣∣∣2 = E
(∫ π

−π
eitλ dZ(λ)

)(∫ π

−π
eitλ dZ(λ)

)
=

∫ π

−π

∣∣∣eitλ∣∣∣2 dF (λ) =

∫ π

−π
1 dF (λ) = F (π)− F (−π) < ∞

(constant finite variance). Also, the autocovariance function of {Xt, t ∈ Z} is

R(t+ h, t) = cov(Xt+h, Xt) = E
(∫ π

−π
ei(t+h)λ dZ(λ)

)(∫ π

−π
eitλ dZ(λ)

)
=

∫ π

−π
eihλ dF (λ) = R(h), h ∈ Z

(translation invariance of the autocovariance function plus the defining property of the spectral
distribution function).

We conclude that {Xt, t ∈ Z} is centered and weakly stationary, and F has the same properties as
a spectral distribution function, see Theorem 5.4. The uniqueness of the spectral decomposition of
the autocovariance function implies that F is the spectral distribution function of {Xt, t ∈ Z}.

Remark: The important part of the previous theorem is that the orthogonal distribution function of
{Zλ, λ ∈ [−π, π]} and the spectral distribution function of {Xt, t ∈ Z} are the same.

Example: Let {W̃λ, λ ∈ [−π, π]} be the transformation of the Wiener process given by W̃λ =
W(λ+π)/2π, λ ∈ [−π, π]. Then, the random variables

Xt =

∫ π

−π
eitλ dW̃ (λ), t ∈ Z,

are centered, uncorrelated, with the same variance σ2, i.e. they form a white-noise sequence. It
follows from the fact that the spectral distribution function of {Xt, t ∈ Z} is the same as the

orthogonal distribution function of {W̃λ, λ ∈ [−π, π]}, which is the same as the spectral distribution
function of a white noise sequence, see the previous examples.

Theorem 6.5. Let {Xt, t ∈ Z} be a centered, weakly stationary sequence with the spectral distribution
function F . Then there is a centered, orthogonal increment process {Zλ, λ ∈ [−π, π]} such that

Xt =

∫ π

−π
eitλ dZ(λ), t ∈ Z, (6.3)

and

E|Z(λ)− Z(−π)|2 = F (λ), −π ≤ λ ≤ π.

Proof. See Brockwell and Davis (2006, Theorem 4.8.2).
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Remark: The formula (6.3) is called the spectral decomposition of a weakly stationary random se-
quence. Note that once again, the spectral distribution function of {Xt, t ∈ Z} is the same as the
orthogonal distribution function of {Zλ, λ ∈ [−π, π]}.

Remark: Theorem 6.5 states that all random variables Xt from a centered, weakly stationary random
sequence {Xt, t ∈ Z} can be approximated, in the mean square limit, by the sums

∑n
j=1 e

itλjYj of
uncorrelated random variables Yj , with varYj = F (λj)−F (λj−1), where F is the spectral distribution
function of {Xt, t ∈ Z}. To see this, recall the construction of the stochastic integral as a mean square
limit and set Yj = Zλj

−Zλj−1
. Then we get varYj = E|Zλj

−Zλj−1
|2 = F (λj)− F (λj−1), and from

the orthogonal increment property of {Zλ, λ ∈ [−π, π]} we get that the random variables Yj are
uncorrelated. Note that the same random variables Yj are used for each t ∈ Z.

Theorem 6.6. Let {Xt, t ∈ R} be a centered, weakly stationary, mean square continuous stochastic
process with the spectral distribution function F . Then there is a centered, orthogonal increment
process {Zλ, λ ∈ R} such that

Xt =

∫ ∞

−∞
eitλ dZ(λ), t ∈ R, (6.4)

and the orthogonal distribution function of {Zλ, λ ∈ R} is F .

Proof. See Priestley (1981, Chapter 4.11).

Remark: The formula (6.4) is called the spectral decomposition of a weakly stationary, mean square
continuous stochastic process.
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7 Linear models

7.1 White noise

Definition 7.1. Let {Yt, t ∈ Z} be a sequence of uncorrelated, centered random variables with finite
positive variance σ2. We call this sequence the white noise and denote this model by WN(0,σ2).

Remark: The white noise sequence {Yt, t ∈ Z} is weakly stationary, R(t) = σ2δ(t), t ∈ Z, i.e.

R(0) = σ2 and R(t) = 0 for t ̸= 0. The spectral density exists and is constant: f(λ) = σ2

2π , λ ∈ [−π, π],

and the spectral distribution function is F (λ) = σ2

2π (λ+ π), λ ∈ [−π, π]. The spectral decomposition
of the sequence is given by Yt =

∫ π
−π e

itλ dZ(λ), where {Zλ, λ ∈ [−π, π]} is an orthogonal increment
process. Its orthogonal distribution function is F , i.e. it coincides with the spectral distribution
function of the sequence {Yt, t ∈ Z}. Sample realizations of the white noise sequence are given in
Figure 5, and the autocovariance function and the spectral density are shown in Figure 6.
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Figure 5: Sample realizations of the white noise sequence with σ2 = 1. Note that these are discrete-
time sequences, and the lines joining the corresponding points in the plots are used only for clarity.
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Figure 6: Autocovariance function of the white noise sequence with σ2 = 1 (left) and the correspond-
ing spectral density (right).
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7.2 Moving average sequences

Definition 7.2. Let {Yt, t ∈ Z} be a white noise sequence WN(0,σ2) and b0, . . . , bn ∈ C, where
b0 ̸= 0, bn ̸= 0. The sequence {Xt, t ∈ Z} given by

Xt = b0Yt + b1Yt−1 + . . .+ bnYt−n, t ∈ Z, (7.1)

is called a moving average sequence of order n. We write simply MA(n).

Remark: The name moving average sequence is related to the special case with b0 = . . . = bn = 1
n+1

which gives the usual arithmetic mean.

Remark: Sample realizations of simple MA(1) models are given in Figure 7. The corresponding
autocovariance functions and spectral densities are shown in Figures 8 and 9, respectively.

Theorem 7.1. Let {Xt, t ∈ Z} be a moving average sequence of order n defined by (7.1). The
sequence is centered, weakly stationary, with the autocovariance function

RX(t) =


σ2
∑n−t

k=0 bk+tbk, 0 ≤ t ≤ n,

RX(−t), −n ≤ t ≤ 0,

0, |t| > n.

The spectral density of {Xt, t ∈ Z} exists and is given by

fX(λ) =
σ2

2π

∣∣∣∣∣
n∑

k=0

bke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

Proof. 1. EXt = 0, t ∈ Z, from the linearity of expectation.

2. We compute the autocovariance function in the time domain: for t, s ∈ Z, t ≥ 0, we have

cov(Xs+t, Xs) = EXs+tXs = E

 n∑
j=0

bjYs+t−j

( n∑
k=0

bkYs−k

)
=

n∑
j=0

n∑
k=0

bjbk EYs+t−jYs−k.

Note that EYs+t−jYs−k = σ2 if s + t − j = s − k, i.e. if j = t − k, and EYs+t−jYs−k = 0 otherwise.
It follows that

cov(Xs+t, Xs) =

{
σ2
∑n−t

k=0 bt+kbk, 0 ≤ t ≤ n,

0, t > n.

For t < 0, we proceed analogously. Since cov(Xs+t, Xs) depends on t only, weak stationarity follows.

3. Now we compute the autocovariance function in the spectral domain, but first we consider the
spectral decomposition of the white noise sequence {Yt, t ∈ Z}:

Yt =

∫ π

−π
eitλ dZY (λ), t ∈ Z,

where {ZY (λ), λ ∈ [−π, π]} is a centered, orthogonal increment process with the orthogonal distri-
bution function FY , which is also the spectral distribution function of {Yt, t ∈ Z}. We compute for
t ∈ Z:

Xt =

n∑
j=0

bjYt−j =

n∑
j=0

bj

[∫ π

−π
ei(t−j)λ dZY (λ)

]
=

∫ π

−π

 n∑
j=0

bje
i(t−j)λ

 dZY (λ)

=

∫ π

−π
eitλ

 n∑
j=0

bje
−ijλ

 dZY (λ) =

∫ π

−π
eitλg(λ) dZY (λ),
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Figure 7: Sample realizations of the MA(1) sequence with b0 = 1, b1 = 1 (left) and b0 = 1, b1 = −1
(right). In both cases σ2 = 1. Note that these are discrete-time sequences, and the lines joining the
corresponding points in the plots are used only for clarity.
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Figure 8: Autocovariance functions of the MA(1) sequence with b0 = 1, b1 = 1 (left) and b0 = 1, b1 =
−1 (right). In both cases σ2 = 1.
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Figure 9: Spectral densities of the MA(1) sequence with b0 = 1, b1 = 1 (left) and b0 = 1, b1 = −1
(right). In both cases σ2 = 1.
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where g(λ) =
∑n

j=0 bje
−ijλ, λ ∈ [−π, π]. Clearly, g ∈ L2(FY ). From the properties of the stochastic

integral we again get EXt = 0, t ∈ Z, and we can finally compute the autocovariance function. For
s, t ∈ Z we get

EXs+tXs = E
(∫ π

−π
ei(s+t)λg(λ) dZY (λ)

)(∫ π

−π
eisλg(λ) dZY (λ)

)
=

∫ π

−π
ei(s+t)λg(λ)e−isλg(λ) dFY (λ)

=

∫ π

−π
eitλ|g(λ)|2fY (λ) dλ

=

∫ π

−π
eitλ|g(λ)|2 σ2

2π
dλ = RX(t).

Uniqueness of the spectral decomposition of the autocovariance function (Theorem 5.4) proves that
σ2

2π |g(λ)|2, λ ∈ [−π, π], is the spectral density of {Xt, t ∈ Z}.

Remark: For real-valued constants b0, . . . , bn the autocovariance function of the MA(n) sequence
takes the form

RX(t) =

{
σ2
∑n−|t|

k=0 bkbk+|t|, |t| ≤ n,

0, |t| > n.

7.3 Linear processes

In this section, we generalize the MA(n) models to MA(∞) models. To do that, we first discuss the
summability of white noise sequences, and more generally of weakly stationary sequences (this will
be useful later when discussing linear filters and the AR(∞) representation).

Theorem 7.2. Let {Yt, t ∈ Z} be a white noise sequence WN(0,σ2) and {cj , j ∈ N0} be a sequence
of complex-valued constants.

1. If
∑∞

j=0 |cj |2 < ∞, the series
∑∞

j=0 cjYt−j converges in the mean square for each t ∈ Z, i.e.
for each t ∈ Z there is a random variable Xt such that

Xt = l.i.m.n→∞

n∑
j=0

cjYt−j .

2. If
∑∞

j=0 |cj | < ∞, the series
∑∞

j=0 cjYt−j converges for each t ∈ Z absolutely with probability 1.

Proof. 1. We will show that the sequence {
∑n

j=0 cjYt−j , n ∈ N} is a Cauchy sequence in L2(Ω,A,P)
for every t ∈ Z. Without loss of generality, we assume m < n. Random variables {Yt, t ∈ Z} are
uncorrelated, with constant variance σ2, and hence

E

∣∣∣∣∣∣
n∑

j=0

cjYt−j −
m∑
j=0

cjYt−j

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
n∑

j=m+1

cjYt−j

∣∣∣∣∣∣
2

=

n∑
j=m+1

|cj |2 E|Yt−j |2 = σ2
n∑

j=m+1

|cj |2.

The right-hand side converges to 0 with m,n → ∞, and it follows that there is the mean square
limit of {

∑n
j=0 cjYt−j , n ∈ N}. We denote it Xt =

∑∞
j=0 cjYt−j .
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2. Since E|Yt−j | ≤
(
E|Yt−j |2

)1/2
=

√
σ2 < ∞ by Cauchy-Schwarz inequality, we get

∞∑
j=0

E|cjYt−j | =
∞∑
j=0

|cj |E|Yt−j | ≤
√
σ2

∞∑
j=0

|cj | < ∞,

and thus
∑∞

j=0 |cjYt−j | < ∞ almost surely, see Rudin (2003, Theorem 1.38).

Theorem 7.3. Let {Xt, t ∈ Z} be a centered, weakly stationary random sequence with the autocovari-
ance function R. Let {cj , j ∈ N0} be a sequence of complex-valued constants such that

∑∞
j=0 |cj | < ∞.

Then, for each t ∈ Z, the series
∑∞

j=0 cjXt−j converges in the mean square and also absolutely with
probability 1.

Proof. 1. For m < n we have

E

∣∣∣∣∣∣
n∑

j=m+1

cjXt−j

∣∣∣∣∣∣
2

≤ E

 n∑
j=m+1

|cj | |Xt−j |

2

=

n∑
j=m+1

n∑
k=m+1

|cj | |ck|E|Xt−j | |Xt−k|.

From the weak stationarity and Cauchy-Schwarz inequality, we get

E|Xt−j | |Xt−k| ≤
(
E|Xt−j |2

)1/2 (E|Xt−k|2
)1/2

= R(0),

and thus

E

∣∣∣∣∣∣
n∑

j=m+1

cjXt−j

∣∣∣∣∣∣
2

≤ R(0)

 n∑
j=m+1

|cj |

2

→ 0, m, n → ∞.

It follows that
{∑n

j=0 cjXt−j , n ∈ N
}
is Cauchy in L2(Ω,A,P) and the mean square limit exists.

2. From the weak stationarity we also get

∞∑
j=0

E|cjXt−j | =
∞∑
j=0

|cj |E|Xt−j | ≤
√

R(0)
∞∑
j=0

|cj | < ∞,

and the rest of the proof follows as in the previous theorem.

Remark: Theorems 7.2 and 7.3 can be extended to
∑∞

j=−∞ cjYt−j and
∑∞

j=−∞ cjXt−j , t ∈ Z, respec-
tively.

Definition 7.3. Let {Yt, t ∈ Z} be a white noise sequence WN(0,σ2) and {cj , j ∈ N0} be a sequence
of complex-valued constants such that

∑∞
j=0 |cj | < ∞. The sequence {Xt, t ∈ Z} given by

Xt =
∞∑
j=0

cjYt−j , t ∈ Z, (7.2)

is called a causal linear process. We write MA(∞).

Remark: The causality of {Xt, t ∈ Z} with respect to {Yt, t ∈ Z} means that Xt depends on Ys for
s ≤ t (present and past values of the white noise), and that Xt does not depend on Ys for s > t
(future values of the white noise, from the perspective of Xt).

Remark: A general linear process can be defined as Xt =
∑∞

j=−∞ cjYt−j , t ∈ Z, for
∑∞

j=−∞ |cj | < ∞.

Remark: The weaker condition
∑∞

j=0 |cj |2 < ∞ implies only the mean square convergence. We
impose the stronger condition

∑∞
j=0 |cj | < ∞ so that we are able to prove Theorem 7.5 below.
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Theorem 7.4. Let {Xt, t ∈ Z} be a causal linear process defined by (7.2), where {Yt, t ∈ Z} is
a white noise sequence WN(0,σ2) and {cj , j ∈ N0} is a sequence of complex-valued constants such
that

∑∞
j=0 |cj | < ∞. The sequence is centered, weakly stationary, with the autocovariance function

RX(t) =

{
σ2
∑∞

k=0 ck+tck, t ≥ 0,

RX(−t), t ≤ 0.

The spectral density of {Xt, t ∈ Z} exists and is given by

fX(λ) =
σ2

2π

∣∣∣∣∣
∞∑
k=0

cke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

Proof. Note that:

• {X(n)
t , t ∈ Z}, where X

(n)
t =

∑n
j=0 cjYt−j , t ∈ Z, is a MA(n) sequence for each n ∈ N;

•
∑∞

j=0 |cj | < ∞ implies X
(n)
t → Xt, n → ∞, in the mean square, for each t ∈ Z;

• {X(n)
t , t ∈ Z} is a centered, weakly stationary random sequence with the autocovariance func-

tion given in Theorem 7.1;

• EXt = limn→∞ EX(n)
t = 0 for each t ∈ Z, since the mean square convergence preserves the first

two moments;

• Theorem 3.4 implies that the autocovariance functions of {X(n)
t , t ∈ Z} converge to the auto-

covariance function of {Xt, t ∈ Z}, and the weak stationarity of {Xt, t ∈ Z} follows, together
with the formula for its autocovariance function given in this theorem;

• the spectral decomposition of {X(n)
t , t ∈ Z} is

X
(n)
t =

∫ π

−π
eitλgn(λ) dZY (λ), t ∈ Z, gn(λ) =

n∑
j=0

cje
−ijλ, λ ∈ [−π, π],

where gn ∈ L2(FY ) and ZY is the orthogonal increment process from the spectral decomposition
of the white noise sequence {Yt, t ∈ Z} and FY is its orthogonal distribution function;

• denote g(λ) =
∑∞

j=0 cje
−ijλ, λ ∈ [−π, π], and compute:

∫ π

−π
|gn(λ)− g(λ)|2 dFY (λ) =

∫ π

−π

∣∣∣∣∣∣
∞∑

j=n+1

cje
−ijλ

∣∣∣∣∣∣
2

dFY (λ) ≤
∫ π

−π

 ∞∑
j=n+1

|cj |

2

fY (λ) dλ

=

∫ π

−π

 ∞∑
j=n+1

|cj |

2

σ2

2π
dλ = σ2

 ∞∑
j=n+1

|cj |

2

→ 0, n → ∞.

This means that gn → g, n → ∞, in L2(FY ). Theorem 6.3 implies that

X
(n)
t =

∫ π

−π
eitλgn(λ) dZY (λ) →

∫ π

−π
eitλg(λ) dZY (λ), n → ∞,

in the mean square. At the same time, X
(n)
t → Xt, n → ∞, in the mean square. Uniqueness

of the limit gives that Xt =
∫ π
−π e

itλg(λ) dZY (λ), t ∈ Z.
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• for s, t ∈ Z:

EXs+tXs = RX(s+ t, s) = E
∫ π

−π
ei(s+t)λg(λ) dZY (λ) ·

∫ π

−π
eisλg(λ) dZY (λ)

=

∫ π

−π
eitλ|g(λ)|2 dFY (λ) =

∫ π

−π
eitλ|g(λ)|2 σ

2

2π
dλ.

This provides the spectral decomposition of the autocovariance function of {Xt, t ∈ Z} – its

spectral density is fX(λ) = σ2

2π |g(λ)|
2, λ ∈ [−π, π].

Example: Let us consider a causal linear process with cj = φj , j = 0, 1, . . . , for some φ ∈ R with
|φ| < 1. We defineXt =

∑∞
j=0 cjYt−j , t ∈ Z, where {Yt, t ∈ Z} is WN(0,σ2). The sequence {Xt, t ∈ Z}

is a centered, weakly stationary random sequence. Its autocovariance function is

R(t) =

{
σ2 φt

1−φ2 , t ≥ 0,

R(−t) = R(−t), t ≤ 0.

Its spectral density is

f(λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

φje−ijλ

∣∣∣∣∣∣
2

=
σ2

2π

1

|1− φe−iλ|2
=

σ2

2π

1

1− 2φ cosλ+ φ2
, λ ∈ [−π, π].

Note that we can write

Xt =
∞∑
j=0

φjYt−j = Yt +
∞∑
j=1

φjYt−j = Yt + φ
∞∑
j=1

φj−1Yt−j

= Yt + φ
∞∑
k=0

φkYt−1−k = Yt + φXt−1, t ∈ Z.

This means that Xt depends linearly on the previous value Xt−1 and an error term Yt. Hence, we
can call {Xt, t ∈ Z} the autoregressive sequence of order 1. This motivates the following definition.

7.4 Autoregressive sequences

Definition 7.4. Let φ1, . . . , φn ∈ R, φn ̸= 0, be constants and let {Yt, t ∈ Z} be a white noise
sequence WN(0,σ2). A random sequence {Xt, t ∈ Z} which satisfies

Xt = φ1Xt−1 + . . .+ φnXt−n + Yt, t ∈ Z,

is called an autoregressive sequence of order n. We write AR(n).

Remark: The assumption φn ̸= 0 is needed to ensure that the order of the autoregressive sequence is
captured correctly. This will be important when studying the stationarity of autoregressive sequences
in the theorem below.

Remark: Equivalently, Xt can be defined by

Xt + a1Xt−1 + . . .+ anXt−n =
n∑

j=0

ajXt−j = Yt, t ∈ Z, (7.3)
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Figure 10: Sample realizations of the AR(1) sequence with a1 = 0.8 (left) and with a1 = −0.8
(right). In both cases σ2 = 1. Note that these are discrete-time sequences, and the lines joining the
corresponding points in the plots are used only for clarity.
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Figure 11: Autocovariance functions of the AR(1) sequence with a1 = 0.8 (left) and with a1 = −0.8
(right). In both cases σ2 = 1.
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Figure 12: Spectral densities of the AR(1) sequence with a1 = 0.8 (left) and with a1 = −0.8 (right).
In both cases σ2 = 1.
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where a0 = 1. Sample realizations of AR(1) sequences are given in Figure 10. The corresponding
autocovariance functions and spectral densities are shown in Figures 11 and 12, respectively.

Remark: Now we look for conditions under which we can express {Xt, t ∈ Z} as a causal linear
process. Such a representation would, among others, imply weak stationarity of the sequence. The
key tool will be the lag operator B defined below.

Let S be the vector space of all random sequences {Xt, t ∈ Z} defined on the probability space
(Ω,A,P), with the addition defined as {Xt, t ∈ Z}+{Yt, t ∈ Z} = {Xt+Yt, t ∈ Z} and multiplication
by c ∈ C defined as c · {Xt, t ∈ Z} = {cXt, t ∈ Z}. The lag operator B : S → S is defined as

B{Xt, t ∈ Z} = {Xt−1, t ∈ Z}.

More explicitly, we can write B{Xt, t ∈ Z} = {X̃t, t ∈ Z}, where X̃t = Xt−1, t ∈ Z. Also, we
define B0 to be the identity operator, and Bk, k ∈ N, is defined iteratively as Bk{Xt, t ∈ Z} =
B
(
Bk−1{Xt, t ∈ Z}

)
= {Xt−k, t ∈ Z}. Finally, B is invertible and we can write B−1{Xt, t ∈ Z} =

{Xt+1, t ∈ Z}.

The lag operator B is clearly linear and we can construct polynomial operators such as a(B) =
B0 + a1B + . . . anB

n, formally identical to the algebraic operator a(z) = 1 + a1z + . . . , anz
n, z ∈ C.

Remark: Using the lag operator, we may rewrite the model equation (7.3) as a(B){Xt, t ∈ Z} =
{Yt, t ∈ Z}.

Theorem 7.5. Let {Xt, t ∈ Z} be an autoregressive sequence of order n defined by (7.3). {Xt, t ∈ Z}
is a causal linear process if and only if all the roots of the polynomial a(z) = 1+ a1z+ . . .+ anz

n lie
outside of the unit circle in C, i.e. a(z) ̸= 0 for |z| ≤ 1. If {Xt, t ∈ Z} is a causal linear process, the
coefficients {cj , j ∈ N0} in the representation Xt =

∑∞
j=0 cjYt−j , t ∈ Z, are given by

c(z) =
∞∑
j=0

cjz
j =

1

a(z)
, |z| ≤ 1.

The autocovariance function is

RX(t) =

{
σ2
∑∞

k=0 ck+tck, t ≥ 0,

RX(−t), t ≤ 0,

and the spectral density is

fX(λ) =
σ2

2π

1

|
∑n

j=0 aje
−ijλ|2

, λ ∈ [−π, π],

where a0 = 1.

Proof. 1. We assume that all the roots of the polynomial a(z) lie outside of the unit circle in C.
Let z1, . . . , zn ∈ C be the roots of a(z). Let δ > 0 be such that mini=1,...,n |zi| ≥ 1 + δ > 1. Denote
M = {z ∈ C : |z| < 1 + δ}, then a(z) ̸= 0 for z ∈ M . Furthermore, c(z) = 1

a(z) is holomorphic on

M , i.e. it has derivative in each point of M , see Rudin (2003, p. 221). It follows that c(z) can be
expressed as a power series (Rudin, 2003, Theorem 10.16):

c(z) =
∞∑
j=0

cjz
j , z ∈ M.

This series converges absolutely in every closed circle with radius r < 1+ δ, implying
∑∞

j=0 |cj | < ∞
and c(z)a(z) = 1, |z| ≤ 1, i.e. c(z) and a(z) are inverse operators. Thus,

{Xt, t ∈ Z} = c(B)a(B){Xt, t ∈ Z} = c(B){Yt, t ∈ Z}.
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It follows that Xt =
∑∞

j=0 cjYt−j , t ∈ Z, and we have proved that {Xt, t ∈ Z} is a causal linear
process that satisfies the assumptions of Theorem 7.4. It follows that {Xt, t ∈ Z} is centered, weakly
stationary, with the autocovariance function of the given form, and the spectral density

fX(λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

cje
−ijλ

∣∣∣∣∣∣
2

=
σ2

2π

∣∣∣c(e−iλ)
∣∣∣2 = σ2

2π

1

|a(e−iλ)|2
=

σ2

2π

1

|
∑n

j=0 aje
−ijλ|2

, λ ∈ [−π, π].

2. Now we assume that {Xt, t ∈ Z} is a causal linear process, i.e. there is a sequence of constants
{cj , j ∈ N0} with

∑∞
j=0 |cj | < ∞ such that Xt =

∑∞
j=0 cjYt−j , t ∈ Z, in other words, {Xt, t ∈ Z} =

c(B){Yt, t ∈ Z}.

From the model equation (7.3), we obtain

{Yt, t ∈ Z} = a(B){Xt, t ∈ Z} = a(B)c(B){Yt, t ∈ Z}.

We define

η(z) = a(z)c(z) =
∞∑
j=0

ηjz
j , |z| ≤ 1,

and see that

{Yt, t ∈ Z} = a(B)c(B){Yt, t ∈ Z} = η(B){Yt, t ∈ Z},

and hence Yt =
∑∞

j=0 ηjYt−j , t ∈ Z. Now we compare the coefficients on both sides (formally speaking,
on both sides of the equation, we take the inner product with Yt−k, k = 0, 1, 2, . . .) to obtain η0 =
1, ηk = 0, k = 1, 2, . . . It follows that η(z) = 1, |z| ≤ 1. Since |c(z)| < ∞ for |z| ≤ 1, we have a(z) ̸= 0
for |z| ≤ 1 and all roots of a(z) lie outside of the unit circle.

Remark: The coefficients {cj , j ∈ N0} can be obtained by decomposing c(z) = 1
a(z) using partial

fractions. Assuming for simplicity that all the roots of the polynomial a(z) are simple, we denote them
z1, . . . , zn. We also assume that the roots all lie outside of the unit circle, i.e. |zj | ≥ 1+δ, j = 1, . . . , n,
for some δ > 0. For |z| ≤ 1 we get

c(z) =
1

a(z)
=

A1

z1 − z
+

A2

z2 − z
+ . . .+

An

zn − z

for some constants A1, . . . , An. For |z| ≤ 1 and |zj | > 1 we have, for j = 1, . . . , n,

Aj

zj − z
=

Aj

zj (1− z/zj)
=

Aj

zj

∞∑
k=0

(
z

zk

)k

,

and hence

c(z) =
n∑

j=1

Aj

zj − z
=

n∑
j=1

Aj

zj

∞∑
k=0

(
z

zk

)k

=
∞∑
k=0

zk
n∑

j=1

Aj

zk+1
j

=
∞∑
k=0

ckz
k,

where

ck =
n∑

j=1

Aj

zk+1
j

.
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Since

|ck| <
1

(1 + δ)k+1

n∑
j=1

|Aj |,

we have
∑∞

k=0 |ck| < ∞. Also, for |z| ≤ 1 it holds that c(z)a(z) = 1 and we can write

{Xt, t ∈ Z} = c(B)a(B){Xt, t ∈ Z} = c(B){Yt, t ∈ Z}.

It follows that Xt =
∑∞

j=0 cjYt−j , t ∈ Z.

Remark: Another way of obtaining the values of {ck, k ∈ N0} is to compare the coefficients with the
same powers of z on both sides of the equation a(z)c(z) = 1, where a0 = 1 and a1, . . . , an are known
while c0, c1, . . . are to be determined:

c0 = 1,

c1 + a1c0 = 0,

c2 + a1c1 + a2c0 = 0,

. . .

cp + a1cp−1 + . . .+ ancp−n = 0, p = n, n+ 1, . . . (7.4)

Formally, this procedure is equivalent to plugging Xt =
∑∞

j=0 cjYt−j into Equation (7.3) and compar-
ing the coefficients with the same Yt−k. To find the coefficients, we need to solve the homogeneous
difference equation (7.4) with constant coefficients and initial conditions for c0, c1, . . . , cn−1. The
initial conditions can be determined from the first n equations above.

Remark: If z1, . . . , zn are the roots of the polynomial a(z) = 1+ a1z+ . . .+ anz
n, then λi = 1/zi, i =

1, . . . , n, are the roots of the polynomial L(z) = zn+a1z
n−1+. . .+an. It is easy to prove this directly.

Hence, an AR(n) sequence is a causal linear process if and only if all the roots of the polynomial
L(z) lie inside of the unit circle in C, i.e. |λi| < 1, i = 1, . . . , n.

Remark: In general, it is difficult to find the roots of the polynomials a(z) or L(z). There are
interesting results concerning the localization of the roots of polynomials inside/outside of the unit
circle in C without determining the actual roots, see e.g. the Schur-Cohn criterion.

Yule-Walker equations

While Theorem 7.5 provides an expression for the autocovariance function of the autoregressive
sequence, it relies on the knowledge of the coefficients {cj , j ∈ N0}. A different way of computing the
autocovariance function is provided by the so-called Yule-Walker equations. For clarity, we write in
the following simply R in place of RX for the autocovariance function of the autoregressive sequence.

Let the sequence {Xt, t ∈ Z} satisfy

Xt + a1Xt−1 + . . .+ anXt−n = Yt, t ∈ Z, (7.5)

this time with a1, . . . , an ∈ R and {Yt, t ∈ Z} being a real-valued white noise sequence WN(0,σ2).
Assume that the sequence {Xt, t ∈ Z} satisfies the conditions of Theorem 7.5. Hence, {Xt, t ∈ Z}
is a real-valued causal linear process, meaning the sequence is centered, weakly stationary and its
autocovariance function is symmetric: R(−t) = R(t), t ∈ Z. We also have the representation Xt =∑∞

j=0 cjYt−j , t ∈ Z.

Since the sequence {Yt, t ∈ Z} consists of uncorrelated random variables, continuity of the inner
product implies for s < t, s, t ∈ Z, that

EXsYt = ⟨Xs, Yt⟩ = lim
n→∞

〈
n∑

j=0

cjYs−j , Yt

〉
= 0.
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Now we multiply both sides of Equation (7.5) by Yt and take expectation:

EXtYt + a1EXt−1Yt + . . .+ EXt−nYt = EY 2
t = σ2.

This means that EXtYt = σ2, t ∈ Z. Similarly, we multiply both sides of Equation (7.5) by Xt−k,
k ∈ N0, and take expectation:

EXtXt−k + a1EXt−1Xt−k + . . .+ EXt−nXt−k = EYtXt−k, k = 0, 1, 2, . . .

The sequence {Xt, t ∈ Z} is centered and real-valued, and we can write R(s, t) = EXsXt, s, t ∈ Z.
Also, weak stationarity means that we can work with the function of a single argument R(t) only. It
follows that

R(0) + a1R(1) + . . .+ anR(n) = σ2, (k = 0) (7.6)

R(k) + a1R(k − 1) + . . .+ anR(k − n) = 0, k = 1, 2, . . . (7.7)

These are called the Yule-Walker equations. Note that the coefficients a1, . . . , an are known here,
and the values of R are to be computed. This means that we need to solve the difference equation
(7.7) with the initial conditions obtained by solving the set of equations for k = 0, 1, . . . , n− 1.

For autoregressive sequences, we can use a trick to reduce the size of the set of equations needed to
find the initial conditions for the difference equation. Instead of working with the autocovariance
function R, we work with the autocorrelation function r, using the relation r(t) = R(t)/R(0), t ∈ Z.
We divide both sides of Equation (7.7) by R(0) and we get, using r(0) = 1 and the symmetry
r(−t) = r(t), t ∈ Z,

r(1) + a1 + a2r(1) + a3r(2) + . . .+ anr(n− 1) = 0,

r(2) + a1r(1) + a2 + a3r(1) + . . .+ anr(n− 2) = 0,

· · ·
r(n− 1) + a1r(n− 2) + . . .+ anr(1) = 0.

We solve this system of equations to find the values of r(1), . . . , r(n − 1). This is enough since we
already know that r(0) = 1. Together, these values serve as the initial conditions for the difference
equation

r(k) + a1r(k − 1) + . . .+ r(k − n) = 0, k ≥ n.

The characteristic polynomial corresponding to this difference equation is

λn + a1λ
n−1 + . . .+ an−1λ+ an = L(λ), λ ∈ C.

Solving the difference equation, we find the values r(k), k ∈ N0.

Finally, we plug in R(k) = r(k)R(0), k ∈ Z, into Equation (7.6) to get

R(0) (1 + a1r(1) + . . .+ anr(n)) = σ2,

and hence

R(0) =
σ2

1 + a1r(1) + . . .+ anr(n)
.

In this way, all the values of R(k), k ∈ Z, are now determined.

Example: Let {Xt, t ∈ Z} be an AR(1) sequence following the model Xt + aXt−1 = Yt, t ∈ Z,
for some a ∈ R with |a| < 1, where {Yt, t ∈ Z} is a real-valued white noise sequence WN(0,σ2).
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The polynomial a(z) = 1 + az has root −1/a which lies outside of the unit circle. It follows that
{Xt, t ∈ Z} is a centered, weakly stationary, causal linear process. Using the procedure described
above, we obtain the equations

R(0) + aR(1) = σ2,

R(k) + aR(k − 1) = 0, k ≥ 1,

r(k) + a r(k − 1) = 0, k ≥ 1.

In this case, the initial condition is very simple: r(0) = 1. It follows that

r(1) = −a,

r(2) = −a r(1) = (−a)2,

r(k) = −a r(k − 1) = (−a)k, k = 0, 1, 2, . . .

The value of the variance R(0) is determined from the only equation containing σ2,

R(0) =
σ2

1 + a r(1)
=

σ2

1− a2
.

In conclusion, R(k) = σ2 (−a)k

1−a2
, k = 0, 1, 2, . . . Note that this is the same result as in the example at

the end of Section 7.3.

Remark: Consider an AR(1) sequenceXt+aXt−1 = Yt, t ∈ Z, with |a| > 1. This sequence is not causal
but we can still investigate its properties. To do that, we rewrite the model as Xt = φXt−1+Yt, t ∈ Z,
where φ = −a. We can write Xt+1 = φXt + Yt+1 and hence Xt = φ−1Xt+1 − φ−1Yt+1. Iteratively
plugging in the corresponding formulas we obtain

Xt = −φ−1Yt+1 + φ−1
(
φ−1Xt+2 − φ−1Yt+2

)
= −φ−1Yt+1 − φ−2Yt+2 + φ−2Xt+2 = . . .

In this way we obtain the representation Xt = −
∑∞

k=1 φ
−kYt+k, t ∈ Z, using the future values of

the white noise sequence. The coefficients in the representation are summable in the appropriate
way, i.e.

∑∞
k=1

∣∣φk
∣∣ < ∞, and hence Xt is a well-defined random variable for each t ∈ Z. From this

representation, we get that {Xt, t ∈ Z} is a centered, weakly stationary sequence, see Section 7.6 on
linear filters.

7.5 ARMA sequences

Trying to generalize the concept of autoregressive sequences, we might consider the case where
the innovations {Yt, t ∈ Z} are not uncorrelated (white noise), but instead have some correlation
structure. In the following, we assume that the innovations have the structure of an MA(n) sequence,
resulting in a more flexible model. The same class of models is obtained if we take moving averages
from an autoregressive sequence.

Definition 7.5. Let a1, . . . , am ∈ R, b1, . . . , bn ∈ R, am ̸= 0, bn ̸= 0, be constants and let {Yt, t ∈ Z}
be a white noise sequence WN(0,σ2). A random sequence {Xt, t ∈ Z} which satisfies

Xt + a1Xt−1 + . . .+ amXt−m = Yt + b1Yt−1 + . . .+ bnYt−n, t ∈ Z, (7.8)

is called an ARMA sequence of order m and n. We write ARMA(m,n).

Remark: Both the MA(n) and AR(m) models are special cases of ARMA models. Sample realizations
of ARMA(1,1) sequences are given in Figure 13. The corresponding autocovariance functions and
spectral densities are shown in Figures 14 and 15, respectively.

Remark: Let us define the following polynomials: a(z) = 1 + a1z + . . .+ amzm and b(z) = 1 + b1z +
. . .+ bnz

n, z ∈ C. Then, we can write a(B){Xt, t ∈ Z} = b(B){Yt, t ∈ Z}.
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Figure 13: Sample realizations of the ARMA(1,1) sequence with a1 = 0.8, b1 = 1 (left) and with
a1 = −0.8, b1 = 1 (right). In both cases σ2 = 1. Note that these are discrete-time sequences, and
the lines joining the corresponding points in the plots are used only for clarity.
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Figure 14: Autocovariance functions of the ARMA(1,1) sequence with a1 = 0.8, b1 = 1 (left) and
with a1 = −0.8, b1 = 1 (right). In both cases σ2 = 1.
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a1 = −0.8, b1 = 1 (right). In both cases σ2 = 1.
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Causality of ARMA sequences

Theorem 7.6. Let {Xt, t ∈ Z} be an ARMA(m,n) sequence defined by (7.8) and assume that the
polynomials a(z) = 1 + a1z + . . . + amzm and b(z) = 1 + b1z + . . . + bnz

n have no common roots.
{Xt, t ∈ Z} is a causal linear process if and only if all the roots of the polynomial a(z) lie outside of
the unit circle in C, i.e. a(z) ̸= 0 for |z| ≤ 1.

If {Xt, t ∈ Z} is a causal linear process, the coefficients {cj , j ∈ N0} in the representation Xt =∑∞
j=0 cjYt−j , t ∈ Z, are given by

c(z) =
∞∑
j=0

cjz
j =

b(z)

a(z)
, |z| ≤ 1,

the autocovariance function is

RX(t) =

{
σ2
∑∞

k=0 ck+tck, t ≥ 0,

RX(−t), t ≤ 0,

and the spectral density is

fX(λ) =
σ2

2π

|
∑n

j=0 bje
−ijλ|2

|
∑m

k=0 ake
−ikλ|2

, λ ∈ [−π, π],

where a0 = b0 = 1.

Proof. Similar to the proof of Theorem 7.5.

Remark: If the polynomials a(z), b(z) have common roots which lie outside of the unit circle, then the

rational function c(z) = b(z)
a(z) , after canceling the terms corresponding to the common roots, defines

an ARMA(p, q) model with p < m, q < n. If at least one of the common roots lies in the unit circle,
there may be more than one weakly stationary solution (Brockwell and Davis, 2006, p. 86).

Yule-Walker equations

Assuming the ARMA sequence {Xt, t ∈ Z} from Theorem 7.6 is a causal linear process, we multiply
the representation Xt =

∑∞
j=0 cjYt−j , t ∈ Z, by Yt−k, k ∈ Z, and by taking expectation of both sides

we obtain EXtYt−k = ckσ
2 for k ≥ 0, and EXtYt−k = 0 otherwise (causality implies that EXsYt = 0

for each s < t).

Now we multiply both sides of Equation (7.8) by Xt−k, k ∈ N0, and take expectation:

EXtXt−k +

m∑
j=1

ajEXt−jXt−k = EYtXt−k +

n∑
j=1

bjEYt−jXt−k, k = 0, 1, 2, . . .

As in Section 7.4, we assume that {Yt, t ∈ Z} is real-valued, meaning that {Xt, t ∈ Z} is real-valued
and its autocovariance function is symmetric: R(−k) = R(k), k ∈ Z. It follows that

R(k) +

m∑
j=1

ajR(k − j) = σ2
n∑

j=k

bjcj−k, (k ≤ n) (7.9)

R(k) +
m∑
j=1

ajR(k − j) = 0, (k > n) (7.10)
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where b0 = 1. For k ≥ n+ 1 (to have 0 on the right-hand side) and k ≥ m (so that on the left-hand
side we avoid the restrictions such as R(−1) = R(1)) we solve the difference equation (7.10) with
the initial conditions obtained from the system of linear equations with k < max(m,n+ 1).

Example: Consider an ARMA(1,1) sequence following the model Xt + aXt−1 = Yt + bYt−1, t ∈ Z,
where a ̸= b, a ̸= 0, b ̸= 0, |a| < 1, and {Yt, t ∈ Z} is a real-valued white noise sequence WN(0,σ2).
The sequence {Xt, t ∈ Z} is causal, and hence EXtYs = 0 for s > t.

Multiplying the model equation by Yt and taking the expectation, we obtain, for each t ∈ Z,

EXtYt = σ2.

Similarly, we multiply the model equation by Yt−1 and take the expectation to get

EXtYt−1 + aEXt−1Yt−1 = bσ2,

EXtYt−1 + aσ2 = bσ2,

EXtYt−1 = σ2(b− a).

Furthermore, we multiply by Xt:

EX2
t + aEXtXt−1 = EXtYt + bEXtYt−1,

R(0) + aR(1) = σ2 + bσ2(b− a) = σ2(1 + b(b− a)).

Next, we multiply by Xt−1:

R(1) + aR(0) = 0 + bσ2.

Finally, we multiply by Xt−k for k ≥ 2:

R(k) + aR(k − 1) = 0.

This is a homogeneous difference equation of order 1. Its general solution is R(k) = (−a)k−1R(1),
k ≥ 1. The initial condition is obtained by solving the system of two linear equations above containing
R(0), R(1) and σ2. The solution is

R(0) =
1

1− a2
[
σ2(1− 2ab+ b2)

]
,

R(1) =
1

1− a2
[
σ2(b− a)(1− ab)

]
.

Invertibility of ARMA sequences

We have seen that under certain conditions an ARMA sequence is causal, i.e. it is possible to express
it as Xt =

∑∞
j=0 cjYt−j , t ∈ Z. Now we will investigate if it is possible to invert such representation,

i.e. to write Yt =
∑∞

j=0 djXt−j , t ∈ Z. This would be useful when making predictions, see Section 9.3.

Definition 7.6. Let {Xt, t ∈ Z} be an ARMA(m,n) sequence defined by Equation (7.8), where
{Yt, t ∈ Z} is a white noise sequence WN(0,σ2). The sequence {Xt, t ∈ Z} is called invertible, if
there is a sequence of constants {dj , j ∈ N0} such that

∑∞
j=0 |dj | < ∞ and Yt =

∑∞
j=0 djXt−j , t ∈ Z.

Remark: If {Xt, t ∈ Z} is weakly stationary, e.g. under causality, the definition is correct since
by Theorem 7.3 we obtain that

∑∞
j=0 djXt−j converges almost surely for any t ∈ Z provided that∑∞

j=0 |dj | < ∞.
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Theorem 7.7. Let {Xt, t ∈ Z} be a weakly stationary ARMA(m,n) sequence defined by (7.8). Let
the polynomials a(z) and b(z) have no common roots. {Xt, t ∈ Z} is invertible if and only if all the
roots of the polynomial b(z) lie outside of the unit circle in C, i.e. b(z) ̸= 0 for |z| ≤ 1.

If {Xt, t ∈ Z} is invertible, the coefficients {dj , j ∈ N0} in the representation Yt =
∑∞

j=0 djXt−j ,
t ∈ Z, are given by

d(z) =

∞∑
j=0

djz
j =

a(z)

b(z)
, |z| ≤ 1.

Proof. Similar to the proof of Theorem 7.5.

Remark: By taking z = 0 we see that d(0) = a(0)/b(0) and hence d0 = 1. It follows that Xt +∑∞
j=1 djXt−j = Yt, t ∈ Z. We call this the AR(∞) representation of an invertible, weakly stationary

ARMA(m,n) sequence.

7.6 Linear filters

Definition 7.7. Let {Yt, t ∈ Z} be a centered, weakly stationary random sequence. Let {cj , j ∈ Z} be
a sequence of complex-valued constants such that

∑∞
j=−∞ |cj | < ∞. We say that a random sequence

{Xt, t ∈ Z} is obtained by filtration of the sequence {Yt, t ∈ Z}, if

Xt =
∞∑

j=−∞
cjYt−j , t ∈ Z.

The sequence {cj , j ∈ Z} is called a time-invariant linear filter. Provided that cj = 0 for each j < 0,
the filter is called causal.

Remark: The sum in the definition above is absolutely convergent almost surely, see Theorem 7.3
and the remark below it.

Remark: Linear filters are one of the key tools in the field of signal processing. For illustration,
consider a simple low-pass filter (which removes high frequencies) applied to a noisy signal, see
Figure 16. While not perfectly reconstructing the original periodic signal, the filtering successfully
removes the noise component of the observed sequence.

Remark: Finding the coefficients of a linear filter with the desired properties (transfer function) is
not a trivial task, but established methods are available, see e.g. the Parks-McClellan algorithm.

Remark: The linear process MA(∞) is obtained by causal filtration of a white-noise sequence. This
means that Theorem 7.4 is a special case of the following theorem.

Theorem 7.8. Let {Yt, t ∈ Z} be a centered, weakly stationary random sequence with the auto-
covariance function RY and the spectral density fY . Let {cj , j ∈ Z} be a linear filter such that∑∞

j=−∞ |cj | < ∞. Then the sequence {Xt, t ∈ Z} defined as Xt =
∑∞

j=−∞ cjYt−j , t ∈ Z, is a cen-
tered, weakly stationary sequence with the autocovariance function

RX(t) =

∞∑
j=−∞

∞∑
k=−∞

cjckRY (t− j + k), t ∈ Z,

and the spectral density

fX(λ) = |Ψ(λ)|2fY (λ), λ ∈ [−π, π],

where Ψ(λ) =
∑∞

k=−∞ cke
−ikλ, λ ∈ [−π, π], is called the transfer function of the linear filter.
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Figure 16: Top left: a periodic signal. Top right: observation {Yt, t ∈ Z} of the periodic signal with
additive noise. Bottom left: coefficients of the low-pass filter {cj , j ∈ Z}, only the non-zero values
are shown. Bottom right: the resulting sequence {Xt, t ∈ Z}. Note that these are discrete-time
sequences, and the lines joining the corresponding points in the plots are used only for clarity.

Proof. The proof is analogous to the proof of Theorem 7.4, starting with Xt = l.i.m. X
(n)
t , where

X
(n)
t =

∑n
j=−n cjYt−j , t ∈ Z.

Example: Let {Yt, t ∈ Z} be a white noise sequence, and define {Xt, t ∈ Z} by Xt = φXt−1+Yt, t ∈ Z,
for |φ| > 1. We have shown before that the sequence {Xt, t ∈ Z} is not causal, but we can write
Xt = −

∑∞
k=1 φ

−kYt+k, t ∈ Z. This means that {Xt, t ∈ Z} is obtained from {Yt, t ∈ Z} by linear
filtration with coefficients

ck =

{
0, k ≥ 0,

−φk, k < 0.

Since these coefficients are absolutely summable, it follows by Theorem 7.8 that {Xt, t ∈ Z} is
a weakly stationary sequence, i.e. the behavior of the sequence is nice. The autocovariance function
of {Xt, t ∈ Z} can be easily determined from Theorem 7.8, too.

Remark: Note that causality is a property of the pair ({Xt, t ∈ Z}, {Yt, t ∈ Z}), not the sequence
{Xt, t ∈ Z} alone. In fact, it can be shown that any non-causal AR(1) sequence (Xt = φXt−1 +
Yt, t ∈ Z, with |φ| > 1) is a causal AR(1) sequence with respect to a different white noise sequence
{Ỹt, t ∈ Z}.
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8 Ergodicity

Definition 8.1. Let the random sequence {Xt, t ∈ Z} be weakly stationary with mean value µ. The
sequence is mean square ergodic or satisfies the law of large numbers in L2(Ω,A,P), if

1

n

n∑
t=1

Xt → µ, n → ∞,

in the mean square.

Remark: If {Xt, t ∈ Z} is a mean square ergodic sequence, then 1
n

∑n
t=1Xt → µ, n → ∞, in proba-

bility, i.e. {Xt, t ∈ Z} satisfies the weak law of large numbers for weakly stationary sequences, and
1
n

∑n
t=1Xt is a weakly consistent estimator of µ.

Theorem 8.1. Let the random sequence {Xt, t ∈ Z} be weakly stationary with mean value µ and
autocovariance function R. The sequence is mean square ergodic if and only if

1

n

n∑
t=1

R(t) → 0, n → ∞.

Proof. We assume that µ = 0, otherwise we consider the centered version of the sequence X̃t =
Xt − µ, t ∈ Z, which has the same autocovariance function as the original sequence {Xt, t ∈ Z}.

First, consider the spectral decomposition

Xt =

∫ π

−π
eitλ dZ(λ), t ∈ Z,

where {Zλ, λ ∈ [−π, π]} is a centered, orthogonal increment process with the orthogonal distribution
function F , which is the same as the spectral distribution function of {Xt, t ∈ Z}, see Theorem 6.5.
Then

1

n

n∑
t=1

Xt =
1

n

n∑
t=1

∫ π

−π
eitλ dZ(λ) =

∫ π

−π

(
1

n

n∑
t=1

eitλ

)
dZ(λ) =

∫ π

−π
hn(λ) dZ(λ),

where

hn(λ) =
1

n

n∑
t=1

eitλ =

{
1
n
eiλ(1−eiλn)

1−eiλ
, λ ̸= 0,

1, λ = 0.

Furthermore, consider the function

h(λ) =

{
0, λ ̸= 0,

1, λ = 0,

and define the random variable Z0 =
∫ π
−π h(λ) dZ(λ).

Clearly, hn(λ) → h(λ), n → ∞, for any λ ∈ [−π, π]. It follows that |hn(λ) − h(λ)|2 → 0, n → ∞,
λ ∈ [−π, π]. Also, hn → h, n → ∞, in L2(F ), since |hn(λ) − h(λ)|2 ≤ 1, and using the Lebesgue
dominated convergence theorem we get∫ π

−π
|hn(λ)− h(λ)|2 dF (λ) → 0, n → ∞.
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Theorem 6.3 implies that

1

n

n∑
t=1

Xt =

∫ π

−π
hn(λ) dZ(λ) →

∫ π

−π
h(λ) dZ(λ) = Z0, n → ∞,

in the mean square. Now, it suffices to show that

Z0 = 0 a.s. ⇐⇒ 1

n

n∑
t=1

R(t) → 0, n → ∞.

From Theorem 6.3 we have EZ0 = 0, and it follows that Z0 = 0 a.s. ⇐⇒ E|Z0|2 = 0. From the same
theorem we get

E|Z0|2 = E
∣∣∣∣∫ π

−π
h(λ) dZ(λ)

∣∣∣∣2 = ∫ π

−π
|h(λ)|2dF (λ).

From the spectral decomposition of the autocovariance function and the Lebesgue dominated con-
vergence theorem we obtain that

1

n

n∑
t=1

R(t) =
1

n

n∑
t=1

(∫ π

−π
eitλ dF (λ)

)
=

∫ π

−π

(
1

n

n∑
t=1

eitλ

)
dF (λ) =

∫ π

−π
hn(λ) dF (λ)

→
∫ π

−π
h(λ) dF (λ) =

∫ π

−π
|h(λ)|2 dF (λ) = E|Z0|2, n → ∞.

Remark: Note that E|Z0|2 =
∫ π
−π |h(λ)|

2 dF (λ) = F (0) − F (0−), meaning the condition Z0 = 0 a.s.

(and also 1
n

∑n
t=1R(t) → 0, n → ∞) is fulfilled if and only if the spectral distribution function of

{Xt, t ∈ Z} is continuous at 0.

Example: Let us consider the AR(1) sequence following the model Xt = φXt−1 + Yt, t ∈ Z, where
{Yt, t ∈ Z} is a white noise sequence WN(0,σ2) and |φ| < 1. We know that R(t) = σ2

1−φ2φ
|t|, t ∈ Z.

Obviously,

1

n

n∑
t=1

R(t) =
1

n

σ2

1− φ2

n∑
t=1

φt =
1

n

σ2

1− φ2

φ(1− φn)

1− φ
→ 0, n → ∞,

implying that the sequence {Xt, t ∈ Z} is mean square ergodic.

Example: Let {Xt, t ∈ Z} be a sequence of independent, identically distributed random variables with
finite second moments. Since R(0) = σ2 and R(k) = 0 for each k ̸= 0, the summability condition
in Theorem 8.1 is satisfied and the sequence {Xt, t ∈ Z} is mean square ergodic. In this way, we
recover the weak law of large numbers known from the i.i.d. setting.

Example: Let {Xt, t ∈ Z} be a weakly stationary, mean square ergodic random sequence with ex-
pected value µ and autocovariance function RX . We define {Zt, t ∈ Z} as Zt = Xt + Y, t ∈ Z, where
EY = 0, varY = σ2 ∈ (0,∞), and Y is uncorrelated with {Xt, t ∈ Z}. It follows that EZt = µ, t ∈ Z,
and the autocovariance function of the sequence {Zt, t ∈ Z} is RZ(t) = RX(t) + σ2, t ∈ Z. The
sequence is weakly stationary. However, it is not mean square ergodic:

1

n

n∑
t=1

RZ(t) =
1

n

n∑
t=1

RX(t) + σ2 → σ2 > 0, n → ∞.

Also,

1

n

n∑
t=1

Zt =
1

n

n∑
t=1

Xt + Y → µ+ Y, n → ∞,

in the mean square, and the sample means do not converge to any constant.
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Theorem 8.2. Let {Xt, t ∈ Z} be a real-valued, weakly stationary random sequence with mean value
µ and autocovariance function R such that

∑∞
t=−∞ |R(t)| < ∞. Then

1. 1
n

∑n
k=1Xk → µ, n → ∞, in the mean square,

2. n var
(
1
n

∑n
k=1Xk

)
→
∑∞

k=−∞R(k), n → ∞.

Proof. 1. The assumption
∑∞

t=−∞ |R(t)| < ∞ implies that∣∣∣∣∣ 1n
n∑

k=1

R(k)

∣∣∣∣∣ ≤ 1

n

n∑
k=1

|R(k)| ≤ 1

n

∞∑
k=1

|R(k)| → 0, n → ∞,

meaning that 1
n

∑n
k=1R(k) → 0, n → ∞. The first claim then follows from Theorem 8.1.

2. It is easy to see that

var

(
1

n

n∑
k=1

Xk

)
=

1

n2

 n∑
k=1

varXk +
∑∑
1≤j ̸=k≤n

cov(Xj , Xk)


=

1

n2

nR(0) +
∑∑
1≤j ̸=k≤n

R(j − k)

 .

We assume that {Xt, t ∈ Z} is real-valued and hence R(j − k) = R(k − j). We can write

∑∑
1≤j ̸=k≤n

R(j − k) = 2
n−1∑
j=1

n∑
k=j+1

R(j − k) = 2
n−1∑
l=1

(n− l)R(l),

where in the last equality we changed the order of summation and noticed that some of the terms
have the same value. We now proceed with computing the variance:

var

(
1

n

n∑
k=1

Xk

)
=

1

n2

(
nR(0) + 2

n−1∑
l=1

(n− l)R(l)

)
=

1

n

(
R(0) + 2

n−1∑
l=1

(
1− l

n

)
R(l)

)

=
1

n

n−1∑
j=−n+1

(
1− |j|

n

)
R(j),

where we used again the symmetry of the autocovariance function. We conclude that

n var

(
1

n

n∑
k=1

Xk

)
=

n−1∑
j=−n+1

R(j)− 2

n

n−1∑
j=1

jR(j) →
∞∑

j=−∞
R(j), n → ∞,

since the second term converges to 0 with increasing n by the Kronecker lemma.

Remark: Theorem 8.2 also implies that n var
(
1
n

∑n
k=1Xk

)
→
∑∞

k=−∞R(k) = 2πf(0), n → ∞ (recall
the inverse formula for computing the spectral density in Theorem 5.7).
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9 Prediction in the time domain

9.1 Projections in Hilbert spaces

Definition 9.1. Let H be a Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥x∥ =
√
⟨x, x⟩,

x ∈ H. We say that two elements x, y ∈ H are orthogonal if ⟨x, y⟩ = 0. We write x ⊥ y.

Let M ⊂ H be a subset of H. We say that an element x ∈ H is orthogonal to M , if it is orthogonal
to each element of M , i.e. ⟨x, y⟩ = 0 for each y ∈ M . We write x ⊥ M .

The set M⊥ = {y ∈ H : y ⊥ M} is called the orthogonal complement of the set M .

Theorem 9.1. Let H be a Hilbert space and M ⊂ H be any subset of H. Then M⊥ is a closed
subset of H.

Proof. Denote the null element in H by o. Since ⟨o, x⟩ = 0 for each x ∈ M , we have o ∈ M⊥.
Linearity of the inner product implies that any linear combination of elements of M⊥ is an element
of M⊥, and hence M⊥ is a subspace of H. Continuity of the inner product implies that any limit of
a sequence of elements of M⊥ is an element of M⊥ and hence M⊥ is a closed subspace.

Theorem 9.2 (projection theorem). Let M be a closed subspace of a Hilbert space H. Then for
every element x ∈ H there is a unique decomposition x = x̂+(x−x̂) such that x̂ ∈ M and x−x̂ ⊥ M .
Furthermore,

∥x− x̂∥ = min
y∈M

∥x− y∥,

∥x∥2 = ∥x̂∥2 + ∥x− x̂∥2. (9.1)

Proof. See Rudin (2003, Theorem 4.11) or Brockwell and Davis (2006, Theorem 2.3.1).

Remark: The element x̂ ∈ M is called the orthogonal projection of x onto the subspace M . The
mapping PM : H → M such that x̂ = PMx ∈ M and x − x̂ = (I − PM )x ∈ M⊥, where I is the
identity mapping, is called the projection mapping. Obviously, for any x ∈ H we have a unique
decomposition

x = PMx+ (x− PMx) = PMx+ (I − PM )x. (9.2)

Theorem 9.3 (properties of the projection mapping). Let H be a Hilbert space and let PM be the
projection mapping onto a closed subspace M . It holds that:

1. for every x, y ∈ H and α, β ∈ C, PM (αx+ βy) = αPMx+ βPMy,

2. if x ∈ M , then PMx = x,

3. if x ∈ M⊥, then PMx = o,

4. if M1,M2 are closed subspaces of H such that M1 ⊆ M2, then PM1x = PM1 (PM2x) for every
x ∈ H,

5. if xn, x ∈ H are elements of H such that ∥xn − x∥ → 0, n → ∞, then ∥PMxn − PMx∥ → 0,
n → ∞.

Proof. 1. We see that

αx+ βy = α(PMx+ (x− PMx)) + β(PMy + (y − PMy))

=
(
αPMx+ βPMy

)
+
(
α(x− PMx) + β(y − PMy)

)
.
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Obviously, αPMx+ βPMy ∈ M and α(x− PMx) + β(y − PMy) ∈ M⊥, since M and M⊥ are linear
subspaces. From this decomposition we get PM (αx+ βy) = αPMx+ βPMy.

2. The claim follows directly from the uniqueness of decomposition (9.2), since x = x + o, where
x ∈ M and o ∈ M⊥.

3. Similarly as above, we have x = o+ x, where o ∈ M and x ∈ M⊥.

4. We have x = PM2x+(x−PM2x), PM2x ∈ M2, x−PM2x ∈ M⊥
2 , and thus, using linearity from the

point 1 above, PM1x = PM1(PM2x)+PM1(x−PM2x). It follows from the definition of the projection
mapping that PM1(PM2x) ∈ M1. Also, from M⊥

2 ⊆ M⊥
1 we get PM1(x−PM2x) = o using the point 3

above. It follows that PM1x = PM1P (M2x) + o for each x ∈ H.

5. Using the linearity of the projection mapping and Equation (9.1) we get

∥xn − x∥2 = ∥PM (xn − x)∥2 + ∥(xn − x)− PM (xn − x)∥2.

Since both terms on the right-hand side are non-negative, we obtain

∥PMxn − PMx∥2 = ∥PM (xn − x)∥2 ≤ ∥xn − x∥2 → 0, n → ∞.

9.2 Prediction based on finite history

Consider the following problem: we observe random variables X1, . . . , Xn with zero mean and finite
second moments, and we want to predict (forecast) the value of Xn+h with h ∈ N.

We would like to approximate (estimate) Xn+h by a measurable function g(X1, . . . , Xn) of the ob-
servations X1, . . . , Xn which minimizes the mean square error E|Xn+h − g(X1, . . . , Xn)|2. It is well
known that the solution is given by the conditional expectation:

g(X1, . . . , Xn) = E [Xn+h|X1, . . . , Xn] .

Indeed, let us consider for simplicity only real-valued random variables and denote Xn = (X1, . . . , Xn)
T .

Then,

E(Xn+h − g(Xn))
2 = E(Xn+h − E [Xn+h|Xn] + E [Xn+h|Xn]− g(Xn))

2

= E(Xn+h − E [Xn+h|Xn])
2 + E(E [Xn+h|Xn]− g(Xn))

2

+ 2E(Xn+h − E [Xn+h|Xn])(E [Xn+h|Xn]− g(Xn)).

The last term equals

2E [E[(Xn+h − E [Xn+h|Xn])(E [Xn+h|Xn]− g(Xn))|Xn]]

= 2E [(E [Xn+h|Xn]− g(Xn))E[Xn+h − E [Xn+h|Xn] |Xn]]

= 0,

since (E [Xn+h|Xn] − g(Xn)) is measurable with respect to the σ-algebra generated by Xn and
E[Xn+h − E [Xn+h|Xn] |Xn] = 0 a.s. It follows that

E(Xn+h − g(Xn))
2 = E(Xn+h − E [Xn+h|Xn])

2 + E(E [Xn+h|Xn]− g(Xn))
2

≥ E(Xn+h − E [Xn+h|Xn])
2,

with equality for g(Xn) = E [Xn+h|Xn] a.s.

Finding the conditional expectation is usually not possible (only for Gaussian processes, where the
conditional expectation is a linear combination of X1, . . . , Xn). In the following, we restrict our
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attention to linear functions of X1, . . . , Xn. In this way, we will not find the best possible solution
to the minimization problem, but we will find a solution achievable in practice.

The problem of finding the best linear approximation of Xn+h can be solved by using the projection
method in a Hilbert space. The best linear prediction of Xn+h based on X1, . . . , Xn will be denoted
by X̂n+h(n).

Let H = H{X1, . . . , Xn, . . . , Xn+h} be the Hilbert space generated by the centered random variables
X1, . . . , Xn+h and Hn

1 = H{X1, . . . , Xn} be the Hilbert space generated by X1, . . . , Xn. Note that
Hn

1 is a subspace of H.

The best linear prediction of Xn+h is the random variable

X̂n+h(n) =
n∑

k=1

ckXk ∈ Hn
1 , (9.3)

such that the prediction error E|Xn+h − X̂n+h(n)|2 = ∥Xn+h − X̂n+h(n)∥2 takes the minimum value
with respect to all linear combinations of X1, . . . , Xn. It means that

X̂n+h(n) = PHn
1
(Xn+h) ∈ Hn

1 ,

Xn+h − X̂n+h(n) ⊥ Hn
1 ,

and the element X̂n+h(n) is determined uniquely, see Theorem 9.2 (projection theorem).

The space Hn
1 is linear, generated by finitely many random variables X1, . . . , Xn, meaning that

Xn+h − X̂n+h(n) ⊥ Hn
1 ⇐⇒ Xn+h − X̂n+h(n) ⊥ Xj , j = 1, . . . , n

⇐⇒ E
(
Xn+h − X̂n+h(n)

)
Xj = 0, j = 1, . . . , n.

The constants c1, . . . , cn in Equation (9.3) can be determined by solving the equations

E

(
Xn+h −

n∑
k=1

ckXk

)
Xj = 0, j = 1, . . . , n.

If X1, . . . , Xn+h form a real-valued, centered, weakly stationary sequence with the autocovariance
function R, the previous system of equations can be written as

n∑
k=1

ckR(k − j) = R(n+ h− j), j = 1, . . . , n,

or more explicitly as

c1R(0) + c2R(1) + . . .+ cnR(n− 1) = R(n+ h− 1),

c1R(1) + c2R(0) + . . .+ cnR(n− 2) = R(n+ h− 2),

· · ·
c1R(n− 1) + c2R(n− 2) + . . .+ cnR(0) = R(h).

Note that under the assumption of real-valued sequence, the autocovariance function is symmetric,
i.e. R(−t) = R(t), t ∈ Z. Furthermore, the system of equations can be written in the matrix form

Γncn = γnh,
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where cn = (c1, . . . , cn)
T , γnh = (R(n+ h− 1), . . . , R(h))T and

Γn =


R(0) R(1) · · · R(n− 1)
R(1) R(0) · · · R(n− 2)
...

...
. . .

...
R(n− 1) R(n− 2) · · · R(0)

 .

If the inverse matrix Γ−1
n exists, we get cn = Γ−1

n γnh. Denoting Xn = (X1, . . . , Xn)
T , we can further

write

X̂n+h(n) =

n∑
k=1

ckXk = cTnXn = γTnhΓ
−1
n Xn.

Clearly, Γn is the variance matrix of (X1, . . . , Xn)
T , i.e. Γn = varXn = EXnX

T
n .

The prediction error is

δ2h = E
∣∣∣Xn+h − X̂n+h(n)

∣∣∣2 = ∥∥∥Xn+h − X̂n+h(n)
∥∥∥2 .

From the Theorem 9.2 (projection theorem) we get

∥Xn+h∥2 =
∥∥∥X̂n+h(n)

∥∥∥2 + ∥∥∥Xn+h − X̂n+h(n)
∥∥∥2 ,

and hence

δ2h = ∥Xn+h∥2 −
∥∥∥X̂n+h(n)

∥∥∥2 .
For a real-valued, centered, weakly stationary sequence such that Γn is regular (meaning that Γ−1

n

exists), we have:

δ2h = ∥Xn+h∥2 −
∥∥∥X̂n+h(n)

∥∥∥2 = E |Xn+h|2 − E
∣∣∣X̂n+h(n)

∣∣∣2
= R(0)− E

(
cTnXn

)2
= R(0)− cTnE

(
XnX

T
n

)
cn

= R(0)− cTnΓncn = R(0)− γTnhΓ
−1
n ΓnΓ

−1
n γnh

= R(0)− γTnhΓ
−1
n γnh.

Theorem 9.4. Let {Xt, t ∈ Z} be a real-valued, centered, weakly stationary sequence with the
autocovariance function R such that R(0) > 0 and R(k) → 0, k → ∞. Then the matrix Γn =
var(X1, . . . , Xn) is regular for every n ∈ N.

Proof. We prove the claim by contradiction. We suppose that Γn is singular for some n ∈ N. Then
there is a non-zero vector c = (c1, . . . , cn)

T such that cTΓnc = 0. Denoting Xn = (X1, . . . , Xn)
T ,

it follows that EcTXn = 0 (as the sequence is centered) and var(cTXn) = cTΓnc = 0. This means
that cTXn = 0 a.s.

Since Γ1 = R(0) > 0 is regular and Γn is singular, there is an integer 1 ≤ r < n such that Γr is
regular and Γr+1 is singular. Using the same arguments as above we see that there are constants
a1, . . . ar such that Xr+1 =

∑r
j=1 ajXj a.s.

From the weak stationarity of {Xt, t ∈ Z} we have var(X1, . . . , Xr+1) = . . . = var(Xh, . . . , Xr+h) =
Γr+1 and thus for each h ≥ 1 it holds that Xr+h =

∑r
j=1 ajXj+h−1 a.s. By repeatedly plugging-

in this formula, we see that for each n ≥ r + 1 there are constants a
(n)
1 , . . . , a

(n)
r such that Xn =∑r

j=1 a
(n)
j Xj = a(n)Xr a.s., where a(n) = (a

(n)
1 , . . . , a

(n)
r )T and Xr = (X1, . . . , Xr)

T . It follows that

0 < R(0) = varXn = a(n)T varXr a
(n) = a(n)TΓr a

(n).
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The matrix Γr is positive definite (it is a variance matrix and it is regular), implying that there is a
decomposition Γr = PΛP T , where Λ is a diagonal matrix with the eigenvalues of the matrix Γr on
the diagonal and the product PP T = I is the identity matrix.

Since Γr is positive definite, all its eigenvalues are positive. Without loss of generality, we assume
the eigenvalues are 0 < λ1 ≤ . . . ≤ λr. Then

R(0) = a(n)TPΛP Ta(n) ≥ λ1a
(n)TPP Ta(n) = λ1

r∑
j=1

(
a
(n)
j

)2
,

from which it follows for each j = 1, . . . , r that
(
a
(n)
j

)2
≤ R(0)/λ1. Hence |a(n)j | ≤ C independently

of n, where C is a positive constant. We also have

0 < R(0) = |R(0)| = |EX2
n| =

∣∣∣∣∣∣EXn

 r∑
j=1

a
(n)
j Xj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

r∑
j=1

a
(n)
j EXnXj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

r∑
j=1

a
(n)
j R(n− j)

∣∣∣∣∣∣
≤

r∑
j=1

∣∣∣a(n)j

∣∣∣ · |R(n− j)| ≤ C
r∑

j=1

|R(n− j)| → 0, n → ∞,

since we assumed R(n) → 0, n → ∞. However, this contradicts the assumption that R(0) > 0. We
conclude that Γn is regular for each n ∈ N.

Remark: Let {Xt, t ∈ Z} be a weakly stationary sequence with mean value µ. Then

P
H̃
Xn+h = µ+ PH(Xn+h − µ),

where H̃ = H{1, X1, . . . , Xn}, H = H{X1 − µ, . . . ,Xn − µ}, and 1 is a random variable equal to the
number 1 almost surely. This means that without loss of generality, we may consider only centered
random variables in our prediction methodology.

9.3 Prediction based on infinite history

Suppose we know the history Xn, Xn−1, . . ., and we want to forecast (predict) Xn+1, Xn+2, . . . Again,
we solve this task by using projections in Hilbert spaces.

Consider the Hilbert spaces H = H{Xt, t ∈ Z} and Hn
−∞ = H{Xn, Xn−1, . . .}. For h ∈ N, the best

linear prediction X̂n+h(n) of Xn+h, based on the infinite history Xn, Xn−1, . . ., is the projection of
Xn+h ∈ H onto Hn

−∞, i.e.

X̂n+h(n) = PHn
−∞

Xn+h.

For simplicity, we will denote the one-step prediction X̂n+1(n) = X̂n+1.

Causal AR(p) models

Consider the model

Xt = φ1Xt−1 + . . .+ φpXt−p + Yt, t ∈ Z,

where {Yt, t ∈ Z} is a WN(0,σ2) sequence and all the roots of the polynomial a(z) = 1−φ1z−φ2z
2−

. . .− φpz
p, z ∈ C, lie outside of the unit circle. It follows that {Xt, t ∈ Z} is a causal linear process

and Yt ⊥ Xs for each t, s ∈ Z such that t > s.
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One-step prediction: We want to construct the prediction X̂n+1 = X̂n+1(n) using the random
variables Xn, Xn−1, . . . We note that

• Xn+1 = φ1Xn + . . .+ φpXn+1−p + Yn+1,

• φ1Xn + . . .+ φpXn+1−h ∈ Hn
−∞,

• Yn+1 ⊥ Xn, Xn−1, . . ., meaning that Yn+1 ⊥ Hn
−∞ (using the linearity and continuity of the

inner product).

This means that

X̂n+1 = PHn
−∞

Xn+1 = φ1Xn + . . .+ φpXn+1−p,

since Xn+1 − X̂n+1 = Yn+1 ⊥ Hn
−∞.

The prediction error is E
∣∣∣Xn+1 − X̂n+1

∣∣∣2 = E|Yn+1|2 = σ2.

h-step prediction with h > 1: Using Theorem 9.2 (projection theorem) and the formula for the
one-step prediction, we see that

X̂n+h(n) = PHn
−∞

Xn+h = PHn
−∞

(
PHn+h−1

−∞
Xn+h

)
= PHn

−∞
X̂n+h(n+ h− 1)

= PHn
−∞

(φ1Xn+h−1 + . . .+ φpXn+h−p) = φ1 [Xn+h−1] + φ2 [Xn+h−2] + . . .+ φp [Xn+h−p] ,

where for j ∈ Z we denote

[Xn+j ] =

{
Xn+j , j ≤ 0,

X̂n+j(n), j > 0.

The prediction error can be determined as

E
∣∣∣Xn+h − X̂n+h(n)

∣∣∣2 = E|Xn+h|2 − E
∣∣∣X̂n+h(n)

∣∣∣2 ,
see Theorem 9.2 (the projection theorem). Note that the prediction error can be expressed as a linear
combination of the values of the autocovariance function of {Xt, t ∈ Z}.

Remark: Note that for AR(p) models, only the values Xn, . . . , Xn+1−p are needed for finding X̂n+h(n)
for h ∈ N. Only the last p random variables are used, and hence the prediction is in fact not based
on infinite history, since the older random variables do not bring relevant information.

Example: Consider an AR(1) model given by Xt = φXt−1 + Yt, t ∈ Z, with |φ| < 1 and {Yt, t ∈ Z}
being a white noise sequence WN(0,σ2). Even if we know the whole history Xn, Xn−1, . . ., the best
linear prediction of Xn+1 is X̂n+1 = φXn. For h > 1 we have:

X̂n+h(n) = φ[Xn+h−1] = φX̂n+h−1(n) = φ2X̂n+h−2(n) = . . . = φhXn.

The prediction error is

E
∣∣∣Xn+h − X̂n+h(n)

∣∣∣2 = E|Xn+h|2 − E
∣∣∣X̂n+h(n)

∣∣∣2 = R(0)− E
∣∣∣φhXn

∣∣∣2
= R(0)

(
1− φ2h

)
= σ2 1− φ2h

1− φ2
.
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Causal and invertible ARMA(p, q) models

Consider the model

Xt = φ1Xt−1 + . . .+ φpXt−p + Yt + θ1Yt−1 + . . .+ θqYt−q, t ∈ Z,

where {Yt, t ∈ Z} is a WN(0,σ2) sequence. Assume that {Xt, t ∈ Z} is causal and invertible.

Causality implies that

Xt =

∞∑
j=0

cjYt−j , t ∈ Z,

where
∑∞

j=0 |cj | < ∞. It follows that Yt ⊥ Xs for each t, s ∈ Z such that t > s.

Furthermore, invertibility implies that

Yt =
∞∑
j=0

djXt−j , t ∈ Z,

where
∑∞

j=0 |dj | < ∞ and d0 = 1. It follows that Xt = −
∑∞

j=1 djXt−j + Yt, and specifically

Xn+1 = −
∞∑
j=1

djXn+1−j + Yn+1. (9.4)

One-step prediction: We notice that

−
∞∑
j=1

djXn+1−j = l.i.m.N→∞

−
N∑
j=1

djXn+1−j

 ∈ Hn
−∞,

and that Yn+1 ⊥ Hn
−∞ (due to causality). It follows from (9.4) that

X̂n+1 = −
∞∑
j=1

djXn+1−j .

The prediction error is E
∣∣∣Xn+1 − X̂n+1

∣∣∣2 = E|Yn+1|2 = σ2.

h-step prediction with h > 1: Similarly as in (9.4) we get thatXn+h = −
∑∞

j=1 djXn+h−j+Yn+h.
Furthermore, causality implies that Yn+h ⊥ Hn

−∞. Combining these properties, it follows that

X̂n+h(n) = PHn
−∞

Xn+h = PHn
−∞

−
∞∑
j=1

djXn+h−j + Yn+h

 = −
∞∑
j=1

dj [Xn+h−j ],

where the convergence of the sum on the right-hand side is secured by
∑∞

j=0 |dj | < ∞ and [Xn+h−j ]
are defined as above.

The prediction error can be determined using causality. From the one-step prediction, we know that
Xt − X̂t = Yt, t ∈ Z. We can write

X̂n+h(n) = PHn
−∞

Xn+h = PHn
−∞

 ∞∑
j=0

cjYn+h−j

 =

∞∑
j=0

cjPHn
−∞

Yn+h−j .
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Since PHn
−∞

Yn+h−j = 0 for j < h, we get

X̂n+h(n) =

∞∑
j=h

cjYn+h−j =

∞∑
j=h

cj

(
Xn+h−j − X̂n+h−j

)
∈ Hn

−∞.

The prediction error is then

E
∣∣∣Xn+h − X̂n+h(n)

∣∣∣2 = E

∣∣∣∣∣∣
h−1∑
j=0

cjYn+h−j

∣∣∣∣∣∣
2

= σ2
h−1∑
j=0

|cj |2.

Note that the previous formula for the prediction error holds also for h = 1.

Remark: What happens if we truncate the prediction based on infinite history because, in fact, we
do not have infinitely many observations in practice? Instead of X̂n+h(n) =

∑∞
k=0 akXn−k, we use

X̃n+h(n) =
∑N

k=0 akXn−k. Its prediction error E
∣∣∣Xn+h − X̃n+h(n)

∣∣∣2 can be expressed using the

values of the autocovariance function of {Xt, t ∈ Z} and by choosing N , we can control how much
worse this truncated prediction X̃n+h(n) is compared to the truly infinite prediction X̂n+h(n).

Example: Consider an MA(1) = ARMA(0,1) model given by Xt = Yt + θYt−1, t ∈ Z, where |θ| < 1
and {Yt, t ∈ Z} is a white noise sequence WN(0,σ2). It follows that {Xt, t ∈ Z} is invertible and
Yt =

∑∞
j=0(−θ)jXt−j , t ∈ Z (this is equivalent to finding MA(∞) representation of a causal AR(1)

model). Since Xn+1 = θYn+Yn+1, Yn ∈ Hn
−∞ (from invertibility) and Yn+1 ⊥ Hn

−∞ (from causality),
we have

X̂n+1 = θYn = θ
∞∑
j=0

(−θ)jXn−j .

The prediction error is E
∣∣∣Xn+1 − X̂n+1

∣∣∣2 = E|Yn+1|2 = σ2.

For h > 1 we have X̂n+h(n) = PHn
−∞

(
PHn+h−1

−∞
Xn+h

)
= PHn

−∞
X̂n+h = θ · PHn

−∞
Yn+h−1 = 0, since

n+h−1 > n, and hence Yn+h−1 ⊥ Hn
−∞. The prediction error is E

∣∣∣Xn+h − X̂n+h(n)
∣∣∣2 = E|Xn+h|2 =

R(0) = σ2(1 + θ2). Note that the prediction error is higher for h > 1 than for h = 1. This is not
surprising, since prediction to a more distant future is inherently a more complicated task.

9.4 Filtration of signal and noise

Consider a sequence {Xt, t ∈ Z} which contains the signal and a sequence {Yt, t ∈ Z} which con-
stitutes the noise (not necessarily a white noise sequence). Our observations form the sequence
{Vt, t ∈ Z} which we assume to be the mixture of the signal and noise,

Vt = Xt + Yt, t ∈ Z.

Our goal is now to separate the signal from the noise. We assume that {Xt, t ∈ Z} and {Yt, t ∈ Z}
are real-valued, centered, weakly stationary random sequences, with autocovariance functions RX

and RY , respectively. We further assume that these two sequences are uncorrelated. It follows that
{Vt, t ∈ Z} is a real-valued, centered, weakly stationary random sequence with the autocovariance
function RV = RX +RY .

In the following, we assume that we observe the random variables V1, . . . , Vn, i.e. we have finitely
many observations available. We are looking for a linear estimator of Xs in the form X̂s =

∑n
j=1 cjVj ,
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with the coefficients c1, . . . , cn minimizing the mean square error E|Xs− X̂s|2. Again, we are looking
for a projection in a Hilbert space.

Denote Hn
1 = H{V1, . . . , Vn} ⊂ L2(Ω,A,P) and fix s ∈ Z. For s = n we call the following procedure

simply filtration. For s < n we call it filtration with delay and for s > n filtration and prediction. The
best linear approximation X̂s of Xs is the projection of Xs onto Hn

1 , i.e. X̂s ∈ Hn
1 and Xs−X̂s ⊥ Hn

1 .
Since we have finitely many observations, Hn

1 = H{V1, . . . , Vn} = M{V1, . . . , Vn}, and it is enough
to find c1, . . . , cn such that

X̂s =
n∑

j=1

cjVj ,

and

Xs − X̂s ⊥ Vt, t = 1, . . . , n,

or equivalently

E
(
Xs − X̂s

)
Vt = 0, t = 1, . . . , n.

Since Vt = Xt + Yt and Xt, Yt are uncorrelated for each t ∈ Z, we have

EXsVt = EXsXt = RX(s− t), s, t ∈ Z,

and we can write

E

Xs −
n∑

j=1

cjVj

Vt = RX(s− t)−
n∑

j=1

cjRV (j − t) = 0, t = 1, . . . , n.

Now it remains to solve the system of n linear equations for n unknown values c1, . . . , cn. This
system of equations can be written in a matrix form. For the sufficient conditions for the regularity
of the matrix with the entries RV (j − t), see Theorem 9.4.

The random variable X̂s is the best linear filtration of the signal Xs at time s ∈ Z from the mixture
V1, . . . , Vn. The filtration error is

E
∣∣∣Xs − X̂s

∣∣∣2 = ∥∥∥Xs − X̂s

∥∥∥2 = ∥Xs∥2 −
∥∥∥X̂s

∥∥∥2 = RX(0)− E

∣∣∣∣∣∣
n∑

j=1

cjVj

∣∣∣∣∣∣
2

= RX(0)−
n∑

j=1

n∑
k=1

cjckRV (j − k).

Remark: It is not unreasonable to assume that we know RX , RY and RV or at least their estimates.
Properties of the noise {Yt, t ∈ Z} can be studied in controlled experiments with zero signal and
RV can be estimated from the observations, meaning that RX can be estimated using the formula
RX = RV − RY . Alternatively, properties of the assumed signal (such as human speech) can be
studied in repeated experiments where averaging reduces the noise component.
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10 Partial autocorrelation function

We assume real-valued sequences in the following, as we will take advantage of the symmetry of the
autocovariance function.

Definition 10.1. Let {Xt, t ∈ Z} be a real-valued, centered, weakly stationary sequence. The partial
autocorrelation function of {Xt, t ∈ Z} is defined as

α(k) =

r(1) = corr(X1, X2) =
cov(X1,X2)√
varX1

√
varX2

, k = 1,

corr
(
X1 − X̃1, Xk+1 − X̃k+1

)
, k ∈ N, k > 1,

where X̃1 = PHk
2
X1, X̃k+1 = PHk

2
Xk+1 are linear projections onto the Hilbert space Hk

2 = H{X2, . . . , Xk}.

Remark: Note the connection to the partial correlation coefficient, measuring the correlation between
X1 and Xk+1, after removing the (linear) influence of X2, . . . , Xk.

The projection is a linear function of X2, . . . , Xk, and X̃1 = c2X2 + . . .+ ckXk. From the projection
theorem we get that X1 − X̃1 ⊥ Hk

2 , implying that E(X1 − X̃1)Xj = 0, j = 2, . . . , k. The constants

c2, . . . , ck are determined by this system of equations. The same applies to X̃k+1, too.

Remark: Weak stationarity of {Xt, t ∈ Z} implies that for h ∈ N and k > 1,

α(k) = corr
(
X1 − X̃1, Xk+1 − X̃k+1

)
= corr

(
Xh − X̃h, Xk+h − X̃k+h

)
,

where X̃h = PHk+h−1
h+1

Xh, X̃k+h = PHh+k−1
h+1

Xk+1 and Hh+k−1
h+1 = H{Xh+1, . . . , Xh+k−1}.

Example: Consider a causal AR(1) model Xt = φXt−1 + Yt, t ∈ Z, where |φ| < 1 and {Yt, t ∈ Z} is
a white noise sequence WN(0,σ2). For k = 1 we have α(1) = r(1) = corr(X1, X2) = φ. For k > 1,
causality implies that Yk+1 ⊥ Hk

2 . It follows that X̃k+1 = PHk
2
Xk+1 = PHk

2
(φXk + Yk+1) = φXk.

Furthermore, from causality we get Yk+1 ⊥ X1 and also Yk+1 ⊥ X̃1 ∈ Hk
2 . It follows that

0 = E
(
X1 − X̃1

)
Yk+1 = E

(
X1 − X̃1

)(
Xk+1 − X̃k+1

)
.

Since

α(k) =
E
(
X1 − X̃1

)(
Xk+1 − X̃k+1

)
√
E
(
X1 − X̃1

)2√
E
(
Xk+1 − X̃k+1

)2 ,
we conclude that α(k) = 0 for k > 1.

Remark: In the same way, we can show that for a causal AR(p) model it holds that α(k) = 0 for
k > p. The values of Xk, Xk−1, . . . , Xk−p+1 contain all the information about Xk+1 contained in
Hk

−∞, so X1 does not provide additional information about Xk+1, corresponding to α(k) = 0.

Example: Consider the MA(1) model Xt = Yt + bYt−1 with b ∈ R and {Yt, t ∈ Z} being a white
noise sequence WN(0,σ2). In this case, the autocovariance function of the sequence {Xt, t ∈ Z} is
R(0) = (1+ b2)σ2, R(1) = R(−1) = bσ2 and R(k) = 0 for |k| > 1. It follows that α(1) = r(1) = b

1+b2

and α(2) = corr
(
X1 − X̃1, X3 − X̃3

)
. To find X̃1 = PH2

2
X1 = cX2, we need to find c such that(

X1 − X̃1

)
⊥ H2

2 , i.e. E(X1 − cX2)X2 = 0. This equation can be rewritten as R(1) − cR(0) = 0,

and hence c = R(1)/R(0) = r(1) = b
1+b2

. Similarly, we get X̃3 = b
1+b2

X2, too. Since the sequence
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{Xt, t ∈ Z} is centered, it is now easy to compute the variances and the covariance of X1 − X̃1 and
X3 − X̃3. Altogether,

α(2) = − b2

1 + b2 + b4
.

In general,

α(k) = −(−b)k(1− b2)

1− b2(k+1)
, k ≥ 1.

Remark: In a sense, the autocovariance function R (or the autocorrelation function r) and the partial
autocorrelation function α are complementary tools: AR(p) sequences have infinitely many non-zero
values of R(k) and only finitely many non-zero values of α(k). For MA(n) models, the opposite
holds.

Remark: Plots of the empirical autocovariance or autocorrelation function and the empirical partial
autocorrelation function can be useful when choosing an appropriate model for a given dataset. For
illustration, consider e.g. the yearly mean total sunspot number as reported by the SILSO center
(https://www.sidc.be/SILSO/datafiles), see Figure 17. The estimated values of the autocovariance
function and the partial autocorrelation function are shown in Figure 18 (the estimation will be
discussed soon in Chapter 11).

While the plot of the empirical autocovariance function shows a repeating structure, the plot of the
estimated partial autocorrelation function shows that the values of α̂(k) for k up to 9 are relevant.
On the other hand, the values α̂(k), k ≥ 10, are close to zero and can be considered negligible (note
that the first plotted value is α̂(1)). It follows that a reasonable model for the sunspot time series
could be an AR(9) model. However, this is only a visual procedure and formal model selection
methods are outside the scope of this course.

Definition 10.2 (alternative definition of the partial autocorrelation function). Let {Xt, t ∈ Z} be
a real-valued, centered, weakly stationary sequence. Let PHk

1
Xk+1 = φ1Xk + . . . + φkX1 be the best

linear prediction of Xk+1 based on X1, . . . , Xk, H
k
1 = H{X1, . . . , Xk}. The partial autocorrelation

function is defined as α(k) = φk, k ∈ N.

Remark: The concept is the same in Definition 10.2 as in Definition 10.1: after explaining Xk+1 using
X2, . . . , Xk (in a linear way), how much does X1 help to further explain Xk+1?

Theorem 10.1. Let {Xt, t ∈ Z} be a real-valued, centered, weakly stationary sequence with the
autocovariance function R and autocorrelation function r. Assume that R(0) > 0 and R(t) → 0, as
t → ∞. Then both definitions of the partial autocorrelation function are equivalent, and it holds that
α(1) = r(1) and

α(k) =

∣∣∣∣∣∣∣∣∣
1 r(1) · · · r(k − 2) r(1)

r(1) 1 · · · r(k − 3) r(2)
...

...
. . .

...
...

r(k − 1) r(k − 2) · · · r(1) r(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 r(1) · · · r(k − 2) r(k − 1)

r(1) 1 · · · r(k − 3) r(k − 2)
...

...
. . .

...
...

r(k − 1) r(k − 2) · · · r(1) 1

∣∣∣∣∣∣∣∣∣

, k > 1. (10.1)

Proof. We start by showing the equivalence of the two definitions for k = 1. According to the first
definition, α(1) = r(1). Considering the second definition, we write X̂2 = PH1

1
X2 = φ1X1 and

(X2 − X̂2) ⊥ X1, implying E(X2 − φ1X1)X1 = 0, R(1)− φ1R(0) = 0 and finally φ1 = r(1).
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Figure 17: Yearly mean total sunspot number, 1700–2024. Note that this is a discrete-time sequence,
and the lines joining the corresponding points in the plot are used only for clarity.
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Figure 18: Estimated autocovariance function (left) and estimated partial autocorrelation function
(right) for the sunspot time series from Figure 17.
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We proceed by showing the equivalence for k > 1. We set up some useful notation:

Hk
1 = H{X1, . . . , Xk}, X̂k+1 = PHk

1
Xk+1,

Hk
2 = H{X2, . . . , Xk}, X̃k+1 = PHk

2
Xk+1, X̃1 = PHk

2
X1, H̃ = H{X1 − X̃1}.

In order to work with the second definition, consider the projection X̂k+1 = φ1Xk + . . .+φkX1. We
divide the proof of the equivalence into several parts:

A) We show that (Xk+1 − φk(X1 − X̃1)) ⊥ H̃ = H{X1 − X̃1}. This means that

E(Xk+1 − φk(X1 − X̃1))(X1 − X̃1) = 0,

EXk+1(X1 − X̃1)− φkE(X1 − X̃1)
2 = 0,

φk =
EXk+1(X1 − X̃1)

E(X1 − X̃1)2
. (10.2)

B) We show that (X1 − X̃1) ⊥ X̃k+1. It follows that EX̃k+1(X1 − X̃1) = 0 and we may subtract this
from the numerator of (10.2) to get

φk =
E(Xk+1 − X̃k+1)(X1 − X̃1)

E(X1 − X̃1)2
.

C) We argue that E(X1 − X̃1)
2 = E(Xk+1 − X̃k+1)

2. It follows that

φk =
E(Xk+1 − X̃k+1)(X1 − X̃1)√

E(X1 − X̃1)2
√

E(Xk+1 − X̃k+1)2
= corr

(
X1 − X̃1, Xk+1 − X̃k+1

)
= α(k).

Ad A) since X1 = X̃1 + (X1 − X̃1), where X̃1 ∈ Hk
2 and (X1 − X̃1) ⊥ Hk

2 , it holds that

X̂k+1 = φ1Xk + . . .+ φkX1 =
[
φ1Xk + . . .+ φk−1X2 + φkX̃1

]
+
[
φk(X1 − X̃1)

]
,

where the random variables in the square brackets are orthogonal since φ1Xk+. . .+φk−1X2+φkX̃1 ∈
Hk

2 and φk(X1 − X̃1) ⊥ Hk
2 . It follows that φk(X1 − X̃1) = P

H̃
X̂k+1.

We note that H̃ ⊆ Hk
1 , since X1 ∈ Hk

1 , X̃1 ∈ Hk
2 ⊆ Hk

1 and hence X1− X̃1 ∈ Hk
1 . From Theorem 9.3

(properties of the projection mapping) we get

P
H̃
Xk+1 = P

H̃

(
PHk

1
Xk+1

)
= P

H̃
X̂k+1 = φk(X1 − X̃1).

This means that

Xk+1 − P
H̃
Xk+1 = Xk+1 − φk(X1 − X̃1) ⊥ H̃.

Ad B) Again, we consider X1 = X̃1 + (X1 − X̃1), where X̃1 ∈ Hk
2 and (X1 − X̃1) ⊥ Hk

2 . Since

X̃k+1 ∈ Hk
2 by definition, we see that (X1 − X̃1) ⊥ X̃k+1.

Ad C) Consider the system of equations we need to solve in order to find the coefficients of the
prediction X̃1 and compare it to the equations needed for the prediction X̃k+1. They are the same
equations where the corresponding coefficients occur at symmetric places. Furthermore, the values of
E(X1− X̃1)

2 and E(Xk+1− X̃k+1)
2 depend on these coefficients and the values of the autocovariance

function R in the same way. Also, note that for a real-valued, weakly stationary random sequence,
var(X2, . . . , Xk) = var(Xk, . . . , X2).
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Finally, we prove the formula (10.1). We know that X̂k+1 = φ1Xk+. . .+φkX1 ∈ Hk
1 , Xk+1−X̂k+1 ⊥

Hk
1 , and therefore

E(Xk+1 − (φ1Xk + φ2Xk−1 + . . .+ φkX1))Xk+1−j = 0, j = 1, 2, . . . , k,

which gives

R(1)− φ1R(0)− . . .− φkR(k − 1) = 0,

R(2)− φ1R(1)− . . .− φkR(k − 2) = 0,

· · ·
R(k)− φ1R(k − 1)− . . .− φkR(0) = 0.

We divide both sides by R(0) > 0 and write the system of equations in the matrix form:
1 r(1) · · · r(k − 1)

r(1) 1 · · · r(k − 2)
...

...
. . .

...
r(k − 1) r(k − 2) · · · 1



φ1

φ2
...
φk

 =


r(1)
r(2)
...

r(k)

 .

The matrix on the left-hand side is Γk/R(0) and it is regular because we assumed R(t) → 0, t → ∞,
see Theorem 9.4. Now, the Cramér’s rule from linear algebra gives the formula for φk.

Example: Consider again a causal AR(1) model Xt = φXt−1+Yt, t ∈ Z, where |φ| < 1 and {Yt, t ∈ Z}
is a white noise sequence WN(0,σ2). The partial autocorrelataion function can be computed, for
k > 1, as

α(k) =

∣∣∣∣∣∣∣∣∣
1 φ · · · φk−2 φ
φ 1 · · · φk−3 φ2

...
...

. . .
...

...
φk−1 φk−2 · · · φ φk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 φ · · · φk−2 φk−1

φ 1 · · · φk−3 φk−2

...
...

. . .
...

...
φk−1 φk−2 · · · φ 1

∣∣∣∣∣∣∣∣∣

.

We see that the last column of the determinant in the numerator is a multiple of the first column.
It follows that the determinant is 0 and α(k) = 0 for k > 1.
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11 Estimation of moment properties

11.1 Mean

Let {Xt, t ∈ Z} be a real-valued, weakly stationary random sequence with expectation µ = EXt,
t ∈ Z, and the autocovariance function R(s, t) = R(s− t), s, t ∈ Z. Assuming we observe the random
variables X1, . . . , Xn, the natural estimator of µ is the sample mean:

Xn =
1

n

n∑
t=1

Xt.

This is an unbiased estimator of µ: EXn = µ.

Assuming the sequence {Xt, t ∈ Z} is mean square ergodic, it holds that Xn → µ, n → ∞, in the
mean square and in probability, implying weak consistency of the estimator.

The variance of Xn in a weakly stationary random sequence is given by

varXn =
1

n

n−1∑
k=−n+1

R(k)

(
1− |k|

n

)
,

see the proof of Theorem 8.2. Additionally, if
∑∞

k=−∞ |R(k)| < ∞, it holds that n varXn →∑∞
k=−∞R(k) = 2πf(0), n → ∞, where f is the spectral density of the sequence {Xt, t ∈ Z}.

On the other hand, Xn is not the best linear unbiased estimator of µ. Recall that for a linear model
Y = Fβ + ε, with ε = (ε1, . . . , εn)

T , Eεi = 0, i = 1, . . . , n, var ε = Γ, the best linear unbiased

estimator of β is β̂ =
(
FTΓ−1F

)−1
FTΓ−1Y, with Eβ̂ = β, var β̂ =

(
FTΓ−1F

)−1
. In our case,

Xt = µ+ X̃t, t ∈ Z, EX̃t = 0, Xn = (X1, . . . , Xn)
T , X̃n = (X̃1, . . . , X̃n)

T , and

var X̃n = varXn = Γn =


R(0) R(1) · · · R(n− 1)
R(1) R(0) · · · R(n− 2)
...

...
. . .

...
R(n− 1) R(n− 2) · · · R(0)

 .

The correspondence with the linear model is the following: Y = Xn, F = (1, . . . , 1)T = 1n, β = µ,
ε = X̃n. Assuming R(0) > 0 and R(t) → 0, t → ∞, Theorem 9.4 gives the regularity of the matrix
Γn. The best linear unbiased estimator of µ is then

µ̂n =
(
1TnΓ

−1
n 1n

)−1
1TnΓ

−1
n Xn. (11.1)

The variance of µ̂n is var µ̂n =
(
1TnΓ

−1
n 1n

)−1
.

11.2 Autocovariance and autocorrelation function

The estimator µ̂n from Equation (11.1) assumes that the values of the autocovariance function R
are known. The same holds for prediction based on finite history etc.

Let {Xt, t ∈ Z} be a real-valued, weakly stationary random sequence, and let X1, . . . , Xn be the
available observations. The sample autocovariance function is given by

R̂(k) =
1

n

n−k∑
t=1

(
Xt −Xn

) (
Xt+k −Xn

)
, k = 0, 1, . . . , n− 1, (11.2)
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and we define R̂(k) = R̂(−k) for k < 0 (this is where the assumption of real-valued sequence
plays a role). Note that the sample autocovariance function is not an unbiased estimator of the
autocovariance function, as ER̂(k) ̸= R(k). On the other hand, it is asymptotically unbiased under
certain assumptions, see Theorem 7.3.4 in Brockwell and Davis (2006).

The matrix

Γ̂n =


R̂(0) R̂(1) · · · R̂(n− 1)

R̂(1) R̂(0) · · · R̂(n− 2)
...

...
. . .

...

R̂(n− 1) R̂(n− 2) · · · R̂(0)


is positive semidefinite for each n ∈ N. To see this, we write Γ̂n = 1

nU · UT , where U is the n × 2n
matrix

U =


0 0 0 . . . 0 Y1 Y2 . . . Yn−1 Yn
0 0 0 . . . Y1 Y2 Y3 . . . Yn 0
...

...
...

. . .
...

...
...

. . .
...

...
0 Y1 Y2 . . . Yn−1 Yn 0 . . . 0 0

 ,

and Yi = Xi −Xn, i = 1, . . . , n. Then for any vector a of length n we have

aT Γ̂na =
1

n

(
aTU

) (
aTU

)T ≥ 0.

The factor 1
n in (11.2) is sometimes replaced by 1

n−k but then the matrix Γ̂n may not be positive
semidefinite.

Also note that, for a given n ∈ N, Γ̂n is regular if R̂(0) > 0. Indeed, for given values of X1, . . . , Xn,
the function

R̂(k) =

{
1
n

∑n−|k|
t=1

(
Xt −Xn

) (
Xt+|k| −Xn

)
, |k| < n,

0, |k| ≥ n,

can be viewed as the autocovariance function of the MA(n − 1) sequence with coefficients bj =

X1+j − Xn, j = 1, . . . , n − 1, and σ2 = 1
n , see Theorem 7.1. Then clearly R̂(k) → 0, k → ∞,

and assuming R̂(k) > 0, regularity of Γ̂n follows from Theorem 9.4. This shows that the sample
autocovariance function is a relevant estimator, even though it is biased.

From the n observations X1, . . . , Xn we are able to estimate R(k) for k = 0, . . . , n− 1. However, the
estimated values may not be reliable. Usually, it is recommended to choose n ≥ 50 and k ≤ n

4 .

Recall that the autocorrelation function r is defined as r(k) = R(k)/R(0), k ∈ Z. The sample
autocorrelation function is given by

r̂(k) =
R̂(k)

R̂(0)
=

∑n−k
t=1

(
Xt −Xn

) (
Xt+k −Xn

)∑n
t=1

(
Xt −Xn

)2 , k = 0, 1, . . . , n− 1,

provided that R̂(0) = 1
n

∑n
t=1

(
Xt −Xn

)2
> 0. The asymptotic behavior of the sample autocorrela-

tion function is discussed in the following theorem.

Theorem 11.1. Let {Xt, t ∈ Z} be a random sequence fulfilling

Xt − µ =
∞∑

j=−∞
αjYt−j , t ∈ Z,
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where {Yt, t ∈ Z} are independent, identically distributed random variables with zero mean and
finite positive variance σ2. Also, let E|Yt|4 < ∞ and

∑∞
j=−∞ |αj | < ∞. Let r(k), k ∈ Z, be the

autocorrelation function of {Xt, t ∈ Z} and r̂n(k) be the sample autocorrelations based on X1, . . . , Xn.

Then for each h ∈ N, as n → ∞, the random vector

√
n (r̂n(h)− r(h))

converges in distribution to the random vector with the multivariate normal distribution Nh(0,W),
where

r̂n(h) = (r̂n(1), . . . , r̂n(h))
T , r(h) = (r(1), . . . , r(h))T ,

and W is the h× h matrix with elements

wij =
∞∑
k=1

[r(k + i) + r(k − i)− 2r(i)r(k)] [r(k + j) + r(k − j)− 2r(j)r(k)] , i, j = 1, . . . , h.

Proof. See Brockwell and Davis (2006, Theorem 7.2.1).

Remark: The theorem covers MA(n) and MA(∞) models as well as causal AR(p) and ARMA(p, q)
models. Generally speaking, it covers sequences obtained by linear filtration of the strict white noise
sequence (having i.i.d. values, not just uncorrelated) with finite fourth moment.

Remark: The formula for wij is called the Bartlett formula. The theorem implies specifically for each
i ∈ N that

√
n (r̂n(i)− r(i))

d→ N (0, wii), n → ∞.

Example: Consider an AR(1) sequence Xt = φXt−1 + Yt, t ∈ Z, where |φ| < 1 and {Yt, t ∈ Z}
are i.i.d. random variables with zero mean, finite positive variance σ2 and E|Yt|4 < ∞. Then
r(k) = φ|k|, k ∈ Z. Specifically, r(1) = φ and according to Theorem 11.1, we have

√
n (r̂n(1)− φ)

d→ N (0, w11), n → ∞,

where

w11 =
∞∑
k=1

[r(k + 1) + r(k − 1)− 2r(1)r(k)]2 =
∞∑
k=1

(φk+1 + φk−1 − 2φ · φk)

=
∞∑
k=1

(φk−1 − φk+1)2 =
∞∑
k=1

[
(1− φ2)φk−1

]2
= (1− φ2)2

∞∑
k=1

φ2(k−1)

= (1− φ2)2 · 1

1− φ2
= 1− φ2.

If we denote φ̂n = r̂n(1), we can write

√
n (φ̂n − φ)

d→ N (0, 1− φ2), n → ∞,

or

√
n

φ̂n − φ√
1− φ2

d→ N (0, 1), n → ∞.
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It follows that φ̂n
P→ φ, n → ∞ (weak consistency of the estimator) and, by Slutsky’s theorem,

√
n

φ̂n − φ√
1− φ̂2

n

d→ N (0, 1), n → ∞.

This allows us to test hypotheses about φ, construct asymptotic confidence intervals, etc. For
example, the asymptotic 95% confidence interval is(

φ̂n − 1.96

√
1− φ̂2

n

n
, φ̂n + 1.96

√
1− φ̂2

n

n

)
.

11.3 Partial autocorrelation function

The sample partial autocorrelation function α̂(k), k ∈ N, is obtained using the formula (10.1) by
plugging in the values of the sample autocorrelation function r̂(k):

α̂(1) = r̂(1), α̂(k) =

∣∣∣∣∣∣∣∣∣
1 r̂(1) · · · r̂(k − 2) r̂(1)

r̂(1) 1 · · · r̂(k − 3) r̂(2)
...

...
. . .

...
...

r̂(k − 1) r̂(k − 2) · · · r̂(1) r̂(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 r̂(1) · · · r̂(k − 2) r̂(k − 1)

r̂(1) 1 · · · r̂(k − 3) r̂(k − 2)
...

...
. . .

...
...

r̂(k − 1) r̂(k − 2) · · · r̂(1) 1

∣∣∣∣∣∣∣∣∣

, k > 1.

The determinant in the denominator is non-zero if 1
n

∑n
t=1

(
Xt −Xn

)2
> 0.

The formula (10.1) for α(k) implies that α(k) is a continuous function of r(1), . . . , r(k), i.e. α(k) =
g(r(1), . . . , r(k)) for some continuous function g. Similarly, α̂(k) = g(r̂(1), . . . , r̂(k)). Under the
assumptions of Theorem 11.1 it can be shown that

√
n (α̂(k)− α(k)) has asymptotically the N (0, τ2)

distribution, where τ2 depends on the matrix W from Theorem 11.1 and on the partial derivatives
of the function g, provided that g is sufficiently smooth.
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12 Estimation of parametric models

12.1 AR(p) sequences

Let us consider a real-valued, weakly stationary, causal AR(p) sequence of order p,

Xt = φ1Xt−1 + . . .+ φpXt−p + Yt, t ∈ Z,

where p is assumed to be known, {Yt, t ∈ Z} is a white noise sequence WN(0,σ2) and φ1, . . . , φp are
unknown parameters to be estimated based on observations X1, . . . , Xn.

Method of moments

Let R be the autocovariance function of the sequence {Xt, t ∈ Z}. Using the Yule-Walker equations
we get

R(0) = φ1R(1) + . . .+ φpR(p) + σ2, (12.1)

R(k) = φ1R(k − 1) + . . .+ φpR(k − p), k ≥ 1.

The system of equations for k = 1, . . . , p can be written in the matrix form Γφ = γ, where φ =
(φ1, . . . , φp)

T , γ = (R(1), . . . , R(p))T and

Γ =


R(0) R(1) · · · R(p− 1)
R(1) R(0) · · · R(p− 2)
...

...
. . .

...
R(p− 1) R(p− 2) · · · R(0)

 .

We replace the values of R(k) in Γ and γ by their sample counterparts,

R̂(k) =
1

n

n−k∑
t=1

(
Xt −Xn

) (
Xt+k −Xn

)
, k = 0, 1, . . . , p,

obtaining Γ̂ and γ̂. Plugging these estimators into the equation Γφ = γ, we obtain the moment
estimators of φ1, . . . , φp as the solution

φ̂ = (φ̂1, . . . , φ̂p)
T = Γ̂−1γ̂,

provided that Γ̂−1 exists. We know from Section 11.2 that a sufficient condition for Γ̂ to be regular

is R̂(0) = 1
n

∑n
t=1

(
Xt −Xn

)2
> 0.

The moment estimator of σ2 is obtained from the equation (12.1) as

σ̂2 = R̂(0)− φ̂1R̂(1)− . . .− φ̂pR̂(p) = R̂(0)− φ̂T γ̂.

These estimators are often called the Yule-Walker estimators.

Remark: The moment estimators are not very robust (statistically speaking), but are useful for
finding approximate estimates as a starting point for more involved methods. Still, the moment
estimators are asymptotically normal under certain assumptions.

Theorem 12.1. Let {Xt, t ∈ Z} be an AR(p) sequence given by the model

Xt = φ1Xt−1 + . . .+ φpXt−p + Yt, t ∈ Z,
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where {Yt, t ∈ Z} are independent, identically distributed random variables with zero mean and finite
positive variance σ2. Suppose that all the roots of the characteristic polynomial λp−φ1λ

p−1− . . .−φp

are inside the unit circle, and let φ̂n = (φ̂1,n, . . . , φ̂p,n)
T and σ̂2

n be the moment estimators of φ =

(φ1, . . . , φp)
T and σ2, respectively, computed from X1, . . . , Xn. Then,

√
n (φ̂n −φ)

d→ Np

(
0, σ2Γ−1

)
, n → ∞,

where Γ is the matrix with elements Γij = R(i−j), 1 ≤ i, j ≤ p, and R is the autocovariance function
of {Xt, t ∈ Z}. Furthermore, it holds that

σ̂2
n

P→ σ2, n → ∞.

Proof. See Brockwell and Davis (2006, Theorem 8.1.1).

Remark: Using the method of moments, we have fitted, after subtracting the sample mean, an AR(9)
model to the sunspot number time series from Figure 17. The fitted model is

Xt =1.148Xt−1 − 0.387Xt−2 − 0.145Xt−3 + 0.099Xt−4 − 0.079Xt−5

+ 0.037Xt−6 − 0.016Xt−7 − 0.028Xt−8 + 0.214Xt−9 + Yt, t ∈ Z,

with the estimated variance of the white-noise sequence σ̂2 .
= 599.8.

Least squares method

Consider once more the AR(p) sequence given above, and observations X1, . . . , Xn, where n > p.
The least squares estimators of φ1, . . . , φp are obtained by minimizing the sum of squares

min
φ1,...,φp

n∑
t=p+1

(Xt − φ1Xt−1 − . . .− φpXt−p)
2.

Differentiation with respect to φ1, . . . , φp leads to the system of normal equations

n∑
t=p+1

(Xt − φ1Xt−1 − . . .− φpXt−p)Xt−j = 0, j = 1, . . . , p,

or equivalently,

φ1

n∑
t=p+1

X2
t−1 + . . .+ φp

n∑
t=p+1

Xt−1Xt−p =

n∑
t=p+1

XtXt−1,

...

φ1

n∑
t=p+1

Xt−1Xt−p + . . .+ φp

n∑
t=p+1

X2
t−p =

n∑
t=p+1

XtXt−p.

If we denote Xt−1 = (Xt−1, . . . , Xt−p)
T , we can write this in the matrix form

Σnφ = sn,

where sn =
∑n

t=p+1Xt−1Xt =
(∑n

t=p+1Xt−1Xt, . . . ,
∑n

t=p+1Xt−pXt

)T
is the vector of the right-

hand sides and

Σn =
n∑

t=p+1

Xt−1X
T
t−1 =


∑n

t=p+1X
2
t−1 . . .

∑n
t=p+1Xt−1Xt−p

...
. . .

...∑n
t=p+1Xt−1Xt−p . . .

∑n
t=p+1X

2
t−p

 .
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The solution is obtained as φ̃n = (φ̃1,n, . . . , φ̃p,n)
T = Σ−1

n sn. The least squares estimator of σ2 is

σ̃2
n =

1

n− p

n∑
t=p+1

(
Xt − φ̃TXt−1

)2
.

We denote the least squares estimators by φ̃i,n and σ̃2
n to distinguish them from the moment esti-

mators φ̂i,n and σ̂2
n discussed above. It can be shown that φ̃n and σ̃2

n have the same asymptotic
properties as φ̂n and σ̂2

n. In particular,

√
n (φ̃n −φ)

d→ Np

(
0, σ2Γ−1

)
, n → ∞,

where Γ is the matrix from Theorem 12.1, and

σ̃2
n

P→ σ2, n → ∞.

Maximum likelihood estimation

The maximum likelihood estimation assumes we know the distribution of the random variables used
for estimation. Consider first a sequence {Xt, t ∈ Z} which satisfies the AR(1) model

Xt = φXt−1 + Yt, t ∈ Z,

where {Yt, t ∈ Z} are independent, identically distributed random variables with the N (0, σ2) dis-
tribution. We assume causality of the sequence {Xt, t ∈ Z}, implying |φ| < 1. Assuming we observe
the random variables X1, . . . , Xn, it follows that X1 and (Y2, . . . , Yn)

T are independent, with the
joint probability density function

f(x1, y2, . . . , yn) = f1(x1)f2(y2, . . . , yn)

= f1(x1)
1

(2πσ2)(n−1)/2
exp

{
− 1

2σ2

n∑
t=2

y2t

}
, (x1, y2, . . . , yn)

T ∈ Rn.

Using Theorem 3.5, it can be shown that under causality, X1 has the N (0, τ2) distribution, where

τ2 = σ2

1−φ2 .

The transformation theorem implies that the joint probability density function of the random vector
(X1, . . . , Xn)

T is given by

f(x1, . . . , xn) =

√
1− φ2

(2πσ2)n/2
exp

{
− 1

2σ2

(
(1− φ2)x21 +

n∑
t=2

(xt − φxt−1)
2

)}
, (x1, . . . , xn)

T ∈ Rn.

The likelihood function L(φ, σ2) has the form given by the formula above, with |φ| < 1, σ2 > 0,
where xi is replaced by Xi, i = 1, . . . , n. The maximum likelihood estimators φ and σ2 are the values
that maximize L(φ, σ2) over the given parametric space. Even for this simple model, it is necessary
to solve this non-linear optimization problem numerically.

A simpler solution is provided by the conditional maximum likelihood approach. It is easy to see
that the conditional density of (X2, . . . , Xn)

T given X1 = x1 in this AR(1) model is

f(x2, . . . , xn|x1) =
1

(2πσ2)(n−1)/2
exp

{
− 1

2σ2

n∑
t=2

(xt − φxt−1)
2

}
, (x1, . . . , xn)

T ∈ Rn.

The conditional maximum likelihood estimators are obtained by maximizing this function with re-
spect to φ and σ2 over the parametric space φ ∈ R, σ2 > 0. Note that in this approach we did not
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assume causality, plus we work with a finite sequence only, meaning all values of φ ∈ R are indeed
relevant and allowed.

If we consider a general AR(p) model Xt = φ1Xt−1 + . . .+φpXt−p + Yt, t ∈ Z, where {Yt, t ∈ Z} are
independent, identically distributed random variables with the N (0, σ2) distribution, the conditional
density of (Xp+1, . . . , Xn)

T given X1 = x1, . . . , Xp = xp is

f(xp+1, . . . , xn|x1, . . . , xp) =
1

(2πσ2)(n−p)/2
exp

− 1

2σ2

n∑
t=p+1

(xt −φTxt−1)
2

 , (x1, . . . , xn)
T ∈ Rn,

where xt−1 = (xt−1, . . . , xt−p)
T , φ = (φ1, . . . , φp)

T . By maximization of this function with respect to
φ1, . . . , φp and σ2, we obtain the conditional maximum likelihood estimators. It can be shown easily
that under the normality assumption, these estimators are numerically equivalent to the least squares
estimators (in both cases we look for φ1, . . . , φp such that

∑n
t=p+1(Xt −φTXt−1)

2 is minimal).

12.2 MA(q) sequences

In the previous section, the estimation in the autoregressive models was rather straightforward since
we worked with linear regression models where the estimating equations are linear with respect to
the parameters. For the moving average sequences (and more generally, the ARMA sequences), this
is not the case and the estimation becomes more complicated. Hence, we discuss below only the
basic moment method.

Consider the MA(q) sequence given by

Xt = Yt + θ1Yt−1 + . . .+ θqYt−q, t ∈ Z,

where {Yt, t ∈ Z} is a white noise sequence WN(0,σ2). Suppose that θ1, . . . , θq and σ2 are unknown,
real-valued parameters to be estimated from the observations X1, . . . , Xn.

Method of moments

The autocovariance function of the sequence {Xt, t ∈ Z} is given by the formula

R(t) =

{
σ2
∑q−|t|

k=0 θkθk+|t|, |t| ≤ q,

0, |t| > q,

where we put θ0 = 1. The moment estimators of θ1, . . . , θq and σ2 can be obtained from these

equations by replacing R(t) with R̂(t) and solving the system

R̂(0) = σ2
(
1 + θ21 + . . .+ θ2q

)
R̂(1) = σ2 (θ1 + θ1θ2 + . . .+ θq−1θq) ,

...

R̂(q) = σ2θq.

Note that for such a system of equations, a real-valued solution may not exist or may not be unique.

Example: Consider a MA(1) sequence Xt = Yt + θYt−1, t ∈ Z, where {Yt, t ∈ Z} is a white noise
sequence WN(0, σ2). Assume we observe the values X1, . . . , Xn. We know that R(0) = (1 + θ2)σ2

and R(1) = θσ2. It follows that r(1) = R(1)/R(0) = θ/(1 + θ2). In order to estimate θ, we first
compute r̂(1) from the data. Then, we solve the equation

r̂(1) =
θ

1 + θ2
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for θ, obtaining θ̂. Finally, we estimate σ2 from the variance formula R(0) = (1 + θ2)σ2 as

σ̂2 =
R̂(0)

1 + θ̂2
.

We investigate when the estimator θ̂ exists. We denote r = r̂(1) and solve the quadratic equation

r =
θ

1 + θ2
,

0 = rθ2 − θ + r,

θ1,2 =
1±

√
1− 4r2

2r
.

We see that a real solution exists for 1− 4r2 ≥ 0, i.e. for |r| ≤ 1
2 . Note also that from the equation

r(1) = θ/(1 + θ2) it follows that |r(1)| ≤ 1
2 for each θ ∈ R.

In summary, for |r̂(1)| < 1
2 we have two different real solutions of the quadratic equation, and

choosing θ̂ =
1−
√

1−4r̂(1)2

2r̂(1) leads to an invertible sequence with |θ̂| < 1.

For |r̂(1)| = 1
2 , we set θ̂ = 1 for r̂(1) = 1

2 and θ̂ = −1 for r̂(1) = −1
2 .

For |r̂(1)| > 1
2 , there is no real solution to the quadratic equation. In a pragmatic way, we choose

the estimator for |r̂(1)| = 1
2 as our estimator. However, this situation does not occur often since the

true value r(1) satisfies |r(1)| ≤ 1
2 .

12.3 ARMA(p, q) sequences

Consider the causal, real-valued ARMA(p, q) sequence given by

Xt = φ1Xt−1 + . . .+ φpXt−p + Yt + θ1Yt−1 + . . .+ θqYt−q, t ∈ Z, (12.2)

where {Yt, t ∈ Z} is a white noise sequence WN(0,σ2). Suppose that φ1, . . . , φp, θ1, . . . , θq and σ2 are
unknown, real-valued parameters to be estimated from the observations X1, . . . , Xn.

Method of moments

We use the Yule-Walker equations for the autocovariance function RX(k) of the sequence {Xt, t ∈ Z}:

RX(k) = φ1RX(k − 1) + . . .+ φpRX(k − p), k = q + 1, . . . , q + p.

We replace RX(k) with R̂X(k) and solve the system of linear equations to find φ̂1, . . . , φ̂p. As a second
step, we define Zt = Xt − φ1Xt−1 − . . .− φpXt−p, t ∈ Z, obtaining the MA(q) sequence

Zt = Yt + θ1Yt−1 + . . .+ θqYt−q, t ∈ Z.

The parameters θ1, . . . , θq and σ2 can be estimated using the approach from Section 12.2, provided

that we have the values R̂Z(k) available. To find them, we consider the linear filter

Zt =

p∑
j=0

βjXt−j , t ∈ Z,

where β0 = 1, βj = −φj , j = 1, . . . , p, and recall that in this case

RZ(k) =

p∑
j=0

p∑
l=0

βjβlRX(k + j − l), k ∈ Z.

76



We plug in the sample autocovariances R̂X(k) computed from X1, . . . , Xn and the values β̂j = −φ̂j

estimated above to get R̂Z(k).

The moment estimators are under certain assumptions consistent and asymptotically normal, but
they have large variance compared to maximum likelihood estimators and are not very robust.
Nevertheless, they can provide preliminary estimates as a starting point for more involved estimation
methods.
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13 Estimation of spectral density

13.1 Periodogram

Definition 13.1. Let {Xt, t ∈ Z} be a random sequence and let X1, . . . , Xn be the available obser-
vations. The periodogram of X1, . . . , Xn is defined as

In(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xte
−itλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

Remark: Periodogram is usually computed at points λj = 2πj
n for j ∈ Z such that λj ∈ [−π, π],

called the Fourier frequencies. Some authors even define the periodogram only in these frequencies.
It is interesting to note that the periodogram values, computed at the Fourier frequencies, are not
influenced by the possible centering of the sequence. This is because for any constant c and any
Fourier frequency λj it holds that

∑n
t=1 c e

−itλj = 0.

Remark: Periodogram has been proposed as an estimator of the spectral density and as a tool for the
identification of periodic components in time series. For illustration, consider the sunspot number
time series from Figure 17. The corresponding periodogram is shown in Figure 19. The highest
peak in the periodogram is located at the frequency λ

.
= 0.58, which corresponds to the period of

2π/λ
.
= 10.8 time units (years). This result is consistent with the well-known 11-year period of the

solar cycle. Note that since the sequence is real-valued, its spectral density is symmetric around the
origin, and the periodogram is plotted for non-negative frequencies only, as usual in practice. The
same applies to other figures in this chapter.

Remark: To actually compute the values of the periodogram, it is more convenient to use the form

In(λ) =
1

4π

[
A(λ)2 +B(λ)2

]
, λ ∈ [−π, π],

where

A(λ) =

√
2

n

n∑
t=1

Xt cos(tλ), B(λ) =

√
2

n

n∑
t=1

Xt sin(tλ), λ ∈ [−π, π].

Remark: Alternatively, for a real-valued sequence the periodogram can be expressed as

In(λ) =
1

2πn

n∑
t=1

n∑
s=1

XtXse
−i(t−s)λ =

1

2πn

n−1∑
k=−n+1

min(n,n−k)∑
s=max(1,1−k)

XsXs+ke
−ikλ

=
1

2π

n−1∑
k=−n+1

e−ikλCk, (13.1)

where

Ck =

{
1
n

∑n−k
t=1 XtXt+k, k ≥ 0,

C−k, k < 0.

Remark: Note that the formula (13.1) resembles the inverse formula for computing the spectral
density: f(λ) = 1

2π

∑∞
k=−∞ e−ikλR(k), λ ∈ [−π, π]. Since Ck can be viewed as an estimator of R(k),

In(λ) can be viewed as an estimator of f(λ).

Theorem 13.1. Let {Xt, t ∈ Z} be a real-valued, weakly stationary random sequence with the mean
value µ, spectral density f and the autocovariance function R such that

∑∞
k=−∞ |R(k)| < ∞.
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Figure 19: Periodogram of the sunspot number time series.

1. If µ = 0, then EIn(λ) → f(λ), n → ∞, λ ∈ [−π, π].

2. If µ ̸= 0, then for n → ∞ we have

EIn(λ) → f(λ), λ ∈ [−π, π] \ {0},

EIn(0)−
nµ2

2π
→ f(0).

Proof. 1. For a centered sequence we have

EIn(λ) =
1

2πn

n∑
t=1

n∑
s=1

e−i(t−s)λEXtXs =
1

2πn

n−1∑
k=−n+1

e−ikλR(k)(n− |k|), λ ∈ [−π, π],

see the computation of φn(λ) in the proof of Theorem 5.4.

According to Theorem 5.7, the spectral density of {Xt, t ∈ Z} exists and is given by

f(λ) =
1

2π

∞∑
k=−∞

e−ikλR(k), λ ∈ [−π, π].

Using the same arguments as in the proof of Theorem 5.7 we have for λ ∈ [−π, π]:

|f(λ)− EIn(λ)| ≤
1

2π

∑
|k|≥n

|R(k)|+ 1

2πn

n−1∑
k=−n+1

|R(k)| · |k| → 0, n → ∞,

where the first term in the upper bound is a remainder of a convergent series, and the second term
converges to 0 due to the Kronecker lemma.

2. For a non-centered sequence with mean µ we have

EIn(λ) =
1

2πn

n∑
t=1

n∑
s=1

e−i(t−s)λEXtXs =
1

2πn

n∑
t=1

n∑
s=1

e−i(t−s)λ(R(t− s) + µ2)

=
1

2πn

n−1∑
k=−n+1

e−ikλR(k)(n− |k|) + µ2

2πn

∣∣∣∣∣
n∑

t=1

e−itλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

The first term converges to f(λ) for λ ∈ [−π, π] according to the first part of the proof. Concerning

the second term, for λ ̸= 0 it equals µ2

2πn
1−cos(nλ)
1−cosλ and converges to 0 for n → ∞; for λ = 0 it equals

nµ2

2π .
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Remark: The previous theorem establishes asymptotic unbiasedness of In(λ) as the estimator of f(λ).
However, consistency does not hold, e.g. it can be shown that for any Gaussian, stationary sequence
with continuous spectral density f it holds that

lim
n→∞

var In(λ) =

{
f(λ)2, λ ∈ (−π, π) \ {0},
2f(λ)2, λ ∈ {−π, 0, π},

see Anděl (1976, p. 103). Even in this simple case, the variance of In(λ) does not converge to 0.

Remark: The periodogram can detect hidden periodic components in a time series. For illustration,
consider a sequence {Xt, t ∈ Z} such that Xt = αeitλ0 + Yt, t ∈ Z, where α ̸= 0 is a constant,
λ0 ∈ [−π, π], and {Yt, t ∈ Z} is a white noise sequence WN(0,σ2). Then,

1√
n

n∑
t=1

Xte
−itλ =

1√
n

n∑
t=1

Yte
−itλ +

1√
n

n∑
t=1

αe−it(λ−λ0), λ ∈ [−π, π].

This means that for λ = λ0, the nonrandom part of the periodogram, corresponding to the second
term of the previous formula, tends to +∞ as n → ∞. For λ ̸= λ0, this term is close to 0, see the
second part of the proof of Theorem 13.1 for

∑n
t=1 e

−itλ. It means that if there is a single periodic
component at frequency λ0, the periodogram takes its largest value at this frequency. Usually, the
frequency λ0 is not known, and it is reasonable to consider the maximum value of the periodogram
at the Fourier frequencies when looking for periodic components.

Theorem 13.2. Let {Xt, t ∈ Z} be a Gaussian random sequence of independent, identically dis-
tributed random variables with zero mean and variance σ2 ∈ (0,∞). Let n = 2m + 1 and In(λr)
be the periodogram computed from X1, . . . , Xn at the frequencies λr = 2πr

n , r = 1, . . . ,m. Then the
statistic

W =
max1≤r≤m In(λr)

In(λ1) + . . .+ In(λm)

has the probability density function

g(x) = m(m− 1)

⌊1/x⌋∑
j=1

(−1)j−1

(
m− 1

j − 1

)
(1− jx)m−2, 0 < x < 1,

and furthermore

P(W > x) = 1−
⌊1/x⌋∑
k=0

(−1)k
(
m

k

)
(1− kx)m−1, 0 < x < 1. (13.2)

Proof. See Anděl (1976, p. 79–82).

13.2 Fisher test of periodicity

Based on the Theorem 13.2, we want to test the null hypothesis of no periodic component in the
time series, H0 : X1, . . . , Xn are i.i.d. with the N (0, σ2) distribution, against the alternative that H0

is violated. The alternative hypothesis H1 assumes the model

Xt =

p∑
j=1

(αj cos(λjt) + βj sin(λjt)) + εt, t ∈ {1, . . . , n}, (13.3)
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where p, α1, . . . , αp, β1, . . . , βp are unknown parameters, λ1, . . . , λp are unknown frequencies and
ε1, . . . , εn are independent, identically distributed random variables with the N (0, σ2) distribution.

Under the null hypothesis, all the values In(2π/n), . . . , In(2πm/n) should be similar, and the value
of the test statistic W from Theorem 13.2 should be close to 1/m. Large values of W indicate a
violation of H0 and the presence of periodic components in the time series (or correlations in the
time series, but we do not consider that in H1). We reject H0 on the significance level α if W > cα,
where the critical value cα can be computed from (13.2).

Remark: Form ≤ 50, we can use for finding cα just the first two terms in (13.2), i.e. the approximation
P(W > x) ≈ m(1− x)m−1. For m > 50, we can use the asymptotic distribution

lim
m→∞

P
(
W >

x+ lnm

m

)
= 1− exp{− exp{−x}}, x > 0.

Remark: If the Fisher test rejects the null hypothesis, we accept the alternative that the mean
of {Xt, t ∈ Z} contains a periodic component with frequency λ(1) corresponding to the maximum
value of the periodogram V(1), where we denote V(1) ≥ V(2) ≥ . . . ≥ V(m) the ordered values of
In(λr), r = 1, . . . ,m.

Now we can determine further periodic components with a modification of the Fisher test. Note
that the test was derived under the null hypothesis which we have just rejected, so the test is not
exact, but it works well in practice (Anděl, 1976, p. 86). The original Fisher test is based on the test
statistic

W = W1 =
V(1)

V(1) + . . .+ V(m)

and the critical values are obtained from (13.2). The modified test is based on the test statistic

W2 =
V(2)

V(2) + . . .+ V(m)

and the critical values are obtained from (13.2) with m− 1 in place of m. We proceed like this until
all remaining frequencies are not significant. If the frequencies λ(1), . . . , λ(p) were found significant,
we accept the model (13.3) with these frequencies. The parameters α1, . . . , αp, β1, . . . , βp can be
estimated using e.g. the least squares method.

13.3 Estimation of spectral density

We have shown in Theorem 13.1 that the periodogram is an asymptotically unbiased estimator of
the spectral density. However, it is not consistent even for the Gaussian white noise sequence. On
the other hand, kernel estimation can be applied in this setting. We remark that in this case,
a centered sequence should be used for estimation due to possible interpretability issues – artificially
high values tend to occur for low frequencies when a weakly stationary sequence with non-zero mean
is used directly for estimation.

Let K be a kernel function on the interval [−π, π], satisfying

K(λ) ≥ 0, K(λ) = K(−λ),

∫ π

−π
K(λ) dλ = 1,

∫ π

−π
K2(λ) dλ < ∞.

Under certain assumptions,
∫ π
−π In(λ)K(λ) dλ can be shown to be asymptotically unbiased and con-

sistent estimator of
∫ π
−π f(λ)K(λ) dλ. If the function K is concentrated around 0, the statistic

f̂n(λ0) =

∫ π

−π
K(λ− λ0)In(λ) dλ
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can be considered a consistent estimator of f(λ0), λ0 ∈ [−π, π].

If we expand the function K into the Fourier series K(λ) =
∑∞

k=−∞wke
ikλ, λ ∈ [−π, π], where

wk = 1
2π

∫ π
−π e

−ikλK(λ) dλ and use the formula (13.1), we get for λ0 ∈ [−π.π]:

f̂n(λ0) =

∫ π

−π

1

2π

n−1∑
k=−n+1

e−ikλCkK(λ− λ0) dλ

=
1

2π

n−1∑
k=−n+1

Ck

∫ π

−π
e−ikλK(λ− λ0) dλ

=
1

2π

n−1∑
k=−n+1

Ck

∫ π

−π
e−ikλ

∞∑
j=−∞

wje
ij(λ−λ0) dλ

=
1

2π

n−1∑
k=−n+1

Ck

∞∑
j=−∞

wje
−ijλ0

∫ π

−π
eijλ−ikλ dλ

=
n−1∑

k=−n+1

Ckwke
−ikλ0 = C0w0 + 2

n−1∑
k=1

Ckwk cos(kλ0).

We note that only the Fourier coefficient w0, . . . , wn−1 play a role, hence the same estimator is given
for all the kernel functions sharing the same set of Fourier coefficients w0, . . . , wn−1.

Remark: The coefficients Ck have large variability for large values of k (close to n). Often, truncated
estimators are considered:

f̂n(λ0) =
M∑

k=−M

Ckwke
−ikλ0 = C0w0 + 2

M∑
k=1

Ckwk cos(kλ0),

where the truncation point is usually chosen as n
6 < M < n

5 .

Remark: There are many ways how to choose the kernel functionK (or more frequently the coefficients
w0, . . . , wk) so that the estimator of the spectral density exhibits desirable properties such as non-
negative values, low bias, or a good order of convergence in consistency. Popular choices include the
Bartlett estimator

wk =

{
1
2π

(
1− |k|

M

)
, |k| ≤ M,

0, |k| > M,

or the Blackman-Tukey estimator

wk =

{
1
2π

[
1− 2a+ 2a cos

(
πk
M

)]
, |k| ≤ M,

0, |k| > M,

where 0 < a ≤ 0.25. Both the Bartlett estimator and the Blackman-Tukey estimator with a = 0.25
provide non-negative estimates. The Blackman-Tukey estimator with a = 0.23 (another traditional
choice) has a smaller bias but can result in negative estimates.

One of the most frequently used estimators is also the Parzen estimator

wk =


1
2π

[
1− 6

(
|k|
M

)2
+ 6

(
|k|
M

)3]
, |k| ≤ M

2 ,

1
2π

[
2
(
1− |k|

M

)3]
, M

2 < |k| ≤ M,

0, |k| > M.
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Figure 20: Nonparametric estimate of the spectral density of the sunspot number time series, using
the Parzen window with M = 60 (left), and the parametric estimate based on the fitted AR(9) model
(right).

This estimator also provides non-negative estimates and leads to smoother estimates of the spectral
density. For illustration, such nonparametric estimate is plotted in the left panel of Figure 20 for
the sunspot number time series.

Remark: The previous estimator is nonparametric. If a parametric model for the observed sequence
is available, meaning that a parametric formula for the spectral density is at hand, we can plug in
the estimated values of the model parameters to obtain a parametric estimate of the spectral density.
As an illustration, the parametric estimate for the sunspot number time series is plotted in the right
panel of Figure 20.
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