III.4 Hartogs theorem on separate holomorphy

Theorem 15 (Hartogs theorem). Any separately holomorphic function is holomorphic.

Remark: Locally bounded separately holomorphic functions are holomorphic by Theorem 8. A separately continuous function on \mathbb{C}^2 need not be locally bounded.

Lemma 16. Let $G \subset \mathbb{C}$ be and open set and u be a subharmonic function on G. If $a \in G$ and r > 0 are such that $\overline{U(a,r)} \subset G$, then

$$u(a) \le \frac{1}{\pi r^2} \int_{U(a,r)} u \, \mathrm{d}\lambda,$$

where λ denotes the two-dimensional Lebesgue measure in \mathbb{C} .

Lemma 17. Let $G \subset \mathbb{C}$ be and open set and (u_k) be a sequence of sub-harmonic functions on G, which is uniformly bounded from above on G. Let $C \in \mathbb{R}$ be such that

$$\limsup_{k\to\infty} u_k(z) \le C \text{ for each } z \in G.$$

Then for any compact set $K \subset G$ and any $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that

$$\forall z \in K \ \forall k \ge k_0 : u_k(z) \le C + \varepsilon.$$

Lemma 18. Let $n \geq 2$ be such that the statement of the Hartogs theorem holds for n-1. Let $\mathbf{a} = (\mathbf{a}', a_n) \in \mathbb{C}^{n-1} \times \mathbb{C}$, $r, s, \varepsilon \in (0, \infty)$ and $\varepsilon < r$. Let f be a separately holomorphic function on the polydisc $\mathbb{P}(\mathbf{a}', \widehat{\mathbf{r}}) \times U(a_n, s)$, which is bounded on $\mathbb{P}(\mathbf{a}', \widehat{\boldsymbol{\varepsilon}}) \times U(a_n, s)$. Then f is holomorphic on $\mathbb{P}(\mathbf{a}', \widehat{\boldsymbol{r}}) \times U(a_n, s)$. (We use the notation $\widehat{\boldsymbol{r}} = (r, \ldots, r) \in (0, \infty)^{n-1}$.)