III.1 Power series of several complex variables

Notation:

- Let $\boldsymbol{x} \in \mathbb{C}^n$, $\boldsymbol{y} \in \mathbb{C}^n$ and $c \in \mathbb{C}$. Then we set
 - $\circ \ x + y = (x_1 + y_1, \dots, x_n + y_n),$
 - $\circ \ \boldsymbol{x} \cdot \boldsymbol{y} = (x_1 y_1, \dots, x_n y_n),$
 - $\circ c\mathbf{x} = (cx_1, \dots, cx_n).$
- Let $\boldsymbol{x} \in \mathbb{C}^n$ and $\alpha \in \mathbb{N}_0^n$. Then we set $\boldsymbol{x}^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, where we use the convention that $0^0 = 1$.
- For $\alpha \in \mathbb{N}_0^n$ we set $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

Definition. By a power series of n variables centered at 0 we mean a series of the form

$$\sum_{\alpha\in\mathbb{N}_0^n}c_{\alpha}\boldsymbol{x}^{\alpha},$$

where $c_{\alpha} \in \mathbb{C}$ for each $\alpha \in \mathbb{N}_0^n$.

Remark: On the index set \mathbb{N}_0^n there is no canonical order. Therefore by a convergence of the above power series we mean the absolute convergence. I.e., the power series given above converges at a point x if and only if

$$\sup\{\sum_{\alpha\in F}|c_{\alpha}\boldsymbol{x}^{\alpha}|:F\subset\mathbb{N}_{0}^{n}\text{ finite}\}<+\infty.$$

The sum of this series is then the limit of partial sums for any ordering of the elements of the series or, equivalently, the limit of the net

$$\sum_{\alpha \in F} c_{\alpha} \boldsymbol{x}^{\alpha}, \qquad F \subset \mathbb{N}_0^n \text{ finite},$$

where finite sets are ordered by inclusion.

Proposition 1.

- (1) The series $\sum_{\alpha \in \mathbb{N}_0^n} \mathbf{x}^{\alpha}$ converges if and only if $|x_j| < 1$ for each $j \in \{1, \ldots, n\}$.
- (2) Let us consider the series $\sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} x^{\alpha}$. Let $x \in \mathbb{C}^n$ be a point with non-zero coordinates such that

$$\sup_{\alpha\in\mathbb{N}_0^n}|c_\alpha\boldsymbol{x}^\alpha|<+\infty.$$

Then the series converges locally uniformly on the set

$$\{ y \in \mathbb{C}^n : |y_j| < |x_j| \text{ for } j = 1, \dots, n \}.$$

Definition. Let $A \subset \mathbb{C}^n$. The set A is said to be

- a Reinhardt set if $y \cdot x \in A$ whenever $x \in A$ and $y \in \mathbb{T}^n$,
- a complete Reinhardt set if $y \cdot x \in A$ whenever $x \in A$ and $y \in \overline{\mathbb{D}}^n$.

A Reinhardt set A is said to be logarithmically convex if

$$\log A = \{(\log |x_1|, \dots, \log |x_n|) : \boldsymbol{x} \in A \cap (\mathbb{C} \setminus \{0\})^n\}$$

is a convex subset of \mathbb{R}^n .

Proposition 2. Let $A \subset \mathbb{C}^n$ be a complete Reinhardt set containing at least one point with non-zero coordinates. Then

$$0 \in \operatorname{Int} A$$
, $\operatorname{Int} A = \operatorname{Int} \overline{A}$.

Further, if $x \in \overline{A}$ has non-zero coordinates, then $x \in \overline{\text{Int } A}$.

Theorem 3. Let S be a power series of the above form. Consider the following sets

$$\mathcal{B}_{S} = \{ \boldsymbol{x} \in \mathbb{C} : \sup_{\alpha \in \mathbb{N}_{0}^{n}} |c_{\alpha} x^{\alpha}| < +\infty \}$$
$$\mathcal{C}_{S} = \{ \boldsymbol{x} \in \mathbb{C} : \sum_{\alpha \in \mathbb{N}_{0}^{n}} |c_{\alpha} x^{\alpha}| < +\infty \}$$
$$\mathcal{D}_{S} = \operatorname{Int} \mathcal{B}_{S}.$$

Then

$$\mathcal{D}_S \subset \mathcal{C}_S \subset \mathcal{B}_S$$
.

All these sets are complete Reinhardt sets, the sets \mathcal{B}_S and \mathcal{D}_S are moreover logarithmically convex. The series S converges locally uniformly on \mathcal{D}_S .

Definition. The set \mathcal{D}_S is called the domain of convergence of the series S.

Theorem 4. Let $\Omega \subset \mathbb{C}^n$ be a logarithmically convex complete Reinhardt domain. Then Ω is the domain of convergence of a power series.

Theorem 5. Let us consider the following two power series

$$S = \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} \boldsymbol{x}^{\alpha} \qquad a \qquad S' = \sum_{\alpha \in \mathbb{N}_0^n, \alpha_j \ge 1} \alpha_j c_{\alpha} \boldsymbol{x}^{\alpha - \boldsymbol{e}^j}.$$

Then $\mathcal{D}_S \subset \mathcal{D}_{S'}$. By e^j we denote the j-th canonical vector, i.e.,

$$oldsymbol{e}^j=(0,\dots,0,\!1,0,\dots,0).$$