
III.2 Holomorphic functions of several complex variables

Definition. Let Ω ⊂ C
n be an open set and f : Ω → C be a function.

The function f is said to be

• holomorphic on Ω, if for each x ∈ Ω there exist coefficients cα,
α ∈ N

n
0 such that

f(y) =
∑

α∈Nn

0

cα(y − x)α

for y from a neighborhood of x.
• separately holomorphic on Ω, if for each j ∈ {1, . . . , n} and for any
choice of x1, . . . , xj−1, xj+1, . . . , xn ∈ C the function

z 7→ f(x1, . . . , xj−1, z, xj+1, . . . , xn)

is holomorphic on its domain.

Remark. A function f is separately holomorphic on Ω, if and only if it
admits finite partial derivatives with respect to all variables at any point
of Ω.

Definition. Let X1, . . . , Xn and Y be metric spaces. A mapping f :
X1 × · · · × Xn → Y is said to be separately continuous, if for each j ∈
{1, . . . , n} and for any choice of xk ∈ Xk, k ∈ {1, . . . , n}\{j} the mapping

x 7→ f(x1, . . . , xj−1, x, xj+1, . . . , xn)

is continuous on Xj .

Lemma 6.

(1) Let X,Y, Z be metric spaces such that X is separable. Let f :
X × Y → Z satisfy the following two conditions.

◦ For each y ∈ Y the mapping x 7→ f(x, y) is continuous on
X.

◦ For each x ∈ X the mapping y 7→ f(x, y) is Borel-measurable
on Y .

Then f is Borel measurable on X × Y .

(2) Let X1, . . . , Xn be separable metric spaces, Z a metric space and

f : X1× · · · ×Xn → Z a separately continuous mapping. Then f

is Borel measurable.



Notation: Let x ∈ Cn and r ∈ (0,+∞)n. Then we set

P(x, r) =
n
∏

j=1

U(xj , rj).

A set of this form is said to be a polydisc.

Lemma 7. Let f be separately holomorphic on an open set Ω ⊂ Cn.

Let x ∈ Ω and r ∈ (0,+∞)n be such that P(x, r) ⊂ Ω. Then for each
y ∈ P(x, r) the following equality holds:

f(y) = 1
(2πi)n

∫ 2π

0

(

· · ·
∫ 2π

0

(

∫ 2π

0
f(x1+r1e

it1 ,x2+r2e
it2 ,...,xn+rne

itn )
(x1+r1eit1−y1)(x2+r2eit2−y2)···(xn+rneitn−yn)

· r1 · · · rn · in · ei(t1+···+tn) dt1

)

dt2 . . .
)

dtn

Theorem 8. Let Ω ⊂ Cn be an open set and f : Ω→ C be a function.

The following assertions are equivalent.

(1) f is holomorphic on Ω.
(2) f admits a Fréchet derivative at each point of Ω.
(3) f is separately holomorphic and locally bounded on Ω.

(4) Whenever x ∈ Ω and r ∈ (0,+∞)n are such that P(x, r) ⊂ Ω,
then f is bounded on

∏n
j=1{z ∈ C : |z − xj | = rj} and for each

y ∈ P(x, r) the following formula holds:

f(y) = 1
(2πi)n

∫

[0,2π]n
f(x1+r1e

it1 ,x2+r2e
it2 ,...,xn+rne

itn )
(x1+r1eit1−y1)(x2+r2eit2−y2)···(xn+rneitn−yn)

· r1 · · · rn · in · ei(t1+···+tn) dt1 dt2 . . . dtn

(5) For each x ∈ Ω there is r ∈ (0,+∞)n such that P(x, r) ⊂ Ω and
the conclusion of the previous assertion holds.

Remark. It even holds that any separately holomorphic function is holo-
morphic. This is the content of Hartogs theorem which will be addressed
later.

Theorem 9. Let f be a holomorphic function on an open set Ω ⊂ Cn.

Then for each α ∈ N
n
0 the function

∂|α|

∂xα f is holomorphic on Ω.

Theorem 10. Let Ω ⊂ C
n be an open set and (fn) be a sequence

of holomorphic functions on Ω, which converges to a function f locally

uniformly on Ω. Then f is holomorphic on Ω as well and, moreover, for

each α ∈ N
n
0 the functions

∂|α|

∂xα fn converge to
∂|α|

∂xα f locally uniformly on

Ω.


