IV. Determine \sup and \inf of the function f on the set M and decide whether these values are attained

- 1. f(x, y, z) = x 2y + 2z,
 - a) $M = \{[x, y, z], x^2 + y^2 + z^2 = 1\}$, b) $M = \{[x, y, z], x^2 + y^2 + z^2 = 1, x + y + z = 0\}$
- **2.** f(x, y, z) = xyz,
 - a) $M = \{[x, y, z], x^2 + y^2 + z^2 = 1\}$, b) $M = \{[x, y, z], x^2 + y^2 + z^2 = 1, x + y + z = 0\}$
- **3.** $f(x, y, z) = \sin x \sin y \sin z$, $M = \{[x, y, z]; x + y + z = \frac{\pi}{2}, x > 0, y > 0, z > 0\}$
- **4.** $f(x_1,...,x_n) = x_1^p + \cdots + x_n^p$; $M = \{[x_1,...,x_n]; x_1 + \cdots + x_n = a, x_1 > 0, ..., x_n > 0\}$; where a > 0, p > 0. **5.** f(x,y,z) = 10z + x y, $M = \{[x,y,z], x^2 + y^2 + z^2 \le 1, y + x \ge 0\}$
- **6.** If $\mathbf{x} \in \mathbf{R}^n$ and $M \subset \mathbf{R}^n$, the distance of the point \mathbf{x} to the set M equals $\operatorname{dist}(\mathbf{x}, M) = \inf\{\rho(\mathbf{x}, \mathbf{y}) \colon \mathbf{y} \in M\}$, the distance of the set M to a set $N \subset \mathbf{R}^n$ equals $\operatorname{dist}(M, N) = \inf\{\rho(\mathbf{x}, \mathbf{y}) \colon \mathbf{x} \in M, \mathbf{y} \in N\}$. Compute the distances:
- (a) of the point $[a, \frac{1}{2}] \in \mathbf{R}^2$ to the parabola $y = x^2$; (b) of the point $[-a, -\frac{1}{a}] \in \mathbf{R}^2$ (a > 0) to the hyperbola branch y = 1/x, x > 0; (c) of the line y = x 50 to the parabola $y = x^2$.
- 7. $f(x,y) = x^2 + y^2$, $M = \{[x,y], x^2 + 4y^2 = 1\}$
- **8.** If $M \subset \mathbf{R}^n$ is nonempty and bounded, its diameter is defined by diam $M = \sup\{\rho(\mathbf{x}, \mathbf{y}) \colon \mathbf{x}, \mathbf{y} \in M\}$. Compute the diameter of the set $\{[x, y] \in \mathbf{R}^2 \colon |x|^p + |y|^p = 1\}$ (for p > 1).

Answers and hints. In most problems one can use Lagrange multiplier theorem. 1. a) max 3 at $\left[\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right]$, min -3 at $\left[-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right]$; b) max $\sqrt{\frac{26}{3}}$ at $\left[\frac{2}{\sqrt{78}}, -\frac{7}{\sqrt{78}}, \frac{5}{\sqrt{78}}\right]$, min $-\sqrt{\frac{26}{3}}$ at $\left[-\frac{2}{\sqrt{78}}, \frac{7}{\sqrt{78}}, -\frac{5}{\sqrt{78}}\right]$; 2. a) max $\frac{1}{3\sqrt{3}}$ at the points $\left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, $\left[-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, $\left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, $\left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$; min $-\frac{1}{3\sqrt{3}}$ at the points $\left[-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right]$, $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, $\left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$; b) max $\frac{1}{3\sqrt{6}}$ at the points $\left[\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right]$, $\left[-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right]$, $\left[-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right]$, $\left[-\frac{1}{\sqrt{6}}, \frac{\pi}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right]$, $\left[-\frac{1}{\sqrt{6}}, \frac{\pi}{\sqrt{6}}\right]$, $\left[-\frac{1$