Two-way Analysis of Variance
Data Howells
data(HowellsAll, package = "mffSM")
head(HowellsAll)
## gender popul oca gol fgender fpopul fgen.pop fpop.gen
## 1 1 1 123 176 M BERG M:BERG BERG:M
## 2 1 1 115 173 M BERG M:BERG BERG:M
## 3 1 1 117 176 M BERG M:BERG BERG:M
## 4 1 1 113 185 M BERG M:BERG BERG:M
## 5 1 1 121 170 M BERG M:BERG BERG:M
## 6 1 1 118 180 M BERG M:BERG BERG:M
dim(HowellsAll)
## [1] 289 8
summary(HowellsAll)
## gender popul oca gol fgender fpopul
## Min. :0.0000 Min. :0.000 Min. :102.0 Min. :155.0 F:156 AUSTR : 71
## 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:113.0 1st Qu.:172.0 M:133 BERG :109
## Median :0.0000 Median :1.000 Median :116.0 Median :178.0 BURIAT:109
## Mean :0.4602 Mean :1.131 Mean :115.8 Mean :178.1
## 3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:119.0 3rd Qu.:184.0
## Max. :1.0000 Max. :2.000 Max. :131.0 Max. :198.0
## fgen.pop fpop.gen
## F:AUSTR :49 AUSTR:F :49
## F:BERG :53 AUSTR:M :22
## F:BURIAT:54 BERG:F :53
## M:AUSTR :22 BERG:M :56
## M:BERG :56 BURIAT:F:54
## M:BURIAT:55 BURIAT:M:55
data(Howells, package = "mffSM")
head(Howells)
## gender popul oca gol fgender fpopul fgen.pop fpop.gen
## 1 0 0 110 191 F AUSTR F:AUSTR AUSTR:F
## 2 0 0 117 183 F AUSTR F:AUSTR AUSTR:F
## 3 0 0 119 181 F AUSTR F:AUSTR AUSTR:F
## 4 0 0 108 172 F AUSTR F:AUSTR AUSTR:F
## 5 0 0 113 190 F AUSTR F:AUSTR AUSTR:F
## 6 0 0 110 180 F AUSTR F:AUSTR AUSTR:F
dim(Howells)
## [1] 240 8
summary(Howells)
## gender popul oca gol fgender fpopul fgen.pop
## Min. :0.0 Min. :0 Min. :102.0 Min. :155.0 F:120 AUSTR :80 F:AUSTR :40
## 1st Qu.:0.0 1st Qu.:0 1st Qu.:112.0 1st Qu.:173.0 M:120 BERG :80 F:BERG :40
## Median :0.5 Median :1 Median :116.0 Median :179.0 BURIAT:80 F:BURIAT:40
## Mean :0.5 Mean :1 Mean :115.7 Mean :179.3 M:AUSTR :40
## 3rd Qu.:1.0 3rd Qu.:2 3rd Qu.:119.0 3rd Qu.:186.0 M:BERG :40
## Max. :1.0 Max. :2 Max. :131.0 Max. :201.0 M:BURIAT:40
## fpop.gen
## AUSTR:F :40
## AUSTR:M :40
## BERG:F :40
## BERG:M :40
## BURIAT:F:40
## BURIAT:M:40
genCOL <- rainbow_hcl(2, start = 10, end = 280)
genCOL2 <- c("red3", "darkblue")
names(genCOL) <- names(genCOL2) <- levels(HowellsAll[, "fgender"])
#popCOL <- c(rainbow_hcl(3, start = 5, end = 310), rainbow_hcl(3, start = 25, end = 330))
popCOL <- rainbow_hcl(3, start = 50, end = 250)
popCOL2 <- c("red", "darkgreen", "blue")
names(popCOL) <- names(popCOL2) <- levels(HowellsAll[, "fpopul"])
with(HowellsAll, table(fpopul, fgender))
## fgender
## fpopul F M
## AUSTR 49 22
## BERG 53 56
## BURIAT 54 55
with(HowellsAll, table(fpop.gen))
## fpop.gen
## AUSTR:F AUSTR:M BERG:F BERG:M BURIAT:F BURIAT:M
## 49 22 53 56 54 55
with(HowellsAll, table(fgen.pop))
## fgen.pop
## F:AUSTR F:BERG F:BURIAT M:AUSTR M:BERG M:BURIAT
## 49 53 54 22 56 55
margin.table(with(HowellsAll, table(fpopul, fgender)), margin = 1)
## fpopul
## AUSTR BERG BURIAT
## 71 109 109
margin.table(with(HowellsAll, table(fpopul, fgender)), margin = 2)
## fgender
## F M
## 156 133
nrow(HowellsAll)
## [1] 289
with(Howells, table(fpopul, fgender))
## fgender
## fpopul F M
## AUSTR 40 40
## BERG 40 40
## BURIAT 40 40
with(Howells, table(fpop.gen))
## fpop.gen
## AUSTR:F AUSTR:M BERG:F BERG:M BURIAT:F BURIAT:M
## 40 40 40 40 40 40
with(Howells, table(fgen.pop))
## fgen.pop
## F:AUSTR F:BERG F:BURIAT M:AUSTR M:BERG M:BURIAT
## 40 40 40 40 40 40
margin.table(with(Howells, table(fpopul, fgender)), margin = 1)
## fpopul
## AUSTR BERG BURIAT
## 80 80 80
margin.table(with(Howells, table(fpopul, fgender)), margin = 2)
## fgender
## F M
## 120 120
nrow(Howells)
## [1] 240
with(HowellsAll, tapply(oca, list(fpopul, fgender), mean))
## F M
## AUSTR 114.6531 113.9545
## BERG 116.9623 117.1607
## BURIAT 117.0370 113.8364
round(with(HowellsAll, tapply(oca, list(fpopul, fgender), mean)), 1)
## F M
## AUSTR 114.7 114.0
## BERG 117.0 117.2
## BURIAT 117.0 113.8
round(with(HowellsAll, tapply(oca, fpopul, mean)), 1)
## AUSTR BERG BURIAT
## 114.4 117.1 115.4
round(with(HowellsAll, tapply(oca, fgender, mean)), 1)
## F M
## 116.3 115.3
round(with(HowellsAll, mean(oca)), 1)
## [1] 115.8
with(HowellsAll, tapply(gol, list(fpopul, fgender), mean))
## F M
## AUSTR 181.1020 190.7727
## BERG 170.5283 180.3214
## BURIAT 171.8333 181.6364
round(with(HowellsAll, tapply(gol, list(fpopul, fgender), mean)), 1)
## F M
## AUSTR 181.1 190.8
## BERG 170.5 180.3
## BURIAT 171.8 181.6
round(with(HowellsAll, tapply(gol, fpopul, mean)), 1)
## AUSTR BERG BURIAT
## 184.1 175.6 176.8
round(with(HowellsAll, tapply(gol, fgender, mean)), 1)
## F M
## 174.3 182.6
round(with(HowellsAll, mean(gol)), 1)
## [1] 178.1
with(Howells, tapply(oca, list(fpopul, fgender), mean))
## F M
## AUSTR 114.80 115.025
## BERG 116.85 116.675
## BURIAT 117.20 113.450
round(with(Howells, tapply(oca, list(fpopul, fgender), mean)), 1)
## F M
## AUSTR 114.8 115.0
## BERG 116.8 116.7
## BURIAT 117.2 113.5
round(with(Howells, tapply(oca, fpopul, mean)), 1)
## AUSTR BERG BURIAT
## 114.9 116.8 115.3
round(with(Howells, tapply(oca, fgender, mean)), 1)
## F M
## 116.3 115.0
round(with(Howells, mean(oca)), 1)
## [1] 115.7
with(Howells, tapply(gol, list(fpopul, fgender), mean))
## F M
## AUSTR 181.375 190.375
## BERG 170.450 180.300
## BURIAT 172.175 181.175
round(with(Howells, tapply(gol, list(fpopul, fgender), mean)), 1)
## F M
## AUSTR 181.4 190.4
## BERG 170.4 180.3
## BURIAT 172.2 181.2
round(with(Howells, tapply(gol, fpopul, mean)), 1)
## AUSTR BERG BURIAT
## 185.9 175.4 176.7
round(with(Howells, tapply(gol, fgender, mean)), 1)
## F M
## 174.7 183.9
round(with(Howells, mean(gol)), 1)
## [1] 179.3
plot(oca ~ fpop.gen, data = HowellsAll, col = genCOL)
plot(oca ~ fgen.pop, data = HowellsAll, col = popCOL)
plot(gol ~ fpop.gen, data = HowellsAll, col = genCOL)
plot(gol ~ fgen.pop, data = HowellsAll, col = popCOL)
with(HowellsAll, interaction.plot(fgender, fpopul, oca, col = popCOL2, lwd = 2))
with(HowellsAll, interaction.plot(fpopul, fgender,oca, col = genCOL2, lwd = 2))
with(HowellsAll, interaction.plot(fgender, fpopul, gol, col = popCOL2, lwd = 2))
with(HowellsAll, interaction.plot(fpopul, fgender, gol, col = genCOL2, lwd = 2))
oca0All <- lm(oca ~ 1, data = HowellsAll)
ocaXAll <- lm(oca ~ fpopul, data = HowellsAll)
ocaZAll <- lm(oca ~ fgender, data = HowellsAll)
ocaXplusZAll <- lm(oca ~ fpopul + fgender, data = HowellsAll)
ocaXZAll <- lm(oca ~ fpopul * fgender, data = HowellsAll)
ocaXZAll2 <- lm(oca ~ fgender * fpopul, data = HowellsAll)
ocaXZAll
and ocaXZAll2
anova(ocaXZAll)
## Analysis of Variance Table
##
## Response: oca
## Df Sum Sq Mean Sq F value Pr(>F)
## fpopul 2 321.8 160.879 6.3579 0.001991 **
## fgender 1 122.6 122.597 4.8450 0.028534 *
## fpopul:fgender 2 165.0 82.509 3.2607 0.039807 *
## Residuals 283 7161.0 25.304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ocaXZAll2)
## Analysis of Variance Table
##
## Response: oca
## Df Sum Sq Mean Sq F value Pr(>F)
## fgender 1 72.8 72.827 2.8781 0.0908910 .
## fpopul 2 371.5 185.764 7.3413 0.0007792 ***
## fgender:fpopul 2 165.0 82.509 3.2607 0.0398071 *
## Residuals 283 7161.0 25.304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ocaXZAll
Anova
comes from package car
.library("car")
Anova(ocaXZAll, type = "II")
## Anova Table (Type II tests)
##
## Response: oca
## Sum Sq Df F value Pr(>F)
## fpopul 371.5 2 7.3413 0.0007792 ***
## fgender 122.6 1 4.8450 0.0285335 *
## fpopul:fgender 165.0 2 3.2607 0.0398071 *
## Residuals 7161.0 283
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ocaXZAll
Anova(ocaXZAll, type = "III")
## Anova Table (Type III tests)
##
## Response: oca
## Sum Sq Df F value Pr(>F)
## (Intercept) 644121 1 25455.4563 < 2e-16 ***
## fpopul 185 2 3.6609 0.02693 *
## fgender 7 1 0.2928 0.58888
## fpopul:fgender 165 2 3.2607 0.03981 *
## Residuals 7161 283
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fpopul
, fgender
are not really useful.gol0All <- lm(gol ~ 1, data = HowellsAll)
golXAll <- lm(gol ~ fpopul, data = HowellsAll)
golZAll <- lm(gol ~ fgender, data = HowellsAll)
golXplusZAll <- lm(gol ~ fpopul + fgender, data = HowellsAll)
golXZAll <- lm(gol ~ fpopul * fgender, data = HowellsAll)
golXZAll2 <- lm(gol ~ fgender * fpopul, data = HowellsAll)
golXZAll
and golXZAll2
anova(golXZAll)
## Analysis of Variance Table
##
## Response: gol
## Df Sum Sq Mean Sq F value Pr(>F)
## fpopul 2 3448.1 1724.1 43.3542 <2e-16 ***
## fgender 1 6649.7 6649.7 167.2172 <2e-16 ***
## fpopul:fgender 2 0.2 0.1 0.0024 0.9976
## Residuals 283 11254.0 39.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(golXZAll2)
## Analysis of Variance Table
##
## Response: gol
## Df Sum Sq Mean Sq F value Pr(>F)
## fgender 1 4937.1 4937.1 124.1509 <2e-16 ***
## fpopul 2 5160.7 2580.4 64.8873 <2e-16 ***
## fgender:fpopul 2 0.2 0.1 0.0024 0.9976
## Residuals 283 11254.0 39.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
golXZAll
Anova(golXZAll, type = "II")
## Anova Table (Type II tests)
##
## Response: gol
## Sum Sq Df F value Pr(>F)
## fpopul 5160.7 2 64.8873 <2e-16 ***
## fgender 6649.7 1 167.2172 <2e-16 ***
## fpopul:fgender 0.2 2 0.0024 0.9976
## Residuals 11254.0 283
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
golXZAll
Anova(golXZAll, type = "III")
## Anova Table (Type III tests)
##
## Response: gol
## Sum Sq Df F value Pr(>F)
## (Intercept) 1607100 1 40413.1028 < 2.2e-16 ***
## fpopul 3350 2 42.1161 < 2.2e-16 ***
## fgender 1420 1 35.7071 6.879e-09 ***
## fpopul:fgender 0 2 0.0024 0.9976
## Residuals 11254 283
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fpopul
, fgender
are not really useful.oca0 <- lm(oca ~ 1, data = Howells)
ocaX <- lm(oca ~ fpopul, data = Howells)
ocaZ <- lm(oca ~ fgender, data = Howells)
ocaXplusZ <- lm(oca ~ fpopul + fgender, data = Howells)
ocaXZ <- lm(oca ~ fpopul * fgender, data = Howells)
ocaXZ2 <- lm(oca ~ fgender * fpopul, data = Howells)
ocaXZ
and ocaXZ2
anova(ocaXZ)
## Analysis of Variance Table
##
## Response: oca
## Df Sum Sq Mean Sq F value Pr(>F)
## fpopul 2 150.9 75.454 3.0497 0.04926 *
## fgender 1 91.3 91.267 3.6888 0.05599 .
## fpopul:fgender 2 191.6 95.804 3.8722 0.02216 *
## Residuals 234 5789.6 24.742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ocaXZ2)
## Analysis of Variance Table
##
## Response: oca
## Df Sum Sq Mean Sq F value Pr(>F)
## fgender 1 91.3 91.267 3.6888 0.05599 .
## fpopul 2 150.9 75.454 3.0497 0.04926 *
## fgender:fpopul 2 191.6 95.804 3.8722 0.02216 *
## Residuals 234 5789.6 24.742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ocaXZ
Anova(ocaXZ, type = "II")
## Anova Table (Type II tests)
##
## Response: oca
## Sum Sq Df F value Pr(>F)
## fpopul 150.9 2 3.0497 0.04926 *
## fgender 91.3 1 3.6888 0.05599 .
## fpopul:fgender 191.6 2 3.8722 0.02216 *
## Residuals 5789.6 234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ocaXZ
Anova(ocaXZ, type = "III")
## Anova Table (Type III tests)
##
## Response: oca
## Sum Sq Df F value Pr(>F)
## (Intercept) 527162 1 21306.6325 < 2e-16 ***
## fpopul 134 2 2.7174 0.06813 .
## fgender 1 1 0.0409 0.83986
## fpopul:fgender 192 2 3.8722 0.02216 *
## Residuals 5790 234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fpopul
, fgender
are not really useful.gol0 <- lm(gol ~ 1, data = Howells)
golX <- lm(gol ~ fpopul, data = Howells)
golZ <- lm(gol ~ fgender, data = Howells)
golXplusZ <- lm(gol ~ fpopul + fgender, data = Howells)
golXZ <- lm(gol ~ fpopul * fgender, data = Howells)
golXZ2 <- lm(gol ~ fgender * fpopul, data = Howells)
golXZ
and golXZ
anova(golXZ)
## Analysis of Variance Table
##
## Response: gol
## Df Sum Sq Mean Sq F value Pr(>F)
## fpopul 2 5242.1 2621.1 65.1743 <2e-16 ***
## fgender 1 5170.8 5170.8 128.5753 <2e-16 ***
## fpopul:fgender 2 9.6 4.8 0.1198 0.8872
## Residuals 234 9410.6 40.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(golXZ2)
## Analysis of Variance Table
##
## Response: gol
## Df Sum Sq Mean Sq F value Pr(>F)
## fgender 1 5170.8 5170.8 128.5753 <2e-16 ***
## fpopul 2 5242.1 2621.1 65.1743 <2e-16 ***
## fgender:fpopul 2 9.6 4.8 0.1198 0.8872
## Residuals 234 9410.6 40.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
golXZ
Anova(golXZ, type = "II")
## Anova Table (Type II tests)
##
## Response: gol
## Sum Sq Df F value Pr(>F)
## fpopul 5242.1 2 65.1743 <2e-16 ***
## fgender 5170.8 1 128.5753 <2e-16 ***
## fpopul:fgender 9.6 2 0.1198 0.8872
## Residuals 9410.6 234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
golXZ
Anova(golXZ, type = "III")
## Anova Table (Type III tests)
##
## Response: gol
## Sum Sq Df F value Pr(>F)
## (Intercept) 1315876 1 32720.0068 < 2.2e-16 ***
## fpopul 2760 2 34.3097 8.577e-14 ***
## fgender 1620 1 40.2822 1.128e-09 ***
## fpopul:fgender 10 2 0.1198 0.8872
## Residuals 9411 234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fpopul
, fgender
are not really useful.(lpop <- levels(HowellsAll[, "fpopul"]))
## [1] "AUSTR" "BERG" "BURIAT"
(lgen <- levels(HowellsAll[, "fgender"]))
## [1] "F" "M"
outer(lpop, lgen, paste, sep = ":")
## [,1] [,2]
## [1,] "AUSTR:F" "AUSTR:M"
## [2,] "BERG:F" "BERG:M"
## [3,] "BURIAT:F" "BURIAT:M"
(lpopgen <- as.character(outer(lpop, lgen, paste, sep = ":")))
## [1] "AUSTR:F" "BERG:F" "BURIAT:F" "AUSTR:M" "BERG:M" "BURIAT:M"
contr.treatment
(CX.trt <- contr.treatment(3))
## 2 3
## 1 0 0
## 2 1 0
## 3 0 1
(CZ.trt <- contr.treatment(2))
## 2
## 1 0
## 2 1
(CXZ.trt <- kronecker(CZ.trt, CX.trt))
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 0 0
## [5,] 1 0
## [6,] 0 1
rownames(CX.trt) <- lpop
rownames(CZ.trt) <- lgen
rownames(CXZ.trt) <- lpopgen
print(CX.trt)
## 2 3
## AUSTR 0 0
## BERG 1 0
## BURIAT 0 1
print(CZ.trt)
## 2
## F 0
## M 1
print(CXZ.trt)
## [,1] [,2]
## AUSTR:F 0 0
## BERG:F 0 0
## BURIAT:F 0 0
## AUSTR:M 0 0
## BERG:M 1 0
## BURIAT:M 0 1
(D.trt <- cbind(kronecker(rep(1, 2), CX.trt), kronecker(CZ.trt, rep(1, 3)), CXZ.trt))
## [,1] [,2] [,3] [,4] [,5]
## AUSTR:F 0 0 0 0 0
## BERG:F 1 0 0 0 0
## BURIAT:F 0 1 0 0 0
## AUSTR:M 0 0 1 0 0
## BERG:M 1 0 1 1 0
## BURIAT:M 0 1 1 0 1
ocaXZAll.trt <- lm(oca ~ fpopul * fgender, data = HowellsAll)
summary(ocaXZAll.trt)
##
## Call:
## lm(formula = oca ~ fpopul * fgender, data = HowellsAll)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.1607 -3.1607 0.0455 3.1636 13.8393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.6531 0.7186 159.548 <2e-16 ***
## fpopulBERG 2.3092 0.9969 2.316 0.0213 *
## fpopulBURIAT 2.3840 0.9925 2.402 0.0169 *
## fgenderM -0.6985 1.2910 -0.541 0.5889
## fpopulBERG:fgenderM 0.8970 1.6112 0.557 0.5782
## fpopulBURIAT:fgenderM -2.5022 1.6110 -1.553 0.1215
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.03 on 283 degrees of freedom
## Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214
## F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046
drop1(ocaXZAll.trt, test = "F")
## Single term deletions
##
## Model:
## oca ~ fpopul * fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 7161 939.68
## fpopul:fgender 2 165.02 7326 942.27 3.2607 0.03981 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
golXZAll.trt <- lm(gol ~ fpopul * fgender, data = HowellsAll)
summary(golXZAll.trt)
##
## Call:
## lm(formula = gol ~ fpopul * fgender, data = HowellsAll)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.5283 -4.3214 -0.3214 4.4717 17.6786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 181.1020 0.9009 201.030 < 2e-16 ***
## fpopulBERG -10.5737 1.2498 -8.461 1.45e-15 ***
## fpopulBURIAT -9.2687 1.2442 -7.450 1.14e-12 ***
## fgenderM 9.6707 1.6184 5.976 6.88e-09 ***
## fpopulBERG:fgenderM 0.1224 2.0198 0.061 0.952
## fpopulBURIAT:fgenderM 0.1323 2.0196 0.066 0.948
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.306 on 283 degrees of freedom
## Multiple R-squared: 0.4729, Adjusted R-squared: 0.4636
## F-statistic: 50.79 on 5 and 283 DF, p-value: < 2.2e-16
drop1(golXZAll.trt, test = "F")
## Single term deletions
##
## Model:
## gol ~ fpopul * fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 11254 1070.3
## fpopul:fgender 2 0.19404 11254 1066.3 0.0024 0.9976
golXplusZAll.trt <- lm(gol ~ fpopul + fgender, data = HowellsAll)
summary(golXplusZAll.trt)
##
## Call:
## lm(formula = gol ~ fpopul + fgender, data = HowellsAll)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.5400 -4.3103 -0.3103 4.4600 17.6897
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 181.0712 0.7814 231.724 <2e-16 ***
## fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***
## fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
## fgenderM 9.7703 0.7529 12.977 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.284 on 285 degrees of freedom
## Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
## F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
drop1(golXplusZAll.trt, test = "F")
## Single term deletions
##
## Model:
## gol ~ fpopul + fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 11254 1066.3
## fpopul 2 5160.7 16415 1171.4 65.345 < 2.2e-16 ***
## fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fpopul
given fgender
in the additive modelLSest
comes from package mffSM
.library("mffSM")
L.effX.trt <- cbind(0, rbind(CX.trt[2,] - CX.trt[1,], CX.trt[3,] - CX.trt[1,], CX.trt[3,] - CX.trt[2,]), 0)
colnames(L.effX.trt) <- names(coef(golXplusZAll.trt))
rownames(L.effX.trt) <- paste(lpop[c(2, 3, 3)], "-", lpop[c(1, 1, 2)], sep = "")
print(L.effX.trt)
## (Intercept) fpopulBERG fpopulBURIAT fgenderM
## BERG-AUSTR 0 1 0 0
## BURIAT-AUSTR 0 0 1 0
## BURIAT-BERG 0 -1 1 0
LSest(golXplusZAll.trt, L = L.effX.trt)
## Estimate Std. Error t value P value Lower Upper
## BERG-AUSTR -10.531148 0.9705782 -10.850385 < 2e-16 -12.4415591 -8.620737
## BURIAT-AUSTR -9.221329 0.9695097 -9.511332 < 2e-16 -11.1296364 -7.313021
## BURIAT-BERG 1.309819 0.8512377 1.538723 0.12498 -0.3656911 2.985330
fgender
given fpopul
in the additive modelL.effZ.trt <- cbind(0, 0, 0, CZ.trt[2,] - CZ.trt[1,])
colnames(L.effZ.trt) <- names(coef(golXplusZAll.trt))
rownames(L.effZ.trt) <- paste(lgen[2], "-", lgen[1], sep = "")
print(L.effZ.trt)
## (Intercept) fpopulBERG fpopulBURIAT fgenderM
## M-F 0 0 0 1
LSest(golXplusZAll.trt, L = L.effZ.trt)
## Estimate Std. Error t value P value Lower Upper
## M-F 9.770313 0.7529092 12.97675 < 2.22e-16 8.288345 11.25228
contr.sum
(CX.sum <- contr.sum(3))
## [,1] [,2]
## 1 1 0
## 2 0 1
## 3 -1 -1
(CZ.sum <- contr.sum(2))
## [,1]
## 1 1
## 2 -1
(CXZ.sum <- kronecker(CZ.sum, CX.sum))
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
## [3,] -1 -1
## [4,] -1 0
## [5,] 0 -1
## [6,] 1 1
rownames(CX.sum) <- lpop
rownames(CZ.sum) <- lgen
rownames(CXZ.sum) <- lpopgen
print(CX.sum)
## [,1] [,2]
## AUSTR 1 0
## BERG 0 1
## BURIAT -1 -1
print(CZ.sum)
## [,1]
## F 1
## M -1
print(CXZ.sum)
## [,1] [,2]
## AUSTR:F 1 0
## BERG:F 0 1
## BURIAT:F -1 -1
## AUSTR:M -1 0
## BERG:M 0 -1
## BURIAT:M 1 1
(D.sum <- cbind(kronecker(rep(1, 2), CX.sum), kronecker(CZ.sum, rep(1, 3)), CXZ.sum))
## [,1] [,2] [,3] [,4] [,5]
## AUSTR:F 1 0 1 1 0
## BERG:F 0 1 1 0 1
## BURIAT:F -1 -1 1 -1 -1
## AUSTR:M 1 0 -1 -1 0
## BERG:M 0 1 -1 0 -1
## BURIAT:M -1 -1 -1 1 1
ocaXZAll.sum <- lm(oca ~ fpopul * fgender, data = HowellsAll,
contrasts = list(fpopul = "contr.sum", fgender = "contr.sum"))
summary(ocaXZAll.sum)
##
## Call:
## lm(formula = oca ~ fpopul * fgender, data = HowellsAll, contrasts = list(fpopul = "contr.sum",
## fgender = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.1607 -3.1607 0.0455 3.1636 13.8393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 115.6007 0.3129 369.455 < 2e-16 ***
## fpopul1 -1.2969 0.4866 -2.665 0.008138 **
## fpopul2 1.4608 0.4187 3.489 0.000563 ***
## fgender1 0.6168 0.3129 1.971 0.049671 *
## fpopul1:fgender1 -0.2675 0.4866 -0.550 0.582896
## fpopul2:fgender1 -0.7160 0.4187 -1.710 0.088376 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.03 on 283 degrees of freedom
## Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214
## F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046
drop1(ocaXZAll.sum, test = "F")
## Single term deletions
##
## Model:
## oca ~ fpopul * fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 7161 939.68
## fpopul:fgender 2 165.02 7326 942.27 3.2607 0.03981 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
L.alphaX <- cbind(0, CX.sum, 0, 0, 0)
colnames(L.alphaX) <- names(coef(ocaXZAll.sum))
rownames(L.alphaX) <- lpop
print(L.alphaX)
## (Intercept) fpopul1 fpopul2 fgender1 fpopul1:fgender1 fpopul2:fgender1
## AUSTR 0 1 0 0 0 0
## BERG 0 0 1 0 0 0
## BURIAT 0 -1 -1 0 0 0
LSest(ocaXZAll.sum, L = L.alphaX)
## Estimate Std. Error t value P value Lower Upper
## AUSTR -1.296861 0.4866057 -2.6651167 0.00813815 -2.2546868 -0.3390351
## BERG 1.460825 0.4187409 3.4886132 0.00056284 0.6365830 2.2850669
## BURIAT -0.163964 0.4186786 -0.3916225 0.69563187 -0.9880833 0.6601554
alphaX <- LSest(ocaXZAll.sum, L = L.alphaX)[["Estimate"]]
names(alphaX) <- lpop
print(alphaX)
## AUSTR BERG BURIAT
## -1.296861 1.460825 -0.163964
L.alphaZ <- cbind(0, 0, 0, CZ.sum, 0, 0)
colnames(L.alphaZ) <- names(coef(ocaXZAll.sum))
rownames(L.alphaZ) <- lgen
print(L.alphaZ)
## (Intercept) fpopul1 fpopul2 fgender1 fpopul1:fgender1 fpopul2:fgender1
## F 0 0 0 1 0 0
## M 0 0 0 -1 0 0
LSest(ocaXZAll.sum, L = L.alphaZ)
## Estimate Std. Error t value P value Lower Upper
## F 0.6167898 0.3128953 1.971234 0.049671 0.0008924028 1.2326872759
## M -0.6167898 0.3128953 -1.971234 0.049671 -1.2326872759 -0.0008924028
alphaZ <- LSest(ocaXZAll.sum, L = L.alphaZ)[["Estimate"]]
names(alphaZ) <- lgen
print(alphaZ)
## F M
## 0.6167898 -0.6167898
L.alphaXZ <- cbind(0, 0, 0, 0, CXZ.sum)
colnames(L.alphaXZ) <- names(coef(ocaXZAll.sum))
rownames(L.alphaXZ) <- lpopgen
print(L.alphaXZ)
## (Intercept) fpopul1 fpopul2 fgender1 fpopul1:fgender1 fpopul2:fgender1
## AUSTR:F 0 0 0 0 1 0
## BERG:F 0 0 0 0 0 1
## BURIAT:F 0 0 0 0 -1 -1
## AUSTR:M 0 0 0 0 -1 0
## BERG:M 0 0 0 0 0 -1
## BURIAT:M 0 0 0 0 1 1
LSest(ocaXZAll.sum, L = L.alphaXZ)
## Estimate Std. Error t value P value Lower Upper
## AUSTR:F -0.2675320 0.4866057 -0.5497921 0.582896 -1.2253578 0.6902939
## BERG:F -0.7160149 0.4187409 -1.7099236 0.088376 -1.5402569 0.1082270
## BURIAT:F 0.9835469 0.4186786 2.3491692 0.019503 0.1594275 1.8076662
## AUSTR:M 0.2675320 0.4866057 0.5497921 0.582896 -0.6902939 1.2253578
## BERG:M 0.7160149 0.4187409 1.7099236 0.088376 -0.1082270 1.5402569
## BURIAT:M -0.9835469 0.4186786 -2.3491692 0.019503 -1.8076662 -0.1594275
alphaXZ <- LSest(ocaXZAll.sum, L = L.alphaXZ)[["Estimate"]]
names(alphaXZ) <- lpopgen
print(alphaXZ)
## AUSTR:F BERG:F BURIAT:F AUSTR:M BERG:M BURIAT:M
## -0.2675320 -0.7160149 0.9835469 0.2675320 0.7160149 -0.9835469
(alphaXZm <- matrix(alphaXZ, nrow = length(lpop), ncol = length(lgen)))
## [,1] [,2]
## [1,] -0.2675320 0.2675320
## [2,] -0.7160149 0.7160149
## [3,] 0.9835469 -0.9835469
rownames(alphaXZm) <- lpop
colnames(alphaXZm) <- lgen
print(alphaXZm)
## F M
## AUSTR -0.2675320 0.2675320
## BERG -0.7160149 0.7160149
## BURIAT 0.9835469 -0.9835469
coef(ocaXZAll.sum)["(Intercept)"] + alphaXZm + cbind(alphaX, alphaX) + rbind(alphaZ, alphaZ, alphaZ)
## F M
## AUSTR 114.6531 113.9545
## BERG 116.9623 117.1607
## BURIAT 117.0370 113.8364
(ocaMean <- with(HowellsAll, tapply(oca, list(fpopul, fgender), mean)))
## F M
## AUSTR 114.6531 113.9545
## BERG 116.9623 117.1607
## BURIAT 117.0370 113.8364
fpopul
Those are equal to differences of αX parameters.
L.effX.sumXZ <- cbind(0, rbind(CX.sum[2,] - CX.sum[1,], CX.sum[3,] - CX.sum[1,], CX.sum[3,] - CX.sum[2,]), 0, 0, 0)
colnames(L.effX.sumXZ) <- names(coef(ocaXZAll.sum))
rownames(L.effX.sumXZ) <- paste(lpop[c(2, 3, 3)], "-", lpop[c(1, 1, 2)], sep = "")
print(L.effX.sumXZ)
## (Intercept) fpopul1 fpopul2 fgender1 fpopul1:fgender1 fpopul2:fgender1
## BERG-AUSTR 0 -1 1 0 0 0
## BURIAT-AUSTR 0 -2 -1 0 0 0
## BURIAT-BERG 0 -1 -2 0 0 0
LSest(ocaXZAll.sum, L = L.effX.sumXZ)
## Estimate Std. Error t value P value Lower Upper
## BERG-AUSTR 2.757686 0.8055844 3.423211 0.00071032 1.1719880 4.3433837
## BURIAT-AUSTR 1.132897 0.8054873 1.406474 0.16068053 -0.4526097 2.7184037
## BURIAT-BERG -1.624789 0.6815323 -2.384023 0.01778371 -2.9663047 -0.2832731
apply(ocaMean, 1, mean)
## AUSTR BERG BURIAT
## 114.3038 117.0615 115.4367
outer(apply(ocaMean, 1, mean), apply(ocaMean, 1, mean), "-")
## AUSTR BERG BURIAT
## AUSTR 0.000000 -2.757686 -1.132897
## BERG 2.757686 0.000000 1.624789
## BURIAT 1.132897 -1.624789 0.000000
fgender
Those are equal to differences of αZ parameters.
L.effZ.sumXZ <- cbind(0, 0, 0, CZ.sum[2,] - CZ.sum[1,], 0, 0)
colnames(L.effZ.sumXZ) <- names(coef(ocaXZAll.sum))
rownames(L.effZ.sumXZ) <- paste(lgen[2], "-", lgen[1], sep = "")
print(L.effZ.sumXZ)
## (Intercept) fpopul1 fpopul2 fgender1 fpopul1:fgender1 fpopul2:fgender1
## M-F 0 0 0 -2 0 0
LSest(ocaXZAll.sum, L = L.effZ.sumXZ)
## Estimate Std. Error t value P value Lower Upper
## M-F -1.23358 0.6257906 -1.971234 0.049671 -2.465375 -0.001784806
apply(ocaMean, 2, mean)
## F M
## 116.2175 114.9839
outer(apply(ocaMean, 2, mean), apply(ocaMean, 2, mean), "-")
## F M
## F 0.00000 1.23358
## M -1.23358 0.00000
golXZAll.sum <- lm(gol ~ fpopul * fgender, data = HowellsAll,
contrasts = list(fpopul = "contr.sum", fgender = "contr.sum"))
summary(golXZAll.sum)
##
## Call:
## lm(formula = gol ~ fpopul * fgender, data = HowellsAll, contrasts = list(fpopul = "contr.sum",
## fgender = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.5283 -4.3214 -0.3214 4.4717 17.6786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 179.36570 0.39225 457.271 < 2e-16 ***
## fpopul1 6.57168 0.61002 10.773 < 2e-16 ***
## fpopul2 -3.94083 0.52494 -7.507 7.91e-13 ***
## fgender1 -4.87781 0.39225 -12.435 < 2e-16 ***
## fpopul1:fgender1 0.04246 0.61002 0.070 0.945
## fpopul2:fgender1 -0.01876 0.52494 -0.036 0.972
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.306 on 283 degrees of freedom
## Multiple R-squared: 0.4729, Adjusted R-squared: 0.4636
## F-statistic: 50.79 on 5 and 283 DF, p-value: < 2.2e-16
drop1(golXZAll.sum, test = "F")
## Single term deletions
##
## Model:
## gol ~ fpopul * fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 11254 1070.3
## fpopul:fgender 2 0.19404 11254 1066.3 0.0024 0.9976
golXplusZAll.sum <- lm(gol ~ fpopul + fgender, data = HowellsAll,
contrasts = list(fpopul = "contr.sum", fgender = "contr.sum"))
summary(golXplusZAll.sum)
##
## Call:
## lm(formula = gol ~ fpopul + fgender, data = HowellsAll, contrasts = list(fpopul = "contr.sum",
## fgender = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.5400 -4.3103 -0.3103 4.4600 17.6897
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 179.3722 0.3797 472.421 < 2e-16 ***
## fpopul1 6.5842 0.5811 11.330 < 2e-16 ***
## fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***
## fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.284 on 285 degrees of freedom
## Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
## F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
drop1(golXplusZAll.sum, test = "F")
## Single term deletions
##
## Model:
## gol ~ fpopul + fgender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 11254 1066.3
## fpopul 2 5160.7 16415 1171.4 65.345 < 2.2e-16 ***
## fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
L.alphaX <- cbind(0, CX.sum, 0)
colnames(L.alphaX) <- names(coef(golXplusZAll.sum))
rownames(L.alphaX) <- lpop
print(L.alphaX)
## (Intercept) fpopul1 fpopul2 fgender1
## AUSTR 0 1 0 0
## BERG 0 0 1 0
## BURIAT 0 -1 -1 0
LSest(golXplusZAll.sum, L = L.alphaX)
## Estimate Std. Error t value P value Lower Upper
## AUSTR 6.584159 0.5811231 11.330059 < 2.22e-16 5.440321 7.727997
## BERG -3.946989 0.5156772 -7.653992 3.0336e-13 -4.962008 -2.931970
## BURIAT -2.637170 0.5150067 -5.120651 5.6141e-07 -3.650869 -1.623470
alphaX <- LSest(golXplusZAll.sum, L = L.alphaX)[["Estimate"]]
names(alphaX) <- lpop
print(alphaX)
## AUSTR BERG BURIAT
## 6.584159 -3.946989 -2.637170
L.alphaZ <- cbind(0, 0, 0, CZ.sum)
colnames(L.alphaZ) <- names(coef(golXplusZAll.sum))
rownames(L.alphaZ) <- lgen
print(L.alphaZ)
## (Intercept) fpopul1 fpopul2 fgender1
## F 0 0 0 1
## M 0 0 0 -1
LSest(golXplusZAll.sum, L = L.alphaZ)
## Estimate Std. Error t value P value Lower Upper
## F -4.885157 0.3764546 -12.97675 < 2.22e-16 -5.626141 -4.144173
## M 4.885157 0.3764546 12.97675 < 2.22e-16 4.144173 5.626141
alphaZ <- LSest(golXplusZAll.sum, L = L.alphaZ)[["Estimate"]]
names(alphaZ) <- lgen
print(alphaZ)
## F M
## -4.885157 4.885157
(golModelMean <- coef(golXplusZAll.sum)["(Intercept)"] + cbind(alphaX, alphaX) + rbind(alphaZ, alphaZ, alphaZ))
## alphaX alphaX
## AUSTR 181.0712 190.8415
## BERG 170.5400 180.3103
## BURIAT 171.8498 181.6202
colnames(golModelMean) <- names(alphaZ)
print(golModelMean)
## F M
## AUSTR 181.0712 190.8415
## BERG 170.5400 180.3103
## BURIAT 171.8498 181.6202
(golMean <- with(HowellsAll, tapply(gol, list(fpopul, fgender), mean)))
## F M
## AUSTR 181.1020 190.7727
## BERG 170.5283 180.3214
## BURIAT 171.8333 181.6364
fpopul
Those are partial effects of fpopul
given fgender
(if the additive model can be assumed). They are equal to differences in αX's.
L.peffX.sumXZ <- cbind(0, rbind(CX.sum[2,] - CX.sum[1,], CX.sum[3,] - CX.sum[1,], CX.sum[3,] - CX.sum[2,]), 0)
colnames(L.peffX.sumXZ) <- names(coef(golXplusZAll.sum))
rownames(L.peffX.sumXZ) <- paste(lpop[c(2, 3, 3)], "-", lpop[c(1, 1, 2)], sep = "")
print(L.peffX.sumXZ)
## (Intercept) fpopul1 fpopul2 fgender1
## BERG-AUSTR 0 -1 1 0
## BURIAT-AUSTR 0 -2 -1 0
## BURIAT-BERG 0 -1 -2 0
LSest(golXplusZAll.sum, L = L.peffX.sumXZ)
## Estimate Std. Error t value P value Lower Upper
## BERG-AUSTR -10.531148 0.9705782 -10.850385 < 2e-16 -12.4415591 -8.620737
## BURIAT-AUSTR -9.221329 0.9695097 -9.511332 < 2e-16 -11.1296364 -7.313021
## BURIAT-BERG 1.309819 0.8512377 1.538723 0.12498 -0.3656911 2.985330
apply(golModelMean, 1, mean)
## AUSTR BERG BURIAT
## 185.9563 175.4252 176.7350
outer(apply(golModelMean, 1, mean), apply(golModelMean, 1, mean), "-")
## AUSTR BERG BURIAT
## AUSTR 0.000000 10.531148 9.221329
## BERG -10.531148 0.000000 -1.309819
## BURIAT -9.221329 1.309819 0.000000
fgender
Those are partial effects of fgender
given fpopul
(if the additive model can be assumed). They are equal to differences in αZ's.
L.peffZ.sumXZ <- cbind(0, 0, 0, CZ.sum[2,] - CZ.sum[1,])
colnames(L.peffZ.sumXZ) <- names(coef(golXplusZAll.sum))
rownames(L.peffZ.sumXZ) <- paste(lgen[2], "-", lgen[1], sep = "")
print(L.peffZ.sumXZ)
## (Intercept) fpopul1 fpopul2 fgender1
## M-F 0 0 0 -2
LSest(golXplusZAll.sum, L = L.peffZ.sumXZ)
## Estimate Std. Error t value P value Lower Upper
## M-F 9.770313 0.7529092 12.97675 < 2.22e-16 8.288345 11.25228
apply(golModelMean, 2, mean)
## F M
## 174.4870 184.2573
outer(apply(golModelMean, 2, mean), apply(golModelMean, 2, mean), "-")
## F M
## F 0.000000 -9.770313
## M 9.770313 0.000000