Extensions of models of bounded arithmetic

Jan Krajíček

Charles University

JAF, September 2025

a correspondence

Subsets:
$$u \subseteq n \ (:= \{0, \dots, n-1\})$$

$$\updownarrow$$
strings: $u = u_{n-1} \dots u_1 u_0 \in \{0, 1\}^n$
 \updownarrow

numbers: $2^n \le u = 2^n + \sum_{i \le n} u_i 2^i < 2^{n+1}$.

models

extensions

example properties

- $u < 2^{n^2}$ is a graph on n and $v < 2^n$ is a clique in it
- $u < 2^n$ is an input string for a p-time Turing machine A and $v < 2^{n^{O(1)}}$ is the computation of A on u
- $u < 2^{n^{O(1)}}$ is a CNF and $v < 2^{n^{O(1)}}$ is its satisfying assignment: Sat(u, v)
- $u < 2^{n^{O(1)}}$ is a CNF and $v < 2^{n^{O(1)}}$ is its resolution refutation

All these properties are p-time.

Language *L_{PV}*:

function (relation) symbols for all p-time clocked Turing machines computing functions (relations). In particular,

- 0, <, *suc*, . . .
- $|u| := \lceil log_2(u+1) \rceil$, for $u \neq 0$ (and |0| = 0)
- $i \in u \leftrightarrow \text{the } i\text{-th bit of } u \text{ is } 1$

Observation

All p-time properties are definable by open formulas and hence are absolute between $\mathbf{M} \subseteq \mathbf{M}'$.

More complex properties:

(*)
$$\forall y_1 < n \exists z_1 \forall y_2 < n \exists z_2 \dots \text{ openfla}(x, \overline{y}, \overline{z})$$

Ex.

u is an n-tuple of propositional formulas

$$(u)_0,\ldots,(u)_{n-1}$$

and

$$\forall i < n \ (u)_i \in SAT$$

i.e.

$$\forall i < n \exists v \; Sat((u)_i, v) \; .$$

Denote

$$[n]_{\mathbf{M}} := \{i \in \mathbf{M} \mid \mathbf{M} \models i < n\}$$
.

Observation

Assume $\mathbf{M} \subseteq \mathbf{M}'$ while $[n]_{\mathbf{M}} = [n]_{\mathbf{M}'}$. Then all (*) properties are preserved from \mathbf{M} to \mathbf{M}'

a variant of syntactic form (*)

Def. (Buss'85)

 Σ_1^b -formulas: when in prenex form all \forall quant's are sharply bounded and all \exists quant's are bounded.

(If the length of parameters is n then \forall are bounded by $n^{O(1)}$ while \exists by $2^{n^{O(1)}}$.)

Observation

Assume $\mathbf{M} \subseteq \mathbf{M}'$ and $Log(\mathbf{M}) = Log(\mathbf{M}')$ where

$$Log(\mathbf{M}) := \{|u| \mid u \in M\} .$$

Then all Σ_1^b -properties are preserved from **M** to **M**'.

a digression: an alternative set-up

Non-standard finite structures in a *finite* language *L*:

- universe: n
- A: an interpretation of L on n coded by an element of M

Instead of extensions of models study

expansions (A, R)

(coded by an element of \mathbf{M}') of \mathbf{A} by interpreting on n a new relation symbol R s.t. a theory in L(R) is satisfied.

a digression: why b.arithmetic models

We could consider non-standard finite 2nd order structures with infinitely many relations:

$$\mathbf{A} := (n, \mathcal{X})$$

where \mathcal{X} is a set of relations (or functions) on n and their expansions

$$\mathbf{A}' := (n, \mathcal{X}')$$

with $\mathcal{X} \subset \mathcal{X}'$ but a number of complications arise; for example, we need to consider properties of \mathbf{A}' involving quantification over elements of \mathcal{X}' .

There is also a useful machinery around bounded arithmetic theories (correspondence to pps', propositional translations, witnessing theorems, etc.).

background def's

Def. (Cook-Reckhow'79)

A propositional proof system (abbr. pps) is a p-time function $P:\{0,1\}^* \to \{0,1\}^*$ such that Rng(P)=TAUT.

Def.

Theory T_{PV} is the true universal theory in L_{PV} .

The soundness of $P: Ref_P := \forall x, y \ (P(x) = y \rightarrow y \in TAUT)$ is in T_{PV} .

Def. (Buss'85)

 Σ_1^b -LIND (Length IND):

$$[A(0) \wedge \forall y < |x|(A(y) \rightarrow A(y+1))] \rightarrow A(|x|).$$

background result

Thm. (K.-Pudlák'90)

Assume

- $\mathbf{M} \models T_{PV} + \Sigma_1^b(PV) LIND + \varphi$ is a propositional formula and
 - φ has no proof in **M** in any pps P.

Then there is an extension $\mathbf{M}' \supseteq \mathbf{M}$ s.t.

- $\mathbf{M}' \models T_{PV} + \Sigma_1^b(PV) LIND$,
- $\mathbf{M}' \models \neg \varphi \in SAT$,
- \mathbf{M}' preserves all $\Sigma_1^b(PV)$ -properties from \mathbf{M} .

an extra property

Assuming:

- M is countable,
- $n \in Log(\mathbf{M})$ s.t. $\{n^k\}_{k \in \mathbf{N}}$, are not cofinal in $Log(\mathbf{M})$

then one can arrange that:

$$[n]_{\mathsf{M}} = [n]_{\mathsf{M}'}.$$

(I.e. no new lengths below n.)

a key question

Do we need $\Sigma_1^b(PV)$ -LIND in these results? Specifically:

Problem

Assume M is countable and

- $\mathbf{M} \models T_{PV} + \varphi$ is a propositional formula,
- φ has no proof in **M** in any pps P.

Are there $\mathbf{M} \subset \mathbf{M}^* \subset \mathbf{M}'$ s.t.

- $\mathbf{M} \leq \mathbf{M}^*$ (preservation of $\Sigma_1^b(PV)$ or just (*) formulas would suffice),
- $\mathbf{M}' \models T_{PV} + \neg \varphi \in SAT$,
- $Log(\mathbf{M}^*) = Log(\mathbf{M}')$?

Remarks:

• $T_{PV} \not\vdash \Sigma_1^b(PV) - LIND$ unless $NP \subseteq P/poly$ (K.-Pudlák-Takeuti '91).

• For the theorem only the collection scheme $BB\Sigma_1^b(PV)$ - a consequence of $\Sigma_1^b(PV)-LIND$ - suffices but $T_{PV}\not\vdash BB\Sigma_1^b(PV)$ either unless factoring is not hard (Cook-Thapen '06).

search problems

Given a pps P consider a total search problem DD_P :

- *Input*: α, π where
 - $P(\pi) = \alpha$,
 - α is a disjoint disjunction $\dot{\bigvee}_i \alpha_i$ (no two disjuncts share an atom).
- Task: find i s.t. $\alpha_i \in TAUT$.

(Motivated by the theory of proof complexity generators.)

interactive comp's

Student-teacher computations:

- Common input: α, π .
- Round 1:
 - S proposes solution i₁,
 - T either approves or sends a counter-example: an assignment w_1 falsifying α_{i_1} .
- Round 2:
 - S proposes solution i_2 using also w_1 ,
 - T either approves or sends a counter-example: an assignment w_2 falsifying α_{i_2} .
- etc. (either until a solution is found or for a predetermined nb. of rounds).

(K.-Pudlák-Sgall'90 formalizing the notion underlying the KPT theorem.)

ST classes

Def.

 $ST[\mathcal{F}, t(n)]$ is the class of total Σ_2^p search problems that are solvable on size n inputs in t(n) rounds by a student from the algorithm class \mathcal{F} .

 Σ_2^p search problems:

$$\exists y(|y| \le |x|^{O(1)}) \forall z(|z| \le |x|^{O(1)}) \ A(x, y, z)$$

with A an open L_{PV} -formula with no other free var's than x.

Hypothesis (ST)

There is a *strong* pps *P* such that

$$DD_P \notin ST[FP, O(1)]$$
.

Remarks:

- FP: the class of p-time alg's,
- strong pps: EF plus a p-time set of tautologies as extra axioms (any pps can be p-simulated by a strong one)
- I think (ST) holds for EF (and hence for all strong pps).

Fact (K.'11 and '20)

(ST) follows from the existence of one-way permutations.

a variant search problem

A variant of DD_P is search problem D_P :

- Input: a, α, π where
 - $P(\pi) = \alpha$,
 - $\alpha = \bigvee_i \alpha_i(p, q^i)$ (no two distinct tuples q^i, q^j share an atom),
 - a is a truth assignment to atoms in the tuple p.
- Task: find i s.t. $\alpha_i(a, q^i) \in TAUT$.

(Pich-Santhanam '21 considered the possibility that it is in ST[FP, O(1)]) for all strong pps P.)

Lemma

For all strong pps P:

$$D_P \in ST[FP, O(1)] \leftrightarrow DD_P \in ST[FP, O(1)]$$
.

Theorem

Assume that the model-theoretic problem has the affirmative answer. Then:

$$(ST) \rightarrow NP \neq coNP$$
.

Remark:

- (ST) is a *computational complexity* hardness hypothesis: p-time alg's cannot solve a specific task
- NP \(\neq \coNP \) is a proof complexity hardness statement: no pps is p-bounded

Feasible interpolation yields such a reduction for a variety of proof systems but none of them is strong.

Proof:

We shall assume both (ST) and NP = coNP and derive - using the model-theoretic assumption - a contradiction.

P: a p-bounded pps that also witnesses (ST)

theory S in $L_{PV} \cup \{\alpha, \pi\}$:

- T_{PV},
- $P(\pi) = \alpha,$
- α is of the form $\bigvee_{i < m} \alpha_i$,
- $\forall i < m \ (\neg \alpha_i) \in SAT$.

Claim 1

S is consistent.

Otherwise the KPT theorem would provide $k \ge 1$ and a p-time student S that solves DD_P in $\le k$ rounds, contradicting (ST).

M: some model of *S* (necessarily non-standard)

Let $c \ge 1$ be s.t. any tautology β has a P-proof of size $\le |\beta|^c$. We shall abbreviate $[P(\sigma) = \beta \ \land \ |\sigma| \le |\beta|^c]$ by

$$\sigma : P \vdash_* \beta$$
.

The hypothesis NP = coNP implies

Claim 2

For any pps Q: the universal closure of the formula

$$P(x) = \bigvee_{i}^{\cdot} (y)_{i} \rightarrow Q \not\vdash ||\forall i < m \ (z)_{i} : P \not\vdash_{*} (y)_{i}||$$

is true and hence in T_{PV} .

prf3 - fla explanation

If the lengths of y and z are a priori bounded we can translate the fla

$$\forall i < m \ (z)_i : P \not\vdash_* (y)_i$$

into a propositional circuit:

$$||\forall i < m (z)_i : P \not\vdash_* (y)_i||$$

of the form

$$\bigwedge_{i \leq m} \psi(\overline{q}^i, \overline{r}^i)$$

where

- $\overline{q} = (\overline{q}^i)_i$ and $\overline{r} = (\overline{r}^i)_i$ are tuples of atoms representing bits of y and z, resp.,
- $\psi(\overline{q}^i, \overline{r}^i)$ is a circuit expressing that $(z)_i : P \not\vdash_* (y)_i$.

Substitute in the formula in Claim 2

$$x := \pi$$
 and $y := \alpha$

and let

$$\varphi(\overline{r}) := \bigwedge_{i < m} \psi(\alpha_i, \overline{r}^i)$$

(substitute bits of α for \overline{q}).

Claim3

Formula $\varphi(\overline{r})$ has no proof in **M** in any pps Q.

Now invoke the model-theoretic assumption: there are

$$\mathbf{M} \leq \mathbf{M}^* \subseteq \mathbf{M}' \models T_{PV} + \neg \varphi(\sigma) = 1$$

for some assignment $\sigma \in \mathbf{M}'$ and so for some $i_0 < m$

$$\mathbf{M}' \models P((\sigma)_{i_0}) = \alpha_{i_0}$$
.

But $Log(\mathbf{M}^*) = Log(\mathbf{M}')$ and hence $i_0 \in Log(\mathbf{M}^*)$ too and thus

$$\mathbf{M}' \models \neg \alpha_{i_0} \in SAT$$
.

That contradicts the soundness of P (axiom Ref_P in T_{PV}).

a summary pic

A remark:

Using a more precise correspondence

$$pps P \leftrightarrow theory T_P$$

the proof yields that the model-theoretic assumption for T_P plus the hypothesis

$$DD_P \notin ST[FP, O(1)]$$

implies that P has no strong feasible disjunction property, i.e.

• some $\dot{\bigvee}_i \alpha_i$ has a short P-proof while none of α_i does.

This implies that P is not p-bounded.

Main reference:

 J.K., On NP ∩ coNP proof complexity generators, ArXiv 2506.20221v2

References to all other results I mentioned can be found there as well as pointers to a literature offering more background.