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a correspondence

Subsets: u ⊆ n (:= {0, . . . , n − 1})

⇕

strings: u = un−1 . . . u1u0 ∈ {0, 1}n

⇕

numbers: 2n ≤ u = 2n +
∑

i<n ui2
i < 2n+1.
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models
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extensions
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example properties

u < 2n
2
is a graph on n and v < 2n is a clique in it

u < 2n is an input string for a p-time Turing machine A and
v < 2n

O(1)
is the computation of A on u

u < 2n
O(1)

is a CNF and v < 2n
O(1)

is its satisfying assignment:
Sat(u, v)

u < 2n
O(1)

is a CNF and v < 2n
O(1)

is its resolution refutation

All these properties are p-time.
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Language LPV :
function (relation) symbols for all p-time clocked Turing machines
computing functions (relations). In particular,

0, <, suc , . . .

|u| := ⌈log2(u + 1)⌉ , for u ̸= 0 (and |0| = 0)

i ∈ u ↔ the i-th bit of u is 1

Observation

All p-time properties are definable by open formulas and hence are
absolute between M ⊆ M′.
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More complex properties:

(∗) ∀y1 < n∃z1∀y2 < n∃z2 . . . openfla(x , y , z)

Ex.
u is an n-tuple of propositional formulas

(u)0, . . . , (u)n−1

and
∀i < n (u)i ∈ SAT

i.e.
∀i < n∃v Sat((u)i , v) .
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Denote
[n]M := {i ∈ M | M |= i < n} .

Observation

Assume M ⊆ M′ while [n]M = [n]M′ . Then all (*) properties are preserved
from M to M′
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a variant of syntactic form (*)

Def. (Buss’85)

Σb
1-formulas: when in prenex form all ∀ quant’s are sharply bounded and

all ∃ quant’s are bounded.

(If the length of parameters is n then ∀ are bounded by nO(1) while ∃ by

2n
O(1)

.)

Observation

Assume M ⊆ M′ and Log(M) = Log(M′) where

Log(M) := {|u| | u ∈ M} .

Then all Σb
1-properties are preserved from M to M′.
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a digression: an alternative set-up

Non-standard finite structures in a finite language L:

universe: n

A: an interpretation of L on n coded by an element of M

Instead of extensions of models study

expansions (A,R)

(coded by an element of M′) of A by interpreting on n a new relation
symbol R s.t. a theory in L(R) is satisfied.
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a digression: why b.arithmetic models

We could consider non-standard finite 2nd order structures with infinitely
many relations:

A := (n,X )

where X is a set of relations (or functions) on n and their expansions

A′ := (n,X ′)

with X ⊂ X ′ but a number of complications arise; for example, we need to
consider properties of A′ involving quantification over elements of X ′.

There is also a useful machinery around bounded arithmetic theories
(correspondence to pps’, propositional translations, witnessing theorems,
etc.).
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background def’s

Def. (Cook-Reckhow’79)

A propositional proof system (abbr. pps) is a p-time function
P : {0, 1}∗ → {0, 1}∗ such that Rng(P) = TAUT .

Def.

Theory TPV is the true universal theory in LPV .

The soundness of P: RefP := ∀x , y (P(x) = y → y ∈ TAUT ) is in TPV .

Def. (Buss’85)

Σb
1-LIND (Length IND):

[A(0) ∧ ∀y < |x |(A(y) → A(y + 1))] → A(|x |) .
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background result

Thm. (K.-Pudlák’90)

Assume

M |= TPV + Σb
1(PV )− LIND + φ is a propositional formula

and

φ has no proof in M in any pps P.

Then there is an extension M′ ⊇ M s.t.

M′ |= TPV + Σb
1(PV )− LIND,

M′ |= ¬φ ∈ SAT ,

M′ preserves all Σb
1(PV )-properties from M.
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an extra property

Assuming:

M is countable,

n ∈ Log(M) s.t. {nk}k∈N, are not cofinal in Log(M)

then one can arrange that:

[n]M = [n]M′ .

(I.e. no new lengths below n.)
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a key question

Do we need Σb
1(PV )-LIND in these results? Specifically:

Problem

Assume M is countable and

M |= TPV + φ is a propositional formula,

φ has no proof in M in any pps P.

Are there M ⊆ M∗ ⊆ M′ s.t.

M ⪯ M∗

(preservation of Σb
1(PV ) or just (*) formulas would suffice),

M′ |= TPV + ¬φ ∈ SAT ,

Log(M∗) = Log(M′)?
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Remarks:

TPV ̸⊢ Σb
1(PV )− LIND unless NP ⊆ P/poly

(K.-Pudlák-Takeuti ’91).

For the theorem only the collection scheme BBΣb
1(PV ) - a

consequence of Σb
1(PV )− LIND - suffices but TPV ̸⊢ BBΣb

1(PV )
either unless factoring is not hard (Cook-Thapen ’06).
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search problems

Given a pps P consider a total search problem DDP :

Input: α, π where

P(π) = α,

α is a disjoint disjunction
∨̇

iαi (no two disjuncts share an atom).

Task: find i s.t. αi ∈ TAUT .

(Motivated by the theory of proof complexity generators.)
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interactive comp’s

Student-teacher computations:

Common input: α, π.

Round 1:

S proposes solution i1,
T either approves or sends a counter-example: an assignment w1

falsifying αi1 .

Round 2:

S proposes solution i2 using also w1,
T either approves or sends a counter-example: an assignment w2

falsifying αi2 .

etc. (either until a solution is found or for a predetermined nb. of
rounds).

(K.-Pudlák-Sgall’90 formalizing the notion underlying the KPT theorem.)
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ST classes

Def.

ST [F , t(n)] is the class of total Σp
2 search problems that are solvable on

size n inputs in t(n) rounds by a student from the algorithm class F .

Σp
2 search problems:

∃y(|y | ≤ |x |O(1))∀z(|z | ≤ |x |O(1)) A(x , y , z)

with A an open LPV -formula with no other free var’s than x .
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Hypothesis (ST)

There is a strong pps P such that

DDP /∈ ST [FP,O(1)] .

Remarks:

FP: the class of p-time alg’s,

strong pps: EF plus a p-time set of tautologies as extra axioms (any
pps can be p-simulated by a strong one )

I think (ST) holds for EF (and hence for all strong pps).

Fact (K.’11 and ’20)

(ST) follows from the existence of one-way permutations.
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a variant search problem

A variant of DDP is search problem DP :

Input: a, α, π where

P(π) = α,
α =

∨
i αi (p, q

i ) (no two distinct tuples qi , qj share an atom),
a is a truth assignment to atoms in the tuple p.

Task: find i s.t. αi (a, q
i ) ∈ TAUT .

(Pich-Santhanam ’21 considered the possibility that it is in ST [FP,O(1)])
for all strong pps P.)

Lemma

For all strong pps P:

DP ∈ ST [FP,O(1)] ↔ DDP ∈ ST [FP,O(1)] .
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Theorem

Assume that the model-theoretic problem has the affirmative answer.
Then:

(ST ) → NP ̸= coNP .

Remark:

(ST) is a computational complexity hardness hypothesis: p-time alg’s
cannot solve a specific task

NP ̸= coNP is a proof complexity hardness statement: no pps is
p-bounded

Feasible interpolation yields such a reduction for a variety of proof systems
but none of them is strong.
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prf1

Proof:

We shall assume both (ST) and NP = coNP and derive - using the
model-theoretic assumption - a contradiction.

P: a p-bounded pps that also witnesses (ST)

theory S in LPV ∪ {α, π}:
TPV ,

P(π) = α,

α is of the form
∨̇

i<mαi ,

∀i < m (¬αi ) ∈ SAT .
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prf2

Claim 1

S is consistent.

Otherwise the KPT theorem would provide k ≥ 1 and a p-time student S
that solves DDP in ≤ k rounds, contradicting (ST).

M: some model of S
(necessarily non-standard)
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prf3

Let c ≥ 1 be s.t. any tautology β has a P-proof of size ≤ |β|c . We shall
abbreviate [P(σ) = β ∧ |σ| ≤ |β|c ] by

σ : P ⊢∗ β .

The hypothesis NP = coNP implies

Claim 2

For any pps Q: the universal closure of the formula

P(x) =
∨̇

i
(y)i → Q ̸⊢ ||∀i < m (z)i : P ̸⊢∗ (y)i ||

is true and hence in TPV .
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prf3 - fla explanation

If the lengths of y and z are a priori bounded we can translate the fla

∀i < m (z)i : P ̸⊢∗ (y)i

into a propositional circuit:

||∀i < m (z)i : P ̸⊢∗ (y)i ||

of the form ∧
i<m

ψ(qi , r i )

where

q = (qi )i and r = (r i )i are tuples of atoms representing bits of y and
z , resp.,

ψ(qi , r i ) is a circuit expressing that (z)i : P ̸⊢∗ (y)i .

26 / 31



prf4

Substitute in the formula in Claim 2

x := π and y := α

and let
φ(r) :=

∧
i<m

ψ(αi , r
i )

(substitute bits of α for q).

Claim3

Formula φ(r) has no proof in M in any pps Q.
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prf5

Now invoke the model-theoretic assumption: there are

M ⪯ M∗ ⊆ M′ |= TPV + ¬φ(σ) = 1

for some assignment σ ∈ M′ and so for some i0 < m

M′ |= P((σ)i0) = αi0 .

But Log(M∗) = Log(M′) and hence i0 ∈ Log(M∗) too and thus

M′ |= ¬αi0 ∈ SAT .

That contradicts the soundness of P (axiom RefP in TPV ).

□
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a summary pic
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A remark:

Using a more precise correspondence

pps P ↔ theory TP

the proof yields that the model-theoretic assumption for TP plus the
hypothesis

DDP /∈ ST [FP,O(1)]

implies that P has no strong feasible disjunction property, i.e.

some
∨̇

iαi has a short P-proof while none of αi does.

This implies that P is not p-bounded.
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Main reference:

J.K., On NP ∩ coNP proof complexity generators,
ArXiv 2506.20221v2

References to all other results I mentioned can be found there as well as
pointers to a literature offering more background.
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