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Linear regression models
with heteroscedasetic errors
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Normal linear model
Assumptions

❏ random sample (Yi , Xi ) for i = 1, . . . , n from some joint distribution
function F(Y ,X), such that Yi |Xi ∼ N(X⊤

i β, σ2)
❏ regression model of the form Yi = X⊤

i β + εi

Inference
❏ confidence intervals for βj ∈ R, confidence regions for β ∈ Rp, and linear

combinations of the form Lβ for some L ∈ Rm×p

❏ parameter estimates β̂ (constructed in terms of LSE or MLE) are BLUE
and the follow the normal distribution

β̂ ∼ Np(β, σ2(X⊤X)−1)

The statistical inference is exact and it is based on the normal distribution (if the
variance parameter is known) or the Student’s t-distribution or Fisher’s F -distribution
respectively for σ2 > 0 unknown
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Linear model without normality
Assumptions (A1)

❏ random sample (Yi , Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)

❏ mean specification E [Yi |Xi ] = X⊤
i β, respectively E [Y |X] = Xβ

❏ thus, for errors εi = Yi − X⊤
i β we have E [εi |Xi ] = E [Yi − X⊤

i β|Xi ] = 0
and Var(εi |Xi ) = Var [Yi − X⊤

i β|Xi ] = Var [Yi |Xi ] = σ2(Xi )
❏ and for unconditional expectations, E [εi ] = E [E [εi |Xi ]] = 0 and

Var(εi ) = Var(E [εi |Xi ])+E [Var(εi |Xi )] = Var(0)+E [σ2(Xi )] = E [σ2(Xi )]
Assumptions (A2)

❏ E |XjXk | < ∞ for j, k ∈ {1, . . . , p}
❏ E

(
XX⊤)

= W ∈ Rp×p is a positive definite matrix
❏ V = W−1

Assumptions (A3a/A3b)
❏ Homoscedastic model)

σ2(X) = Var(Y |X) = σ2 > 0
❏ Heteroscedastic model

σ2(X) = Var(Y |X) such that E [σ2(X)] < ∞ and moreover, it also holds
that E [σ2(X)XjXk ] < ∞ for j, k ∈ {1, . . . , p}
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Inference under (A1), (A2), and (A3b)
Inference (without normality + homoscedastic errors)

❏ confidence intervals for βj ∈ R, confidence regions for β ∈ Rp, and linear
combinations of the form Lβ for some L ∈ Rm×p

❏ parameter estimates β̂n (sometimes also β̂), constructed in terms of LSE
or MLE, are BLUE, they are consistent (convergence in probability) and
they follow asymptotically the normal distribution

√
n(β̂n − β) D−→

n→∞
Np(0, σ2V)

The statistical inference is approximate/assymptocal and it is based on the normal
distribution (regardless of whether the variance σ2 > 0 is known or unknown)

Note that

√
n · β̂n =

√
n(X⊤X)−1(X⊤ (Xβ + ε︸ ︷︷ ︸

Y

)) =
√

n · VnV−1
n β︸ ︷︷ ︸

β

+ nVn︸︷︷︸
→V

·
1

√
n

n∑
i=1

Xi εi︸ ︷︷ ︸
(⋆)

↪→ where (⋆) converges (in distribution) to Np(0, E [σ2(X)XX⊤]) (Central Limit Theorem)
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General linear model (heteroscedasticity)

❏ random sample (Yi , Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)

❏ mean specification E [Y |X] = Xβ, for β ∈ Rp

❏ variance specification Var [Y |X] = σ2W−1, for some known matrix
W ∈ Rn×n (positive definite)

❏ generally, the normal distribution is not assumed, therefore

Y |X ∼ (Xβ, σ2W−1)

Example
Consider a linear regression model, where the dependent variables Yi for i = 1, . . . , n
represent some averages across wi ∈ N independent subjects, where for each subject
we assume the same variance (i.e., a homoscedastic model for the subjects)

NMFM 334 | Lecture 10 5 / 14



General least squares

Consider a general linear model Y |X ∼ (Xβ, σ2W−1) where
rank(X) = p < n (where X ∈ Rn×p). Than the following holds:

❏ β̂ = (X⊤WX)−1X⊤WY is BLUE for β ∈ Rp

❏ µ̂ = Ŷ = Xβ̂ is BLUE for µ = E [Y |X]

❏ for l ∈ Rp, where l ̸= 0, l⊤β̂ is BLUE for θ = l⊤β

❏ MSeG = 1
n−p ∥W1/2(Y − Ŷ )∥2

2 is unbiased estimate of σ2 > 0

If, additionaly, Y |X ∼ N(Xβ, σ2W−1) then the estimates β̂ ∈ Rp follow
the corresponding normal distribution and, moreover,

MSeG(n − p)
σ2 = SSeG

σ2 ∼ χ2
n−p

and SSe and Ŷ are conditionally, given X, mutually independent
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General linear model – utilization

❏ the general linear model is typically used with partially aggregated
data—mostly in a way, that instead of raw observations we observe
independent averages over specific classes (that we can control for with
the set of the regressor variables)

❏ if the estimation of the mean structure is of the interest only, the
aggregated data can be also replicated and the correponding mean
estimates will be the same

❏ however, if there is also some interest in the variance estimation (e.g.,
there is a need to perform some statistical inference), the model based on
the replicated data will fail (the variance estimates are artificially
underestimated—e.g., too short confidence intervals)

❏ the situations described above all refer to a diagonal (weighting) matrix
W. However, in general, the matrix W ∈ Rn×n can have all non-zero
entries—meaning that the individual subjects are correlated (dependent)
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More general situations...

❏ General least squares represent a class of linear models for heteroscedastic
data, however, with the known heteroscedastic structure—the matrix W is
known from the experiment

❏ More general scenario involves situations where heteroscedastic data have
some unknown variance structure (which needs to be estimated)

❏ Recall Assumption (A3) that specified the following conditions:
❏ Heteroscedastic model

σ2(X) = Var(Y |X) such that E [σ2(X)] < ∞ and moreover, it also holds
that E [σ2(X)Xj Xk ] < ∞ for j, k ∈ {1, . . . , p}

❏ The assumption above implies, that the matrix W⋆ = E [σ2(X)XX⊤] is
a real matrix with all elements being finite

❏ Thus, under the heteroscedastic model, we have E [Yi |Xi ] = X⊤
i β and

Var [Yi |Xi ] = Var [εi |Xi ] = σ2(Xi )
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Consistency of the LSE estimates

The underlying model can be either assumed within the normal model
framework or, alternatively, no normality is needed
(some moment conditions are assumed instead)

❏ Again, we are interested in the following parameters:
❏ β ∈ Rp

❏ σ2 > 0
❏ θ = l⊤β ∈ R, for some nonzero vector l ∈ Rp

❏ Θ = Lβ ∈ Rm, for some matrix L ∈ Rm×p with linearly independent rows

❏ The corresponding estmates are defined straightforwardly and it holds
(under (A1), (A2), and (A3a/A3b)) that

❏ β̂n −→ β a.s. (in P), for n → ∞
❏ θ̂n = l⊤β̂n −→ θ a.s. (in P), for n → ∞
❏ Θ̂n = Lβ̂n −→ Θ, a.s. (in P), for n → ∞
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Assymptotic normality under heteroscedasticity

Under the assumptions stated in (A1), (A2), and (A3b) and, additionally,
for E [ε2XjXk ] < ∞ for j , k = 1, . . . , p the following holds:

❏
√

n(β̂n − β) D−→ Np(β, σ2VW⋆V) for n → ∞

❏
√

n(θ̂n − θ) D−→ N(0, σ2l⊤VW⋆Vl), as n → ∞

❏
√

n(Θ̂n − Θ) D−→ Nm(0, σ2LVW⋆VL⊤), as n → ∞

where V =
[
E (XX⊤)

]−1
and W⋆ = E [σ2(X)XX⊤]

Note that Var(Xε) = E [σ2(X)XX⊤] which equals to σ2E [XX⊤] = σ2W under
homoscedasticity (A3a) and it equals to W⋆ under heteroscedasticity (A3b)
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Sandwich estimate of the variance

Consider the assumptions in (A1), (A2), and (A3b). Let, moreover, the
following holds

❏ E |ε2XjXk | < ∞
❏ E |εXjXkXs | < ∞
❏ E |XjXkXsXl | < ∞

all for j , k, s, l ∈ {1, . . . , p}. Then the following holds:

nVnW⋆
nVn

a.s.(P)−→ VW⋆V, for n → ∞

where W⋆
n =

∑n
i=1 U2

i XiX⊤
i = X⊤

n ΩnXn, where Ui = Yi − Ŷi and
Ωn = diag(U2

1 , . . . , U2
n )
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Sandwich estimate

❏ the estimate for the variance covariance matrix VW⋆V is the so-called
sandwich estimate of the form

VnW⋆
nVn = (X⊤

n Xn)−1X⊤
n︸ ︷︷ ︸

bread

Ωn︸︷︷︸
meat

Xn(X⊤
n Xn)−1︸ ︷︷ ︸

bread

which is a (heteroscedastic) consistent estimate of the variance-covarance
of the least squares estimate β̂n

❏ if we replace the matrix Ωn with n
νn

Ωn for some sequence {νn}n such that
n/νn → 1 as n → ∞ the convergence still holds and νn is called the
degrees of freedom of the sandwich estimate

❏ different options are used in the literature to define the sequence {νn}n
(White (1980); MacKinnon and White (1985); etc.)
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Asymptotic inference under heteroscedasticity

❏ for a consistent sandwich estimate VHC
n = (X⊤

n Xn)−1X⊤
n ΩnXn(X⊤

n Xn)−1

of the covariance matrix of β̂n we can define

❏ Tn = l⊤β̂n−l⊤β√
l⊤VHC

n l

❏ Qn =
(Lβ̂n−Lβ)⊤

(
LVHC

n L⊤
)−1

(Lβ̂n−Lβ)
m

❏ The statistic Tn follows (asymptotically) the normal distribution N(0, 1)
and the statistic mQn follows (again asymptotically) the χ2 distribution
with m = rank(L) degrees of freedom (for n → ∞)

❏ Note that the results are analogous to those obtained for the
homoscedastic situation where MSe(X⊤X)−1 is replaced by the sandwich
estimate VHC

n

❏ the statistics Tn and Qn can be directly used to perform statistical
inference—i.e., to constract a confidence interval/region or to test some
set of hypotheses
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Summary

❏ Linear regression models
❏ Normal linear model with homoscedastic errors
❏ Linear model without normality assumptions (A3a/A3b)
❏ General linear model (with and without the normality assumption)

❏ Consistent LSE/MLE estimates
❏ consistent estimates of the mean and variance parameters
❏ the mean parameter estimates are normally distributed (normal model)
❏ the mean estimates are asymptotically normal (model without normality)
❏ consistent estimates of the variance parameter/parameters

❏ Statistical inference
❏ primarily about the mean parameters and their linear combinations
❏ exact and approximate (asymptotic) confidence intervals (regions)
❏ statistical tests (hull and alternative hypotheses)
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