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Generalized linear models
with random effects (GLMM)
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Lecture 8

Generalization of LMMs
❏ Linear mixed effects model

❏ normal (or at least close to normal) data
❏ linear model + normality = “lightness of being”
❏ two basic modeling approaches (hierarchical vs. marginal model)
❏ relatively straightforward way from one model to another

❏ Generalized linear mixed effects model
❏ situations with non-normally distributed data
❏ introduction of some non-linearity in the model
❏ wide range of different modeling options (and different strategies)
❏ typically with no straightforward way to switch among the models

With nonlinear models, different assumptions imposed on the correlation structure of
the data typically lead to regression coefficient estimates (the conditional mean
structure in particular) that have different interpretation...

The objective of the analysis and the underlying sources of the
variability/correlation within the data must assessed much more carefully ...
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Lecture 8

Typical non-normal data
In general, repeated (correlated) observations can be also measured with
respect to some random variable Y that is not necessarily continuous...
(continuity nor even the Gaussian distribution can be assumed)

Consider a longitudinal dataset {(Yi , X⊤
i1 , . . . , X⊤

ini
)⊤; i = 1, . . . , N}

where Yi = (Yi1, . . . , Yini )⊤ are repeated observations within the subject
i ∈ {1, . . . , N}, for N ∈ N independent subjects with ni ∈ N being the
number of observations within the subject

❏ Yij ∈ N ∪ {0} for all i = 1, . . . ,N and j = 1, . . . , ni (counts)
❏ Yij ∈ {1, . . . ,K} for all i = 1, . . . ,N and j = 1, . . . , ni (labels)
❏ Yij ∈ {0, 1} for all i = 1, . . . ,N and j = 1, . . . , ni (true/false)
❏ ...

In some sense, the non-normal data are even more frequent when analyzing the
longitudinal studies (as it is always possible to transform some continuous response
Y ∈ R into a categorical/binary information only... but not vise versa)
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Lecture 8

GLM extensions for the longitudinal data

❏ Marginal models
❏ primary (the solely) interest is given to the conditional mean structure
❏ the correlation structure of the data is taken into account for inference
❏ model interpretation with respect to the subpopulation comparisons

❏ Random effects models
❏ substantial (theoretical/computational) issues due to nonlinearity
❏ the interest may be given to a subject specific interpretation as well
❏ the subject specific interpretation is, however, not straightforward...

❏ Transition models
❏ primary interest again with respect to the overall mean structure
❏ the correlation structure is induced by the historical observations
❏ wide range of different model structures and modeling techniques...

↪→ and possibly many others...
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Lecture 8

1. Marginal models
The conditional expectation of the response is modeled (using the set of explanatory
variables) separately from the within-subject correlation. The conditional expectation
is modeled by averaging the subjects which share the same values of the explanatory
variables (basically the same is done in a standard linear regression model)

❏ Mean structure
The marginal (conditional) expectation of the response depends (non-linearly)
on a linear combination of the explanatory variables

h(µij ) = X⊤
ij β, for µij = E [Yij |Xij ] and β ∈ Rp

❏ Variance structure
The marginal (conditional) variance of the response depends on the marginal
mean (and, optionally, some other parameters) as

Var(Yij |Xij ) = v(µij )ϕ, for ϕ > 0

❏ Covariance structure
The correlation between two observations Yij and Yik (within the same
subject i ∈ {1, . . . , N}) is assumed to be modeled as

Cor(Yij , Yik |Xij , Xik) = ρ(µij , µik , α), for α ∈ Rq
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Lecture 8

Model interpretation (pros and cons)

❏ GLM models for the correlated/longitudinal data are natural analogues of
classical GLM for independent observations

❏ Unknown parameters β ∈ Rp have the same (marginal) interpretation as
the coefficients in a standard cross-sectional analysis
(i.e., the GLM regression model for independent observations)

❏ Depending on the domain of the (random) response variable Y , different
models (with different interpretation of β ∈ Rp) can be formulated
(logistic model, Poisson model, gamma model, etc.)

❏ All models so far (multivariate normal, marginal, hierarchical) can be
(in some sense) interpreted as cross-sectional models (as all these models
contain the term X⊤β somehow related to the conditional mean E [Y |X])
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Lecture 8

Example: Logistic marginal model
The variable if interest, Y , takes only two possible values—some property
is either achieved or, alternatively, it is not... The probability of achieving
the given property, e.g. P[Y = 1], is modeled conditionally on X ∈ Rp

For longitudinal data {(Y ⊤
i , X⊤

i1 , . . . , X⊤
ini

)⊤; i = 1, . . . , N; j = 1, . . . , ni},
where Yi = (Yi1, . . . .Yini )⊤ represents correlated observations within the
given subject i ∈ {1, . . . , N} we primarily model µij = E [Yij |Xij ]

One possible formulation
❏ logit(µij) = log µij

1−µij
= log P[Yij |Xij ]

1−P[Yij =1|Xij ]
= X⊤

ij β

❏ Var(Yij |Xij) = µij(1 − µij)
❏ Cor(Yij ,Yik) = α, for any i ∈ {1, . . . ,N} and j ̸= k

The estimated parameters β̂ = (β̂1, . . . , β̂p)⊤ are interpreted in terms of
the estimated odds ratios for true/false (i.e., exp{β̂j}, for j ∈ {1, . . . , p})
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Lecture 8

Correlation in the logistic marginal model
❏ Recall, that Cor(Yij ,Yik) = α no matter what are the times tj , or tk of the

observations or the outcomes µij and µik (e.g., a random intercept model)
❏ For a binary outcomes Y1,Y2 ∈ {0, 1} with the means µ1, µ2 ∈ (0, 1) the

correlation between Y1 and Y2 equals

Cor(Y1,Y2) = P[Y1 = 1,Y2 = 1] − µ1µ2√
(µ1(1 − µ1)µ2(1 − µ2)

❏ The joint probability P[Y1 = 1,Y2 = 1] can be constrained as
max{0, µ1 + µ2 − 1} < P[Y1 = 1,Y2 = 1] < min{µ1, µ2}

and, therefore, the correlation Cor(Y1,Y2) is constrained by
a complicated form that depends on the marginal means µ1 and µ2

❏ The odds ratio are used instead to model the association between binary
observations

OR(Y1,Y2) = P[Y1 = 1,Y2 = 1]P[Y1 = 0,Y2 = 0]
P[Y1 = 1,Y2 = 0]P[Y1 = 0,Y2 = 1]

which is not constrained by the means µ1 and µ2 any more (rather than
the correlation, the odds ratio are equal to some constant, α ∈ R)
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Lecture 8

Example: Logarithmic model for Poisson counts

The variable if interest, Y ∈ N ∪ {0}, takes infinitely many (ordinal)
values—counts—and the main objective is to model the conditional
mean µ = E [Y |X ] ∈ R+ where, again X ∈ Rp

For longitudinal data {(Y ⊤
i , . . . , X⊤

i1 , X⊤
ini

)⊤; i = 1, . . . , N; j = 1, . . . , ni},
where Yi = (Yi1, . . . .Yini )⊤ represents correlated observations within the
given subject i ∈ {1, . . . , N} we again primarily model µij = E [Yij |Xij ]

One possible formulation
❏ log(µij) = X⊤

ij β

❏ Var(Yij |Xij) = µijϕij

❏ Cor(Yij ,Yik) = α

The correlation within the repeated observations is sometimes ignored, or
it is modeled simply, or models with random effects are more appropriate
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Lecture 8

2. Random effects models
A straightforward extension of the linear mixed models (LMMs) for discrete and
non-Gaussian responses where it is assumed that the response is independent for
subjects and follows a GLM model but the regression (mean) coefficients may vary
from subject to subject (with correlated observations within each subject)

❏ Mean structure
µij = E [Yij |Xij ,wi ] = ψ′(θij)

❏ Variance structure
vij = Var [Yij |Xij ,wi ] = ψ′′(θij)ϕ

where we assume the exponential family for the conditional distribution
of Yij |(Xij ,wi ) with f(Y |Xij ,wi )(y) = exp{[yθij − ψ(θij)]/ϕ+ c(y , ϕ)}, where
g(µij) = X⊤

ij β + Z⊤
ij wi and vij = v(µij)ϕ (link and variance functions)

❏ Covariance structure
Random effects w1, . . . ,wN are independent with some common
underlying distribution and the subject specific responses Yi1, . . . ,Yini are,
conditionally on wi , independent
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Lecture 8

Some stochastic properties

❏ Models with random effects assume that there is some natural
heterogeneity across individuals (reflected in their regression coefficients)
and this heterogeneity can be represented by some probability distribution

❏ The correlation structure of the repeated observations within each subject
is modeled more carefully than in the marginal models but due to
non-linearity of the model, the interpretation is more challenging

❏ The correlation within the repeated observations for one subject arises
from sharing the same random effect wi where the random effect is
actually not observed (so-called latent variable models)

❏ The random effects models are primarily used when the main objective is
to perform some statistical inference about individuals rather than the
population (sub-populations) means only
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Lecture 8

Example: Logistic regression with random effects
The variable of interest, Y , takes only two possible values—e.g., some
property is either achieved or it is not... The probability of achieving the
given property, e.g. P[Y = 1], is modeled conditionally on X ∈ Rp

For the longitudinal data {(Y ⊤
i , X⊤

i1 , X⊤
ini

)⊤; i = 1, . . . , N; j = 1, . . . , ni},
where Yi = (Yi1, . . . .Yini )⊤ represents correlated observations within the
subject i ∈ {1, . . . , N} we model µij = E [Yij |Xij , wi ]

One possible formulation
❏ logit(µij) = log µij

1−µij
= log P[Yij |Xij ,wi ]

1−P[Yij =1|Xij ,wi ]
= X⊤

ij β + Z⊤
ij wi

❏ Var(Yij |Xij ,wi ) = µij(1 − µij)
❏ typically wi ∼ N(0,G) and repeated observations within the subject are,

given wi independent

The random effects model is most useful when the main objective is to
make inference about individuals, rather than the populations averages
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Lecture 8

3. Transition models
Unlike the previous models, the correlation among the repeated observations within
a given subjects, Yi1, . . . , Yini , occurs because there is an explicit influence of the
previous values Y (j)

i = (Yi1, . . . , Yi(j−1))⊤ on the most recent one Yij and the
historical observations are treated as additional regresors in the model

❏ Typical mean structure

µij = E [Yij |Xij ,Yi(j−1), . . . ,Yi1] = X⊤
ij β + Y (j)⊤

i γ

❏ Variance structure

Var [Yij |Xij ,Yi(j−1), . . . ,Yi1] = ψ′′(θij)ϕ

where f(Yj |Xij ,Y
(j)
i )(y) = exp{[yθij − ψ(θij)]/ϕ+ c(y , ϕ)}, where

g(µij) = X⊤
ij β + Y (j)⊤

i γ

❏ Covariance structure
Directly induced by the previous (historical) observations on the given
subject i ∈ {1, . . . ,N}
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Lecture 8

Some stochastic properties

❏ A simple marginal model with an exponential autocorrelation function
Cor(Yij ,Yik) = σ2 exp{−ϕ|tj − tk |} can be also formulated as a transition
model where

Yij = X⊤
ij β + εij , where εij = αεi(j−1) + ωij ,

with α = exp{−ϕ} and ωij ∼ N(0, τ 2), for τ 2 = σ2(1 − α2)

❏ By substituting εij = Yij − X⊤
ij β into εij = αεi(j−1) + ωij we have

Yij |Xij ,Yi(j−1) ∼ N(X⊤
ij β + α(Yi(j−1) − X⊤

i(j−1)β), τ 2)

which can be easily specified (typically for situations where many
repeated observations within subjects are available)
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Lecture 8

Theoretical and empirical comparisons

In a simple linear case it is possible to use three regression approaches in
a way that the models have the coefficients with the same interpretation

❏ Consider a simple linear regression model Yij = β0 + β1tij + εij where
E [Yij |tij ] = β0 + β1tij and Cor(Yij ,Yik) = ρ(tij , tik ,α)

❏ Consider a two-stage correlation structure, where ρ(tij , tik ,α) = α0 for
|tij − tik | < t0 and ρ(tij , tik ,α) = α1 for |tij − tik | ≥ t0

❏ Marginal model approaches the mean and the correlation structure
separately (straightforward interpretation)

❏ Mixed model can be written as Yij = β0 + wi0 + (β1 + wi1)tij + ωij ,
where ωij ∼ N(0, σ2) (independent) and wi = (wi0,wi1)⊤ ∼ N(0,G)

❏ Transition model can be formulated as Yij = β0 + β1tij + εij , where
εij = αεi(j−1) + ωij , with ωij ∼ N(0, σ2) (independent)
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separately (straightforward interpretation)

❏ Mixed model can be written as Yij = β0 + wi0 + (β1 + wi1)tij + ωij ,
where ωij ∼ N(0, σ2) (independent) and wi = (wi0,wi1)⊤ ∼ N(0,G)

❏ Transition model can be formulated as Yij = β0 + β1tij + εij , where
εij = αεi(j−1) + ωij , with ωij ∼ N(0, σ2) (independent)
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Lecture 8

Summary

❏ For non-normal data there is a wide class of different modeling approaches
(depending on the distribution of the response—however, within the exponential family)

❏ The most common regression models (among others) include
❏ marginal models
❏ random-effects models
❏ transition models

❏ Different models are based on different sets of assumptions and, therefore,
different interpretation options follow from each method

❏ Some models are more suitable for modeling the population mean
structure only, others are more suitable when the inference is about to be
performed with respect to individual subjects

❏ Each class of these models will be discussed in more details later...
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