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1. CLIPPINGS FROM THE ASYMPTOTIC
THEORY

1.1. THE CONVERGENCE OF RANDOM VECTORS

Let X be a k-dimensional random vector (with the cumulative distribution function
Fx)and {X,};_, be a sequence of k-dimensional random vectors (with the cumula-
tive distribution functions Fx,).

Definition 1.1 We say that X, n_%: X (i.e. X, converges in distribution to X), if
lim Fx, (z) = Fx (x)
for each point « of the continuity of Fx.
Let d be a metric in R¥, e.g. the Euclidean metric d(zx,y) = , /Z}C:l(xj -¥j)?.
Definition 1.2 We say that

* X, P.x (i.e. X, converges in probability to X), if
n—oo

Ve >0 lim Pl : d(X,(w), X (w)) > 5] =0;

n—oo

e X, 22 x (i.e. X, converges almost surely to X), if
n—oo
P[w - 1im d(X (), X (0)) = 0] - 1.
n—oo

Remark. For random vectors the convergence in probability and almost surely can
be defined also component-wise. Thatislet X,, = (X,1,..., Xu) T and X = (Xy,..., Xp)".
Then

Xy —— X (X =25 X) i Xnj —— X Xy —=5 X)), Vi=1,...,k.
n—0co0 n—co n—co

n—oo
But this is not true for the convergence in distribution for which we have the Cramér-
Wold device that states

X, — 0 X e ATX, —25 ATX, VAeRk

n—oo n—oo



1. Clippings from the asymptotic theory

Proposition 1.1

() X, 25X = X, — X
n—oo

n—oo

" P d
i) X, —X = X, — X
n—oo n—oo
Remark. The opposite implication does not hold. Nevertheless if the random vec-
. d =)
tors converge to a constant, i.e. X,, — ¢ (where ¢ € R*) then also X,, — c.

Proposition 1.2 (Continuous Mapping Theorem, CMT) Let g : R — R™ be con-
tinuous in each point of an open set C  R* such that P(X € C) = 1. Then

L X, =25 X = g(X,) 425 g(X);
n—oo n—oo
P P
2. X, — X = g(X,;) — g(X);
n—o0 n—oo
3. X, — X = g(X,) —— g(X).
n—oo n—oo
Proposition 1.3 (Cramér-Slutsky, CS) Let X, LN X,Y, LN ¢, then
n—o0 n—oo

1. Xn+YnL>X+c;

n—oo

2. Y, X, — ¢ X,

n—oo
where Y, can be a sequence of random variables or vectors or matrices of appropriate

dimensions (R or RF or R”**) and analogously c can be either a number or a vector
or a matrix of an appropriate dimension.

Exercise. Write down the above definitions and propositions for the special case k =
1 and m = 1. Do you know any examples where these statements and definitions are
used?

1.2. BASIC ASYMPTOTIC RESULTS

Proposition 1.4 (SLLN for i.id.) Let X, X>,... be independent and identically dis-
tributed random vectors with a finite expectation E X; = u. Then

= 1< as.
Xn=—)>) Xj — p.
n n—oo

i=1

Proposition 1.5 (CLT for i.id.) Let X, X»,... be independent and identically dis-
tributed random with the expectation E X; = x and a finite variance matrix var X; =
2. Then

— d
Vn (X, - p) —2 Ni (O, Z).

10



1. Clippings from the asymptotic theory

1.3. A-METHOD

Let T, = (Ty1,..., Tux) " be an estimator of a k-dimensional parameter p = (p1, ..., 4r) "
and g = (g1,...,gn)" be a function from R¥ — R™. Denote the Jacobi matrix of the
function g at the point x as Dy (x), i.e.

981 () 981 ()
Vg (x) o s

Dg(x) = : = : . )
Vgm() Bplz) | pln)

Proposition 1.6 (A-method) Let
d
vn (T, — p) — Ni (0k, Z),

Further let g : A — R™, where A C R¥, p is an interior point of A and the first-order
partial derivatives of g are continuous in a neighbourhood of x. Then

VI ((T3) = (1)) = Ny (0, Dy (1) Z Dy ().

Theorem 1.6 is most often applied for k = m = 1 and T,, = X,,, where Xi, ..., X,, are
i.i.d. random variables. Then by the central limit theorem

Vi (X — EXi) — N(0,var (X;)).

So if the function g : R — R has a continuous derivative in a neighbourhood of y =
E X;, then

Vi(g(Xa) - () —— N(0, [' (1) var (Xy)). (11)

Sometimes instead of (1.1) we write shortly g(X,) 2 N(g(p), w’lvar(&)) The
quantity %n"ar(x") is then called the asymptotic variance of g(X,) and it is de-

noted as avar (g(X,)). Note that the asymptotic variance has to be understood as the
variance of the asymptotic distribution, but not as some kind of a limiting variance.
As the following examples show for a sequence of random variables {V, } the asymp-
totic variance avar (Y,) may exist even if var (¥;) does not exist for any n € N. Further
even if var (¥;,) exists, then it does not hold that var (V,,) /avar (¥;,) —» 1 as n — oo.

Exercise. Let X ~ N(0, 1) and {¢,} be a sequence of random variables independent
with X such that

Plen=-Vn)=4;,  Plea=0)=1-3,  Plen=Vn) =g

Define Y,, = X + ¢, and show that Y, LI N(0,1). Thus avar (Y,;) = 1. On the other
n—oo
hand var (¥;,) = 2 for each n € N.

11



1. Clippings from the asymptotic theory

Exercise. Suppose you have a random sample X, ..., X, from a Bernoulli distribu-
tion with parameter py and you are interested in estimating the logarithm of the
odd, i.e. Ox = log(%). Compare the variance and the asymptotic variance of

Ox = log(f—%n).

12



2. RANDOM SAMPLE

2.1. DEFINITION OF A RANDOM SAMPLE
Let the probability space (Q, A, P) be given.

Definition 2.1 The random sample from distribution Fy is defined as the sequence of
X1, X>,..., X, independent identically distributed random vectors defined on (Q, A, P)
such that each random vector has a cumulative distribution Fx. The constant n is
called the sample size.

The elements of random sample can be either real random variables or random
vectors (matrices and so on). We can call them “observations” or “data”. The whole
random sample will be denoted as X.

Remark. The true cumulative distribution function Fx from which our observations
X1, X>,..., X, comes are not known. We aim to use observations in order to learn
something about Fx. We assume that the cumulative distribution Fx belongs to a set
of distributions ¥, which we call the model.

Definition 2.2 The model for the random sample X, X>, ..., X, is a given set dis-
tributions # such that we assume that Fy € ¥.

Remark. The distribution Fx is unknown. Our goal is to use the observed data X in
order to determine some characteristics of Fx that we call parameters. Formally the
parameter is a constant (or a vector of constants) 6x € R¥ that could be calculated if
the distribution Fx was known. The parameter of interest thus can be written in the
form Ox = t(Fx), where ¢ is a given functional.

Examples (Types of models for real random variables).

1. The model ¥ can be for instance the set of all distributions on R with a finite
expectation (or a finite variance). The parameters of interest can be for instance
EX;, varX;, P[X < x] = Fx(x) or the quantile Fgl(a). Such a model is called
non-parametric, as we cannot describe all the distributions in ¥ with a finite
number of parameters. By © we denote the set of possible values of 8 = t(F)
when F € F.

2. The model ¥ can be the set of all distributions with densities (with respect to
o-finite measure) of the form f(x; ) with § € ® C R?, where f(-;-) is a known
function and 6 is an unknown constant (e.g. exponential distributions, normal
distributions, geometric distributions). These models are called parametric. In

13



2. Random sample

parametric models each parameter of interest 6x = ¢(Fx) can be expressed as a
function of the finite-dimensional parameter 6.

Examples (Parametric models).
o F = {N(u, ag), ueER, Ug be given}; 0=u 6=R.
o F = {N(u, %), ueR, 0% e [R+}; 0= (u, o®)T,0 =R xR".
o 7 ={Exp(1), L€ R*}; 6 =1, © =R*.
* F={Be(p), pe (0,1)}; 6 =p,©=(0,1).

Remark. We choose the model # and the parameter of interest 8. The model repre-
sents our apriori knowledge (not affected by the observed data) about the distribu-
tions of the random variables. The choice of the parameter depends on the question
that we are trying answer by the statistical analysis. The choice of the model and pa-
rameter affects the choice of the method for the data analysis (as well as the obtained
results).

2.2. STATISTICS

During statistical analysis we that from the random sample we calculate variables,
that contain (summarize) information about the parameters of interests. These vari-
ables are called statistics. Consider the random sample X = (X, X»,..., X,).

Definition 2.3 We call a statistic an arbitrary measurable function S(X) of obser-
vations calculated from the random sample X. Statistic is a random variable (or a
random vector).

A statistic cannot depend on the values that we do not know or that we do not
observe. A statistic is a function of observed data (and known constants). The most
commonly used statistics are the sample mean and the sample variance. To define
them denote X = (X3, X>,...,X,)".

Definition 2.4 _
(i) Arandom variable X, = 2 3", X; is called a sample mean of the random sample
X.
(ii) Pro n > 2 the random variable S5 = 15 37 | (X;—X,)? is called a sample variance
of the random sample X.

2.2.1. PROPERTIES OF THE SAMPLE MEAN

Consider the model ¥ = £2. L.e. we work with the random sample X whose com-
ponents X; are independent random variables with an arbitrary distribution with a
finite second moment. Denote pu = EX; a 02 = var X;.

14



2. Random sample

Lemma 2.1 ;

X, =argmin Y (X; - c)>.

ceR i=1
Proof. Introduce the function f(c) = 3, (X; — ¢)%. The statement of the lemma fol-
lows from the fact that f’(X,) = 0 and that f”’(c) > 0 for each ¢ € R. O

Theorem 2.2 (Properties of the sample mean)
(i) EX,=p,varX, = ‘772;
(ii) )_(nihuasn—mx);

(iii) V7 (X — 1) —— N(O, 02), ie. X, % N(, Z)
n—oo

Proof. (i) follows by the straightforward calculation. (ii) follow from the law of large
numbers (Proposition 1.4 pro k = 1) and (iii) from the central limit theorem (Propo-
sition 1.5 for k = 1). m|

Remark. Suppose that the random variables in our sample are normally distributed,
ie. ¥ = {N(u, 0%, p € R, 0® € R*}. Then the statements (i) a (iii) of the previous
proposition can be strengthened to

Vi (X, — ) ~N(0,0%) ie X,~N(gZ).

Proof. From the assumptions it follows that the random vector Z = (X — p,..., X, —
©)" has independent components each of them having N(0, 0?) distribution. By the
definition of the multivariate normal distribution (see for instance Chapter B.6 of

, ) it follows that Z ~ N,(0, ¢21,). Denote ¢ = (\/iﬁ e #)T
R". Now from the properties of the multivariate normal distribution it follows that

€

c'Z =Vn (X, - p) ~N(0,0%).

2.2.2. RELIATIVE (EMPIRICAL) FREQUENCY

In applications often the random variable X; takes only two values usually denoted as
0 and 1. The number one then means that in the ith trial an event B has occurred and
the number zero otherwise. Denote p = P(X; = 1). Then random variables Xi, ..., X,
represent a random sample from the Bernoulli distribution Be(p).

The sample mean X, is now empirical (or relative) frequency of the event B. Thus
Theorem 2.2 immediately implies.

Theorem 2.3 (Properties of empirical frequency)
(i) EX,=p,varX, = p-p),

n

ey — P
(i) X, ,H—m> p;

15



2. Random sample

— d
(iii) V7 (Xn —p) —— N(0,p(1 - p))
(iv) nX, ~ Bi(n, p), where Bi(n, p) stands for the binomial distribution with 7 trials
and p being the parameter of success.

Proof. (i), (ii) and (iii) follows directly from Theorem 2.2 together with EX; = p and
var X; = p(1 - p). (iv) follows from the fact that nX, = 3, X; and from the definition
of the binomial distribution. |

Statement (ii) says that provided we have enough observations then we can esti-
mate the true value of parameter p with an arbitrary precision.
2.2.3. PROPERTIES OF THE SAMPLE VARIANCE

First consider the model ¥ = £2. Denote u = EX; and o2 = var X;. Sample variance
can be rewritten in several useful ways.

Theorem 2.4 (i)

n o [1< —2
2 = -y x2_Xx°. 2.1
=l Z =X, (21)
(ii) Let 1, be a column vector of n ones. Denote A = [, — %lnll— (matrix nx n). Then
1 1
2= —XTAX=——Y'TAY, (2.2)
n-1 n-1

where Y = X - c1,, for some ¢ € R.
Proof. Part (i):

L& _ 1 & N . 2~
-1 @2 _ 2 _ 2 _ 2
nlst= i§—1(Xi_Xn) == > (Xl. —2Xl-X,,+Xn) == §1Xi -~ ;_1 XiXp+ X,

i=1 i=

I, =2 =2 lxh., =2
:EZXZ. —2Xn+Xn:ZZXl. -X,.
i=1 i=1

Part (ii):
XTAX = XT(I] L 1T)X _XTx - xTiaTx
- n n n+tn - n n+tn
n 1 n 2 n —
= > x?- ;(in) = > X?-nX,=(n-1S:.
i=1 i=1 i=1

The last part of the proposition follows from the fact that

1)A =0=A1,.

16
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2. Random sample

Remark. Both formulas (2.1) and (2.2) are useful in particular in theoretical deriva-
tions. Formula (2.2) shows that S2 can be expressed in a quadratic form and shows
that S2 is location invariant.

Note that the matrix A is idempotentni, i.e. AA = A. This will be used later on
when deriving the distribution of S2 (see Theorem 2.8 below).

We have a useful formula for calculating the expectations of the quadratic forms.

Lemma 2.5 Let Z be a random vector of length n with the mean value p and a finite
variance matrix X. Let B be an arbitrary matrix n x n. Then it holds that

EZTBZ = " Bu + tr ([EBZ).
Proof.
EZ'BZ =Etr(Z7BZ) =Etr (BZZ") =tr (BEZZT) = tr (B(up” +3))
—tr (B;J,MT) +tr (Bz) = 1 By +tr (Bz),
where we make use of the fact that
T=E(Z-p)(Z-pn) =EZZ" - pu'.
o

Exercise. Use Lemma 2.5 for the special case when the matrix B is an identity matrix.

Theorem 2.6 (Properties sample variance)
(i) 83— o?.
(ii) ES2 = o2.
(iii) If # = £* (i.e. if the fourth moment of X; is finite), then
Vi (82 = 0%) =5 N(0, 0 (4 - 1),

is the kurtosis of X;.

PR
where y; = E(X(’T—Ll“)

Proof. Part (i): With the help of Theorem 2.4(i) one can write

n o [1< —2
sﬁ:n_l(EZXf—Xn .

i=1

As -5 —— 1, it is sufficient to show that
n—oo

n—oo

1 —2 P
—ZXI-Z—X,Z —s 72
ni3

17



2. Random sample

By the law of large numbers (Proposition 1.4) it holds that

.)T n_Pm (EXl,EXZ)T.

Bl
| —

M=
<%

i=1

Now the function g(y1, ») = y» — y? is continuous on R?, i.e. it is continuous in (the
unknown point) (EX,-, EXiz), which is the support of the limit distribution. Now we
can use the Continuous Mapping Theorem (Proposition 1.2(ii)) a dostavame

n
%sz X, —— EX?- (EX;)? = varX; = 0%,

n—oo

which was to be proved.

Part (ii): Put Y = X — u1, and note that EY = 0. Then according to Theorem 2.4(ii)
and Lemma 2.5 one can calculate

(n-1DES2=EYTAY =EYTAEY +tr (Ac®l,) =0+ (n-1)a?,

as
tr (Ao?l,) = az(tr (Ip) — 1tr (lnll—)) =o%(n-1).

Part (iii): First we rewrite the sample variance as
1 < 1 <
2 _ - X V2= )2 - (X — )2
S = — i:EI(X, Xn) = p— i:EI(Xl W= (X —p)°.

And thus

n
Vn (S, - o) n\/ﬁ1 DX = w)? = 0%] + 2 0 — 22 Vi (X — 1)? 2 Ay + By + Ca,
i=1
where A,, B, and C,, denotes the corresponding terms on the right-hand side of the
above equation. Obviously
Bn — vn 2

-0 —> 0.
n—oo

Further
- — — P
Cn:%‘/ﬁ(xn_ﬂ)zz%\/ﬁ(xn_ﬂ)(xn_ﬂ)‘n—_;:o;
where we make use of the fact that
— d — P
%n—)—m:ly N/E(Xn—ﬂ)n_)—m”\l(o»az), Xn_H,H—oo>0

and Cramér-Slutsky theorem (Proposition 1.3).

18



2. Random sample

Thus it is sufficient to deal with the term A,,. Fori € {1,...,n} denote Y; = (X; — u)>.
Then with the help of the central limit theorem for the random variables Y; (Propo-
sition 1.5) a Cramér-Slutsky theorem (Proposition 1.3)

Vn

n-1

1

S : 2 21 I 1 < N2 2
2 (X =) —0]—n_1—rn;[(Xz w?* - o]
n

1 n
— ﬁ; |¥; - EYi] 7_%: N(0, var (;)).

Ay =

n

Now it remains to calculate

var (Y;) = var ((X; - 1)?) =E(X; - w)* - (63)* = o* [E(Z)t —1] = o [1a - 1].

Remark.
e Theorem 2.6(iii) says, that the asymptotic variance of the sample variance de-
pends on the kurtosis.

Remark. Alternatively one can prove Theorem 2.6(ii) (i.e. unbiasedness of the sam-
ple variance) by the following straightforward calculation

1 (< 2 1 = = \2
ES%:m(;EXiZ—nEXn)z n_l(nEXlz—nvar(Xn)—n(EXn) )

1
(n(02+,u2)—n%2—np2) = (naz—oz) = o?,

n-1 n-1

where we make us of the fact E X? = var (X1)+(EX1)2 and analogously also of E ()_(n)2 =
var (X,) + (EX,)°.

Exercise. Prove that, when X; are zero-one variables then S2 = -~ X, (1 - X ;). Hint:
Use the fact that X* = X;.

Now we add the assumption of the normal distribution, e.g. we are going to work
in the smaller model ¥ = {N(y, 0?), u € R, 6% € R*}. Thus we have a random sam-
ple X = (X1, X,...,X,)7, with X; being independent with the distribution N(u, o?).
Thanks to the independence it holds that X ~ N,,(ul,, 0°l,).

First we give two results that hold for random vectors with (arbitrary) normal dis-
tributions.

Lemma 2.7 Let X ~ N, (i, Z) a A be a positive semidefinite matrix of the dimension
nXxn.

(i) Let B be a matrix of dimension m x n such that BZA = 0,,x,,. Then the random
variable X TAX and the random vector BX are independent.
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2. Random sample

(ii) Let B be a positive semidefinite matrix of dimension n x n which satisfies BZA =
0,xn- Then the random variables X TAX and X TBX are independent.

Proof. Part (i). As the matrix A is positive semidefinite there exists an orthonormal
matrix U such that

A=UDUT

where D = diag (11,...,1,) is a diagonal with eigenvalues of the matrix A on the di-
agonal. Note that these eigenvalues are non-negative.
Further from the assumptions of lemma we have

Opxn = BEA =BZUDU.

Denote by D~!/2 the diagonal matrix with the ith diagonal element i given by \/L/T if A;

is positive and zero otherwise. Multiplying the above equation with the matrix UD~1/2

from the right we get
Omxn = BZUD'/2,

Thus random vectors BX and D'/2UT X are not correlated as
cov (BX,D2UTX) = BZUDY? = 0.

Now from the definition multivariate normal distribution it follows that random vec-
tors has the joint normal distribution as we can write

BX \_( B\
Dl/Z[UTX - Dl/z[UT .

Now the joint normality and the fact the random vectors are not correlated imply the
independence of the random vectors BX and D'/2UT X (P6.2(ii)). Thus also BX and
XTup'2p12uTX = XTAX are independent.

Part (ii). Analogously as above using the spectral decompositions one gets

A=UsDaU! and B=UzDpU},

where Uy, Up are orthonormal matrices and Dy4, Dp are diagonal matrices with non-
negative elements on diagonals.
Further from the assumption of the lemma

Onxn = BEA = UpDpUJ = UaDaU;

Let [D)I;l/2 and D;l/z are as the matrix D~1/2

tion with the matrix Uy ID/;U 2 from the rate and with the matrix Dy
we get

above. Then multiplying the above equa-
Y2yT from the left

nxn = DY 2UR 2UADY2.
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2. Random sample

Thus similarly as in part (i) we get that the random vectors D,/*U} X a D}/*UT X are
independent. Thus also

XTUsDy?*D}PUL X = X TBX

and
XU DUl x = XTAX.

are independent.

O
Theorem 2.8 (Properties sample variance za normality) LetX; ~ N(u, 0%),i=1,...,n
be independent. Then it holds
() 2
(n-1)S8 .
Tn ~ Xfl—l' (23)

(i) X, and S? are independent random variables.

Proof. Part (i). Using Theorem 2.4 one can rewrite

(n - :ZL)S}% — YTAY,
o

where T
Xi- Xn—
Y = (25, 2R ~ Ny (0,1,)
andA=1,- %1,111. As matrix A is idempotent with the rank n -1, then the statement
of the proposition follows from lemma A.1 (where X = [,,).

Part (ii) Note that one can write

— 1 1
X, = —BX, §2=—_XTAX,
n n-1
where B = 1] a A = [, — 11,1]. Further X ~ N,(ul,, ¢°l,) and thus proposition
follows from lemma 2.7(i) as
BZA =1 0°l,(l, - 11,17) = 6*(1) - 1 n1]) = 0;.
o

Remark. From the definition of y?-distribution we know that random variable with
xi_ ,-distribution can be represented as Z;’:_ll Yl-z, where V,...,Y,_; are independent
and identically distributed random variables with N(0, 1) distribution. From the cen-

tral limit theorem and (2.3) it follows that

-1)S2
B8 (n-1) 4

n_l n—oo

N(0, 2)

* Viz Definition A.1.
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2. Random sample

and thus
VLV (82 - %) % N(0,20%).

Taking into consideration that the skewness of normal distribution is 3, we see that
statement (i) of Theorem 2.8 is in agreement with the asymptotic result of Theo-
rem 2.6(iii). Theorem 2.8(i) now gives the exact distribution of S? for random sample
from the normal distribution, while Theorem 2.6(iii) gives the asymptotic distribu-
tion S2 for random sample from an aribtrary distribution that has the finite fourth
moment.

Remark. One can remember the statement (i) of Theorem 2.8(i) as follows. Note that

(n=DS§ _ 5 (Xi=X,)*
T g2 Z o |
i=1
If one uses the true expectation y instead of X, in the above formula, then 3., (%)2 ~

x>. By replacing the unknown expectation u with its estimator X,, we loose one de-
grees of freedom (as we estimate one parameter).

Remark. Theorem: 2.8(ii) says, that when the random sample comes from the normal
distribution, then X,, and S2 are independent for each finite n > 1.

Theorem 2.9 (limit distribution of T,)) Let X, ..., X, be a random sample from an ar-

bitrary distribution with the expectation p and with the finite and non-zero variance
2

o“. Then

T, = N(0, 1).

Proof. The random variable T;, can be now rewritten in the form

Vii(Xn—p) o

n= .
o Sn

By the central limit theorem (Proposition 1.5, for k = 1) one has that

‘/ﬁ()_(n_ﬂ) d

o n—oo

N(0, 1).

Further as S2 LA (Theorem 2.6(i)) and by the continuous mapping theorem
n—oo
(Proposition 1.2(ii)) for g(y) = o/+/y one gets

g P
— — 1.
S, n—ow

The statement now follows from Cramér-Slutsky theorem (Proposition 1.3). i

Now we again add the assumption of normal distribution.
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2. Random sample

Theorem 2.10 Let Xj,..., X, be arandom sample from the distribution N(u, 0?). Then

_‘/E(Xn_li) .
n=———F—"—"~1In-1.

Sn
Proof. The random variable T;, can now be rewritten as

‘/ﬁ(ynfﬂ)
= g .
-1)s2
VRS (0 - 1)

From the remark below Theorem 2.2 we know that v/n X”f;“ ~ N(0, 1). Further (”_0—12)5'21 ~
x%_, (Theorem 2.8(i)), and at the same time the numerator and the denominator in
fraction (2.4) are independent (Theorem 2.8(ii)). The statement now follows from the
definition of the -distributions (see Definition A.2). m|

Ty

(2.4)

Remark. Theorem 2.10 gives the exact distribution of 7,, for normally distributed data
while Theorem 2.9 gives the asymptotic distribution of 7;, for random sample from an
arbitrary distribution with the finite and non-zero variance. Note that for n — oo the
distribution t,_; converges in distribution to N(0, 1).

Now we will consider two random samples from the normal distributions.

Definition 2.5 (F-distribution) Let X ~ y2 and Y ~ y2, be independent. Then the
distributions of the random variables
X
z=Xn
Y/m

is called [Fisher-Snedecor] F-distribution with n and m degrees of freedom. This dis-
tribution is denoted as F,, ;,.

Theorem 2.11 (Theorem about F statistic) Let Xj,..., X, be a random sample from
the normal distribution N(uy, 0)2() and Y3, ...,Y,, be a random sample from the nor-
mal distribution N(uy, 63). Let the random vectors (X, ..., X,)" and (¥,...,Y,)" be

independent. Denote the sample means as X, Y, and the sample variances as

1

2
SX:n—l

n m
_ 1 _
L 2 2 _ - - 2
;:1 (Xi=Xn)® a Sp=—7 jEzl(YJ Y m)?.

Then it holds that
8)2( / 0)2(

812,/05

n-1,m-1-

* Viz Definition A.2.
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2. Random sample

Proof. The statistics can be rewritten as

(n—l)S)z{ _
8)2( / 0)2( _ 0)2( / (n 1)
S2 /g2 (m-1)S2 :
v/ oy p L/(m-1)
— 2 _ 2
Further % ~ x%_, and (mg?sy ~ ¥%,_, (Theorem 2.8(ii)). Moreover these ran-
dom variables are independent. The statement of the theorem now follows from the

definition of F-distribution (Definition 2.5). m|

2.3. ORDERED RANDOM SAMPLE

Suppose that the random sample Xj,..., X, is from the one-dimensional distribu-
tion with the cumulative distribution function F and density f with respect to the
Lebesgue measure. Let n > 2. Using the fact that Xj,..., X,, are independent and
have continuous distributions implies

P(X; = X; forsome i,j € {1,...,n}) = 0.
Definition 2.6 (The ordered random sample and ranks)

(i) By ordering the random variables Xj, ..., X,, from the smallest to the largest we
get ordered random sample

X(l) < X(g) <. < X(n—l) < X(n).

With the symbol X(x) we understand the kth smallest value among the observa-
tions Xj, ..., X, and we call it the kth order statistic.

(ii) By the rank of the random variables X; in the random sample Xj, ..., X,, we un-
derstand the number R; € {1,..., n} such that X; = X(z).

The whole ordered random sample will be denoted as X ., i.e.
T
Xy =Xy - Xmy) -

Analogously denote
R=(Ry,...,R)".

Remark.
1. The original sample values X, ..., X, can be reconstructed from X ., and R.
2. The first order statistic is the minimum of the variables in the random sample.
Analogously the nth order statistic is the maximum.
3. It holds that R; = 2;1:1 HX; > Xj} =1+ Z?:l HX; > Xj}.
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2. Random sample

4. Order statistics and ranks are random variables and at the same time statistics
in the sense of Definition 2.3.

By #,, denote set of all permutations of the sequence of numbers (1, ..., n). The
number of the elements of this set is n!.

Theorem 2.12 The joint density of the random vector X, = (X),..., X(n))" with
respect to the Lebesgue measure is

n f)f(y2) - f(yn), foryr <--- <y,
0, otherwise.

p(yl,---,yn)={

Remark. Random variables X(;), ..., X(,) are not independent. Analogously also ran-
dom variables Ry, ..., R, (i.e. the ranks of Xj, ..., X,,) are not independent.

Theorem 2.13 The cumulative distribution function of the kth order statistic is given
by

Fii)(x) = P(Xx) < x) @ Z (;.Z)Fj(x)(l - F(x))n_j
=k
F(x)
511 - 1) *dr,

1
- B(k,n—k+1)/0
where B(-,-) denotes Beta function (see Appendix A.4).

Proof. We will show only the inequality (i). Denote Z; = 1{X; < x}. Then Y, = 31", Z;
is the number of the random variables that are less or equal to x. Moreover Y, ~
Bi(n, F(x)). Thus

n ' n n ' _
P(Xy <) =P(Ya 2 K) = Y P(Y=/) = 3 (j)Ff(x)(l _ F()" .

Jj=k j=k

Consequences.

1. Let X; follows a uniform distribution on the interval (0, 1), then the random
variable Xy, follows the distributions with the density f (x) = g *° 7' (1-
x)"*1{x € (0,1)}, i.e. Beta distribution B(k, n—k+1). From that it follows among
others that

Ex. -k _ k(n—k+1)
o= )= G e

2. Let X; is a continuous random variable with the increasing cumulative distribu-
tion function F. Then F(X()) ~ B(k,n—k +1).
On the other hand let Z ~ B(k,n — k + 1). Then

P[X) < x] = P[F(X)) < F(x)] =P[Z < F(x)] = P[F1(Z) < x],

i.e. X(x) has the same distribution as F~1(Z).
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2. Random sample

Theorem 2.14 The density of kth order statistic with respect to Lebesgue measure is

fue (x) = ”(Z - i)f(x)Fk_l(x)[l — F(x)]"%.

Proof. With the help of Theorem 2.13

1

k-1 n—k
mf(xﬂ: (x)(1 = F(x))

fiey (%) = F) (x) =

and the statement of the theorem follows from the fact that

1 (A1) I'(n+1) 3 n! B n(n-1)! _ [(n-1
B(k,n—k+1) T()I(n-k+1) (k-Di(n-k)! (k-D'(n-k) n(k - 1)'

O

Theorem 2.15 The random vector R = (Ry,...,R,)" takes values in the set £, and
each element of this set has the the same probability 1/n!.

Theorem 2.16 It holds that
(i) P(Ri=k) =L foreachi k €{1,...,n}.
(ii) P(Ri = k,Rj = m) = 5oy foreach i # j,k # m e {1,..., n}.
(iii) ER; = 2, varR; = % foreachie {1,...,n}.
(iv) cov (R;, Rj) = -2 foreach i # j € {1,..., n}.
Proof. Part (i). Without loss of generality one can assume that i = n. Further let the

set 7’,’1“_1 contains the elements of #,, which have the number k as the last compo-
nent. Now

P(R,=k)= ) P(R:r):(n—l)!%:%,

'r'€73571
where we make use of Theorem 2.15 and that the set P,’f_l has (n — 1)! elements.

Part (ii). Without loss of generality we can assume that i = n— 1 and j = n. Further
let P,’f'_’g contain the elements #,, that have the number m as the last element and
the number k as the second to the last element. Then

1

1
P(Ro1=k,Ry=m)= > PR=r)=(n-2) =0

7'67):‘_";
where we make use of Theorem 2.15 and that the set 73:'_"2’ have (n — 2)! elements.

Part (iii). Wit the help of statement (i):

n n 1
ER =Y kP(Ri=k)=) k—=
k=1 k=1 n

1 n(n+l) n+l
n 2 2
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Analogously
n 2 2
varR; = ER? - (ER,~)2= kzl— (n+1) _ n(n+H(2n+1) (n+1)
; n 2 6n 4
1 1 -1
:”;’2 (An+2-3n-3)= %
Part (iv).
LY 1 n+1\*
COV(Ri,R')=ERiR'—ERiER'= km —( )
! ! ! k=1 m=1,m+k n(n - 1) 2
B & k n+1)\?
I DORDLREY
3 z n(n+1)(2n+1) n+1)\?
_n(n—l)[( )_ 6 _( 2 )
_n(n+1)? (n+1)(2n+1) (n+1)?
~4n-1  6(n-1) 4
_ (n+1 ~ B _
=0 )[Sn(n+1) 22n+1)-3(n+1)(n 1)}
_ (n+1 __(n+1)
BT A T

O

Remark. When the random sample does not come from the continuous distribu-
tion or they contain ties because of rounding then it still makes sense to define the
ordered random sample as

X(l) < X(z) <---< X(n—l) < X(n),

where the kth order statistic X, is still well defined and the statement of Theo-
rem 2.13 still holds.
But ranks cannot be uniquely defined. In practice we usually use average ranks,
which can be calculated as
n

Ri —1+Z1]{X >X}+— > X =X}

j=1 j=Llj#i

For ranks defined in this was it holds that ER; = 2 (see Theorem 2.16(iii)). But all
the other above statements are not true.

Alternatively one can assign the ranks to the tied observations randomly. For such
randomized ranks Theorem 2.15 holds true and thus also Theorem 2.16. The disad-
vantage of this approach is that this approach introduce additional variability into
our inference.
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2. Random sample

2.4. TRANSFORMATION IN STATISTICS

2.4.1. TRANSFORMATION OF THE OBSERVATIONS AND ITS IMPACT ON THE
PARAMETERS OF INTEREST

Let Xi,..., X, be arandom sample from the distribution with the cumulative distribu-
tion function Fx. The corresponding density denote as fx and the support as Sx. Con-
sider the strictly monotone * differentiable function g : Sy — R and define Y; = g(X;).
ThenV,...,Y, be arandom sample from the distribution with the density fy that can
be calculated with the help of the theorem about the density of transformed random
variables.

Transformation of the observations is used in statistics quite often. The usual rea-
son is that the original random sample Xj, ..., X, (obviously) does not meet assump-
tions of the methods that we intend to use (for instance normality, symmetry of the
density, ...). Thus we choose an appropriate function g such that ¥; = g(X;) seems to
satisfy assumption of the intended methods and then we work with the random sam-
ple 11, ...,Y, instead of the original random sample Xj, ..., X;,. The most widely used
transformations of the positive random variables are g(x) = logx and g(x) = Vx.

Example. Let X; have logarithmic-normal distribution LN(u, 0?). Then log(X;) fol-
lows normal distribution N(u, 0?)

When using transformation one has to keep in mind that some parameters of the
distribution Fx of the original random sample will be affected with the transfor-
mation in such a way that we will be not able to identify them.

For instance the expected values ux = E X; changes to uy = E g(X;). Thus if we do
not know the distribution X;, then it is in general impossible (unless g is linear) to
calculate the value ux from uy. Let g be a continuous and strictly concave function,
then with the help of Jensen inequality it holds that uy < g(ux). Thus g7 (uy) < ux.

Thus the sample Y, from the transformed converges in probability (see Theorem 2.2(ii))
to py. Thus g~1(Y,,) converges in probability to g~ (uy) # px. In general it is impos-
sible to find a function & such that #(Y ) converges to ux. When we are interested in
ux then we have to work with the original data. Analogously when we are interested
for instance in variance.

Example. Let X; ~ LN(u, 02). Then for g(x) = log x itholds that ¥; = g(X;) ~ N(u, 2).
Thus
g ' (Yn) n_)%> efYi = et < e 2 ZE X,
Some parameters do not have these difficulties. For instance median (or any other
quantile) can be easily calculated with the help of g~!. Let mx be median of X; and
my be median of ;. Further let g be an increasing function. Then it holds that my =

g(my) and my can be identified as uy = g~ (my).

* We are usually avoiding non-monotone transformations as they imply that some of the information
is lost.
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2. Random sample

Ranks are invariant with respect to increasing transformations. This implies that
also values of the statistics calculated only from the ranks are the same for the original
as well as transformed random sample.

2.4.2. ASYMPTOTIC VARIANCE-STABILIZATION TRANSFORMATIONS

Another motivation for transforming some statistics is to stabilize (asymptotic) vari-
ance. Let the sequence of random variables {T;,} satisfy

VI (T = 1) == N(0, 0 (p)).

The variance o?(u) of the asymptotic normal distribution is called also the asymp-
totic variance of Vn(T,, — y).

As we see later for inference (testing and confidence intervals) about parameter u
it is good that the asymptotic variance of the used random variable does not depend
on parameter f.

Let g be a real function that is defined and differentiable in the neighbourhood
of u. Then with the help of A-method (Proposition 1.6) we get that

Vi (8(T) - g(W) —— N(0, [¢'(w]* ().

Thus with the help of the choice

g(x)=c / ﬁ dx, (2.5)

one gets g’ (u) = #H), which implies that

d
Vn (8(Ty) = 8(1)) —— N(0,c?)
and the influence of p on the asymptotic variance will be eliminated.

Example. Let Xj, ..., X, be a random sample from Poisson distribution Po(1). Then
the statistic T,, = X,, with the help of the central limit theorem (Proposition 1.5) satis-
fies

Vi (X - A) ﬂ—; N(0, 1).

Thus o(x) = Vx and one gets g(x) = [ =~ dx = [ x"1/?dx = 2y/x. Thus

o(x)
vﬁ(z X, - 2\/1) ’HLOJ N(O, 1).

Remark. An analogous idea is sometimes used for individual random variables X;.
Let EX; = A and varX; = 0%(1). Then we hope that using the transformation Y; =
g(X;), where g is calculated with the help of (2.5), we get the observation Y; that has a
distribution that is closer to the normal distribution. For instance when one assumes
that X; ~ Po(1) than often in analysis one works with ¥; = VX;.
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2. Random sample

Exercise. Let {Y,} be a sequence of random variables such that Y, ~ Po(nl). Show
that V¥, - VA —— N(0,1).
n—oo

Hint: Note thatY, can be represented as ).}, X;, where X, ..., X, is a random sample
from Po(Q).

2.4.3. STANDARDIZATION

A special type of transformation is standardization. Suppose we have a random sam-
ple Xi, ..., X, and we calculate X, and S2. Then define the random variables 71, ..., Z,
as

Zi = Xl_—)_(”
Sn
These variables has the sample mean 0 and the sample variance 1. But Z,..., Z, do

not form a random sample as there are not independent. Nevertheless using the facts

that X, LN EX; and S, LN Yvar X; as n — oo, then for large sample sizes 71, ..., Z,
behave almost independent variables with zero expectation and unit variance. Often
it can be proved that the dependence induced by the fact that the unknown E X; and
yvar X; are replaced with its sample analogs (i.e. X, and S,,) can be safely ignored.

Standardization is used when we want to get rid off the first two moments as we
are interested in other aspects of the distribution Fx (see for instance the sample
correlation coefficient in the last chapter).
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2. Random sample

Sample examples for the preparation for the exam.

1. Let Xj a X> be independent random variables with the uniform distribution on
X2

2
the interval (0, 1). Calculate E );—1 and E 2.
2 @)

2. LetXj,..., Xy be independent and identically distributed random variables with
the density f with respect to Lebesgue measure. Find the probability P(R;+R; =
5).

3. LetXj,..., X, beindependent and identically distributed random variables with

the density f with respect to Lebesgue measure. Calculate E }% and then also

lim,_,. E % .
The end of
self-study for
week 3

(13.10.-17.10.).
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3. PARAMETER ESTIMATION

We are given a random sample X = (X, X»,..., X,), amodel ¥ and a parameter 0 =
t(F) € RP for F € ¥, which we need to estimate. Let Fy € ¥ be the true distribution
of the random vector X; and let 8x = t(Fx) be the true value of 6.

3.1. POINT ESTIMATION

Definition 3.1 An fstimator of Ox = t(Fx) € RP is a p-dimensional random vector §n
which is given as 6, = T,,(X) = T,(X},..., X,), where T, is some Borel measurable
function of data.

Remark. An estimator is a statistic in the sense of Definition 2.3. It cannot depend
on unknown parameters.

Definition 3.2 (Unbiasedness and consistency) Let us suppose that we are given a
rAandom sample X = (X1, X»,..., X,) from distribution Fx € ¥ and an estimator
0, = T,(X) of a parameter Ox = t(Fx).

(i) 9, is said to be an unbiased estimator of the parameter 8x in the model ¥ if
and only if E@,, = 0x for every n (for which the estimator is well-defined) and
for every distribution Fx € F.

(ii) 0, is said to be a consistent estimator of the parameter 6y in the model ¥ if and
L N
only if ,, — 0x as n — oo for every distribution Fx € .

Remark.

* Properties of a given estimator must be studied in context of the given model.
It can easily happen that an estimator 6, is unbiased and consistent in some
model 7, while in a different model ¥ it does not retain these properties.

e Unbiasedness is supposed to hold for each number of observations n for which
the estimator is defined (e.g. in case of the sample variance for n > 2). Un-
biasedness, however, does not guarantee that the estimator will approach the
true value of the parameter being estimated as the sample size n increases. For
some models there are no reasonable (or even none at all) unbiased estimators.

¢ Consistency is an asymptotic property, which does not say anything about be-
haviour of an estimator for finite n. (e.g. 6, = 21 for n < 10, 8, = X, for
n > 1010 is a consistent estimator of x = E X;.)
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3. Parameter Estimation

* The aforementioned notion of consistency is sometimes called weak consis-
tency. In addition, an estimator is said to be strongly consistent if and only if

e In statistics, estimators which are consistent, albeit not unbiased, are commonly
used. On the other hand, estimators which are not consistent are typically un-
used because they either estimate “something different” or they do not get more
accurate as the sample size increases.

Examples.

1. Estimation of parameter 0x = EX; in model ¥ = L:

» The sample mean X, is an unbiased and consistent estimator of 8x [fol-
lows from Theorem 2.2, (i) a (ii)].

* The estimator 8, = Xj is an unbiased estimator of 0, but it is not consis-
tent.

2. Estimation of parameter 0x = var X; in model ¥ = L?:

 The sample variance S? is an unbiased and consistent estimator of 6y [fol-
lows from Theorem 2.6, (i) a (ii)].

* The estimator 52 = % ", (Xi — X») is a consistent estimator of 0y, but it
is not unbiased.

3. Estimation of parameter 0x = P[X; = 0] in model ¥ = {Po(1), A > 0}:

* The estimator 6, = 1 ¥, 1(9;(X;) is an unbiased and also consistent esti-

mator of 0y (unbiasedness and consistency of §n are preserved even in the
model of all discrete distributions).

* The estimator 6, = (”T‘I)Z;':1 % is also an unbiased and consistent estimator
of Ox (in model F but not in the model of all discrete distributions).

4. Estimation of parameter 6x = e~**x in model ¥ = {Po(1),A > 0} forn = 1:

The only unbiased estimator is 8 = (-1)%1 and the only 2 values which this esti-
mator attains are —1 and 1. However, e~?*x only attains values from the interval
(0,1).

Definition 3.3 (Bias) Let us suppose that the estimator 6, = T,(X) ofa parameter O
IAlas finite expectation. Then the difference E (0,, — 0x) is called bias of the estimator
0,.

Definition 3.4 Let us suppose that the estimator 6, = T,,(X) of a parameter 6y € R
has finite variance.

(i) Expression
MSE(6,) = E (6, - 6x)°

is called mean squared error of the estimator 6,,.
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(ii) Expression

SE(8,) = +Jvar (6,)

is called standard error of the estimator §n.

Remark.

» Beware of subtle differences in terminology. The term standard deviation (SD)
usually refers to the square root of the variance of one random observation i.e.
YarX;. The term standard error (SE) usually refers to the square root of the
variance of some estimator calculated from the whole random sample. Some
authors, however, use the term standard error when they want to refer to

SE(B,) = \|var (6,),

where var (6,,) is an estimator of var (6,,)

Both the mean squared error and the standard error are measures of estimation
accuracy. Furthermore, while the standard error disregards the bias, the mean
squared error does not.

It holds that the mean squared error can be decomposed as a sum of variance
and bias squared:

MSE(8,) = var (8,) + [E (6, — 0x)]>.
Proof of the aforementioned assertion is a direct calculation:
MSE(6,) = E (8, — E 6, +E 8, — 6x)°
—E (8, —EB,)°+2E (8, —EB,)E (8, — 6x) + [E (8, — 0x)]?
= var (6,) + 0+ [E (0, — 0x)]%.

The mean squared error is one of the most appropriate criteria for comparison
of estimators. If we have several different estimators of the same parameter in
the same model, we try to find the one with the smallest MSE. Thus, in the case
of unbiased estimators, we select the one with the smallest variance.
MSE often cannot be calculated analytically. In many cases, however, one can
decide on the basis of asymptotic variances of estimators. Assume that we have
2 estimators §n and 0,,, which satisfy

VI (B, - 0x) —— N(0,0%), v (0, — Ox) —— N(0, 02).

n—oo n—oo

Then (for large sample sizes) estimator 6, is preferred if o? < o3. Conversely, if

2

oy > af, then estimator 6, is preferred.

Example. Estimation of parameter 0% = varX; in model ¥ = {N(y, 0%),p € R, 0% >
0}. Show that MSE(S2) > MSE(0?).
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Tlleorem 3.1 Let §n be an estimator of a parameter 0x € R for which it holds thilt
E 6, —— 6x (bias converges to zero) and var (6,) —— 0, for each Fx € #. Then 0,
n—oo n—oo

is a consistent estimator of 0x.

Proof. Let € > 0. Then from Markov’s inequality (theorem P2.6) it follows that:

MSE(8,) _ var (8,)  (Ef: — bx)’

P(|§n - Gx| > E) < 82 82 62

Now, both terms on the right-hand side converge to zero because thanks to the as-
sumptions of the theorem var (6,) — 0 and E6, — 0x as n — . O

Remark.
e The opposite implication is not true. There exist consistent estimators which
satisfy that E |6,| = o for every finite n.
e Theorem 3.1 is useful in situations when the bias and the variance of the esti-
mator 6, are available (or can be easily calculated). If, however, it is possible to
express 0, as 0, = g(1 37, X;) (ie. as a transformation of the sample mean),
then it is easier to study consistency of 8, using the law of large numbers (The-
orem 1.4) in combination with the continuous mapping theorem (Theorem 1.2).

Example. Let Xj,..., X, be a random sample from the alternative distribution Be(p).

Consider 8, = % as an estimator of 6y = r%' Show that although it holds that E 6, =

n

o0, it also holds that 5,1 ; Ox.

n—oo

3.2. CHOICE OF THE PARAMETER OF INTEREST

The parameter 0 = ¢(F) which we are trying to estimate can be in principle anything.
Not all parameters, however, make sense in context of the practical problem we are
solving. Therefore, we must distinguish for which parameters it is reasonable to esti-
mate them and for which it is not. This depends on the meaning of the values of the
measured quantities, on the procedure by which they were obtained, processed, etc.
The statistical methods that will be introduced, will be divided according to the type
of measurements for which they are intended. We will consider the following data
types or measurement scales.

3.2.1. QUANTITATIVE DATA

A random variable X will be called quantitative if its values have some specific nu-
merical meaning (e.g. number, percentage, length, volume, weight, interest rate, con-
centration, temperature, duration, angle, latitude, calendar year). For quantitative
data there exists a meaningful ordering of their values (temperature 10 °C is higher
than —11.4 °C). Furthermore, differences of these values are interpretable. Quantita-
tive random variables can be both discrete and continuous.
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Quantitative variables can be further subdivided into two subgroups: interval and
ratio. Ratio variables are typically non-negative with a clearly defined zero value
and interpretable ratios. For example, the weight 0 kg has a clear interpretation and
an object whose weight is 20 kg is 4 times heavier than 5kg. Examples of ratio vari-
ables are number, length, volume, weight, interest rate, concentration, time duration,
temperature measured in kelvins. Interval variables are quantitative variables which
do not follow properties of ratio variables, i.e. they do not have a fixed zero value or
ratios of their values are not interpretable. For instance, direction given by azimuth
is an interval quantity because azimuth 360° is not six times greater than 60°. Simi-
larly, temperature measured in °C is an interval quantity because the temperature of
16 °C is not four times higher than the temperature of 4 °C. Calendar year is also an
interval quantity, because it does not make sense to calculate the ratio of this year
and the year of your birth.

3.2.2. CATEGORICAL DATA

A random variable X is called categorical if its values encode affiliation (or classifica-
tion) of an object with a certain category, or with one of several disjoint sets. Cate-
gorical variables are always discrete and have a finite number K of possible values,
usually 1,...,K or0,..., K —1. Values of categorical variables do not have a direct nu-
merical interpretation. Their sole purpose is to distinguish possible states. Individual
states are called levels or categories.

We further subdivide categorical variables into nominal and ordinal. For nominal
variables there is no ordering of their categories - it cannot be said that some cate-
gory j precedes the category j + 1. An example of a nominal variable is, for instance,
residence categorised in terms of regions (1 = Prague, 2 = Central Bohemian, ..., 14
= Moravian-Silesian) or social status (1 = underage; 2 = student; 3 = employee; 4 =
self-employed ; 5 = unemployed ; 6 = pensioner). Categories of ordinal variables are
in some sense ordered. Thus, it is possible to claim that category j precedes category
j+1 or that it is smaller, worse, etc. An example of an ordinal variable may be an an-
swer to a question with options 1 = strongly disagree, 2 = rather disagree, 3 = do not
know, 4 = rather agree, 5 = totally agree. A different example is a variable encoding
the highest attained level of education as 1 = primary education; 2 = lower secondary
education; 3 = upper secondary education; 4 = post-secondary non-tertiary educa-
tion; 5 = short-cycle tertiary education; 6 = bachelor’s or equivalent; 7 = master’s or
equivalent; 8 = doctorate or equivalent.

3.2.3. BINARY DATA

Binary variables are a special case of categorical variables when K = 2. Hence, they
classify observations into one of two possible states. Their values are typically chosen
as 0 vs. 1 or, alternatively, 1 vs. 2. An example of a binary variable is the truth value
of some statement (0 = false, 1 = true), realisation of a random phenomenon (0 = did
not occur/failure, 1 = occurred/success) or sex (1 = male, 2 = female).
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3.2.4. CHOICE OF THE PARAMETER ACCORDING TO THE TYPE OF DATA

In general, for nominal quantities it does not make sense to consider parameters such
as E X, var X, cumulative distribution function, quantiles, covariance and correlation,
in short, no characteristics that depend on encoding and ordering of individual cat-
egories. Although these parameters are properly defined, they have no practical in-
terpretation. The only parameters which in case of nominal variables do have an
interpretation are probabilities of individual categories, i.e. p; = P[X = j] for all ad-
missible values of j.

One exception are binary variables. If value 0 encodes failure and value 1 encodes
success, then EX = P[X = 1], i.e. expectation and probability of success are equal.
For ordinal variables, thanks to natural ordering of their categories, it makes sense to
consider their cumulative distribution functions. It is often possible to attach to them
the interval interpretation (doctoral education is two levels higher than bachelor),
however, it is not usually feasible to afford them ratio interpretation (we cannot say
that bachelor’s education is 2 times higher than upper secondary education). Ordinal
variables are sometimes assigned non-integer values, so-called scores. For example
we can create an ordinal variable in a way that we take some quantitative variable Z
and categorise it according to some chosen partition, e.g. X = 1if Z € (0,5), X =2
if Z € (5,20), X =3if Z € (20, 100) and X = 4 if Z > 100. Such quantities usually
arise in questionnaires, when respondents are supposed to choose one of four op-
tions instead of writing down the exact number. The resulting variable X is obviously
ordinal. Perhaps, instead of the values 1,...,4 we could choose, as the values of X,
midpoints of the intervals which were used to define X, i.e. 2.5; 12.5 a 60 for the first
three intervals. There is clearly a problem with the last one since it does not have
the right endpoint - thus, we would somehow need to add the last score (for exam-
ple take 150). Variables encoded in this way are not only ordinal, but they also retain
some properties of quantitative variables.

Ordinal variables can always be analysed as if they were nominal but it is often
possible to also apply methods originally devised for quantitative variables, estimate
their expectation or calculate their differences. Moreover, there exist special methods
designed specifically for the ordinal data, but we will not encounter them for a while.

Our explanation of statistical methods (starting with chapter 4) will distinguish be-
tween methods for quantitative data, where we will work with characteristics such
as expectation, variance, median, cumulative distribution function, covariance, etc.,
and methods for nominal data, where we will work with probabilities of individual
categories.

3.3. METHOD OF MOMENTS
The method of moments belongs, together with the method of maximum likelihood,

to basic methods of parameter estimation.
Let us consider a parametric model: we are given a random sample Xj, ..., X,, from
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a distribution with a probability density function f(x;60x) with respect to some o-
finite measure u, where the form of the function f(-;-) is known and 6x is an un-
known (vector-valued) parameter, which belongs to some space of parameters ® C
R4, d > 1. Thus, we are working with the following model:

7 = {distributions with density f(x;6), 6 € ® ¢ R}

The goal is to estimate the parameter 6xy. We will take advantage of the fact that
we have at our disposal consistent estimators of moments and that we can usually
express moments of X; as functions of unknown parameters. We will assume that
E |X;]¢ < o0.

Consider first d = 1. Let us assume that EX; = 7(0x), where 7 : @ — R. Since Xn
is a consistent estimator, it is reasonable to try to find the moment estimator 6,, as a
solution of the estimating equation:

Xn=1(0n). (3.1)
If the function 7 is strictly monotone, it is possible to express the estimator as 6, =
771(X,) and the estimated parameter as 0x = 7~} (EX;).
Properties of the estimator 8,,:

) ) ~ P
e If 77! is continuous at E X;, then 6, —— 6x (Theorem 1.2).
n—o00

e If 77! has a continuous derivative on some neighbourhood of E X;, then thanks
to the A-method (Theorem 1.6)

Vi (B - 6x) = N(0,V(6x)),

where

var X; _ var Xj
[v (Y EX))]* [7(6x)]°

Note that in the expression of the asymptotic variance (last equality) we do not
need to know the explicit formula for r‘l.AThis formula is therefore useful if 77!
is given only implicitly and the estimate 6, is being searched for using numer-
ical methods as a solution of the estimating equation (3.1).

In applications, the asymptotic variance V (0yx) is estimated by

(3.2)

V(0x) = {[T_l(EXi)]/}ZvarXi =

_ — 2 sz
To={l &l s = —2
[7(65)]
The last expression is again suitable especially when we do not have the explicit

formula for 77 !.

Examples.
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1. X5,..., X, isa randgm sample from Po(Ax) distribution, E X; = 1x. The moment
estimator of Ay is 6, = X,,.

2. Xi,...,X, isarandom sample from Geo(px) distribution, E X; = % andvarX; =
1-p _ 1= -1 _ 1 : QT —
?X. Thus, 7(x) = 5% and 77" (x) = 3;5. The moment estimator of px is p, =

L Further,
1+X,

Vi (Pn - px) L(xg N(0, p% (1 - px)),

n—

where the asymptotic variance p% (1 — px) follows either from the first equality
in (3.2)

2
-1 4 1_pX
V = _— X =
(pX) {(1 + EXi)z} var A pX p}z{

or, alternatively, also from the third equality in (3.2)

l—px

var X; P

V(pX) - B i}z - L4
Pk Px

3. Xj,...,X, is arandom sample from U(0, 6x) distribution, E X; = 6x/2. The mo-
ment estimator of 0y is 0, = 2X ,. It holds that V7 (§n — 0x) 4, N(0, 62/3).
n—oo

d =1, but a different moment than E X;

Sometimes it can happen that E X; = 0 for every 0x € ©. For example, this is true for
distributions with finite expectations which are symmetric around zero. Then we can
consider the second moment, i.e. EXi2 = 17(60x) and the estimator 5,1 will be acquired
as a solution of the equation

1 < ~
= 3 XF=1(0,).
n i=1

Generally, we can consider some suitable (measurable) function ¢ such that E |7 (X;)| <
oo and E t(X;) = 7(0x). The estimator 6,, will be obtained as a solution of the equation

LS ex) = #(B).
n i=1

Now we will generalise the method for d > 1.
The most straightforward method is to consider the first d-moments, i.e. we will
calculate
EX; = 11(0x), EX? = 12(0x), ..., EX? = 74(0x),
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and thus, we will obtain mappings 7i, ..., 74 : ® — R. The estimator of the parameter
0, is then obtained as a solution of the following system of d equations with d un-
knowns:

— > Xi= (00, — > X =1a(0n),... — > X = 1a(B0).
i=1 i=1 i=1

Once we define mapping T = (11,...,174)" : ® — R9, then under the assumption of
existence of 7~ we can write

n 1

n
§n :T_l(lzzi), where Zi = (Xi,Xiz,...,X-d)T.
i=1

From this expression, similarly as in the case of d = 1, we can derive consistency and
the asymptotic normality of the estimator 6,,.

Special case d = 2

Suppose that (E X;,var X;)T = 7(0x), where T : ® — R?. Then it is reasonable to try
to find the estimator of Oy as a solution of the system of estimating equations (more
precisely 2 equations with 2 unknowns)

_ T -
(X, S2)" = 7(0x).

If the function T is injective, then we can express the estimator as §X =71 ()_(n, S,%)

and the estimated parameter as 8x = 7~ (E X;, var X;).

Properties of the estimator 0,:

e We know that X, and S2 are consistent estimators of E X; and var X;. Hence, if

. . . ~ P
the function 7! is continuous at (E X;, var X;), then 6,, —— 0x.
n—oo

¢ From theorem 2.6, part (iv) we know that if E Xl.4 < o0, then X ,, and S2 are jointly
asymptotically normal. If 7! has a continuous derivative, then according to the
A-method also 8, has jointly asymptotically normal distribution with variance
matrix which can be calculated using Theorem 2.6 and the A-method.

Examples.
4. X,...,X, isarandom sample from gamma distribution with density f(x; a, p) =
% xP~le®1{x > 0}. Then it is know that EX; = £ and var X; = 5. The moment

method yields consistent and asymptotically normal estimators

. Xn X,
a, = — and = —.
" s
5. Xi,...,X, is arandom sample from U(6;, 62) distribution. We know that
_ O+ 0; (62 — 61)?

EX; and varX; =

2 12
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In this case, the system of estimating equations is of the form

) 02, — 01)?
X, = ln; 2n, VarXi:(znlzln)~

By solving this system we get

61, =X, —+/352 and 6y, = X, ++/3S2.

Since from Theorem 2.6 we know that
Xn\ _ (m
S% o2

) and y3 =

Vn

—4 5 N2(0, %),
n—oo

o? oy

oy ot(n-1)
possible to show that

(5 - (3] 5 om0,

where D denotes the Jacobian matrix of the mapping 77! (x1, x2) = (x1=V3x2, x1+

V3x2) at point (E X;, var X;). Therefore, the estimator 6, = (01, 62,) is asymptot-
ically normal.

)3 . e .
where X = ( E(X(’T—J‘), then using the A-method it is

6. Xi,...,X, is a random sample from B(ea, 8) distribution, i.e. EX; = ﬁ and
varX; = W By the moment method we get consistent and asymp-

totically normal estimators

@y :)_(n(w - 1) and B, =(1 —)_(n)(

n

)_(n(l - Yn) _ 1)
Sa

(estimators are meaningful only if $2 < X ,(1 - X,)).

Remark.

» Estimators obtained by the method of moments tend to have larger asymptotic
variance compared to the estimators obtained by the method of maximum like-
lihood. Maximum likelihood theory will be discussed in detail in Mathematical
Statistics 2.

¢ Using the implicit function theorem it can be proved that it is sufficient that
has continuous derivative on some neighbourhood of (E X;, var X;).
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3.4. MAXIMUM LIKELIHOOD ESTIMATORS

Suppose we have a random sample of random vectors X7, ..., X, being distributed
as the generic vector X = (Xj,...,Xi)tr that has a density f(x; 8) with respect to a
o-finite measure u and that the density is known up to an unknown p-dimensional
parameter 6 = (6y,...,0,)" € ©. Let Ox = (0x1,...,0x,)" be the true value of the
parameter.

Define the likelihood function as
Ln(0) = | | f(X:6).
i=1

Note that the likelihood function is in fact a joint density viewed as a function of the
parameter. This corresponds to the fact that when dealing with real data we are in fact
dealing with the realizations of the random sample Xj,..., X,. Thus when dealing
data the observed values of X3,..., X, are fixed. Nevertheless from the point of the
theory the likelihood function can be viewed as a random function as it depends on
the random vectors X7, ..., X,.

The maximum likelihood estimator is usually defined as

—_

0, = argmax L,(0). (3.3)
0ecO

Very often it is much more tractable to maximize the log-likelihood function as
n
0,(6) =10g L, (0) = > log f(X;6).
i=1
Further, in regular systems the function log f(«; 0) is differentiable with respect to

6 and one defines the maximum likelihood estimator as an appropriate root of the
maximum likelihood equations given by

69 - Op.
Example. Suppose we have a random sample Xj, ..., X, from the Bernoulli distribu-

tion with the parameter p. Show the maximum likelihood estimator of p and derive
its asymptotic distribution.

Example. Suppose we have a random sample Xj, ..., X,, from the exponential distri-
bution with the density f(x; 1) = 1 exp{—Ax}1{x > 0}. Find the maximum likelihood
estimator of A and derive its asymptotic distribution.

Example. Suppose we have a random sample Xj, ..., X,, from the uniform distribu-
tion on the interval (0, 0), i.e. X; has the density f(x;0) = %ﬂ{x € (0, 8)}. Derive the
maximum likelihood estimator of 6 and show its consistency.

Example. Suppose we have a random sample Xj, ..., X, from the normal distribu-
tion N(u, o). Derive the maximum likelihood estimator of 8 = (u, o2).
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3.5. INTERVAL ESTIMATION

We are given a random sample X = (X, X»,..., X;), amodel # and a parameter 6 =
t(F) € R for F € ¥, which we need to estimate. Let Fx € F be the true distribution of
some random vector X; and 6x = t(Fx) be the true value of the estimated parameter.

3.5.1. DEFINITIONS

Definition 3.5 An interval B,, = B,,(X) c R is called a confidence interval for param-
eter Ox € R with confidence level 1 — a in model ¥ if and only if

Plwe Q:By(w) > 0x] =1-a, foreverydistribution Fx € F.

An interval B,, is called an asymptotic confidence interval for parameter 0x € R with
(asymptotic) confidence level 1 — a in model ¥ if and only if

Plwe Q:By(w) > 0x] —— 1—a forevery distribution Fx € ¥.
n—oo

Remark.

e Interval B, is random (calculated from the data) while the parameter 0y is not.
Expression B, > 0y is read as “interval B, covers (the true value of) 6x”".

e Number a € (0, 1) is fixed before the analysis; usually @ = 0.05 is chosen, which
leads to confidence intervals with confidence levels of 0.95. However, we can
also encounter intervals whose confidence levels are 0.90 or 0.99.

e It is not always possible or appropriate to calculate confidence intervals with
exact prescribed coverage. We are often satisfied with asymptotic confidence
intervals whose coverage converges to the prescribed level as the sample size
increases.

* We defined confidence intervals only for real parameters. Nevertheless, similar
concept can also be introduced for vector parameters: we need to find some
random set B, which covers the true value of the parameter with specified prob-
ability. This set is then called the confidence set. The shape of the set B,,, how-
ever, can be chosen in many different ways.

Remark. We distinguish between two-sided and one-sided confidence intervals (lower
and upper).
* An interval of the form (n.(X), ny (X)), where n,(X) and ny(X) are two ran-
dom variables satisfying P[n.(X) < ny(X)] = 1, n.(X) > —o0 and ny(X) < oo
a.s., is called two-sided confidence interval. Usually we construct it so that it
holds (at least asymptotically) that
a a
Plox < nu(X)] = > PlOx = nu(X)] = 5
* An interval of the form (1, (X), ) is called lower one-sided confidence interval.
We have that P[n.(X) < 0x| =1-a.
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* An interval of the form (- o0, ny (X)) is called upper one-sided confidence inter-
val. We have that P[0x < ny(X)] =1-a.

Example (expectation in normal model with known variance). Consider the prob-
lem of interval estimation of the expected value for normally distributed data with
known variance.
Data: Xj,..., X, ~ Fx
Model: Fx € ¥ = {N(u, 0%), p € R, 02 known}
Estimated parameter: Oy = EX; = ux
Procedure:
1. We have an unbiased and consistent estimator of the parameter ux - the sample
mean X ,. We know that X,, ~ N(ux, 02/n). Thus

X, —
M ~N(0, 1).
Ox
2. We will use the equality
n(X, -
Plua <M<ul—a/2] :l_a,
2 ox

where u, = ® !(a) is a-quantile of the standard normal distribution and af-
ter several manipulations of the expression (using symmetry of the density of
N(0, 1) distribution around 0) we will arrive at

P

- Ox v Ox
X, - Ul—a/2 ﬁ < Ux <Xn+u1_a/2 —] =1-a.

Vn

3. We obtained a two-sided confidence interval (7, ny). Its endpoints are

— Ox Ox
X)=X,—Ul—qp —, —.
(X)) =X, —Ur—q)2 v v
Quantiles of the standard normal distribution which are needed for the con-
struction of the confidence interval are listed in Table 3.1.
For a = 0.05 we take quantile 1 975 = 1.96 and obtain 95% two-sided confidence

interval. This means that the interval covers the true value ux with probability
0.95.

Nu(X) =Xy +Ui—q2

Table 3.1.: Some values of quantiles of the standard normal distribution.

K 0.9 0.95 0975 099 0.995
u,=®(x) 1282 1645 1960 2326 2576
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4. One-sided interval would be obtained by a small modification of step 2. Lower
one-sided confidence interval will be given as

(nL(X),0), where nL(X) =X, g .

S

Upper one-sided confidence interval will be of the form

— o
(- o0, nuy(X)), where N0 (X) =Xp+U1_g —.

Vn
One-sided confidence intervals differ from two-sided by the value of the normal
quantile (u1-, quantile is used instead of u;_,/2). For a 95% one-sided confi-
dence interval we would take 195 = 1.645.

Remark. Length of the confidence interval:
¢ decreases with increasing number of observations n,
e increases with increasing data variance 0)2(,
* increases with increasing confidence level 1 — a.

Example. Let Xj,..., X, be a random sample from N(ux, 0%) distribution, the vari-
ance o2 is known. How many observations do we need so that the length of the two-
sided confidence interval for the expected value uy does not exceed the specified
limit d > 0?

We have that 2u;_,/2 ox/vn < d. Therefore we need at least 4uf_06/2 o%/d?* obser-
vations. It is worth noting that if we want to halve the confidence interval, then we
need to increase the sample size 4 times.

Lemma 3.2 (confidence interval after parameter transformation) If (n;,ny) is a(n)
(asymptotic) confidence interval for parameter 6x with the confidence level of 1 — «
and if ¢ is an increasing continuous real-valued function on the space of parameters
® = {t(F),F € ¥} C R, then (y(n.), ¥(ny)) is a(n) (asymptotic) confidence interval
for parameter y(60x) with the confidence level of 1 — a.

Proof. From the assumptions of the lemma we have that for a confidence interval
with exact coverage it holds that

1-a=P[n(X) < 0x <nu(X)] =P[y(n.(X)) < y(6x) < y(nu(X))].
Analogously for asymptotic confidence intervals. ]

Example. Let X, ..., X, be a random sample from Po(A) distribution. Then accord-
ing to the example on page 29 we know that

N (2\/27 - 2@) ,H%’ N(O, 1).
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From this result we can easily deduce that the asymptotic confidence interval for VAx

is given as
( / Ui a/2 / L a/Z)

And thus the confidence interval for AX is given as
[ S ol [+ 22

3.5.2. CONSTRUCTION OF CONFIDENCE INTERVALS

Let X = (X,,..., X,), where X3, X»,..., X, is arandom sample from some distribu-
tion Fx € ¥. We need to estimate parameter 6x = t(Fx) € R. Let us briefly describe
the general procedure for construction of two-sided confidence intervals for 0.

1. We will find a function ¢(x, 0x) satisfying that for every « fixed it is, as a func-
tion of Oy, injective and continuous and that the distribution of the random
variable Z, = ¢(X, 6x) is known at least asymptotically (it depends neither on
Ox nor on any other unknown parameters) and is non-degenerate. This random
variable Z, is called pivotal. For the construction of function ¢ it may be use-
ful to start by calculating a point estimator of 0x, whose distribution is usually
known (at least asymptotically). Let us denote by F; the (exact or asymptotic)
cumulative distribution function of Z, and let ¢, = F, (a) be a-quantile of the
distribution given by F;.

2. We will use the formula
P(Ca/z < (p(X, Gx) < Cl,a/g) =1l-a (O].‘ —1- a)

and we will “isolate” 0x. In order to do that, it is needed to invert ¢(x, 6) as a
function of 0 (for x fixed). Let ¢(x, t) be a function such that

oz, @(x,0)=t and ¢(x, ¢(z,0)) =06

for every x, t and 6. Since function ¢(z, t) is normally decreasing in ¢, we get
that
P(¢(X,c1-a2) < O0x < §(X,Cap2)) =1 - a.

3. We obtained (asymptotic) confidence interval (n,(X), ny (X)) with confidence
level of 1 — a, where 1 (X) = ¢(X, c1-a/2) and ny(X) = ¢(X, cq/2).

Example (variance and standard deviation of the normal distribution). Consider the
problem of constructing a confidence interval for the standard deviation of the nor-
mal distribution.

Data: Xj,...,X,, ~ Fx
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Model: Fx € ¥ = {N(p, 02),u eR,o? > 0}
Estimated parameter: ox = Vvar X;
Procedure:
Let us first consider variance oZ. Its unbiased and consistent estimator is S2. Ac-
cording to Theorem 2.8, part (i), we know that

(n—- I)S% 2
5z T her
X

Thus, we will choose Z, = (n-1)S2/0%, F; = x2_, and ¢q = x>_,(a), i.e. a-quantile of
x>_, distribution (Table 3.2).
We will use the equality

P 2

_ 2
X2 (af2) < (n=DS, <yt (1- a/2)] =l-a
Ox

and after several manipulations of the expression we will arrive at

(n-1S: _ , (n-18?
2 (0-a2) X" xi_lm/ZJ

We obtained a confidence interval

(n—l)Srzl (n—l)S,%
(Xi_l(l -a/2)’ xi_l(a/z)) (3.4)

for the variance 0)2( whose confidence level is 1 — a.

Table 3.2.: Some values of quantiles X]%( x) of y? distribution with f degrees of free-
dom.

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

5 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086
10 2.558 3.247 3.940 4.865 15987 18.307 20483 23.209
15 5.229 6.262 7.261 8.547 22307 24996 27.488 30.578
25  11.524 13.120 14.611 16.473 34382 37.652 40.646 44.314

100 70.065 74.222 77929 82358 118.498 124.342 129.561 135.807
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Confidence interval for the standard deviation ox will be obtained by application
of square root to both endpoints of the confidence interval for the variance

vn-18§, vn-18§,
o (-a2) i (a/2)

see also Lemma 3.2 (square root is an increasing and continuous function on (0, «)).

Example (expectation of the normal distribution with unknown variance). Consider
the problem of constructing a confidence interval for the expectation of the normal
distribution with unknown variance.
Data: Xi,...,X,, ~ Fx
Model: Fx € ¥ = {N(p, 02),p €eR, 0% > 0}
Estimated parameter: Oy = EX; = ux
Procedure:

The estimator X, is unbiased and consistent for the parameter uy. Furthermore,
S$2 is an unbiased and consistent estimator of o2 = varX;. From Theorem 2.10 we

know that I
Vn (X n — Hx )
T,=————=~1h_1.
Sn
Hence, we can take T, as our pivotal random variable, F, will be cumulative distri-
bution function of ¢,,_; distribution and ¢, = t,-1(a) (a-quantile of #,,_; distribution).
Some quantiles of ¢-distribution are listed in Table 3.3. Clearly, already for n — 1 = 25
they are only slightly larger than the corresponding quantiles of the standard normal
distribution, to which they converge as the number of degrees of freedom increases
above all bounds. Larger values of r-quantiles compared to the quantiles of the stan-
dard normal distribution, which were used in the introductory example, reflect in-
creased variability of the pivotal random variable, which is caused by ignorance of
the true variance.
We will use the equality

Plina() < VR0 1o g)] =10

and by the same procedure as in the case of the normal distribution with known vari-
ance we will arrive at the required confidence interval

- Sn = S
(Xn—tn_l(l—%) 7% Xn+th-1(1-%) —:’1) (3.5)

whose confidence level is exactly 1 — a.
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Table 3.3.: Some values of #7(x) quantiles of t distribution with f degrees of freedom.

0.9 095 0975 0.99 0.995

5 1476 2.015 2571 3.365 4.032
10 1.372 1.812 2228 2764 3.169
15 1341 1753 2131 2.602 2.947
25 1316 1.708 2.060 2.485 2.787

100 1.290 1.660 1.984 2.364 2.626
oo 1282 1.645 1960 2326 2.576

Example (expected value of an arbitrary distribution with finite variance). Consider
the problem of constructing a confidence interval for the expectation without the
assumption of normality.
Data: Xj,...,X,, ~ Fx
Model: Fx € F = £2 (all distributions with finite non-zero variance)
Estimated parameter: Ox = EX; = ux
Procedure: The estimator X, is unbiased and consistent for the parameter py. Fur-
thermore, S,% is an unbiased and consistent estimator of 0)2( = varX;. From Theo-
rem 2.9 we know that -

B Vi (X - px)  d

n=
Sn n—oo

We can thus choose T,, as our pivotal random variable.
We will use the following relation (which holds because T,, converges in distribu-
tion to the standard normal distribution)

vVn ()_(n - ,UX)
Sn

N(0, 1).

PI:UE < < ul_a/g] — 1-a.
2 n—oo

Thus, one possible asymptotic confidence interval would be

(Xn — Ul—q/2 \/—%, Xn+ Ui_qp %) . (3.6)

Since for n — o quantile t,_1(a) converges to u, (for arbitrary 0 < a < 1), it holds

that interval (3.5), which was exact confidence interval for ux in case of a random

sample from the normal distribution, is also a valid asymptotic confidence interval

for ux for data coming from an arbitrary distribution with finite non-zero variance.

Note that |f,-1(a)| > |u,| for every n > 2, therefore interval (3.5) is longer than
interval (3.6). For caution, it is therefore recommended to use interval (3.5).
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Example (alternative distribution). Let us now present one possible way to construct
an asymptotic confidence interval for the probability of success in the alternative dis-
tribution. (We will show several more confidence intervals related to this problem
later.)
Data: Xj,...,X,, ~ Fx
Model: Fx € F = {Be(p),p € (0, 1)}
Estimated parameter: px = EX; = P[X; = 1]
Procedure:

Since we are estimating probability of an event, we will start by considering em-
pirical relative frequency p, = X,, which is an unbiased and consistent estimator
of p (Theorem 2.3). From the central limit theorem (theorem P.7.11) we know that

—~ d
Vi (Pn = px) === N(0, px (1 - px)). Thus,

Vi (pn - PX) d
Vpx (1 —px) "7

Left-hand side is a non-linear function of px, but our situation can be simplified.
From the consistency of p, and the continuous mapping theorem (theorem P.7.3) it

follows that
—~ —~ P
VP (L =Pn) —— ypx(1 = px).

From Slutsky’s theorem (theorem P.7.6) we obtain that

vV (Pn - px) _ vVn (pn - px) Vpx(1—px) d
\/ﬁn(l_ﬁn) \/PX(l—px) \/ﬁn(l_ﬁn) e

N(0, 1).

N(0, 1). (3.7)

Therefore, we can take Z,, = %, F; = ® and ¢, = u, (a-quantile of the
standard normal distribution).
From the following relation
vV (pn - px
P[—ul_a/g < ”5((:—;’5)) < Ul-q/2 n—>—oo> l-«a
V n - n
we get that
Pﬁ — a2 Vﬁn(l_ﬁn)<px<ﬁ +u /2 Vﬁn(l_ﬁn) l1-a
n - n -
Vn vn

We obtained an asymptotic confidence interval

R 7L S P 2 L 23
n 1-a/2 \/ﬁ » Pn 1-a/2 \/ﬁ ’

whose coverage probability converges to 1 — @ as n — .
The end of

self-study for
week 4

(27.10.-31.10.).
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3.6. EMPIRICAL ESTIMATORS

Consider a random sample Xj, Xo, ..., X, from a distribution Fx. We will present how
to estimate some characteristics of the distribution Fx.

3.6.1. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

Let us first focus on estimation of the whole distribution function Fx(x) for x € R.
We consider a model that includes all distributions on R, i.e. we do not impose any
conditions at all on the distribution function Fx.

Definition 3.6 Function F,(x) df %Z?ﬂ HX; < x} is called the empirical distribution
function of the random sample X;, Xo, ..., Xj,.

Remark. The value of F, at some point x is equal to the number of observations that
do not exceed x which is then divided by the total number of observations. Function
F, is non-decreasing, right-continuous, piecewise constant with jumps in observed
values of random variables X;, the magnitude of the jump at a point x is given by the
number observations which are equal to x which is then divided by the total number
of observations. Empirical distribution function has all the properties of a cumulative
distribution function of some discrete distribution.

For some x fixed, is the value F, (x) actually equal to the relative frequency of the
event [X; < x] calculated from n observations, while the probability of this event is
equal to Fx(x). From theorem 2.3 we immediately obtain the most important prop-
erties of empirical distribution functions.

Theorem 3.3 (properties of empirical distribution functions) For an arbitrary x € R
it holds that: R
(i) EF,(x) = Fx(x) (unbiasedness), var (F,(x)) = E®I-F@],

(i) Fn(x) n_%o> Fx(x) (pointwise consistency);
(i) V7 [Fa(x) - Fx(x)] n_%g N(0, Fx (x)[1 — Fx(x)]) (asymptotic normality);
(iv) nF,(x) ~ Bi(n, Fx(x));

(V) sup,.g |Fn(x) - FX(x)| 50 (uniform consistency).
n—oo

Remark.

* Point (iii) of the previous theorem can be used to construct an asymptotic con-
fidence interval for Fx (x) in the same way as in the case of the parameter in the
alternative distribution (see page 50).

¢ Point (v) is sometimes called the Glivenko-Cantelli theorem. It cannot be de-
duced from theorem 2.3 or from other results that are currently available. It will
be proved in one of the more advanced lectures on the probability theory.
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3.6.2. IDEA BEHIND EMPIRICAL ESTIMATORS

Estimators of many basic characteristics of the distribution Fx can be derived from
the empirical distribution function. Let 6x = t(Fx) be the parameter of interest. If
it can be calculated from the true cumulative distribution function Fx, then it can
also be calculated from the empirical distribution function fn in the same way. Thus,

we obtain the estimator 6, & t(F,). These types of estimators are called empirical
estimators. We will see that empirical estimators often have reasonable properties.

Let us first demonstrate this procedure on the example of the empirical estimator
of expectation. We have that

EX,-:/ x dFx(x).

The empirical estimator of expectation is obtained by using F, instead of the un-
known Fx. We will get

/wxdfn(x):/ooxd(%zn:ﬂ{Xi Sx}) =%Zn:/mxd1]{X,- Sx}z%iXi,
- - i=1v~%® i=1

e i=1

where we used the fact that G(x) = 1{X; < x} is for fixed X; actually the cumulative
distribution function of a random variable that is equal to X; with probability 1. We
have, therefore, reached the conclusion that the empirical estimator of expectation
is the sample mean, which we already know to be unbiased and consistent.

Remark. Let us fix w € Q) and denote the observed realisations of random variables
as x; = Xj(w),...,x, = X,(w). Then F, satisfies all the properties of a cumulative
distribution function. If Y is some random variable whose cumulative distribution
function is F,, then the integral /_ 0; x dF,(x) is equal to the expectation of Y. Since

the distribution given by F, is discrete and satisfies that P(Y = x;) = % for every
i=1,...,n, then it holds that

n 1 n 1 n
EY=;X1'P(Y=X,') = Z;xi = E;Xl(w)

3.6.3. EMPIRICAL MOMENT ESTIMATORS

Let Xi, X5, ..., X, be a random sample from a distribution Fx and & be a measurable
real-valued function such that E |h(X;)| < . It is easy to verify that the empirical
estimator of the parameter E h(X;) is the sample mean of the observed values h(X;),
ie. % 1 h(X;). This estimator is unbiased and consistent.

Let us derive the empirical estimator of the variance o2 = EX? — (E X;)?. We know
that the empirical estimator of E X; is X,, and that the empirical estimator of EXi2 is
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% pI Xl.z. The empirical estimator of the variance is, therefore, given as

—~ 1 & —2 1 & — \2
o,zl:EZ:JXiZ—Xn:EZ(Xi—Xn).
i=

Remark. It holds that

n_li:I

For n sufficiently large is the difference between 52 and S2 small, because thanks to
Theorem 2.6(i)

2
_& ___F>__> 0.

05— S5 = o
It follows from Theorem 2.6 that the sample variance S2 is an unbiased and consistent
estimator of oZ. The empirical estimator of the variance o7 is consistent, however, it
is not unbiased. On the other hand, from the example on page 34 we know that in

model ¥ = {N(u, 6), p € R, 0* > 0} it holds that MSE(0?) < MSE(S2).

Similarly, we can derive empirical estimators for higher order moments. Empirical
estimators of non-central moments p; = EXF are

1 &
- _ - k
,uk—n;Xl..

Empirical estimators of central moments py. = E (X; — EX;)* are
-1 Z”: X - Xk
Hik = n Z i n) -

Empirical estimators of non-central moments are evidently unbiased as well as
consistent. Empirical estimators of central moments are consistent. In general, how-
ever, they are not unbiased.

The empirical estimator of the skewness is

I
NG
The empirical estimator of the kurtosis is
~ M4
Y4 = =3-

n

Both of them are consistent (according to the continuous mapping theorem, theorem
P7.3).

Exercise. Prove that if E |X;|F < oo, then fi _r, k-
n—oo
Hint: . .
ﬁk:liz T)xk(=X) = (! (lzxk)(_y k=i
n k)t " —i\k|\n ! e

i=1 j=0 j=0 i=1
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3.6.4. EMPIRICAL (SAMPLE) QUANTILES

Let a be a preselected number from the interval (0,1). The quantile function of a
given distribution Fy is defined as

Fy'(a) =inf {x: Fx(x) > a}.

Then, a-quantile of distribution Fy is defined as ux(a) = Fy 1(a). For a-quantile it
holds that
Fx(ux(a)) >a and Fx(ux(a)-h) < aforVh > 0.

As an empirical estimator, we use the value of a-quantile of the empirical distribu-
tion function, i.e.
F,(a) = inf {x:Fy(x) > a}.

Definition 3.7 (Empirical quantile) For « € (0, 1) we define the empirical (sample)
a-quantile as U, (a) = F, ' ().

Remark.
* Recall that the empirical distribution function is piecewise constant with jumps
at points X(1), X(2), ..., X(n). Therefore, the empirical quantile will be (according
to our definition) an appropriately chosen order statistic. Since it holds that

_ k
Fn(X(x)) =

= k
- and F, (X - h) < - for Vh > 0,

the empirical quantile will satisfy that

na for (na) e N,

n(@) = X, Where  kq = {Lna] +1 for (na) ¢ N.
Since we do not assume continuity of the distribution, the order statistics X,
must be understood in terms of the note on page 27.

e For a = 0,5 we get the sample median: m,, = X 1) for n odd and m, = Xz, for
n even.

* The empirical a-quantile satisfies inequalities

Fy(u,(a)) > a and }111{41(1)Fn(un(a) -h) <a,

i.e. at least na observations are less than or equal to u#,(a) and, simultaneously,
for every h > 0 at least n(1—-a) observation are greater than or equal to u, (a)—h.

* There are many different definitions of the empirical a-quantile (typically some
linear interpolation between points X, -1, X(k,) and X,+1)). For example for
n even is the sample median often defined as

X+ Xz
mn = f.
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The following lemma characterises the empirical quantile as a solution of some
minimization problem (compare with lemma 2.1).

Lemma 3.4 Let a € (0, 1). For the empirical a-quantile u,(«) it holds that

iy (a) = argmmZpa(X 0),

ceR i=1
where g, (1) = aul{u > 0} + (1 — a)(—u){u < 0}.

Note that for @ = § we obtain that g12(u) = $|ul. Since the constant 3 is for the
optimization irrelevant, it holds that the sample median satisfies

= X; —
My = ar§ EIﬂI}}ln Z |

i.e. m, minimizes the sum of absolute deviations.

Remark. The minimization problem from part (ii) can be formulated as a problem
of linear programming in the form

-(1-a) Z (Xi—c)+a Z (Xi—c)].

arg min
ceR . .
i:X;<c i:X;>c

(Uy,...,U), V=(W,...,V))T, X = (Xi,...,X,)T, our problem can be reformulated
as an optimization problem of linear programming in (2n + 1)-dimensional space

If we introduce the notation U; = (X; —o)1(X; > ¢), V; = —-(X; - o)1(X; < ¢), U =

: T T
le_I,l‘l/I,lcaan+ 1l-a)1,V

subject to
cl,+U-V=X, U=>=0, V=>0.

Naturally, this minimization problem does not have to have a unique solution. The
minimum can be attained at every point from some interval.

Properties of empirical quantiles will be studied (proved) only in continuous dis-
tributions with increasing cumulative distribution functions Fx and densities fx.

Theorem 3.5 Let a € (0,1). Let Xj,..., X, be a random sample from a distribution
whose cumulative distribution function Fx is continuous and increasing on some
neighbourhood of uX(oc)

(i) Then u,(a) —> ux(a).

(ii) Additionally, 1f there exists density fx, which is continuous and non-zero at ux («),
then

a(l-a)

\/ﬁ[ﬁn(a) _ ux(a)] n—%f N(0,V(a)), where V(a)= fg(ux(a))'
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Proof. Part (i): Let £ > 0. We need to prove that
P(|un(a) — ux(a)| > ¢) — 0.
In order to do that, it is sufficient to show that
P(tin(a) < ux(a) - ¢) —0 and P(un(a) > ux(a) + ¢) —0.
So let us calculate
P(tin(a) < ux(a) — &) = P(X(k,) < ux(a) - ¢)
= P( LUHX <ux(a)-e} > ka)
< P(fn(ux(a) —¢€) - Fx(ux(a) - ¢) > k—;‘ - Fx(ux(a) - e)) (3.8)
From Theorem 3.3 it follows that
Fp(ux(a) - €) — Fx (ux(a) — €) n_%> 0, (3.9)
and from the assumptions of this theorem we have that
k—,;’ - Fx(ux(a) - ¢) ——a- Fx (ux(a) — €) > 0. (3.10)

By combining (3.9) and (3.10) we obtain that the right-hand side of equality (3.8) con-
verges to zero, thus we have proved that P(u,(a) < ux(a) — ) —— 0.
n—oo

Similarly
P(iin(@) > ux(a) +€) = P( Sy 1{X; < ux(a) + €} < ke
< P(Fy(ux(@) + &) - F(ux(a) + &) <& - Fe(ux() +¢)).  (3.11)
From Theorem 3.3 it follows that
fn(ux(a) +¢) — Fx(ux(a) +¢) n_%: 0, (3.12)
and from the assumptions of this theorem we have that
k—,;’ — Fx (ux(a) +¢) — a — Fx(ux(a) +¢€) < 0. (3.13)

By combining (3.12) and (3.13) we obtain that the right-hand side of equality (3.11)
converges to zero, thus we have proved that P (i, (a) > ux(a) + €) —— 0.
n—oo

Part (ii): * Similarly as in the part (i) let us calculate
P(Val@in(@) - ux(@)] < x) = P(@(@) < ux(2) + %)

= P(F(ux (@) + &) = Fx(ux(0) + &) = % - Fe(ux(a) + &),
= P(Zn = xn)y

* This part of the proof was not done in the lecture.
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where -
. Vi [y (x (@) + &) = P (ux () + &)
" va(l—a)
and

V% - Fx (ux(a) - \/iﬁ)]
Va(l—a) .

.. . . d
From the central limit theorem for triangular arrays it follows that Z, —— Z, where

n—oo

Xn =

Z ~ N(0,1). Furthermore, from the assumptions of the theorem we get that x, ——
n—oo
—x fx (ux (@) .
NP So in total we have that

~ —xfx(ux(a))) B xfx(ux<a>))

P(\/ﬁ[un(a) ux(a)| < x) — P(Z > s ) ° P(Z < o )
which (together with the definition of convergence in distribution) implies the state-
ment of the theorem. O

The asymptotic variance V (a) of the empirical quantile is difficult to estimate be-
cause we do not have a universally applicable and reliable estimator of the density.
Under the assumption that Fx is continuous at ux («), it is possible to use order statis-
tics to construct a confidence interval.

For example two-sided confidence interval for ux (a) with confidence level of 1 —
can be found in the form of (X(,), X(x,)). To determine numbers k; and ky let us
observe that

n
uX(a)) - P(Z X < ux(a)} < ky — 1) - P(Bi(n, ) < ki - 1),

i=1

\%

P(X(kL)

n

ux(a)) = P(Z WX <ux(a)} > kU) = P(Bi(n, a) > kU).

i=1

IA

P(X(km

Therefore, numbers k; and ky can be found using the binomial distribution as the
largest and smallest natural numbers such that

P(Bi(n, @) < ki - 1) <? P(Bi(n, a) > kU) <5

If it is not feasible to work directly with the binomial distribution, we can approx-
imate it by the normal distribution. In this case it is good to notice that

P(Bi(n, @) < ki - 1) - P(Bi(n, ) < kL) and P(Bi(n, a) > kU) - P(Bi(n, a) > ky - 1).

Therefore, as a “compromise” before the normal approximation, we proceed from the
following equations

P(Xu) 2 ux(a)) = P(Bi(n, W<k -3 P(Xu s ux(a)) = P(Bi(n, @) > ku - 3)-
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Now, using the normal approximation

. . B _1_ kp—1-na
P(Bin, — 1) = p(Bane o Boion ) - g S,
i(n,a) <kp-3 Vra(o) < Via(-a) na(l-a)

i _ 1) _ p(Bi(ma)-na ku—%—noc)i B (ku—%—na)
P(Bl(n,a)>ku 2) P(\/W(l_a) > i 1-@ ).

From here we can already express the approximate values k; a ky

ki = l% +na—u,_pyna(l- a)J, ky = [% +na+u,_pna(l- a)}.

The aforementioned “compromise” is usually called the continuity correction. The
purpose of this “correction”, however, is not to make something continuous out of
something discontinuous. It is a certain caution in case that a discrete distribution
(in our case binomial) is approximated by a continuous one (in our case normal).

Remark. For small sample sizes n and « close to zero or one it can happen that either
P(Bi(n,a) = 0) > g or P(Bi(n,a) = n) > g In that case we choose the lower (or the
upper) bound of our confidence interval to be equal to —co (or +c0).

Exercise. Show that if we omit the assumption of continuity of the cumulative distri-
bution function at the estimated quantile ux (@), then the closed interval (X, ), X(x;))
will have (for n sufficiently large) probability of coverage at least 1 — .

3.6.5. EMPIRICAL ESTIMATORS FOR RANDOM VECTORS

Empirical estimators of first two moments can be easily generalised to random vec-
tors. Let X3, ..., X, be arandom sample of independent k-dimensional random vec-
tors from a distribution Fx. Individual components of the vector X; will be denoted
by X;j,i=1,...,n,j€{1,..., k}. Further, let us denote

pn=EX;, > =var X;.

The empirical estimator of p is apparently the vector of empirical estimators of its
individual components, i.e. k-dimensional sample mean

_ 1 &
X,=—-> Xu
nizl

The empirical estimator of the variance matrix ~ can be obtained from the follow-
ing representation

S=E(Xi-EX))(X;-EX;)  =EX;X] - (EX)(EX)T =EX® - (EX;)®

if we replace the expected values by their empirical estimators (i.e. sample means).
Thus, we obtain
1

1< —e2 < — < \T
R DI A DIC T Sl Ok
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Nevertheless, usually so called sample covariance matrix is used. It is defined as a
multidimensional analogy of the sample variance S2:

1
n-1

n
S2 = DX - X) (X - X )"
i=1

Remark.

* Diagonal elements of S2 are sample variances of individual components, i.e.

1 < -
Z(Xij -X;)%
i1

S2 =
I n-1

for je{l,...,k}, where X; = 1 3" | X;;.
* Element (j, m) of the matrix S2 is given by the expression

1 < - -
Sim = r— ;(Xij - X)) Xim = Xm)

forje{l,...,k}and m € {1,..., k}, j # m. This random variable estimates the
covariance cov (X;j, Xj) between j-th a m-th component of Xj;. It is called the
sample covariance.

» S2 is positive semi-definite and it holds that

n = n 1< —®2
Si=—t-%, = (o) XP2-X, ).
" a-1"""  n-1 n; l n

The following assertion shows that both X, and S? are unbiased and consistent
estimators.

Proposition 3.6
(i) IfE |X;j| < oo for every j € {1,...,k}, thenEX, = p and X, P, L.
n—oo
(ii) If var (X;;) < co for every j € {1,...,k}, then ES2% = % and S> n_)%> z.

Proof. Part (i): Follows directly from Theorem 2.2, which we use component-wise.

Part (ii): Consistency of S2 can be proved analogously as in the case of S2 (see Theo-
rem 2.6(i)).
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3. Parameter Estimation

Unbiasedness can be proved in the following way:
n (1 1S\
ESZ= — Y EX®?-E|= :
S n-1 n; X (n;XZ)

n n
__n g2 1 T
- |ex; _ﬁil EIEX,X].)
i=1 j=

_ ®2 _ ®2 _ _— B 'dl
= —|EX] HZZEXl. - EXlX].)
i=1 i=1 j=1,j#i
' 1 -1
== EX?Z(l——)—” (EX)®| =3
n-1| n n

O

Recall the Definition of the correlation coefficient of the random variables X;; and
Xim:
cov (Xij, Xim)

w/vaer-j vaer-m

It is logical to define the sample correlation coefficient as the empirical estimator of
this parameter, composed of empirical estimators of individual components.

o(Xij, Xim) =

Definition 3.8 The sample correlation coefficient p;,, of variables X;; and X;,, j €
{1,...,k}and m € {1,...,k}, j # m, is defined as

Sim S (Xij = X ) Xim — X m)

SiSm - =
Jem \/Z?:l(Xij_Xj)z Z?:l(Xim_Xm)z

Ojm =

Remark.
* —1 < pjm < 1 (see the Cauchy-Schwarz inequality).
* ojm = 1 (or —1) if and only if there exist constants a € R and b > 0 (or b < 0)
such that X;; = a + bX;,, foreveryi =1,...,n.
* Djm is a consistent estimator of the correlation coefficient p(X;;, X;») (this fol-
lows from consistency of S2 and Theorem 1.2). But it is not unbiased.

3 - P
Exercise. Prove that pj,, —— o(Xij, Xim).
n—oo
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3. Parameter Estimation

Sample examples for the preparation for the exam.

1. Consider a random sample Xj,..., X,, from a distribution given by the density
f(x;06) = e_;/‘s Kx > 0}, where 6 > 0 is an unknown parameter. Consider the

estimator 5,1 :Xn. Show _that itis an unbiased estimator of x. Further, consider
the estimator 6,(a) = a X, where a is a constant. Find a which minimizes the
mean squared error of §,(a).

2. Consider arandom sample X1, ..., X, from the alternative distribution with some
parameter py. Estimate the parameter px by the method of moments and then
transform this estimator to create an estimator of 6x = px(1 — px). Examine the
unbiasedness and consistency of this new estimator of the variance. How is it
different from the ordinary sample variance?

3. Consider arandom sample Xj, ..., X,, from the alternative distribution with some
parameter px. From the example on page 50 we know that an asymptotic con-
fidence interval for the parameter px whose confidence level is 1 — « is

=~ VA'I I_A'l - VAn I_An
(Pn —Ul-q/2 %, PntUl—qg/2 % )

Using this information derive a confidence interval for the parameter 6x = px(1-
px)-

Suppose that the confidence interval for the parameter px was calculated from
the data. Interval (0.35,0.55) was obtained. In that case, how does the confi-
dence interval for the parameter 0x = px (1 — px) look?

4. Let Xi,...,X, be a random sample from N(uy,9) distribution. How many ob-
servations do we need so that the length of the confidence interval for ux with
the confidence level of 0.90 is at most 0.25?

5. Let X,, be the sample mean of a random sample Xj, ..., X, from Po(1x) dis-
tribution. Determine the asymptotic distribution of the sample mean X,, and
based on this distribution construct an asymptotic confidence interval for the
parameter Ox = exp{-1x}.

6. Let Xi,..., X, be a random sample from the uniform distribution R(0, 1). Let
ky = [Vn |. Prove that X, .
n—oo

The end of
self-study for
week 5

(3.11.-7.11.).
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4. TESTING OF STATISTICAL HYPOTHESIS

4.1. BASIC NOTIONS AND DEFINITIONS

Let X,..., X, be a random sample of independent k-dimensional random vectors
with distribution Fx € F, where ¥ is our model. Let 8 = ¢(F) € R? be the character-
istic of the distribution (so called parameter), which is of our interest and denote by
0= {t(F), Fe¥F } C R4 the set of all possible values of this parameter in model ¥ (so
called parameter space). Denote the true value of our parameter of interest x = t(Fy)
and let X = (X3,..., X,) denote all of the observed data.

Examples. All of the new theory of this chapter will be explained on the following
examples.

A. Let Xj,..., X, be a random sample from the distribution N(0y, 002), where ag >0
is known. Our model is
74 ={N(6, d3), 0 € R}.

B. Let X,..., X, be a random sample from the distribution N(6y, 0}2(), where 0)2( is
unknown. We work with model

75 ={N(0,0%), 0 € R, 6°>0} > F

C. Let Xi,..., X, be a random sample from the distribution Fx with finite positive
variance. Then we work with non-parametric model

FC=Li>FP o T
The tested parameter will be the expected value 0 = / x dF(x), whose true value is
0x = E X;, the dimension d of our parameter 6 is 1. Parameter space is © = R.

Choose two non-empty disjoint subsets of ® and denote them ©p a ©;. Assume
that we are not interested in the exact value of 8x, but we want to answer the question
whether 0x € ©; or Ox € 9;.

Definition 4.1 (Null hypothesis and alternative hypothesis)
* The set Oy is called the null hypothesis and the set O, is called the alternative
hypothesis.
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4. Testing of statistical hypothesis

¢ Denote o
Fo = {F € F : t(F) € Op},

i.e. all distributions from model ¥ whose parameter satisfies the null hypothe-
sis. If 7y = {Fo} (i.e. there is exactly one distribution from our model that sat-
isfies the null hypothesis), the null hypothesis is called simple null hypothesis,
otherwise we call it composite null hypothesis.
¢ Denote
7—‘1d=f{FeT:t(F)e®1},

i.e. all distributions from model # whose parameter satisfies the alternative hy-
pothesis. If 71 = {F;} (i.e. there is exactly one distribution from our model that
satisfies the alternative hypothesis), the alternative is called simple alternative,
otherwise we call it composite alternative.

Remark.
e Null hypothesis is usually denoted by Hj, alternative by H;. We speak about fest-
ing the null hypothesis

Hy : 0x € ©p against the alternative H; : 0x € 0.

* We are in the situation of simple hypothesis, if ©y = {6y}, i.e. it contains only
one point, and there exists exactly one distribution Fy € ¥ such that ¢(Fp) = 6.

» Simple alternative occurs, if ®; = {60}, i.e. it contains only one point, and there
exists exactly one distribution F; € ¥ such that ¢(F;) = 0.

Usually, we take ©; = ©f and 71 = #. If this was not the case, i.e. @ U ©; ¢ ©, our
model can be narrowed to 70 = {F € ¥ : t(F) € ©g U 0;}. Therefore we can assume
without loss of generality that ©, = ©F a 71 = 7.

Choice of hypothesis for one-dimensional parameter 6

e Most common choice of null hypothesis is ©p = {6y} for some chosen 6y € R,
i.e. we test the null hypothesis Hy : 0x = 6. We take ©; = @ as the alternative,
i.e. Hy : Ox # 0y. This procedure is called two-sided test or test against two-sided
alternative.

¢ Other possibility is to take either g = (-, 6y], i.e. test Hy : Ox < 6p against
H, : 0x > 6y, or Oy = [0y, ), i.e. test Hy : Ox > Oy against H; : Ox < 6p. These
tests are called one-sided tests or tests against one-sided alternative. Notice that
the extreme value of 6, is included in the null hypothesis.

The choice of the hypothesis is given by the practical problem that we are trying
to solve. In some cases, the choice can be different from the three possibilities men-
tioned above. However, in this lecture, we will only deal with one-sided and two-
sided tests.

Examples. Consider two-sided test of parameter 6 = t(F) = f xdF(x) € R. We test
the null hypothesis Hy : 0x = 6y against the alternative H; : Ox # 6p.
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4. Testing of statistical hypothesis

A. Take model ¥4 = {N(6,072), 6 € R}. In this case, we have % = {N(6p, 0p)},
so we are in the situation of simple null hypothesis. Alternative is composite,
Fi = {N(6,07), 6 €R\ {6}}.

B. In model ¥% = {N(6,0?), 6 € R, o? > 0} we have a composite null hypothe-
sis, fo = {N(6p, 0%), o > 0}, and the alternative hypothesis is also composite,
71 = {N(6,0%), 6 € R\ {6}, o > 0}.

C. For model ¥¢ = £2, the hypothesis is composite, Fy = {F € £Z : t(F) = 6}, and
so is the alternative, 71 = {F € L3 : t(F) # 6p}.

We would like to decide, based on random sample X3,..., X,,, whether Hy holds
or not. To do that, we take appropriately chosen function of our data S, (X), which is
called test statistic, and appropriately chosen set C, called critical region. Test statistic
is usually one-dimensional; critical region is then some subset of R. Our decision is
then based on whether test statistic lies in critical region or not.

* IfS,,(X) € C, then the conclusion is that we reject null hypothesis Hy and accept
alternative Hj.

e If S,(X) ¢ C, then the conclusion is that we cannot reject the null hypothesis
Hy and accept alternative H;.

Remark. Some authors define critical region as a subset of the sample space, i.e. in
our notation S, 1(C). They reject the hypothesis Hy if X € S;;'(C).

Definition 4.2 (Test) Statistical test is defined by test statistic S,,(X), critical region C
and rule for rejecting hypothesis defined above. Two tests (S,(X), C) and (S;,(X),C*)
are called equivalent if and only if S,(X) € C & S;(X) € C* almost surely, i.e. both
tests give us the same result with probability 1.

4.2. SIGNIFICANCE LEVEL AND POWER OF A TEST

There are four possible scenarios that can occur while testing hypothesis, depending
on whether the null hypothesis holds or not and whether the test rejects the null
hypothesis or not.
¢ The null hypothesis holds, test does not reject it, i.e. Ox € ©p and S, (X) ¢ C.
In this case, the test made the right decision.
¢ The null hypothesis holds, test rejects it, i.e. x € Oy and S,(X) € C. In this
case, the test made the wrong decision.
e The null hypothesis does not hold, test does not reject it, i.e. 6x ¢ 0y and
Sn(X) ¢ C. In this case, the test made the wrong decision.
e The null hypothesis does not hold, test rejects it, i.e. Oy ¢ ©y and S, (X) € C.
In this case, the test made the right decision.
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4. Testing of statistical hypothesis

Definition 4.3 (Type I and II error)
(i) If test rejects true hypothesis, we call it type I error.
(ii) If the test does not reject hypothesis that does not hold, we call it type II error.

The four possible scenarios are presented in table 4.1.

Table 4.1.: Possible scenarios for testing hypothesis.

Hy is not rejected | Hy is rejected

Hj holds OK type I error

Hy does not hold type II error OK

It is not possible to avoid type I and II errors. The standard statistical approach to
testing hypothesis is to control the probability of type I error.

Regarding type II error, the ideal approach would be to choose such test that min-
imizes the probability of type II error. However, since the probability of type II error
depends on the choice of alternative, we can only find these ideal tests in cases, where
the alternative is not too big.

4.2.1. SIGNIFICANCE LEVEL

Take F € ¥ and denote
Pr[Sa(X) € B] = / 1{Sn(x) € B} dF(x1) - - - dF ().

If there exists a unique relation between the parameter # € © and the distribution
F € F, then we can write

Po[S.(X) € B] = / 1{Su(x) € B} dF(x1) - dF (zy), (4.1)

where F is the distribution satisfying ¢(F) = 6.
Notice that we can also work with (4.1) if the distribution of the random variable
S, (X) is the same for all F such that t(F) = 6.

Definition 4.4 (Significance level) Fix a € (0, 1).
(i) If the critical region C satisfies condition

sup Pr[S,(X) € C] = «,
Fe¥Fy

we say that test (S,(X), C) has significance level equal to a.
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4. Testing of statistical hypothesis

(ii) If the critical region C satisfies condition

sup lim Pr[S,(X) € C] = a,

FeFo n—oo
we say that test (S,(X), C) has significance level a asymptotically.

Remark.
e If the set ¥o = {Fy} has only one element, then the significance level can be
written as
a = P90 [Sn(X) S C] , where 0() = t(F()).

* Roughly speaking, significance level is the probability of type I error, i.e. prob-
ability of rejecting true hypothesis. If the hypothesis contains more than one
value of parameter, it is the biggest possible probability of type I error.

» Test that reaches the significance level a exactly is called exact test. Test that
reaches the significance level a only asymptotically will be called asymptotic
test.

Standard approach to testing hypothesis can be summarized in the following steps.
1. At first, we specify the required significance level a, which should be reached
exactly or asymptotically by the test.
2. We choose appropriate test statistic S, (X).
3. We choose the critical region C = C(«) according to a, such that the significance
level (exact or asymptotic) will be « and the probability of type II error will be
the smallest possible.

Remark.

* Significance level is chosen to be small, generally we choose a = 0.05.

e If the test statistic S,,(X) has discrete distribution, it is not possible to reach any
significance level a. If the required level a is not reachable, we choose such
level o’ < a, which is the closest to the originally required level a. This guaran-
tees that the probability of rejecting true hypothesis cannot be larger then the
chosen tolerance a.

Terminology.
 Test, whose real significance level is smaller then required «, is called conser-
vative test. Test, whose real significance level is larger then required «, is called
liberal.
4.2.2. POWER OF A TEST
Definition 4.5 (Power function and power of a test) Function
Bn(F) = Pp[Sa(X) € C]

which maps ¥ into [0, 1] is called the power function of a test.
For F € #; the value B, (F) is called the power of a test against alternative F.
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4. Testing of statistical hypothesis

Remark.

* The power of a test is the probability, that we reject the null hypothesis, which
does not hold in the case of given alternative F. The power of a test depends on
the alternative and it is equal to the complement of probability of type II error
to 1. There is no non-trivial lower boundary for the power of a test; we cannot
assume, that the probability of type II error is small.

* If the test has exact (resp. asymptotic) significance level «, then the following
must hold

sup f,(F) =a, resp. sup lim B,(F)=a.
Fe%y Fefy "7

o If there exists a unique relation between 0 € © and F € ¥ then the power func-
tion is usually defined as a mapping of the parameter space © into [0, 1] given
by the formula

Bn(0) = Po[Sn(X) € C].

Remark (Interpretation of results of the test).

* If we reject the null hypothesis Hy, it means that the distribution of our data is
not consistent with the distribution it should have under the null hypothesis.
The probability that we wrongly reject true hypothesis is bounded from above
by level a, which is chosen to be small. The null hypothesis Hj is rejected, we
have proven that the alternative H; holds.

e If the result of the test is that we cannot reject the null hypothesis Hy, it means
that the distribution of our data is not different enough from the distribution,
which our data should have under the null hypothesis. We cannot conclude
that the null hypothesis Hy holds and the alternative does not, since the proba-
bility of a wrong decision in the case, that the hypothesis does not hold, can be
considerably large. So, this result does not confirm that the hypothesis holds.

e The null hypothesis Hy and alternative H; are not in symmetric positions in test-
ing. The null hypothesis can be rejected, but it cannot be confirmed or proven.

To be able to choose a critical region C(a) which keeps the required significance
level @, we must be able to determine the exact or asymptotic distribution of our
test statistic under the null hypothesis and this distribution cannot depend on any
unknown characteristics of distribution Fx.

The test statistic S, (X) is chosen so that
(i) its distribution is sensitive to the real value of tested parameter Oy;
(ii) its distribution under the null hypothesis* is known (at least asymptotically) and
it does not depend on unknown parameters.

After choosing the test statistic, the critical region C(«) is chosen so that
(i) the required significance level a is kept;
(ii) all values of test statistic which are less probable under the null hypothesis than
under the alternative are included in the critical region.

* In the case of one-sided tests we should say if the true value of tested parameter is at the boundary
of null hypothesis and alternative.
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4. Testing of statistical hypothesis

Example (Al). TWO-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH KNOWN VARIANCE.

Let us have random sample Xj,..., X,, from distribution Fx = N(0, ag) e 74 =
{N(6,0%), 6 € R}. We test

Hy: 6x = 6 against Hy : 0x # 6.

Our test statistic will be based on estimator of our parameter of interest 0y, i.e. the
sample mean. We know that

‘/ﬁ (yn - 90)

0o

n=

has under the null hypothesis Hy the distribution N(0, 1). If the hypothesis does not
hold, i.e. 8x — 6y = 6 # 0, then

g - VA Xy —Ox +0x —60) _ Vn(Xn—0x) V0o
" o) 0o 0o

has the distribution N(v,, 1), where v, = ‘f‘s. If the null hypothesis does not hold,
then the distribution of our test statistic moves further away from zero, and this dis-
tance is larger with larger n and |6x — 6p|. So, values of our test statistic far away from
zero will lead to rejecting the null hypothesis.

The critical region C(«) is chosen as

(oo, cu(@] U [eu(@), o).

Critical values c¢; (a) and cy (a) are chosen so that

Poo[Un € (=0, c(a)]] =Py [Un € [cu(a), )] = a

2
This ensures that the significance level is exactly equal to a. Thanks to the symmetry
of the density of Gaussian distribution we have cy(a) = —cr(a) = uj_q2. The test
works in the following way

\/ﬁ ()_(n - 60)

reject Hy: 0x =6y & |Uy|=
0o

2 Ul-q/2,

i.e. reject the null hypothesis if X, differs from hypothetical value 6, by more than

Ul_q/2 00

N

We put 1.96 as uj_q/» for a = 0.05 and 1.645 for a = 0.1. The critical region and
the densities of test statistic under the null hypothesis and alternative can be seen in
figure 4.1.
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4. Testing of statistical hypothesis

Let us compute the power function of this test. Take some 6 such that 6—6y = § # 0.
If 0 is the true value of our parameter, then the distribution of U, is N(v,, 1) and the
distribution of U,, — v, is N(0, 1). We get

Bn(0) = Pg[Uy, € C()] = Po[Uy < —tt1-as2| + Po[Un > t1-as2] =
= PB[Un —Vp £ ~Ul-q/2 — Vn] + PB[Un —Vp 2 Ul-qgj2 — Vn] =
= (I)( —Ul_q/2 — Vn) +1- (D(ul_a/z - Vn).

Since ®(-x) = 1 — ®(x), we can rewrite this and get
Bn(0) = D(—ui—gj2 — |Vl ) +1 = ®(t1-a/2 — [Val). (4.2)

For 6 = 6y we get that v, = 0, so ,(6p) = a. The power function of this test can be
seen in figure 4.2.

Let 6 be non-zero. Then |v,| goes to infinity with increasing n and it turns out that
from certain n the value ®(-u;_,/2 — |v4|) is negligible compared to ®(u1_q/2 — |Val).

The power function can be approximated by 1 — @ (u;_q/2 — M), and it holds that

a0

Bu(0) = 1= D(w1qp2 — Vi), (4.3)

a0

By solving the equation
|
1- CID(ul_a/g — @) =B,

0

Figure 4.1.: Density of the test statistic U,, under the null hypothesis and alternative
for v, =1 and a = 0.1. Critical values are blue, critical region is red.

Density of the test statistic U,
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4. Testing of statistical hypothesis

Figure 4.2.: The power function for two-sided test of expected value of Gaussian dis-
tribution with known variance for 6, = 0, og =1, n =30 and a = 0.05.

BA(6)

we can compute, how many observations are needed for the test to have power at
least g (for example 0.8). The required sample size is

0.2 2
n> (Ui—q/2 — u1—ﬁ)25—g = (U1—q/2 + uﬁ)za—‘;- (4.4)

Remark. As we have seen in the previous example, the power of the test depends on
* significance level a;
e alternative 0, respectively her distance § from the null hypothesis 6y;
¢ variance of the observations 0'3;
e sample size n.
Out of all of these factors, we can only influence the sample size. If we want our
test to have sufficient power, we need to have at least the number of observations
computed in (4.4).

Remark. Notice that the power of the previous test converges to 1 as n — co regard-
less of the alternative (see (4.3)). This property is called consistency of the test. Con-
sistency is very desirable property, otherwise we might not be able to reach required
power, even with large sample size.

Definition 4.6 Test (S,(X),C) with level « is called consistent test, if VF € #; we have
that lim,_,., 8,(F) = 1.

We will define one more useful property of statistical test: unbiasedness.
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4. Testing of statistical hypothesis

Definition 4.7 Test (S,(X), C) with level « is called unbiased test, if VF € 1 we have
that 8, (F) > a.

Remark.

e Beware: the notion of unbiasedness and consistency of test have only vague (if
any) relation to notion of unbiasedness and consistency of estimate.

e Unbiasedness of a test requires that the power against every alternative is at
least a. If it was not the case, i.e. 3F € #; such that §,(F) < a, the test would
take this F as a part of the null hypothesis.

* Test that always rejects Hy with probability a (for whatever data) is unbiased.
Especially, there exists unbiased test.

e Sometimes the notion of unbiasedness and consistency is defined with respect
to specific alternative. So, for example, we would say that the test is consistent
against alternative F € ¥, if we have that lim,,_,., §,(F) = 1.

4.2.3. CHOICE OF CRITICAL REGION
The critical region C(«) is usually taken in one of the following forms:
o [cU(a), ), i.e. we reject for large values of the test statistic S, (X);
o (—oo,cr(a)], i.e. we reject for small values of the test statistic S,,(X);

* (—oo, cL(a)] U [CU(a), ), i.e. we reject for oo small and for too large values of
the test statistic S, (X);

* (=00, —cy(@)] U[cu(a), ), i.e. we reject for large values of |S,(X)].

The constants ¢ (a) a cy(a), which determine the boundary of our critical region,
are called critical values. These values are chosen so that the test has the prescribed
significance level. As we will see in the following examples, critical values can be
expressed using quantiles of appropriately chosen distribution function Gy.

Critical region in the form of C(«a) = [cy(a), =)

At first, consider for simplicity exact test. Then the critical value cy () is chosen so
that
sup Pe[S,(X) = cy(a)] = a.
Fe¥Fy

We will only work with examples where we can easily find Fy € %, such that

sup Ps[Sp(X) > ¢] =Py [Sp(X) > ¢] VceR. (4.5)
Fe%y

When we look for the distribution Fy, we usually look for a distribution which satisfies
the null hypothesis (i.e. it lies in %), but it is the closest to the alternative (i.e. it
is the closest to the set 71, see example (A2) below). Let Gy denote the cumulative
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distribution function of S, (X), if the distribution of X; is Fy. Then in the case of
continuous distribution function we get

cy(a) =cy(a) =Gy (1-a). (4.6)
More generally if Gy is not continuous then one can use the open critical region
C(a) = (Gy'(1 - ), ).

Note that the above critical region works also for Gy continuous. That is why in this
chapter and in Chapter 4.3 (about p-values) we will use open critical regions as they
are easier to express. Nevertheless in Chapter 4.4 we will use closed critical regions
so that it matches with open confidence intervals.

In the case of the asymptotic test we can use as Gy the distribution function of the
asymptotic distribution of our test statistic under the null hypothesis. More precisely,
Gy is a function that satisfies

sup lim Pp[S,(X) > c] =1- Go(c-).
Feﬁ) n—oo

Since for us the function Gy will always be continuous, the right-hand side of the last
equation will be 1 — Gy(c¢).
Critical region in the form of C(a) = (- », c,(a)]

Similarly as above let Fy € %y be a distribution of X; satisfying

sup Pr[S,(X) < c] =Pg[Sn(X) <c] VeceR.
Fe%y

Let Gy denote the distribution function of S,,(X), if the distribution of X; is Fy. Then
cz(a) is chosen as
cr(@) = Gyl (a). (4.7)

Again, if Gy is not continuous then the open critical region
C(a) = (-, Gy ()

will do the job.
Critical region in the form of C(a) = (-eo, ¢z ()| U [cy(a), )
In this case it is common to choose the critical values ¢; (a) and cy(«) so that

sup Pe[S(X) < c1(@)] = sup Pe[S,(X) > cu(a)] = 3, (4.8)
Fe¥Fy Fe¥Fy
resp.
sup lim Pr[Sn(X) < cr(@)] = sup im Pe[Su(X) = cy(a)] = <. (4.9)
Fef "% Fef "% 2
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4. Testing of statistical hypothesis

Furthermore in the situations we will be dealing with, the distribution (exact or asymp-
totic) of the test statistic S,,(X) under the null hypothesis will be always the same,
for any true distribution F from %, (see also examples (B) a (C) on page 74 and 76).
Denote this distribution by Gy. This means that we can omit the supremum in the
equations (4.8) and (4.9) and the condition is simplified to

Go(cr(a)) =1~ Go(cy(a) =) = %-

Critical values are equal to
cr(@) =GyH(a/2) and cy(a) =Gyl (1 - a/2). (4.10)

Example (A2). ONE-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH KNOWN VARIANCE.

Let us have random sample X, ..., X, from the distribution Fx = N(6x, ag) eFA=
{N(6,0?), 6 € R}. We test

Hp: 0x < 6y against H : 0x > 6.
Test statistic is the same as in example Al

_ \/ﬁ (Yn - 90)
Its distribution for 6x = 6y is N(0, 1). For the values 0x = 6y + 6 we have U,, ~ N(vp, 1),
where v,, = (’;05. If the null hypothesis is violated, then the distribution of the test
statistic is moving to the positive values and it is further away with larger n and §.
Too large positive values of the test statistic will lead to rejecting the null hypothesis.
The critical region will be C(a) = [cy(a), ). The critical value ¢y (a) will be chosen
so that

sup Py[U, € C(a)] = a.
00y
Since _
Po[Un € [cu(a), )] = Pg[W’g—g‘%) > CU(a)]

is increasing function of parameter 6, we have
sup Pr|U, € C(a)| = sup Pg[U, € C(a)] = sup Py|U, € [cy(a), )]

FeFy 6€0g 0:0<6y
=P, |Un € [cu(a),0)] =1 - D(cy(a)).

So for cy(a) = u1-, this test satisfies the condition supy.g, Po[Un € C(a)] = a and so
its significance level is a. It is worth noting that in this example the distribution F
from (4.5) is N(6y, ag) and the function Gy, i.e. the distribution function of the test
statistic U,, for X; with distribution Fy, is the cumulative distribution function ® of
N(O, 1).

73



4. Testing of statistical hypothesis

Figure 4.3.: The power function of a test of the expected value of Gaussian distribu-
tion with known variance against right-sided alternative for 6y = 0, ag =1,
n =30 and a = 0.05.
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Altogether we get the rule

n(X, -6
reject Hy: 0x <6y < U,= M > Ul—q,
0o
i.e. reject the null hypothesis, if X, is larger than 6, by more than ’“—‘/“J"’ We take

1.645 as the quantile u;_q/, for @ = 0.05 and 1.282 for @ = 0.1. The critical value for
one-sided test on level «a is the same as the critical value for two-sided test on level
a/2. This follows from the fact that we reject the null hypothesis only in one of the
tails of the distribution of U,,.

The computation of the power function is easier than before. Take some 6 such
that 6 — 6p = 6 and we get

ﬁn(e) =PolUpn = u1-0] =PolUp = vy 2 1o — V] =1 - CD(ul—a - Vn).

The graph of the power function can be seen in figure 4.3. The sample size required
for the test to have at least the power g against the alternative 6y + 8, § > 0, is

2
g,
n>(Uj—q+ u[;)z 52

Example (B). TWO-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH UNKNOWN VARIANCE.
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4. Testing of statistical hypothesis

Take random sample X, .. ., X,, from distribution Fx = N(0x, 02) € F8 = {N(0, 6°), 0 €
R, 0% > 0}. We test Hy : 0x = 6 against H, : 0x # 6.

The test statistic from examples (Al) and (A2) cannot be used in this example, since
the real variance o2 is unknown. However, we can replace it by the sample variance
S2 and get statistic

\/ﬁ ()_(n - 90)

n = )

Sn

which has, in this model under the null hypothesis Hy, t,-1 distribution (see theo-
rem 2.10). If the null hypothesis does not hold, i.e. 0x — 6y = § # 0, the test statistic

can be written as P

JU/(n-1)

where Z ~ N(v,,, 1), v,, = ‘UFLX&, U ~ Xi _,and U, Z are independent. Distribution of this
random variable is called non-central t distribution with n — 1 degrees of freedom and
noncentrality parameter v,. Its characteristics (density, distribution function, mo-
ments) are complicated, but it is sufficient to know that it can be approximated for
large n by the distribution N(v,, 1).

As in the previous examples, if the null hypothesis does not hold, the distribution
of the test statistic is moving away from zero, and this distance grows with larger n
and |6x — 6p|. So values of the test statistic far away from zero will lead to rejecting
the null hypothesis.

The critical region is ( — o, ¢z (a)] U [cy(a), ). Notice that we take z,_; distribu-
tion as Gy, since under Hy it holds that T,, ~ ,_1, for any positive o2. Since t,_; is a
symmetric distribution, we get, using (4.10), the following

T, =

cr(a) = th-1(a/2) = ~t,-1(1 = a/2),  cy(a) =tp-1(1 - a/2).

Let us complete this example by verifying that the test has (with the above choice of
critical values) significance level a. Compute

sup Pp(T, € C(a)) = sup Py 2(Tn < —ty-1(1 —a/2) or T, > t,_1(1 - a/2)) = a.
Fe%y 02>0

So the test has exact level a and we get the rule

\/ﬁ ()_(n - 90)
S

n

reject Hy: 0x =6y & |T,| = > ty-1(1 — a/2).

This means that the null hypothesis will be rejected if the sample mean X, will dif-
fer from the hypothetical value 6, by more than % This test is called one-
sample t-test.

The power function of this test can be obtained by similar process as in example
(1A). Take some 60 such that 6 — 6y = 6 # 0. If 6 is the true value of our parameter,
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4. Testing of statistical hypothesis

then the distribution of 7, is non -central ¢ distribution with n — 1 degrees of free-

dom and noncentrality parameter v,, = ‘%‘s. Denote the distribution function of this
distribution as G,,,, and compute

Bu(0,0%) =Py 2 [T, € C(a)]
= P@_g)z( [Tn < _tn—l(1 - (X/Z)] + P9,g§ [Tn 2 tn—l(l - a/2)]
= Gpy, (~th-1(1 = @/2)) + 1 = Gy, (tn=1 (1 — @/2)).

Non-central ¢ distribution has non-symmetric density, hence the result cannot be
simplified. If the number of observations n is large enough, we can approximate the
power using the formula (4.2) or (4.3).

Using (4.3) we can get an approximation for the number of observations n needed
for the test to have at least power B. The required sample size is

» 0%
n = (ul_a/z +Ug ? + 1.
We add one to the left side to compensate for approximating ¢-distribution by Gaus-
sian. To compute the power of our test and the required sample size, we either need
to know the true value of variance o2 or it can be replaced by some preliminary esti-
mate (since these calculations are usually done before obtaining our data).

Example (C). TWO-SIDED TEST OF THE EXPECTED VALUE OF ANY DISTRIBUTION WITH
FINITE VARIANCE.

Take random sample Xi, ..., X, from distribution Fx € #¢ = £2. Denote EX; = 0x
and var X; = 0. We test Hy : 0x = 6 against H; : 0x # 6.

According to theorem 2.9 (limit theorem for T,) the random variable

‘/ﬁ ()_(n - 90)
Sn

n=

has in this model under Hy asymptotic distribution N(0, 1). If the null hypothesis
does not hold, i.e. Ox — 6y = § # 0, then it can easily be shown*, that the test statistic

X, — Ox + 0x — 6 X,-0
Tn:‘/ﬁ(n x + Ux O)ZW(VL X)+\/ﬁ£

converges in probability to +co or —co, depending on the sign of §. So the values of
the test statistic far away from zero will lead to rejecting the hypothesis.
The critical region will be ( — oo, ¢z (a)] U [cy(a), ). Notice that

sup lim P (|Tu| > ur-as2) = P(IZ] 2 ur-ap2) = @,

Fegy "

* We recommend to do this as an exercise.
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4. Testing of statistical hypothesis

where Z ~ N(0,1). So Gy in (4.10) is, in this example, the distribution function of
N(0,1). Therefore the critical values cy(a) = —cr(@) = uj_q/2 guarantee that the
asymptotic level of the test is equal to a.

Instead of the critical value u;_,/, we can use t,_1(1—a/2), since the test is asymp-
totic and t,-1(1 — @/2) = uj_q4/2 for n — co. As |t,_1(a)| > |ue| holds, the test will be
more conservative, if we use the quantiles of ¢-distribution instead of the quantiles
of Gaussian distribution.

Altogether we get the rule

\/ﬁ (Yn - 60)

reject Hy: 0x =6y < || = S
n

> tp-1(1 - a/2).

It is again one-sample ¢-test. We have shown that, as an asymptotic test, it can be
used for any data from distribution with finite variance.

Exercise.

1. In example (A1) (page 68) consider test (Uy,, C(a)), where C(a) = [u1/2-a/2, U1/2+a/2]-

Show that this test has significance level exactly a. Further show that the follow-
ing holds for this test: for all 6 not equal to 6

fn(0) <a and  lim §,(6) =0.

2. In example (Al) (page 68) consider test (Uy,, C(a)), where C(a) = [u1_q, ). Show
that this test has significance level exactly a. Is this test unbiased? For which 6
is this test conservative? For which 6 is this test consistent ?

3. Prove that the test from example (A2) (page 73) is unbiased and consistent.

4. Prove that the test from example (B) (page 74) is unbiased and consistent.
Hint: To prove unbiasedness we can use the fact that for random variable Z with
non-central student distribution with v degrees of freedom and non-zero param-
eter of noncentrality the following holds: P(|Z,| > t,(1 — a/2)) > a.

5. Prove that the test from example (C) (see previous page) is consistent.

6. The PR department of a certain high school would like to prove that the ex-
pected value of IQ of their students is higher then 105. They expect that the real
expected value of IQ of their students is 110 and the standard deviation of the
distribution of IQ of these students is 15. Find out the number of students whose
IQ needs to be measured so that if we choose the significance level of 5%, our
test will prove with probability 95 % that the expected value of the student IQ is
higher than 105.
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4. Testing of statistical hypothesis

4.3. P-VALUE

Deriving results of the test based on whether S, (X) lies in C or not is not the only
way nor the most common way. Results of the test ale usually derived using so called
p-value. It corresponds to the smallest possible significance level on which we could
reject the null hypothesis.

Consider null hypothesis Hy : 8x € O, against alternative H; : x € ©; and, for
fixed @ € (0,1), let (S,(X),C(a)) be a test with prescribed significance level a. For
precision define C(1) = (-0, ).

As we know from remark on page 66, if S, (X) has discrete distribution under the
null hypothesis, it is not possible to reach any desired significance level of a test.
If our desired level « is unreachable, we denote by C(«) the critical region of a test
which has level a’ < a, where a’ is the closest to the desired a.

Definition 4.8 (P-value) Let s, = S,(x) be the observed value of the test statistic.
Then we define p-value or the obtained level of test as

p(z) =inf {a € (0,1) : 55 € C(a)}.

If the test (S,(X), C(a)) is exact (resp. asymptotic), the p-value is called exact (resp.
asymptotic).

If a test has prescribed level a, the following rule can be used to make our conclu-

sion o .
‘Ho is re].ected, %fp(sc) <a, (411)
Hy is not rejected, if p(x) > a.
Therefore if we know the p-value p(x), we can reject the null hypothesis on all levels
a’ > p(x), but we cannot reject it on levels @’ < p(x). This is the reason for calling
p-value obtained level of test.

If our decision is based on p-value, we do not have to state the critical region and
we do not have to recalculate it, if we decide to change the level of a test. However,
we do have to highlight that changing the significance level after the result is known
is not legitimate.

Remark.

e P-value can be understood as the amount of agreement of data with the null
hypothesis. If p(x) < a, the null hypothesis is rejected “safely”. If p(x) is close
to @, we sometimes say that the result is “on the verge of statistical significance”.

e P-value cannot be explained as a “probability that the null hypothesis holds”.
Whether the null hypothesis holds or not is not a random event, but a deter-
ministic one.

* If S, (X) has discrete distribution, then the rule (4.11) gives us a test which has
the closest possible reachable level a’ such that a’ < a.
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4. Testing of statistical hypothesis

4.3.1. CALCULATION OF P-VALUE FOR ONE-SIDED CRITICAL REGION

As can be seen from definition 4.8, p-value is a function of observed data x and
her calculation depends on the used statistic S,(X) and on the way the critical re-
gion C(a) changes if we change a. The simplest case is the situation with one-sided
critical region, i.e. we reject for too large (or too small) values of the test statistic.

Assume at first that we reject for too large values of the test statistic. For this pur-
pose it is easier for a moment to think about the critical region in the open form
C(a) = (cy(a), ). We know from Chapter 4.2.3 that cy(a) = limj_o, G;'(1 - a),
where Gy is a distribution function such that

sup Pp[Sp(X) = ¢c] =1-Go(c-) VceR.
Fe¥Fy

In this case we get from definition of p-value that
p(z)=inf{a € (0,1): sz > Gy '(1-a)} =1-Go(se — ). (4.12)

We can proceed analogously for a critical region in the form of C(a) = (-0, G; L(a)),
where Gy is the distribution function such that

sup Pr[S,(X) <c] =Gp(c) VceR.
Fe¥Fy

So from the definition of p-value
p(z) =inf{a e (0,1): s, <Gy (a)} = Go(sz). (4.13)

Remark.
¢ The formulas (4.12) and (4.13) can be used even for asymptotic p-value if G is
the distribution function of the asymptotic distribution of test statistic under
the null hypothesis. Le. consider critical region in the form of C(a) = [cy(a), ).
Then we need that Gy is a distribution function that satisfies

sup lim Pg[S,(X) >c] =1-Gy(c-), VceR.

Fefo "7
Similarly for critical region C(a) = (— o, cL(a)] we need that Gy satisfies

sup lim Pr[S,(X) < ¢] = Go(c), VceR.

FeFp n—oo

* Notice that for critical region C(a) = [cU(a), o) the formula (4.12) for p-value
can be rewritten into

p(x) = 1 - Go(sz—) = sup Pr[Su(X) > 5. (4.14)
Fe%y
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4. Testing of statistical hypothesis

Similarly for critical region C(a) = ( — oo, cL(a)]

p(x) = Go(sz) = sug Pr[Sn(X) < sz]. (4.15)
Fe%Fy

So the p-value can be also viewed as a (maximal possible) probability, that un-
der the null hypothesis we would observe data which would be in the same or
larger disagreement with the null hypothesis than the data we analyse.

Example (A). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH KNOWN VARI-
ANCE.

Let us have random sample Xj,..., X,, from distribution Fx = N(0, 002) e FA =
{N(6,0?), 6 € R}. We test

Hy: 0x > 6 against H; : 6x < 0.

Test statistic is chosen as

\/ﬁ (j_(n - 90)

n= - _
0o

and we reject for small values of the test statistic.

Notice that (see example 4.2.2) the distribution of the test statistic is N(v,, 1), where
the expected value v, ‘F(GX %) js non- negative under the null hypothesis. Let u,
denote the observed value of our test statistic U,. Since the critical region is C(a) =
(= oo, c ()], where ¢ (a) = 7! (a), we get from definition 4.8 that

p(x) =inf{a € (0,1) : uy < P 1(a)} = D(uy).

Example (B). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH UNKNOWN
VARIANCE.
Take random sample Xi,...,X,, n = 26 from distribution Fx € #? and consider
0x = EX;. We test
Hp: 0x < 6y against H : 0x > 6.

To do that we use the test statistic

Vi (X, - 6o)
n Sn )
and the null hypothesis is rejected for large values of our test statistic.
Suppose that we have calculated the value of our test statistic and denote this as #,.
It was shown in the example B on page 74 that the test statistic 7,, has non-central

t-distribution with n — 1 degrees of freedom and parameter of noncentrality v, =
‘/ﬁ(%};%). Notice that under the null hypothesis this parameter is negative or zero.
So large values of our test statistic will give evidence against the null hypothesis

and critical region will be of form C(a) = (cy(a), ). Given all of this, we choose
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4. Testing of statistical hypothesis

the distribution function of #,_;- distribution as Gy in calculating the critical region
using the formula (4.6), i.e. in our example we use the distribution function of ;5. So
cy(a) = tr5(1 — a) and therefore

p(z) =inf{a € (0,1) 1ty > to5(1 —a)} = 1 - Gos (1),

where Gos is the distribution function of distribution 5.

4.3.2. CALCULATION OF P-VALUE FOR A TWO-SIDED CRITICAL REGION

Again here it is easier to think about the critical region in the open form C(a) =
(—o0, cr(@)) U (cy(a), ), where —co < ¢z (@) < cy(a) < oo, we get from definition
of p-value that

p(z) =inf {a € (0,1) : s, < cr(@) or 55 > cy(a)}. (4.16)

We know from Chapter 4.2.3 that in the following text we will only encounter situ-
ations where the exact (or asymptotic) distribution of test statistic S,(X) does not
depend on the choice of F from #y. Denote the distribution function of this (exact or
asymptotic) distribution of S,,(X) by Gy. Then according to (4.10) we have that

cr(@) =Gy (@/2), and cy(a) = hli_r){)l Go'(1-a/2).

So thanks to the formula (4.16) we get for the p-value that

p(z) =inf{a € (0,1) : s, < Gy (a/2) or 55 > Gy ' (1 - a/2)}
=2 min {Go(sz), 1 - Go(sz-)}- (4.17)

The formula (4.17) can be simplified in the case that the exact (resp. asymptotic)
distribution G is symmetric around 0 and ¢; = —cy (which is often true in practice).
Then the exact (resp. asymptotic) p-value can be obtained as

p(x) = Pg [ 1S2(X)] 2 [sz] ] =2 (1 = Go(lsx] -))- (4.18)

Example (A). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH KNOWN VARI-
ANCE.

We have random sample X, ..., X,, from distribution Fx = N(x, 6¢) € ¥ = {N(6, 0?), 6 €

R} and we are interested in the hypothesis
Hp:0x =6y against Hj: 0x # 6.

Test statistic is

_ \/ﬁ()_(n - 60)
n — 0_0 )
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and we reject for too large, resp. too small values of test statistic. The calculation of p-
value is fairly easy for this case since the hypothesis contains exactly one distribution
N (6o, ag), which will play the role of distribution Fy. Furthermore, the test statistic U,
has, under the null hypothesis, distribution N(0, 1), which is symmetric around zero.
So p-value can be obtained as

p(x) =2min {1 - ®(uz), P(uz)} =2 (1 — D(Juz)).

Example (B). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH UNKNOWN
VARIANCE.

Take random sample Xi,...,X,, n = 26, from distribution Fx € #? and consider
0x = EX;. We test Hy : Ox = 6y against H; : Ox # 6p. To do that we use test statistic

_ \/ﬁ (X n— 90)
n — S—n,
and the null hypothesis is rejected for too large or too small values of this test statistic.
Suppose that we have calculated the value of our test statistic and denote this value
by . It was shown in example B on page 74 that the test statistic 7;, has non-central
t-distribution with n — 1 degrees of freedom and parameter of noncentrality v, =
Vn(0x — 6y)/ox. Notice that under the null hypothesis this parameter is zero. So

p(m) = 2min {1 - G25(t:c)’ G25(tac)} =2 (1 - G25(|tm|))-

We have used the fact that z-distribution with n — 1 degrees of freedom is symmetric
around zero.
Specifically for z, = 1.37 we get

p(w) = 2 (1 - Gs(]1.37])) = 0.183.

Example (C). Take random sample X, ..., X,, n = 26, from distribution Fx € F¢ =
L2 with expected value E X; = 0. We test Hy : 0x = 0 against H : Ox # 6y. The test
statistic 7,, has under the null hypothesis approximately N(0, 1) distribution, which is
symmetric around 0. We have calculated the test statistic and the result is ¢, = 1.37.
We can use (4.18) to obtain the asymptotic p-value of this test as

p(x) =2 (1 - (|1.37])) = 0.171. (4.19)

We test on significance level a = 0.05 and therefore we cannot reject the hypothesis,
since p(x) > 0.05. However, if we have set (before performing the test) our signifi-
cance level as a’ = 0.2, we could reject the hypothesis.

Notice that in model 72 (i.e. the set of Gaussian distributions with unknown vari-
ance) we could use (4.18) to calculate the exact p-value as

p(x) = 2 (1 - Gos(]1.37])) = 0.183, (4.20)
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where G5 denotes the distribution function of z-distribution #5. As this p-value is
higher than the asymptotic p-value (4.19), it is usual to use the p-value (4.20) cal-
culated using the distribution #5 also in model ¥¢ to be more careful (conserva-
tive). Since the distribution 7,_; converges (in distribution) to Gaussian distribution
N(0, 1), the p-value (4.20) can be viewed as an asymptotic p-value for model F¢.

It is worth noticing that the formula (4.20) can be obtained directly from the defi-
nition of p-value, if we use the critical values c; (@) = t,-1(a/2) acy(a) = t,-1(1-a/2).
In this case we have

p(z) =inf {a € (0,1) : 1.37 < t,_1(/2) or 1.37 > 1,1, (1 - a/2)}
=2 min {1 - G»5(1.37),Go(1.37)} = 2 [1 — Go5(|1.37])].

4.3.3. DISTRIBUTION OF P-VALUE UNDER NULL HYPOTHESIS

Consider now p-value p(X) as a random variable, i.e. statistic calculated from ran-
dom sample X. It can be shown that, under certain assumptions, p(X) has under
the null hypothesis uniform distribution on the interval (0, 1).

Proposition 4.1 Assume that the null hypothesis holds (i.e. Fx € %) and let the
following be true

sup Pr[Sn(X) € C(a)] = Pr [Sn(X) € C(a)],Va € (0,1). (4.21)
Fe%y

Assume that the test statistic S,,(X) has continuous distribution. Then p(X) ~ U(0, 1).

Proof. Denote U = Gy(S,(X)), where Gy is the distribution function of random vari-
able S,,(X), if the distribution of X; is Fx. Notice that in this case the random variable
U has uniform distribution on (0, 1) (see lemma A.2). The proposition will be proven
separately for different forms of critical region.

(i) C(@) = [cy(@), =)

In this case the formula (4.12) gives us p-value p(x) = 1 — Gy(sz). So we can write
for distribution function of random variable p(X)

Pr [p(X) < u] =P [1-Go(Sn(X)) <u| =P[1-U<ul=P[l-u<U]=u

for Yu € (0,1). Therefore the distribution function of p(X) is the distribution func-
tion of uniform distribution on (0, 1), which was to be proven.

(ii) C(a) = (- o0, cr(a)]

In this case we can use (4.13) for Vu € (0, 1) to get

Pr [p(X) < u] = Pr, [Go(Sn(X)) <u| =P[U < u] =u.

(iii) C(a) = (- o0, cz(a)| U [cy(a), )
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Using the formula (4.17) for Yu € (0, 1) we get
Pry [p(X) < u] = Pry[2min {1 - Go(Sn (X)), Go(Sn(X))} < u]
=P[2min {1 - U, U} < u]
=P[2min{1-U,U} <u, U< 3| +P[2min{1-U,U} <u, U > }]
=P[2U <u, U <] +P[2(1-U) <u, U > 1]
=P[U <min{%,1}| +P[U > max {1 - %, 1}]
=4+1-(1-%) =u.
i
Remark. The previous proposition does not hold if the distribution of the test statis-
tic is discrete. It also would not hold if the hypothesis did hold (i.e. Fx € %), but Fx

would not be “the closest” to the alternative, (i.e. we could not replace sup. + Pr by
Pr, in (4.21)).

4.4. DUALITY BETWEEN INTERVAL ESTIMATION AND
HYPOTHESIS TESTING

Consider random sample X = (Xj,..., X,) from distribution Fx € ¥, where ¥ is
some model. Let § = t(F) € R be a parameter and 0x = t(Fyx) its true value. In
chapter 3.5 we have dealt with the problem of interval estimation of parameter 0y,
i.e. we have looked for random variables n; (X) and ny (X) such that

Pe[(n(X), nu(X))360] =1-a (or ml—a) for VF € F.

In this chapter we deal with hypothesis testing, specifically the hypothesis
Hy : 0x = 0y against H) : 0x # 6y.

Both problems are solved by procedures that are similar in some way, even though
they differ in details.

The following proposition shows that there exists certain duality between the prob-
lem of testing hypothesis about some parameter and looking for interval estimate for
the same parameter. Interval estimation can be used to hypothesis testing and test
of a hypothesis can be converted to interval estimation.

Proposition 4.2 (Duality of interval estimates and testing)
(i) Assume that we have two-sided confidence interval for parameter 6x with con-
fidence level 1 — a (exact or asymptotic), in the form (n,(X), ny(X)). Consider
test of hypothesis Hy : Ox = 6y against H; : Ox # 0y based on the rule

Hy is rejected if 6y ¢ (n.(X), nu(X))

. : . (4.22)
H, is not rejected if 6y € (n.(X), ny(X)).

Then the significance level of this test is a (exact or asymptotic).
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(ii) Let there be, for all 6 € ©, a test (S,(X, 0), Co()) of the hypothesis Hy : 6x = 6
against H : Ox # 0 such that for all F satisfying 6 = ¢ (F)

Pp[Sn(X, 0) Cg(a)] =a (or — a).

n—oo

Denote by B, (X) the set containing all parameters 6 € ©, such that for observed
data X we do not reject the hypothesis Hy : 0x = 6. Then for all F € ¥

Pe[Bi(X)360]=1-a (or ——1-a),

and (if B,,(X) is an interval) we have assembled confidence interval for param-
eter Ox with confidence level 1 — « (exact or asymptotic).

Proof. Part (i) Let (n,(X), ny (X)) be exact confidence interval. The proof for asymp-
totic confidence interval would be analogous.
Confidence interval for the true value of parameter 0y satisfies

Pey [((X), nu (X)) 2 0x] =1 - .

So under the null hypothesis, i.e. for 6x = 6y, it holds for all F € 7, = {F € ¥ : t(F) =
6o} that
PF[(UL(X)’ UU(X)) 3 90] =1-a.

Therefore the significance level of the test given by (4.22) is

sup Pr[(n.(X), nu (X)) 3 60| = a,
Fe¥Fy

which was to be proven.

Part (ii) Let (S,(X, 0),Cy(a)) be, for all 6 € O, the exact test of null hypothesis
Hy : 0x = 6 against alternative H; : 6x # 6 with significance level . The proof
for asymptotic test would be analogous.

Denote

By(X)={0€0:5,(X,0) ¢ Cy(a)}.
Then for all F € ¥, 6 = t(F) we have that

Pe[Bn(X) 3 0] =Pr[Sx(X,0) ¢ Co(a)] =1 —a,
which was to be proven. |

Proposition 4.2 says that if we can construct confidence interval for parameter, we
can use it to test hypothesis about this parameter. Conversely, if we have a test for hy-
pothesis, we can use it to construct confidence interval. However, this step requires
more work, since we have to test all possible values of our parameter. Set of all val-
ues of our parameter, for which we do not reject the hypothesis, then has required
confidence level, but it is not necessarily an interval.
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4. Testing of statistical hypothesis

Example. Let us have random sample X, ..., X, from Gaussian distribution Fx =
N(6x,0%) € F8 = {N(6,0?), 6 € R, 0* > 0}.

Assume that we have calculated confidence interval (3.5) for expected value of Gaus-
sian distribution with unknown variance. We then reject the null hypothesis Hy : 0x =
0y against alternative H; : Ox # 0y, if

Sn + Sn

—, Xy+th1(1-%) —].
\/ﬁ n ”1( 2)\/5

I.e. confidence interval contains those values of our parameter for which we would
not reject null hypothesis.
Conversely, if we use, for test Hy : 0x = 0 against alternative H; : 0x # 0, test

statistic -
Vn (X, -0)
Sn ’

(see example (B) on page 74), then the above stated confidence interval can be de-
rived as

90 ¢ (Yn - tn—l(l - %)

Tn(B) =

{6 € R : do notreject Hy : 0x = 6 against H; : 0x # 6}
={0 € R:|T,(0)| < th-1(1 — a/2)}

Rt

S{oer: ) (-2},

Exercise. What would be the form of confidence interval derived from one-sided
test, i.e. from testing Hp : O0x < 6y against alternative H; : 6x > 6.
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5. ONE-SAMPLE AND PAIRED-PROBLEMS
FOR QUANTITATIVE DATA

In this chapter we consider a random sample Xj, ..., X,, of quantitative random vari-
ables with the cumulative distribution function Fx that belongs to the model #. We
are interested in the parameter 0x = ¢(Fx). We want to test the hypothesis about this
parameter and also to find a confidence interval for this parameter whenever possi-
ble

5.1. ONE-SAMPLE KOLMOGOROV-SMIRNOV TEST

The aim of the one-sample Kolmogorov-Smirnov test is to find if the true cumulative
distribution function is the same as the given cumulative distribution function. It is
a nonparametric test.

Model: F = {all continuous distributions}

The parameter being tested: The entire cumulative distribution function Fx
The hypothesis and the alternative:

Hy: Fx(x) =Fy(x) VxeR, Hj:3xeR:Fx(x)# Fy(x),

where F is a given continuous cumulative distribution function (without unknown
parameters).

The test statistic is based on the empirical cumulative distribution function fn,
which was introduced in Chapter 3.6.1 (see page 51). Its properties are summarized
in Theorem 3.3. The empirical cumulative distribution function is an unbiased and
consistent estimator of the true cumulative distribution function in each of the point.
Further according to Theorem 3.3(v) it is uniformly consistent, i.e.

sup |F, (x) — Fx (x)] —— 0.
xeR n—oo

The test statistic also uses this supreme norm which searches for the biggest differ-
ence between F,(x) and Fy(x).

Test statistic:

Ky = sup |, (x) - Fo(x)|
xeR

If the (null) hypothesis is true and Fy is true cumulative distribution function, then
the value of the test statistic K, is close to zero. The hypothesis is rejected, when the
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5. One-sample and paired-problems for quantitative data

empirical cumulative distribution function is not too different from Fy, i.e. when the
value of the test statistic is too large.
Denote

K = sup (Fu(x) - Fo(x)) and K, =sup (Fo(x) — Fy(x)).

xeR xeR
Then K,, = max (K}, K, ).
Lemma 5.1 If F; is continuous then

i _ i—-1
K; = max(— - F()(X(l'))), Kn = max (F()(X(l')) - —)
<i<n\n n

—

1 <i<n

Proof. Define X(g) = —co and X(,,41) = +co. Then

~ i .
Fn(x) = pe pro x € (X, Xus1)), i=0,1,...,n.
Thus with the help of the above equation
Ky = sup (F,(x) - Fo(x)) = max  sup  (Fy(x) - Fo(x))
xeR O<i<n X(,) §x<X<i+1)

=max ({ - inf Fy(x
0<i<n (I’l X(i)§x<X(i+1) 0( ))

= max (L - Fy(X)) = max (£ - Fo(X(1))),

O<i<n "

where in the last equality we make use of the fact that Fy(X(p)) = 0 and that 1 —
F()(X(n)) > 0.

Analogously for K :
K, =sup (Fo(x) - Fy(x)) = max  sup  (Fo(x) — Fp(x))
xeR SISH X <x<X(i1)
= (}lslig (Fo(X(is1)) — %) = Osr?sarfi—l (Fo(X(i+1)) = %)
= max (Fo(X(i)) - 52),

where in the second to last equality we make use of the fact that Fo(X(,+1)) = 1 and
that Fo(X(1)) > 0. In the last equality we only shift indices. ]

Remark. The above lemma has several important consequences.
* The test statistic K,, can be calculated with the help of Lemma 5.1. No that to
calculate K, it is sufficient to calculate the ordered random sample (and not F,).
» With the help of Theorem 2.13 under the null hypothesis Fy(X(;)) follows a beta
distribution whose parameters do not depend on Fy. Thus the distribution of
K, under the hypothesis does not depend on F (i.e. it is pivotal).
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5. One-sample and paired-problems for quantitative data

e With the help Lemma 5.1 one can theoretically find the exact distribution distri-
bution of the test statistics under the null hypothesis. But to really evaluate this
distribution would be a rather computationally intensive task. Thus the exact
distribution of K, is used only for small sample sizes n for which it is tabulated.

Asymptotic distribution of the test statistic under the null hypothesis is given by
the following proposition which generalizes the result of Theorem 3.3(v).

Proposition 5.2 Let Xj, ..., X,, be arandom sample from the continuous distribution
with the cumulative distribution function Fx. Then

~ d
Vnsup |F,(x) - Fx(x)| — Z,
xeR n—0eo

where the random variable Z has the cumulative distribution function given by

1-2%y%® (1 k+1 —Zkzyz, 0’
G(y) ={ Zim (-1 y= (5.1)
0, y <0.

The cumulative distribution function G(y) gives the limiting distribution of the
normalized test statistic vnK, under the null hypothesis, i.e. for Fx = Fy. Note that
this distribution is not Gaussian. It is worth noting that this distribution does not de-
pend on the choice of Fy. The proof of the Proposition 5.2 requires a very advanced
methods of the theory of probability.

Now we can find the critical value for rejecting Hp so that the test has the asymp-
totic level a. Let k, = G~!(a) be the a-quantile of the distribution given by the cu-
mulative distribution function G. Now we reject Hy when vnK,, exceeds k;_g.

Critical region:
H is rejected < VnK,, > ki_q. (5.2)

With the help of Proposition 5.2 we know that the asymptotic level of the test is a.

P-value: p = 1 - G(v/n k,), where k, is observed value of the statistic K,,. Note that the
above equation gives an asymptotic p-value.

Remark.
¢ Under the alternative

Ky, —— sup |Fx(x) — Fo(x)| > 0
= xeR
from which one conclude that the test is consistent. The advantage of Kolmogorov-
Smirnov test is its universality (it is capable to detect any difference of the true
distribution of data from the the distribution given by null hypothesis) and that
no parametric assumptions are made.

* On the other hand this test has a relatively small power against specific viola-
tions of Hy (e.g. the change in the expectation). When we know what type of
the violation of Hy to expect in the given application then it is usually better to
use a test that is specialized to detect this particular violation.
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5. One-sample and paired-problems for quantitative data

* It is possible to formulate this test also as one-sided, i.e. H] : Fx(x) > Fo(x),
dx € R : Fx(x) > Fo(x) or H;" : Fx(x) < Fo(x), 3x € R : Fx(x) < Fo(x). Then
we use either K7 or K,; as the test statistics and we reject for large values of
test statistics. But one cannot use Proposition 5.2 to find critical values. For
that reason one needs to derive the asymptotic distribution of vn K} (or Vn K;,)
under Hy.

CONFIDENCE INTERVALS FOR Fy

Suppose that x € Sx = {x 1 Fx(x) € (0, 1)} be given and we are interested in the
confidence interval for Fx(x). Then we can use Theorem 3.3(iii) and use the same
construction as in the example on page 50 in Chapter 3.5.2. Then we get the confi-
dence interval

ul_%\/fn(x)(l—fn(x)) B () + ul_g\/fn(x)(l—fn(x))

18,(x) = | Fn(x) - N Fn(x N

For this confidence interval it holds that

P[ISn(x) 3 Fx(x)] —— 1 -a, Vx € Sx.
n—oo

This interval is also called pointwise confidence interval for Fx(x).

Sometimes we are not interested in a given point x but rather in set that would
cover the entire cumulative distribution function. To do that one can make use of
Proposition 5.2. The thing is that

P[\/aﬁn(x) — Fx(x)| < k1_a, Vx € [R{] - P[\/ﬁsup |Fu(x) - Fx (x)| < kl_a] — l-a
xeR n—oo

Thus for x € R one can calculate the interval

Ba(x) = (ﬁn<x> - % Fo(x) + '“Qﬁ)

which has the following property

P[B,(x) 3 Fx(x), Vx € Sx] —> 1 -a.
n—oo

Such intervals that creates a region that covers the entire unknown function with
a given probability are called confidence bounds. As the boundaries of the above
confidence bounds for the cumulative distribution function can be outside of the
interval (0,1) it is natural to redefine the lower bound as max{0, F,(x) — k1_o/Vn}
and the upper bound as min{1, Fo(x) + k1—o /YT

* In fact this is only one of the possible ways how to calculate confidence bounds for Fx.
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5. One-sample and paired-problems for quantitative data

POSSIBLE VIOLATIONS OF THE ASSUMPTIONS OF THE TEST

F, is not continuous Also in this situation one can use statistic K,,. But one has to
be careful that now the statement of Proposition 5.2 does not hold. Ignoring this fact
and using the quantile k;_, would result in an asymptotically conservative test im-
plying a lost of power. One should be also careful that in this situation one cannot
use Lemma 5.1 to calculate the test statistic.

Fy is continuous but there ties in observed data. Strictly speaking the probability
of observing ties is zero when the data comes from the continuous distribution. In
applications ties can be present due to rounding. Thus formally in fact we observe
Xi, ..., X,, where X; is a rounded value of X;. Thus the empirical cumulative distribu-
tlon functlon of the observed values Xj, ..., X,

n

Fu(x) = %Z HX; < x}

i=1

estimates in fact the cumulative distribution function Fy of rounded a randgm vari-
able X;. Nevertheless the test can be still used as an approximate test when Fj is not
different from Fy. More precisely when

\/ﬁsuﬂg |Fo(x) — Fo(x)],

is not too “large”. This is often satisfied in applications.

Hypothesis is not simple. Note that Fy should not contain unknown parameters (or
its estimates). Suppose that we are interested in testing the null hypothesis

HO:FXE%) H13FX¢7'6,
where 7y = {F(x; 8), 6 € ©} is a a parametric family of distributions (e.g. {N(y, 0?), p €

R, o > 0}). Then it is natural to consider the test statistic

Ky = sup|Fy(x) - F(x;0,)],

xeR

where 8, is the estimate of the true value of the parameter Ox. The problem is that
Proposition 5.2 does not hold for the statistic K,,. Further it has been derived that
the asymptotic distribution of K, is rather complex and depending on the unknown
value of the parameter 0x. Ignoring this fact and using the the quantile k;_, would
result in a test that is very conservative and thus suffers from a big loss of power.

All the above problems can be solved with the help of the bootstrap methods (the
course Mathematical Statistics 4).

Exercise. Consider the test with the critical region

Hy is rejected & VnK, < kqj2 or VoK, > ki-q/2-
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5. One-sample and paired-problems for quantitative data

1. Does this test keep the level « (exactly or asymptotically)?

2. How would you calculate the p-value of this test?

3. Is this test consistent?

4. Why is this test better or worse than the test wit the critical region given by (5.2)?

5.2. ONE-SAMPLE [-TEST

One-sample t-test compares the expected value that is in agreement with our data
with the given constant. This test was described and investigated in detail in Example
B on p. 74 and also in Example C on p. 76. The only difference was only in the models
that was assumed.

Model: 72 = {N(u, 0?), u € R, 0% > 0} or 7€ = £2

The parameter being tested: The expected value uy = E X;

The hypothesis and the alternative:

Ho : px = po, Hi:pux # po,

where p is a given constant.
Test statistic:

_ ‘/ﬁ (X n = IJO)
n Sn )
where X, is a sample mean and S? is a sample variance

Distribution of the test statistic under Hy:

In model #2 : T,, ~ t,_1 (see Theorem 2.10)
In model ¢ : T, = N(0, 1) (see Theorem 2.9).

Thus the test is exact, when in the “smaller” model #2. For the “bigger” model #¢
this test asymptotic. Analogously this hold true also for the p-value and the confi-
dence interval. In model #2 the p-value and the confidence interval are exact. In
model ¢ only asymptotic.

Critical region:

Hy is rejected < |T,| > t,-1(1 — a/2),
where t,_1(1-a/2) is the (1-a/2) quantile of Student ¢-distribution with n—1 degrees
of freedom.

P-value: p = 2 (1 — F,(|t|)), where ¢ is the observed value of the test statistic 7, and F,
is the cumulative distribution function distribution of #,_;.

Confidence interval for ux: Confidence interval for the expected value is given by
Sn
i)

_ S,
Xn_[n—l(l_ %) _n’ Xn+tn_1(1 —%)

Vn

See the formula on p. 48 and the following example.
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5. One-sample and paired-problems for quantitative data

Remark. T-test does not necessarily requires the normal distribution. It works as an
asymptotic (approximate) test of the expected value for an arbitrary distribution with
the finite variance.

Remark. The ¢-test can be also performed as an one-sample test
Rejecting Hj : ux < po against H : ux > o © T, = t,-1(1 — a).

Analogously Hy' : ux > po against H{" : ux < uo is rejected, when the test statistic T,

is smaller than the critical value —¢,_; (1 — a).
The end of
self-study for

week 8

5.3. ONE-SAMPLE SIGN TEST

(24.11.-28.11.).

One-sample sign test compares the median that is in agreement with our data with
the given value. It is a non-parametric test and it works for any continuous distribu-
tion.

Model: F = {all continuous distributions}

The parameter being tested: the median my = F§1(0.5)

The hypothesis and the alternative:

Hy: mx =mg, Hy:myx + my,

where my is a given constant.
Test statistic:

n

By = > 1{X; > mo}

i=1

(number of observations bigger than my).

Theorem 5.3 Let Xj,..., X, be a random sample from an arbitrary continuous dis-
tribution with the median my. Then
(i)

n

Z X; > mx} ~ Bi(n, 1),

i=1

(ii)

n—oo

- [t ) - 5| oo,
i=1

Remark. Theorem 5.3 follows from Theorem 2.3(iii) and (iv).
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5. One-sample and paired-problems for quantitative data

The exact distribution of the test statistic under Hy:

B, ~ Bi(n,3), (viz Theorem 5.3(i))

Critical region (exact test): The hypothesis is rejected for too small or too large values
of B,,.
Hy is rejected & B, < ci(a) or B, > cy(a)

kde

k1
cr(a) = max{kl eNp: P(Bi(n, %) < kl) < g} = max {kl eNp: zin Z (n) < %}
j=0

n
cy(a) = min{kg eNp: P(Bi(n, %) > kz) < g} = min {kz eNp: ZL” Z (7) < E}
Jj=ka

From the symmetry of the binomial distribution for p = 1 it follows that c;(a) +
cy (@) = n. This test has the level at most « (the a might not be attainable).

P-value (exact):
p=2min {P(Bi(n,3) < yu), P(Bi(n ) = ya)| = 2min {1 - Go(ya - 1), Golym)},

where Gy is cumulative distribution function Bi(#, %) and y, is the observed value of
B,.

Asymptotic distributions of the test statistic under Hy:
Bn - % 2 n\ as. ..
Zy = = (Bn - —) ~ N(0,1), (see Theorem 5.3(ii))

AT

Critical region (asymptotic test): The hypothesis is rejected for too small or too large
values of B,,.
Hy is rejected < |Z,] > u1_q)2.

P-value (asymptotic): p = 2 (1 — ®(|z,|)), where z, is observed value of the test statistic
Zy.
Confidence interval pro my: See confidence intervals for quantiles (Chapter 3.6.4).
Remark.

¢ Note that we do not need the exact values X; to calculate the test statistic. All

we need is to know how many of them are bigger than m,.
* This test can be performed also as one-sided test H : mx > my (or < my).
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5. One-sample and paired-problems for quantitative data

* This test can be easily modified as a test about an arbitrary quantile. I.e. one
can test the hypothesis

Ho :ux(B) =uo, Hi:ux(B) # uo,

where f € (0,1). Then the test statistic B, = Y7, 1{X; > uo} under the null
hypothesis follows the binomial distribution Bi(n,1 — §). The test about the
quantile is then performed as a test about the parameter of the binomial distri-
bution. This will be in detail treated later in Chapter 7.1.

Exercise. Show that the sign test is consistent.
Hint: It might be easier to work with the asymptotic version of the sign test.

VIOLATIONS OF THE ASSUMPTIONS

Although in the literature it is usually required that the distribution Fx is continuous
in fact it is sufficient to assume that P[X; = myg| = 0. Nevertheless in applications it
might happen that due to rounding some of the observations are exactly equal to my.
The usual practice is then to remove such observations.

5.4. ONE-SAMPLE WILCOXON TEST (WILCOXON SIGNED-RANK
TEST)

This test assumes a symmetric distribution and it compares the center of the sym-

metry with a given constant.

Model: ¥ = {continuous distribution with the density f that satisfies 36 € R : f(8 —
x) = f(6 +x) Vx € R}

The parameter being tested: the center of the symmetry dx

Remark. The model requires the density of X; being symmetric around the point .
Then it holds that mx = 8x and if moreover X; € £, then also EX; = ux = dx.

The hypothesis and the alternative:
Hy: 6x = 6y, Hi: 0x # 0Oy,
where §p is a given constant.

Remark. Provided that model # holds then the hypothesis Hy is equivalent to the
hypothesis H; : mx = & (i.e. we are resting the median). Further if X; € L1, then the
hypothesis Hy is also equivalent to the hypothesis H;* : ux =  (i.e. we are testing
the expected value).
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5. One-sample and paired-problems for quantitative data

Test statistic: Let Z; o X; — 6y. Define

Wo= > R,

iel

where I = {i e{l,...,n}:Z; > 0} is a set of indices such that Z; is positive and R; is
the rank of the absolute values |Z;| among all absolute values |Z;|, ..., |Z,].
Remark. The test statistic W,, takes values in the set {0, 1,..., @} It is calculated
as follows.

1. Calculate Z; = X; — 6y and find the set 7.

2. Calculate |71, ..., |Zy].

3. Order |Z;| from the smallest ones to the largest and get the ordered random

sample
0<|Zlay <1Zl@2) < <I|Zln-
4. Find the rank R; of the random variable | Z;| among all random variables | Z] ;) , ..., |Z] ;).

It holds that |Z;| = |Z] g,).
5. Calculate the sum of the ranks R; fori € 1.
The cardinality of the set 7 is equal to the number of variables for which X; > &.
(compare this with the test statistic of the sign test).

Proposition 5.4 Let Xj,..., X, be a random sample from an arbitrary continuous
distribution that belongs to . Further let the null hypothesis H, : 6x = § holds.
Then

(i)
n(n+1)

nn+1)2n+1)
YR .

Epy W = o

var g, (Wy) =

(ii)

W, — EHOWn d
yvarg, (W) n—=e

Proof. Without loss of generality consider §y = 0 and introduce the random variables
A; = sign(Z;). Note that

N(0, 1).

n
Wy = > Ri1{A; =1}
i=1

The random variables Ay, ..., A, are under Hy independent and identically distributed
and
P(Ai=1)=P(a;=-1) = 1.

From this we easily calculate that
EA; =0, EAZ =1.

The proof will be divided into 3 steps.
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5. One-sample and paired-problems for quantitative data

1. Showing that (Ry,...,R,)" and (Ay,...,A,)" are independent.
First note that the random vector (Ry,...,R,)' is a function of the random vector

(IZ1l,...,1Za)T. Thus it is sufficient to show that the random vectors (|Z1],...,|Z,|)"
and (A1,...,A,)T are independent.
In order to do that note that the random vectors (‘fi'), e (‘fz') are independent.

Thus it is sufficient to show the independence of |Z;| and A;.
For Vz > 0 it holds that
P[IZil <2,Ai=1]=P[0< Z <z]| =3P[-2< Z <]
=1P[0<|Z]| <z] =P[A; = 1] P[|Zi| < 2],
where in the second equation we use the fact that the distribution of Z; is (under the
null hypothesis) symmetric around zero. Thus |Z;| and A; are indeed independent.

2. Writing W, as a function of R; and A;.
Note that

- . : n(n+1)
SR =1} + Y R{A; =-1}= Y Ri= ——
i=1 i=1 i=1

n n n
DRi{A =1} = Y Ri{A =1} = ) RiA;
i=1 i=1 i=1

“Averaging” the above two equations and with the help that W, = 37| R; 1{A; = 1} we
get
n(n + 1)

W, = Z R; A;. (5.3)

3. Calculating Ey,W,, and var g, (W,,).
Using (5.3) together with the independence of R; and A; and that EA; = 0 it holds

1 1
£ W, = 1L+ D n(n+ ) ZER EA, = n(n+ )

4
Further
var g, (Wy) = 1 var(ZRi Al-) =2 Z var (R; A;) + 1 cov (R; Aj, Rj Aj).
i=1 i=1 i=1 j=1,j#i
Next

n

1 2 nn+1)2n+1) (n+1)(2n+1)
2= 6n N 6 ’

var (Ri A;) = E (R A;)* =ER?EA? =
i=1

where we utilize that E R;A; = 0, EA? = 1 and Theorem 2.16(i) which implies P[R; =
k] =1forallike{l,..., n}.
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5. One-sample and paired-problems for quantitative data

Further for i # j calculate
cov (R,' Al',Rj Aj) =E (Rl' Al' Rj Aj) =E (Rl' Rj) EAi EA]' = 0,

where we use the independence of R; and A;.
Finally we get

var g, (Wy,) = % Z (n+1)@n+1) n(n+1)(2n+1) |
i=1

6 24
]
Remark.
e The proof of asymptotic normality is left out. The proof is difficult because of
the fact that the ranks Ry,..., R, are not independent random variables vari-
ables.

* The hypothesis is rejected for too small or too large values of W,.

e If the sample size n is not too large then under the null hypothesis one can
derive the exact distribution of W,, (numerically or with the help of already cal-
culated tables). The critical values are tabulated.

Asymptotic distribution of the test statistic under Hy:

1
) W, — Epy W ) W, — n(T )
" \/V3rH0 W) \/n(n+1)(2n+1)
24

N(0, 1)

Critical region (asymptotic test):
Hp is rejected & |Uy| > uy_q)0.

P-value (asymptotic): p = 2 (1-®(|u,|)), where u,, is observed value of the test statistic
U,.

Remark. One-sample Wilcoxon test takes into consideration also the magnitude of
the differences of our observations from &, (not only the sign as the sign test does). It
has usually a large power for testing the median then the sign test. On the other hand
the disadvantage of the one-sample Wilcoxon test is that it requires the symmetric
distribution of our observations.

VIOLATIONS OF THE ASSUMPTIONS

Ties due to rounding. It is rather common that due to rounding there ties in the
dataset. In this situation similarly as for the sign test we first give away the obser-
vations whose values are exactly equal to §,. The test statistic W, is then calculated
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5. One-sample and paired-problems for quantitative data

from the remaining observations. Further because of rounding we work with average
ranks. Then one can show that under the null hypothesis

W, — n(n+l) q
A N(0, 1),
n—oo
\/n(n+12)i2n+l) _ cor.

where n is the (possibly reduced) sample size and cor. is a correction of the variance
given by*
1 3
cor.= o2 Z (& - 12),
z

where ¢, is the number how many times one observes the value z among the values
|Z1| ...,|Zy|. The sum ), then indicates one sums over all possible unique values of
2] ... 1Zal}.

It is worth noting that without this variance correction cor. the test would be (asymp-
totically) conservative.

Asymmetry. When the density f is not symmetric, then the parameter being tested
is not the median of X; but the so called pseudo-the median that is the median of
the random variable % The problem of the pseudo-median is that it is difficult to
interpret. Generally one can also say that its value lies between the median mx and
the expected value E X; (provided that this expectation exists).

The next unpleasant consequence of the asymmetry of our observations is that
even if view the one-sample Wilcoxon test as the test of the pseudo-median than its
actual/true level (exact as well as asymptotic) is different from the prescribed level a.
Nevertheless the simulation experiments show that the difference of the true level
from the prescribed level is not large even for rather asymmetric distributions. Thus
when the data are not obviously asymmetric then the main problem of the one-sample
Wilcoxon test is the interpretation of the pseudo-median.

5.5. ONE-SAMPLE y’-TEST ABOUT VARIANCE

It is test about variance that requires normality of observed data. Under this normal-
ity assumption is exact without this assumption is not even asymptotic.

Model: F = {N(u, %), neR, 0% > 0}

The parameter being tested: variance o2

¥ = var X;.

The hypothesis and the alternative:
H()ZU)Z(:(TS, lea}%iag,

where og is a given constant.

* Seee.g. (2013), p. 42.
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5. One-sample and paired-problems for quantitative data

Test statistic:
(n-1)82
o2
where S2 is a sample variance (see Definition 2.4).
The exact distribution of the test statistic under Hy:

-1)s2 i
w ~ ¥, (see Theorem 2.8(i)).
(o}
0

Critical region: The null hypothesis is rejected when the sample variance is too differ-
ent from the variance assumed under the null distribution. I.e. when the test statistic
is either too small or too large

- 1)S2 -1)82
Hy is rejected & (na# < x%_1(a/2) or (na% > x2_ (1-a/2),
0 0

where y? |(a/2) and y2_,(1 - a/2) are the a/2 a 1 — a/2 quantiles of y? distribution
with n — 1 degrees of freedom.

P-value: p = 2min{l — G,_1(s),Go-1(s)}, where s is the observed value of the test
statistic and G,_; is the cumulative distribution function of the distribution xfl_l.

Confidence interval for o2:

(n-1)82 (n—-1)82
X2 (1-a/2) x2_ (a/2)

(see (3.4)).

Exercise. Show that the one-sample y?-test about variance is consistent.
xa_,(B) 1
n

n—oo

Hint: Consider the one-sided hypothesis and alternative and note that
forall g € (0,1).

Remark.

e When the assumption of normality is violated then this test does not keep the
level even asymptotically. When one is afraid that the normality assumption is
violated then it is more appropriate to make use of the asymptotic distribution
S2, see Theorem 2.6(iii).

* This test can be also considered as one-sided test

I : n-1)s2
rejecting Hj, : 0 < of against H] : 0% > 0f & % >y (1-a)
0
Analogously the hypothesis Hj' : 0% > o7 against the alternative H,’ : 0% < o,

is rejected when the test statistic is smaller (or equal to) )(i ().

100



5. One-sample and paired-problems for quantitative data

5.6. PAIRED TESTS

Consider a random sample

() (i)

of bivariate random vectors with the joint cumulative distribution function Fx y. Usu-
ally we are interested in comparing the marginal distribution Fx (of the random vari-
able X;) with the marginal distribution Fy (of the random variable Y;). The problem
is that the random variables X; and Y; are not independent.

The main idea of the paired test is rather simple. Consider the differences Z; = X; —
Y; and note that these differences from a random sample. Now one can proceed by
using an appropriate one-sample test. Nevertheless the crucial point is to think what
hypothesis is tested in the end. I.e. whether this hypothesis has some meaningful
interpretation for comparing the distributions Fx and Fy. This is sometimes true but
sometimes (for instance think about the interpretation of the paired Kolmogorov-
Smirnov test).

Consider for instance the one-sample test of the expected value Z; testuje. To be
more specific consider Hy : EZ; = 0. This hypothesis hold if and only if EX; = EY;.
Thus the paired test is really a test of equality of expectations of X; and ;.

The above might not be true for other characteristics. For instance when we are
testing the the median Z; it does not mean (in general) that we are testing the equality
of the medians of X; and Y;. Similarly testing the variances Z; with the one-sample
test then does not provide evidence of possible differences of distributions X; and ;.

The paired are typically used on the ordered pairs of the measurements of the same
quantity, for instance the left eye and the right eye, the husband and the wife, before
treatment and after treatment, today and one year ago, ...

THE HYPOTHESIS OF THE NULL EFFECT

In applications the random vector (X;, Y;)T often means a measurement (called often
response) before and after treatment. The null hypothesis says that the treatment has
zero effect on the response, i.e.

Hy: Fx(x) = Fy(x),Vx € R Hj:3x € R Fx(x) # Fy(x), (5.4)

where Fy and Fy are (marginal) cumulative distribution functions of random vari-
ables X; and Y;.

It is important to note that each of the tests described below is designed to detect
one specific violation of the null hypothesis (5.4).

5.7. PAIRED [-TEST

The paired ¢-test is performed as one-sample ¢-test applied to the differences Z;.
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5. One-sample and paired-problems for quantitative data

Model: F, = {Zi =X; - Y ~N(u,0%),ueR, 0% > 0} or 5 = {Zi =X;,-Y EL_%}
Tested parameters: Expected values uy = EX; and uy = EY,.
The hypothesis and the alternative:

Ho: pux — py = 60, Hi:px — py # 0o,

where & is a given constant (usually &, = 0).
Test statistic:

\/ﬁ (Zn - 60)
Sz

n )

where Z, is the mean of Z; (which is equal to X,, - Y,,) and S is the sample standard
deviation of Z;.

Remark. Note that

1 < = \2 1 < X. +7.)2
= o1 B2 =y Y KV X T = S5 -2y 4,

where S2 and SZ are the corresponding sample variances and Sx,y is the sample co-
variance. Thus we can rewrite the test statistic as

X,-Y,- &

Ti’l: )
\/S}z(/n+512,/n—28X,y/n

which resembles the test statistic of the two-sample ¢-test in case of equal sample
sizes (see Chapter 6.2). In our situation one has in the denominator the extra term
-2 8x,y/n. As usually Sx y > 0 (as X; and Y; are typically positively correlated) by using
the two-sample ¢-test on the paired problem would result in a loss of power.

Distribution of the test statistic under Hy:
In model %, : T), ~ t,,—1, In model % : T, = N(0, 1).

Similarly as for the one-sample #-test (Chapter 5.3) is this test exact in the “smaller”
model 7,. In the “larger” model #,; is this test asymptotic. Similarly this hold true
also for the p-value and confidence interval which are in model 7, exact and in model
Fas asymptotic.

Critical region:
Hy is rejected < |T,| > t,-1(1 — a/2),
where t,-1(1-a/2) is (1-a/2) quantile of ¢-distribution with n—1 degrees of freedom.

P-value: p = 2 (1 - G,-1(|t])), where ¢ is the observed value of the test statistic and
G,_1 is the cumulative distribution function of distribution ¢,_;.

Confidence interval pro ux — uy: Homework exercise.
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5. One-sample and paired-problems for quantitative data

Remark. For §, = 0 one can view ¢-test also as a test of the hypothesis of the null
effect (5.4). From this point of view the test will be sensitive to detect differences
in the expected values (i.e. the test is consistent for the alternatives for which the
expected values are different). On the other hand the test is not consistent when H
v (5.4) is not true but at the same time E Z; = 0. Le. the treatment has no effect on
the expected value E Y;, but it has an effect for instance on the variance var ;.

5.8. PAIRED SIGN TEST

Paired sign test is performed as a one-sample sign test on the differences Z;. Suppose
that the distribution of Z; is continuous.

Model: ¥ = {Z; has an arbitrary continuous distribution}
The parameter being tested: the median m; of the difference Z; = X; - V;.
The hypothesis and the alternative:

Hy:mz;=0, H;:myz+0.

Remark.

1. In general the median Z; cannot be expressed as the difference of the medians
X; and Y;. Thus the test is not a test of the difference of the medians of X; and
Y;.

2. Hpholdsifand onlyif P[X; < Y;] = P[X; > V;] = 1/2, i.e. X; is with the probability
one half smaller than ¥; but also at the same time with the same probability it
is smaller than Y;. Thus from the point of view of testing the null hypothesis of
the null effect (5.4) the test is consistent when the treatment effect affects the
distribution of ¥; in such a way that P[X; > Y;] # P[X; < Y;].

3. Generalizing the null hypothesis and the alternative to

Hy:mz=mg, Hy:myz+# myg,

we are in fact testing that P[X; < Y; + my] = P[X; > V; + mp] = 1/2.

4. Further if Z; has a finite expected value and the density symmetric around 0,
then it holds that E Z; = EX; — EY; = 0. Under this additional assumptions Hy is
equivalent to the hypothesis of the equality of the expectations X; and ;.

Test statistic:
n
B, = Z 1{Z; >0}, (i.e. the number of pairs for which X; > ¥;).
i1

The exact distribution of the test statistic under Hy:

B, ~ Bi(n, §)
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5. One-sample and paired-problems for quantitative data

Critical region (exact test): See the one-sample sign test.
Asymptotic distributions of the test statistic under Hy:

n
By -1

\/%

< N(0, 1)

Critical region (asymptotic test):

B, -4

Hy is rejected & > U_q/2-

4

Remark. The advantage of the paired sign test is that it does not require to enumer-
ate the difference between X; and Y;. It is sufficient to know whether X; is “better”
than Y; or if X; is “worse” than ¥;. This test is useful for applications in which it might
be problematic to enumerate the values X; and Y;.

5.9. THE PAIRED WILCOXON (SIGNED-RANK TEST) TEST

The paired Wilcoxon test compares the center of the symmetry 6, of the distribution
of Z; with a given constant.

Model: ¥ = {Z; has a continuous distribution with the density f satisfying 36 € R :
f(6-x)=f(6+x) VxeR}

Remark. Note that the it is sufficient that the density of Z; is symmetric. We do not
require the symmetry of the original observations X; a ¥;. Provided that the corre-
sponding expected values exists then the assumption of the symmetry of Z; implies
that 60, =EZ;=EX;-FEY].

Tested parameter: the center of the symmetry §,
The hypothesis and the alternative:

Hy:6;,=06y, Hy:dbs# do,
where § is a given constant (usually &, = 0).
Test statistic:
Wn = Z Rir
iel

where I c {1,..., n} is a set of indices such that Z* o X; —Y; — & is positive fori € 7
and R; is the rank of the random variable | Z7| among the all variables |Z;|,...,|Z;

Properties of the test statistic and critical region: see the one-sample (signed-rank) Wilcoxon
test.

Remark.
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5. One-sample and paired-problems for quantitative data

1. The paired Wilcoxon test can be interpreted as the test of expected values. Nev-
ertheless the paired ¢-test is usually more appropriate for testing the equality of
expected values as it does not require the symmetry of the difference Z;.

2. For §y = 0 we can consider this test as test of the hypothesis of the null ef-
fect (5.4). In this situation it is common to assume that under the null hy-
pothesis the joint distribution of the random vector (X;, ¥;)T is the same as the
joint distribution of (V;, X;)T. Under this additional assumption one can con-
clude that under the null hypothesis the distribution of the random variable
Z; = X; - Y; is symmetric around zero. Thus the test will be hold the prescribed
level. But it is important to realize that the test will be consistent against the
alternatives for which the pseudo-the median Z; (i.e. the median of #) dif-
ferent from zero. Thus the test is consistent against the alternatives for which

PlZ1+2, <0] # P[Z1+ 2, > 0].

105



5. One-sample and paired-problems for quantitative data

Sample examples for the preparation for the exam.

The solution of “the practical exercises” should contain the mathematical model, the
null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. It is know that the distribution of IQ in the overall population has the standard
deviation equal to 15. We managed to get the values of IQ for 158 randomly se-
lected members of a given party. Suggest a test (i.e. give the appropriate model
suitable for your data, the null and the alternative hypothesis, test statistic, crit-
ical region and the formula to calculate the p-value) that aims at showing that
the members of this party is a more homogeneous group in comparison to the
overall population.

2. Suppose that data on gross salary of 300 randomly chosen graduates of study
programe Probability, Mathematical Statistics and Econometrics. Suggest a test
to prove that at least 75 % of graduates gets a gross monthly salary higher than
40 000 CZK.

3. Suppose that you know the gross monthly salaries of 500 randomly chosen em-
ployers of the given insurance company. For each of this employer we know
the entry salary and the salary after two years working for the company. Sug-
gest tests aiming to prove that during the first two years of the working for the
company:

(a) the expected increase in the salary is larger then 15 000 CZK;
(b) with the probability at least 90 % the salary increases by at least 10000 CZK.

Do you think that with one dataset it is possible to prove both statements?

4. Suppose that we know the body heights of 300 randomly chosen of female stu-
dents of Charles University. Further it is said that the average height of the adult
women in the Czech Republic is 168 cm. We would like to show the female stu-
dents of Charles University are in some sense higher than what is common in
the overall population of women. Suggest an appropriate test and explain what
would be proved by rejecting the null hypothesis.

5. The following table contains the number of points that 10 randomly chosen em-
ployees get from the English test before and after intensive English course.

Employer 1 2 3 4 5 6 7 8 9 10
Before the course 37 41 36 48 42 36 42 44 40 34
After the course 38 43 43 47 52 44 41 42 42 39

Suggest a test to prove that the language test improves the language skills of the
employees.
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5. One-sample and paired-problems for quantitative data

6. We are interested in finding out if the spreadsheet software has a good gener-
ator of random numbers from the uniform distribution U(0, 1). To do that we
generated a sample of 1000 random numbers. Suggest a test to find out if the
generator is a good one.

7. Try to think whether it makes sense to consider the paired Kolmogorov-Smirnov
test.
The end of
self-study for
week 9

(L12.-512.).
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6. TWO-SAMPLE PROBLEMS FOR
QUANTITATIVE DATA

Consider two independent random samples: let Xj, ..., X,, be a random sample with
distribution function Fx and V3, ..., Y;;, arandom sample with distribution function Fy.
Model F specifies the set of considered distribution functions Fx and Fy. We are
given a parameter 6 = ¢(F) and we would like to compare its value for both sam-
ples. Denote 0y = t(Fx) and 6y = t(Fy). Usually, we want to test the null hypothesis
Hy : 0x = Oy against the alternative H; : 6x # 0y; eventually we want to construct
an interval estimate for the difference 0x — 0y.

The two-sample problem can be also formulated in another way. Let us have a ran-
dom sample from bivariate distribution

() (5

where Z; are independent identically distributed random variables and I; has alter-
native distribution with parameter p; € (0, 1). Indicator I; determines the group of
jth observation (if I; = 0, then the jth observation belongs to the first group, other-
wise to the second group). If we now denote the variable Z; by X; or ¥; based on the
group it belongs to, i.e.

d:f(Z]-:Ij:O) and (H,...,Ym)‘j:f(zj:]jzl)’

(X1,...,Xn)
we get two independent random samples as in the first formulation of the problem.
We would like to compare the conditional distribution of Z; in both groups, i.e. we
are interested in the conditional distribution functions Fx (x) = P[Z; < x|I; = 0] and
Fy(x) = P[Zj < x!lj = 1], respectively their parameters 6x = t(Fx) and 0y = t(Fy).
This second formulation of the two-sample problem is the same as the first formula-
tion with one exception - the sizes of random samples n and m are not constants, but
they are random variables with binomial distribution (n = Z?’:l (1-1;) ~ Bi(N,1-py),
where p; = P(I; = 1)). However, the analysis of our data is performed in the same
way as for constant sizes of random samples.

Data corresponding to the first formulation are obtained by determining in ad-
vance the number of observations in each group and afterwards observing the re-
quired number of values for each group separately. Data corresponding to the second
formulation are obtained if we determine the total number of observations N = n+m,
then obtain these N observations and afterwards decide for each observation the
group it belongs to.
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6. Two-sample problems for quantitative data

Both formulations differ a little bit in the concept of asymptotic results. With the
second formulation, we only need that N — co. For the first formulation, we need
that n —» o and m — o and we also have to assume that the speed of the conver-
gence is the same for both sample sizes, i.e. that n/m — ¢, where 0 < g < .

All methods presented in this chapter can be used for both formulations of the
two-sample problem.

6.1. Two-sSAMPLE KOLMOGOROV-SMIRNOV TEST

Two-sample Kolmogorov-Smirnov test is an extension of the one-sample test with the
same name. It is a non-parametric test that can be used for any pair of continuous
distributions.

Model: F = {all continuous distributions}
Tested parameters: distribution functions Fx and Fy

Null hypothesis and alternative:
Hy: Fx(x)=Fy(x) VYxeR, H;:3xeR:Fx(x)+#Fy(x). (6.1)

We test whether both random samples come from the same distribution. This hy-
pothesis will be from now on called the null-difference hypothesis.
Test statistic: R R
Ky,m = sup |Fx(x) - Fy(x)|,
xeR

where Fy is the empirical distribution function of the random sample Xj, ..., X,, and
Fy is the empirical distribution function of the random sample V3, ..., V;,.
Proposition 6.1 Let Xj,...,X, and Vj,...,Y,, be two independent random samples

from continuous distribution with distribution function F,. Then

nm

d
L Knom — Z, form,n — o,

where the random variable Z has a distribution function given by the formula (5.1).

Remark.

* We reject the null hypothesis if empirical distribution functions of both samples
differ too much from each other, i.e. for large values of our test statistic.

* Proposition 6.1 implies that, under the null hypothesis, /722Ky, converges in
distribution to a random variable with distribution function G(y), which is the
same as for one-sample Kolmogorov-Smirnov test (see Proposition 5.2). The im-
portant thing is that this distribution function does not depend on the real (for
both samples) distribution function Fy. This enables us to determine critical
value for rejecting Hy.
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Critical region:

Hy is rejected & 2L K, > ki_q, (6.2)

where k;_, = G™1(1 - ) is (1 - a)-quantile of the distribution with distribution func-
tion G.
According to Proposition 6.1, this test has asymptotic significance level a.

Remark.
e It is possible to compute the exact critical value for two-sample Kolmogorov-
Smirnov test for continuous distributions and small sample sizes n, m.
¢ Notice that under the alternative for m, n — oo,
P

P
Ky,m — sup |FX(x) - Fy(x)| > 0= /-7 Kym — .
xeR

In particular, this test is consistent against any alternative. In other words, the
test reacts to any difference in distributions of both samples. Another advan-
tage of this test is the absence of restrictive assumptions. The disadvantage of
this test is that its power is small against specific violations of hypothesis Hy. If
we are interested (or we expect) only a specific type of violation of Hy (for ex-
ample difference of expected values), it is better to use a test which is focused
on a specific parameter.

e It is worth noticing that the test statistic does not change if, at first, we trans-
form all observations by some injective function g. It can be shown that two-
sample Kolmogorov-Smirnov test can be reformulated as a rank test.

VIOLATION OF ASSUMPTIONS

If the samples come, under the null hypothesis, from discrete distribution (i.e. Fy
from Proposition 6.1 is not continuous), then the test with critical region (6.2) will
be conservative. Similarly if the "discreetness" arises from rounding. In this case
however, it is necessary to assume that the rounding is performed in the same way
for both samples.

6.2. TWO-SAMPLE {-TEST WITHOUT THE ASSUMPTION OF
EQUALITY OF VARIANCES

Two-sample t-test compares the expected values of both samples. The execution of
this test differs based on whether we assume (see Chapter 6.3) or do not assume the
equality of variances.

Model:
F ={Fx e L2 Fy e L3}.

Tested parameters: Expected values ux = EX; and uy = EY,.
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Null hypothesis and alternative:
Hy:px =py+06y, Hy:pux # py+6o. (6.3)

We test whether expected values differ by &, (usually we choose & = 0).

Test statistic: L
~ X,—-Y,— 0o

Tn,m = #;
,/SX/n+SY/m

where X, Y, are sample means and S2, S2 are sample variances of the two samples.

Remark. The test statistic Tn,m can be remembered with the help of the following

observation. Notice that

2
UY

J— —_ 02
var (X, —Yp) =X+
Natural (and even unbiased) estimate of this variance is S / n+S2 v/m.

Theorem 6.2 Let Xj,...,X, and Yj,...,Y,, be two independent random samples from
distributions with expected values ux and py and finite variances. Then

)_(n_?m_(IJX_/JY)i) n

N(0,1) for m,n — oo, 2. — q € (0, c0).
\/S? /n+S /m

Proof. We can rewrite

Xn—=Ym— (ix — py) _ ‘/m()_(n_?m_(NX_:UY))
2 2 2m , Q2
Sy/n+S;/m Sy +Sy

. . P P
From the consistency of sample variance we have S2 — o2, S2 — o2 and there-
fore we get, with the help of the continuous mapping theorem (Proposition 1.2), that

P . . ,
S22 + 82 — oz /q + 0Z. So, if we take into account the Cramér-Slutsky theorem
(Proposition 1.3), it is enough to show that

S — d
Vm (X =Y = (ux — py)) — N(0, 02 /g + 02). (6.4)
From the central limit theorem we get that V7 (X, — ux) S, N(0, 0%) and therefore

~ ix) = 2 Vi (X, — px) =5 N(0, 03 /q), (6.5)

since from the assumptions of the theorem we have Z — \/%. Furthermore, also
thanks to the central limit theorem, we have

NI (Vo — py) —5 N(0, 02). (6.6)
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Now, using (6.5), (6.6) and the independence of X,, and Y ,,,, we get

a5 3)

Therefore, also for all ¢ € R?

v _ 2
c"Vm ()—(” 'UX) L N(0,c"Z¢), where == (Ux/q 02).
Ym-— Hy 0 Oy

The convergence in (6.4) now follows from the above stated convergence forc = (1,-1)T,
since in that case

Ty, _ 2 2
c'Zc=o0yx/q+o0y.

Remark.
* We will reject the hypothesis if the sample means of both random samples differ
too much, i.e. if the test statistic if too large or too small.
* Theorem 6.2 implies that in model # and under the null hypothesis Hj the test
statistic Ty, ,, has asymptotic distribution N(0, 1).

Critical region:
Hy is rejected &

Tn,m| 2> Ul—a/2,

where uy_q/ is (1 — a/2)-quantile of standard normal distribution.

P-value: p = 2 (1 — ®@(|t])), where ¢ is the observed value of the test statistic Tn,m and
@ is the distribution function of N(0, 1).

Confidence interval for ux—uy: It is possible to derive an asymptotic confidence interval
for the difference between expected values of both samples from Theorem 6.2. For
n,m — oo we get

- sz s2 v v st .S
Xn—Ym—Ui—qp\ 5+ 5 <Hx —Hy <Xp—Ym+Ui-ap\[5 + 7,

It turns out that even if we added the assumption of normality of our observations,
i.e. X; ~ N(ux, 0)2() and Y; ~ N(uy, af), the distribution of our test statistic 7}, ,, under
the null hypothesis would still be pivotal only asymptotically. The exact distribution
of the test statistic T, ,,, even with the assumption of normality, will depend on the
ratio 0% /oZ. That's why we are content to use the asymptotic test in practical prob-
lems.”

P

- 1-a.

* The problem of performing an exact test is known as Behrens-Fisher problem.

112



6. Two-sample problems for quantitative data

Remark. There exists a better approximation of critical values for this test, which
is based on the ¢-distribution with number of degrees of freedom depending on the
number of observations in both groups and on sample variances. There exists sev-
eral of these approximations. One of these approximations, so called Welch test, is
implemented in the software environment R as a standard method for testing equal-
ity of expected values of two samples (it is performed by function t.test). For this
approximation, quantiles of ¢-distribution with f degrees of freedom are used as crit-
ical values, where f is given by the formula

SZ 52 2
5+ %)
(52)? (8%)?
n2(n-1)  m2(m-1)

f=

This formula was derived under the assumption of normality and is based on the

approximation of the distribution of random variable % + % from the denominator
of the test statistic, using a multiple of y?-distribution with "appropriate" degrees of
freedom (details can be found in , ).

Welch test can be understood as a variant of the two-sample ¢-test (without the
assumption of equal variances) with improved critical values.

P-value of Welch ¢-test for the two-sided alternative (6.3) can be calculated using
the formula p = 2(1 - G(|t])), where ¢ is the observed value of the test statistic T;,
and Gy is the distribution function of ¢-distribution with f degrees of freedom.

6.3. TWO-SAMPLE /-TEST WITH THE ASSUMPTION OF EQUAL
VARIANCES

Similarly as in the case of one-sample ¢-test (see Chapter 5.3) we will derive an exact
test under the assumption of normality and asymptotic test without this assumption.

Model:
Fn = {Fx = N(ux, 0%), Fr = N(uy, 0%), ux, py € R, 0% > 0}

or
Fus = {FX € LE,FY € Lf, where var (X;) = var (¥;) := 02}.

In model ¥, both random samples have Gaussian distribution with the same vari-
ance o2, i.e. they can differ only in the mean value. In model ¥; it is only required
that the variances are the same (i.e. the distributions can be different).

Tested parameters: Expected values ux = EX; and py = EY;.
Null hypothesis and alternative:

Ho: px = py + 0o, Hi:px # py + 6o.

We test whether the expected values of our samples differ by &y (usually &y = 0).
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T _Yn—?m—ao_ nm )_(n_?m_50

n,m — - )

' Nn+m S
Srzz,m(l"'l) w

n m

Test statistic:

where X, and Y ,,, are sample means of both samples and

n m
2 o 1 %2 SEE VY D el S m-1 o
Sn’m—m[;(xl X *;(YJ Ym) ]‘ 2t ;

is the unbiased estimate of the common variance o2 calculated from both samples
(weighted average of sample variances S2 and S2).

Remark. Test statistic 7, ,, can be remembered with the help of the following obser-
vation. Notice that , ,

var (X, —Yp) =2 +2Z =0*(1 4+ 1),
Since S2 ,, is (unbiased) estimate of o2, we have that S (1 + 1) is natural (and even

unbiased) estimate of ¢ (1 + 1).

Theorem 6.3 Let Xj,...,X, and Yy,...,Y,, beindependent random samples from dis-
tributions with expected values ux and py and finite variances 0)2( = var (X;) and
01% = var (¥j). Then

)_(n _?m - (,uX - HY)

Sim (i + )

d
— N(O, (7*2), for m,n — oo, # — 1€ (0,1),

where
1-21) 0)2( + /105

S AdZ+(1-N)od

2

*

Proof. Proof is analogous to the proof of Theorem 6.2. At first we rewrite

)_(n—?m—(,ux—ﬂy) _ \/m()_(n_?m_(/lX_,uY))

Shm (5 + ) Shm 2

Now we can show, similarly as in Theorem 6.2, that

S — d
Vm (X, = Ym — (ux — py)) — N(O, %U§+U$),

where we have used the fact that % = L2 Then we show that

2
Sn,m

m+n P Jm§+u—am§
00 A )

n n—
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6. Two-sample problems for quantitative data

Notice that under the assumption of equal variances, i.e. o2

2 = o2 (i.e. model F
holds), we have that ¢? = 1 and so

Xn=Ym— (ux — py) i) N(0,1), for m,n — o
S (3 + )

n m

- 1€ (0,1).

_n_
’ n+m

Furthermore, if we can add the assumption of normality (i.e. model #, holds), we
}n_?m_(HX—NY)

can derive the exact distribution of random variable ()
S2 i+l

Theorem 6.4 Let X;,...,X,and Yj,...,Y;, be two independent random samples from
Gaussian distributions with expected values ux and uy and with the same vari-
ance o2. Then o

Xn—Ym-— (,uX _HY)

~ ln+m-2.
Sim (i + )
Proof. Rewrite
Xn_Ym_(HX_HY): U

Sialbra) VO

n

where

Xn=Ym—(ux— n+m-2)82
Xn=Ym— (ux — py) and ZI( ) nm

2
1 1 o

To complete the proof, it is enough to show that U ~ N(0,1), Z ~ y2, , and that
U is independent with Z.

U =

1. U ~ N(0, 1). To show this part, it is enough to realize that, because to the indepen-

dence of random samples, sample means X, and Y, are also independent and it
holds that

2 2

Yn_?m_(HX_/JY) ~ N(Or%'*'%)-

So o
Xo—Ym— (ux -
oi+l
2.Z ~ x%,, ,- Z can be written, using S5 and SZ, as

_ (n+m-2)82 . _ (n—1)s§+(m—1)s§

g2 g2 o2

(n-1) 82 (m-1) $2

Now thanks to Theorem 2.8(i), we get that ——= ~ y2  and —2 ~ % .
(o2 n o m
Furthermore, from the independence of S% and SZ we get that the distribution of Z
is the same as the distribution of a sum of two independent random variables with
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6. Two-sample problems for quantitative data

xi_l and y2 _, distributions. Now considering the definition of y2-distribution (dis-

tribution of the sum of squares of independent, N(0, 1) distributed variables) we get
2

that Z ~ y7 . .

3. Independence of U and Z. Because of the independence of the random samples,

T

)

nSy) and (?m,Sf,)T are also independent. Furthermore, from
Theorem 2.8(ii) we get that random variables X,, and 5}2( are independent and simi-
larly random variables Y, and Sf, are also independent. Therefore, the random vari-

ables X, - Y,, and S2 , are independent. This implies the independence of U and
Z. m|

random vectors (X, S

Remark.

e While Theorem 6.3 implies that, in model ¥, T, ;, has asymptotic distribution
N(0, 1), Theorem 6.4 tells us that in smaller model #, it holds that 7, ,, has, un-
der Hy, exact distribution ¢,,,,_».

* The null hypothesis will be rejected if sample means of both samples differ too
much from each other, i.e. the test statistic is too large or too small.

Critical region:
Hy is rejected & |Tnm| > them—2(1—a/2),
where ,4m-2(1 — @/2) is (1 — a/2)-quantile of ¢-distribution with n + m — 2 degrees of
freedom.
Similarly as in the one-sample z-test, the above described test is exact in model

and asymptotic in model #,;. The same holds for the following p-value and confi-
dence interval.

P-value: p = 2 (1 — F(|¢])), where ¢ is the observed value of test statistic T, ,, and F is
the distribution function of ¢,,,,,_»-distribution.

Confidence interval for ux — py: Using Theorem 6.4 (resp. Theorem 6.3), it is possible to
derive an exact (resp. asymptotic) confidence interval for the difference of expected
values of both samples. We get

P )_(n _?m — them—2(1 — a/2) Sn,m\[% + % < Ux — py <

Yﬂ _?m + Inam—2(1 - a/2) Sn,mw/% + %

Exercise. Modify the critical region and the formula for p-value for the test of the
null hypothesis Hyp : ux < py + dy against the alternative H; : ux > py + do.

=1-a.

VIOLATION OF THE ASSUMPTION OF EQUAL VARIANCES

According to Theorem 6.3

d
Tpm — N(0,0%), where o2 =

1-1)o2 + Ao?
;02 +)(1X A)Ug and -2 — 1€ (0,1).
X - Y
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6. Two-sample problems for quantitative data

Therefore, the test generally does not keep the required level even asymptotically. It
is also worth noticing that if we have, for example, 02 > o2 and at the same time
A< % (i.e. larger variance is in the sample with smaller sample size), then o2 > 1 and
the test is asymptotically liberal.

Notice also that for A = % we have o2 = 1. So, for samples with roughly the same
size, it still holds that

Tom — N(0,1)

and our test does keep the level asymptotically.
Furthermore, if the sizes of both samples equal, i.e. m = n, then

S 3 im = (S5 /2+5412) 3 = \Shn ().

In this case, it always holds that T;, ,, = ~n,n, i.e. test statistics of two-sample ¢-test is
the same with or without the assumption of equal variances.

I-TEST AS A TEST OF THE NULL-DIFFERENCE HYPOTHESIS

If we take &y = 0, this test can be understood as a test of the null-difference hypoth-
esis (6.1). Even though we do not have the assumption of normality, we have equal
variances under the null hypothesis. Therefore, the test will keep the required level
asymptotically.

Regarding the power of the test, it will be consistent against the alternative for
which we have ux — uy # 0. However, if the distributions Fx and Fy differ not only
in expected values, but also in variances, we do not control the influence of this dif-
ference. It can both increase and decrease the power of our test. Furthermore, if we
reject the null hypothesis (6.1), we can only claim that we have proven difference of
distributions Fx and Fy. The rejection of the null hypothesis cannot be attributed
only to the difference in expected values, since the difference in variances could also
contribute to this result.

Exercise. Prove (in detail) Theorem 6.3.

Remark. Sometimes it is recommended to test the equality of variances of our sam-
ples before using the two-sample ¢-test; this can be done for example by using the test
from Chapter 6.5 or so called Levene’s test (not presented in these lecture notes). If
the equality of variances is rejected, we use Welch test, otherwise we use two-sample
t-test. However, we advise against using this kind of approach. It is so called two-
phase test, where the result depends on three different test statistics that are not in-
dependent. It is not guaranteed that the significance level of this test is equal to the
required level a. If we are not sure about the assumption of normality or equal vari-
ances, we should use the Welch test. Then we do not have to verify either one of the
assumptions of the two-sample ¢-test.
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6.4. Two-SAMPLE WILCOXON TEST

The two-sample Wilcoxon test (also called the Wilcoxon rank-sum test) is a non-
parametric test based on ranks.

Model: ¥ = {3 increasing function g and 35 € R :
g(X;) ~ Fy continuous d.f,, g(y;) ~ Fy, Fx(x) = Fy(x — 8) Vx € [R{}. (6.7)

Tested parameter: Shift oxy.
Null hypothesis and alternative:

Hy:6xy =0, H;:doxy #0.

If we have g(x) = x, then model ¥ is called location model. So model ¥ will be
called generalized location model.

Remark.

¢ Unlike in one-sample and paired Wilcoxon test, we do not require symmetry
of any density.

 If both model ¥ and hypothesis Hj hold, then the distributions of X and Y are
identical. Then it holds that my = my and EX = EY (if the expected values
exist). In other words, if model # holds, then two-sample Wilcoxon test can be
understood as a test of equality of expected values and medians. Usually, the
two-sample Wilcoxon test is considered as a test of the equality of medians.

Test statistic: ;
Wn,m = Z Ri;
i=1

where Ry, R, ..., R, are ranks of random variables X; in the combined random sample
X,.., X, n,...,Y,.

Remark. Test statistic W, ,, can attain values from the set {@ ...,mn+ @} It
can be computed in the following way:

1. Take combined random sample (71, ..., Z,1m) df X, .., X0, V1,0, V).
2. Order all Z; from smallest to largest to get the ordered random sample

Z(l) < Z(z) < < Z(n+m)-

3. Determine ranks R; of random variables X; between all Z(1), ..., Z(n+m). It holds
that X; = Z(R;)-
4. Sumranks R; fori=1,...,n.
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6. Two-sample problems for quantitative data

It is possible to find an exact distribution of the test statistic W, ,, under the null
hypothesis for small values of n and m (numerically or in tables). This exact distribu-
tion can be derived from the fact that under the null hypothesis any order of random

variables 7, ..., Z,+n has the same probability (see Theorem 2.15) and therefore
m!
P(Ri=r1,....,Ra=1p) = s )

forall ry,...,r, €{1,..., n+m} different.
For large values of n and m the following proposition is used.

Proposition 6.5 Let Xj,...,X,, and V3,...,Y,, be two independent random samples
from model 7. Suppose that the null hypothesis Hj holds, then
(i)
nn+m+1)

EHOVVn,m =0 VarHo(Wn,m) =

mn(n+m+1)
> .

12

(ii) If n, m — oo, then
Wn,m - EHO Wn,m

vVvarg, (Wn,m)

Proof. Part (i). Under the null hypothesis, distributions of X; and Y; are the same, so
the combined sample X;,...,X,,V1,...,Y,, is arandom sample of size n+ m. It follows
from Theorem 2.16 that for i # j:

<, N, 1).

n+m+1 n+m)?-1 n+m+1
ER; = — var (R;) = %, cov (R;, Rj) = T
So ;
nn+m+1
and

ivar(Ri)+i i COV(Ri’Rj)

i=1 i=1 j=1,j#i

var g, (Wn,m)

_n(n+m+1)(n+m—1) n(n 1)n+m+1
B 12 12
_n(n+m+1) _nm(n+m+1)

Part (ii). Will not be proven. The difficulty of this proof lies in the fact that the ranks

Ry,..., R, are not independent random variables. O

Remark.
¢ Hypothesis will be rejected for too large or too small values of W, ;.
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6. Two-sample problems for quantitative data

* The previous proposition gives us instructions for finding critical values that
ensure asymptotic significance level a.

Critical region (asymptotic test):

n(m+n+1
- e

mn(m+n+1)
12

Hy is rejected <

2 Ul-q/2-

VIOLATION OF ASSUMPTIONS

Ties due to rounding. Because of rounding, we often see ties in our data. In that
situation, test statistic W, ,, can be computed using so called average ranks. It can be
shown that under the null hypothesis

n(n+m+1)
Wn,m I

mn(n+m+1l-kor.)
12

where kor. is a correction of variance given by formula*

kor. = ! Z (£ —t),
z

T (n+m)(n+m-1)

—> N(0,1), for n,m — oo,

where ¢, denotes the number of the random variables Z; ..., Z,,,, which attain the
value z. By 3, we denote the sum over all different values from the set {Z; ..., Zpim}.

It is worth noticing that without the use of correction kor. in the denominator, the
test would be asymptotically conservative.

Generalized location model ¥ does not hold. Notice at first that under the null-
difference hypothesis, i.e. Fx = Fy, the test keeps (asymptotically) the required sig-
nificance level. The invalidity of this model has therefore effect on the interpretation
and the power of the test.

Concerning the interpretation of the test, rejecting the null hypothesis outside of
the generalized location model only tells us that the distributions Fx and Fy are not
identical. However in general, it is not possible to claim that the medians, resp. the
expected values, of those distributions differ.

Concerning the power of the test, in the previously described generalized location
model it holds that Wilcoxon test is consistent.

In practice however, we can never be sure that the generalized location model
holds. Therefore, to better understand the two-sample Wilcoxon test, it is convenient
to use the Mann-Whitney formulation of the Wilcoxon test presented in the following
section.

* See for example (2013), page 118.
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MANN-WHITNEY FORMULATION OF WILCOXON TEST

Test equivalent to Wilcoxon test can be obtained by the following reasoning. Consider

all pairs (X;,Y;) fori € {1,...,n} and j € {1,..., m} and determine how many of them
satisfy X; < Y;:
n m
Wi;k,m = ZZ H{Xi < Y]}
i=1 j=1

The random variable W, called the Mann-Whitney statistic, can attain values from
the set {0,...,nm}.

The following proposition shows that there exists a deterministic linear relation be-
tween the two-sample Wilcoxon statistic W, ,, and the Mann-Whitney statistic W, ,,.
In particular, we can easily compute moments of W,,,,.

Proposition 6.6
(1) W+ Wy = rm + 250,

%
n,m

(ii) If min(n, m) — oo, then M;—m LN P[X; <Yj].

Proof. Part (i). From the definition of a rank we have

n+m n m
R; = Z ]]{Zj < Xi} = Z ﬂ{Xj < Xi} +Z H{Y] < Xi}.
j=1 j=1 Jj=1
So
n n m
W+ Wi = > Ri+ > > 1{X; <Y}

i=1 i=1 j=1

n n n m n

Il
oy
2

A
2
(S—;

+

[
g
oy
Bas

A
2
——

+

gk
=
2

A
oy
——

=1l j=1 i=1 j=1 i=1 j=1
h n n o m
= Xy < X} + D D 1y <X ory) > X;}
i=l j=1 i=1 j=1
- nn+1)
= l+nm = > nm

Part (ii). Will not be proven. The difficulty of this proof lies in the fact that the in-
dicators H{X,- < Yj} are not (for i € {1,...,n}, j € {1,...,m}) independent random
variables. O

Let us analyse corollaries of Proposition 6.6. Part (i) tells us that tests based on the
Wilcoxon test statistic and the Mann-Whitney test statistic are equivalent. Part (ii)

shows that VZ",',’I” is a consistent estimate of the parameter 6xy = P[X; < Yj]. It can

121



6. Two-sample problems for quantitative data

easily be shown that if Fx = Fy then 0xy = 1/2. However, parameter Oxy can be equal
to 1/2 even for two distributions that are not identical.

So, if we consider two-sample Wilcoxon test as a test of the null-difference hypoth-
esis (6.1), then this test is consistent only against alternatives for which 6xy # §. This
inequality cannot be in general (i.e. outside of the generalized location model) inter-
preted as a inequality of expected values or medians. There exist continuous distri-
butions Fy and Fy such that their expected values (resp. medians) are different and at
the same time Oxy = % On the other hand, there also exist continuous distributions
Fx and Fy such that their expected values (resp. medians) are the same and at the
same time Oyy # %

Considering all of the above, we could be interested in the question, whether we
could regard the Mann-Whitney test as a test for the following general situation.

Model: ¥* = {X ~ Fx continuous d.f,, Y ~ Fy continuous d.f.}
Tested parameter: Oxy = P[X < Y]

Null hypothesis and alternative:
HS:QXY:%; Hl*lexyi%.

However, the problem lies in the fact that, in this case, we cannot compute the
variance of the test statistic W, ,, under the null hypothesis with the help of Propo-
sition 6.5 (since under the null hypothesis we do not have in general identically dis-
tributed random variables). So critical values computed for Wilcoxon test in model
¥ do not work in general model #*. And it turns out that ignoring this fact can lead
to both conservative and liberal tests.*

The above reasoning leads to clear conclusion: If we want to test the equality of
expected values without additional assumptions on the shape of the distributions of
both samples, we use two-sample t-test without the assumption of equality of vari-
ances (Welch test), not Wilcoxon test.

Remark. It is sometimes recommended to test the normality of both samples (e.g.
by the popular Shapiro-Wilk test, which is not presented) before using two-sample
t-test to compare the expected values. If the normality is rejected, we use Wilcoxon
test, otherwise we use two-sample ¢-test. However, we strongly advise against using
this approach. As we already know, these two test are testing different hypothesis, we
cannot use them on the same problem. If we are uncertain of the normality of our
data, we should rather use Welch test, which tests the required hypothesis but does
not require the assumption of normality.

Remark. If ties are present, it is necessary to slightly modify Proposition 6.6. If we
use the average ranks to compute the statistic W, ,,,, then formula (i) holds, if we re-

* Standardization of the test statistic W, ,, which assures that the test keeps the required level asymp-
totically, even in general model #*, can be found for example in ( ).
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define the statistic W,;,, as

n m
Wi = [1{Xi <} + 30{X; = ;}].
i=1 j=1
Part (ii) must then be modified to
W*

n,m

2 PIx < Y]+ 1P[X; = 1.

mn

6.5. TWO-SAMPLE F-TEST OF EQUALITY OF VARIANCES

Two-sample F-test of equality of variances is an exact test comparing variances of
two independent random samples under the assumption of normality.
Model: ¥ = {Xi ~ N(uyx, 0)2(),Y]- ~ N(uy, 0‘%), Ux, by € R, 0)2( >0, 01% > 0}
Tested parameters: Variances 0)2( =varX; and 0'% =varYj.
Null hypothesis and alternative:
Hy:o0%=0f, Hy:o%# 0y

Test statistic:

82
=X
F = 52
Y
where S% is the sample variance of the random sample Xj, ..., X,, and S is the sample
variance of the random sample V3, ..., Y.

Remark.
e Theorem 2.11 implies that, in the above model and under the null hypothesis,
the exact distribution of the test statistic is F,,_1 ;-1 distribution.
* We rejected the null hypothesis if the sample variances differ too much, i.e. if
the value of the test statistic is too small or too large.

Critical region:
Hy isrejected © F < F_1m-1(a/2)or F > F,_1 m-1(1 — a/2),
where Fj,_1,-1(a/2) and F,-1,,-1(1 — @/2) are (a/2)-quantile and (1 — a/2)-quantile

of the F-distribution with n — 1 and m — 1 degrees of freedom.

P-value: p = 2min {1 -G(s), G(s)}, where s is the observed value of the test statistic F
and G is the distribution function of the distribution F,_1 ,-;.

Confidence intervals for 0% /02: According to Theorem 2.11 it holds that

8}2(/0)2(

2/ 2
Sy /oy

Pl Fn-1,m-1(a/2) < <Fp-1m-1(1-a/2)| =1-a.
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So confidence interval for 0% /0% is given by formula

S 1 Sy 1
Slz/ Fn—l,m—l(l_%>’ 512, Fn—l,m—l(%) '

Remark. This test can be modified to one-sided test: Null hypothesis Hj : 0% < o}

is rejected for large values of the test statistic, critical value is Fj;-1,-1(1 — a). Null
hypothesis H}' : 0% > 0% is rejected for small values of the test statistic, critical value

is Fm—l,n—l (a)

VIOLATION OF ASSUMPTIONS

If the assumption of normality is violated, this test does not keep the level even
asymptotically. To construct a test without this assumption, we would need to derive
an asymptotic distribution of the test statistic F under the hypothesis and work with
this distribution. Alternatively, one can use the Levene’s test. It can be used to com-
pare more independent random samples. However, we do have to highlight that, in
general, it does not test the equality of variances, but the equality of a slightly differ-
ent parameter of variability.
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Sample examples for the preparation for the exam.

1. Consider X; ~ Exp(4;) and Y; ~ Exp(A2). Show that in this situation X; and Y;
satisfy the generalized location model (6.7).
Hint. Consider g(x) = logx.

2. Modify the two-sample F-test of variance so that it tests the null hypothesis

Hp : 02 < o2 against the alternative H; : 0% > o2. Justify your modification.

What would be the formula for p-value in this modified test?

3. We are deciding whether to send our employees to a language course from the
company Analfabet or from the company Buran. To make this decision, we
have randomly chosen 20 employees and split them (again randomly) between
those two courses (10 employees went to each course). In the following table
we present the number of points received in an English test, taken by all of the
employees after they have completed their respective course.

Analfabet course 37 41 36 48 42 36 42 44 40 34
Buran course 38 43 43 47 52 44 41 42 42 39

How would you test that there is no difference between the courses?

The point of this exercise is not to numerically calculate the test statistic, but
rather to explain the test in detail (i.e. define suitable model for your data, null
and alternative hypothesis, test statistic and critical region).

4. We have data about the salaries of 100 employees in a large insurance company.
We also have the information whether these employees studied at MFF UK or
at another school. Suggest a test (i.e. define suitable model for the data, null
and alternative hypothesis, test statistic and formula for p-value), if we want to
show that the graduates of MFF UK have higher salaries then the graduates of
other schools.

5. We have two generators of independent numbers from two given distributions.
We have obtained 500 random numbers from each generator. Suggest a test (i.e.
define suitable model for the data, null and alternative hypothesis, test statistic
and critical region), which can be used to test that both generators generate the

random numbers from the same distribution.
The end of

self-study for
week 10

(8.12.-12.12.).
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7. ONE-SAMPLE AND TWO-SAMPLES
PROBLEMS FOR BINARY DATA

In this chapter we will be dealing with binary variables, i.e. variables that can take
only tow values.

7.1. ONE-SAMPLE PROBLEM

Bernoulli distribution is the most simple for the categorical variable that takes only
two possible values coded as 0 and 1. Let px € (0, 1) be the probability that a given
subject is classified in the category 1.

LetYy,...,Y, bearandom sample from the Bernoulli distribution Be(px) that repre-
sents the categories of n subjects. Denote the number of subject classified in the cat-
egory 1 as X,, = 3.7 | V;. This random variable has the binomial distribution Bi(n, px)
(see Theorem 2.3(iv)).

We know that the relative frequency

~ X, '-le' —
pn:ﬁ: lnll:Yn

is a consistent and unbiased estimator of px. The properties of p,, are summarized
in Theorem 2.3.

7.1.1. CLOPPER-PEARSON METHOD

This method makes use of Bi(n, px) which is the exact distribution of the statistic X,,.
Consider the hypothesis Hy : px = po against the alternative H; : px # po. The
critical region is given by
Hy is rejected © X, < c (a) or X, > cy(a),
where c;(a) is the largest integer such that

cL(@)

. n\ j _i
P(Bi(n,po) < cr(@) = (].)p{)a ~po)" <
j=0
and cy (a) is the smallest integer, such that

P(Bi(n,Po) = Cu(a)) = Zn: (7)’9{)(1 _po)n—f <

j=cu (@)
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This test (called Clopper-Pearson) has the level at most a (due to the discrete distri-
bution of the test statistic not all levels are attainable). P-value of this test is given
by

p(x,) = 2 min {P(Bi(n,po) < xn), P(Bi(n, po) > x,,)} = 2min {Go(xn), 1 - Go(xn — 1)},

where Gy is the cumulative distribution function of Bi(n, pg) and x, is the observed
value of X,.

Now consider the task of finding confidence interval for px with the probability of
coverage (at least) 1 — a. Making use of the duality of the confidence intervals and
testing we can find the confidence interval as the set set containing the values of the
parameters p € (0, 1) for which (with given X,,) we do not reject the null hypothesis
Hp : px = p against the alternative H; : px # p. Denote G, cumulative distribution
function Bi(n, p). Then

1S, ={p € (0,1) : p(X,) > a, where p(X,) is the p-value of the test Hy : px = p}
={p € (0,1) : 2min{Gy(X,),1 - G,(X,, - 1)} > a}

Xn n
= {p €(0,1): Z (’;)pf(l -p)" > g and at the same time Z (7) I(1-p)*]
Jj=0 j=Xn

Thus the confidence interval will be of the form (p., py), where p; and py are found
as the solutions of the following equations

n X,
2. (?)P"(l -pri=g, ) (';)pf(l —p)i = g

J=Xn j=0

\S)

It can be shown that p; and py can be calculated explicitly as

Xnqr(a@) (Xn + Dqu(a)
Xpqr(@)+n—-X,+1" (X, + Dgy(a) +n-X,)

where q; (a) is the a/2-quantile of the distribution Fox, »(»-x,+1) and gy (a) is (1-a/2)-
quantile F>(x,+1)2(n-x,)- When X,, = 0 then we put the lower bound of the confidence
interval to 0. Further if X, = n then the upper bound of the confidence interval is put
to 1.

The above interval is called the Clopper-Pearson confidence interval for the param-
eter of the binomial distribution. The advantage of this interval is that the coverage
probability is at least 1 —a for each sample size. The disadvantage is that the coverage
probability can be considerable bigger than 1 — a (which implies that it is too wide).

Now we can return to Clopper-Pearson test of the hypothesis Hy : px = po against
the alternative H; : px # po. Instead of calculating the critical values ¢, (a) and cy (@)
one can calculate the Clopper-Pearson confidence interval and reject Hy when py is
not included in this interval.
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7.1.2. STANDARD ASYMPTOTIC METHOD

In Chapter 3.5.2 in the example on p. 50 we found the asymptotic confidence inter-
val for px based on Theorem 2.3(iii) and Cramér-Slutsky theorem (Proposition 1.3).
Using (3.7) it holds that

2, = YPnopx) 4 o).

Vﬁn(l - ﬁn) e

This can be used to derive the asymptotic test of the hypothesis Hy : px = po against
the alternative H; : px # po with the critical region

\/ﬁ (ﬁn - pO)
Vﬁn(l - ﬁn)

From the duality of testing and confidence interval (Proposition 4.2(ii)) we can find
the confidence interval for px as

Hj is rejected < > Uy_q)2. (7.1)

\/> Pn— o Pn(1=pn = Pn(1=pn
1S, = {p €(0,1): \/% < ul_a/z} = (pn —uy g 5 +u1_g1/#).

It is worth noting that this confidence interval is the same as the confidence interval
for px in Chapter 3.5.2.

The disadvantage of this approach is that if px is close to zero or one, than one
needs large samples sizes so that the asymptotic approximation is reliable. In prac-
tice it is often recommended that for the asymptotic approximation one needs that
min{X,, n — X,} > 5. It is also worth noting that this interval is not necessarily in-
cluded in the interval (0, 1).

Exercise. As Bernoulli distribution is in £2, one can also use the the t-test (see Chap-
ter 5.3) that is valid asymptotically. Show that

Vn_l(ﬁn_pO)
T, = .

VPu(1 = pn)

Further this test statistic would be compared with the quantiles of ¢,_;-distribution.
Thus the ¢-test would result in a test that is slightly more conservative than the test
given in (7.1).

7.1.3. WILSONOVA METHOD
This method is based directly on Theorem 2.3(iii) which states that

\Vn (ﬁn - pX) d
Vpx (1 —px) "7

W, =

N(0, 1)
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7. One-sample and two-samples problems for binary data

Under the null hypothesis Hy : px = po we know px and thus one can perform the

test as _
vV (P = po)

vVpo(1 = po)

Hy is rejected < > Ul_g)2-

This test is known as Wilson test.
The confidence interval can be found again with the help of duality of testing and
confidence intervals as

Vi (pa-p)
p(1-p)

IS, = {pe (0,1) :

< ul—a/z}-

After some algebra we get the following formula for the asymptotic confidence inter-
val ) .
—~ u pn(1=Dp 2
(o o BB ) L
where u denotes u;_,/>. This interval is known also as Wilson confidence interval.
It is known that Wilson test and Wilson confidence interval provides a more precise
results than the methods of Chapter 7.1.2.

It is interesting to note that the middle of the Wilson interval can be expresses ad
the weighted mean w,p, + (1 - w,)1/2, where w,, = (1 +u?/n)"! — 1forn — oo.
When calculating the 95% confidence interval, the middle of the Wilson interval is
approximately (X, +2)/(n + 4).

7.2. TWO SAMPLE PROBLEMS

LetY11,..., Y1, be arandom sample from Bernoulli distribution Be(p;) and Y2y, ..., Y2,
be a random sample from Be(p,). Denote X; = Y1, V1; and Xo = 31", ;. We will be
interested in comparing two independent binomial random variables X; ~ Bi(n, p;)
and X, ~ Bi(m, p2). We want to find out what is the difference in probabilities p; and
p2. The difference between p; and p, can be expressed in several ways.

If the random variables X; and X» give the numbers of some negative events (death,
disease, defect) then the parameters p; and p, are called risks of events. Probabil-
ities (risks) p; and p, can be estimated by the corresponding relative frequencies
p1 = Xi/n, p2 = Xo/m. The properties of these relative frequencies are summarized
by 2.3.

Probabilities (risks) p; and p, are usually compared by one of the following three
ways:

1. diffgrence of probabilities (risk difference, excess risk) dy = p; — p», is estimated
asd=p) - p2;

2. ratio of probabilities (relative risk) ry = Z—; is estimated as 7 =

)

)

: _p/(A-p1) _ pp(A=-p2) ; ~_p(d-p2) _ Xi(m-Xo)
3. odds ratio ox = 27 (T=ps) = pa(iopr) 1S estimated as o = 50 p) = Xo(nX) "
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7. One-sample and two-samples problems for binary data

For each of this way of comparing we will need to derive the asymptotic distribu-
tion of the corresponding estimator. For all the asymptotic results given below we
will assume that

n—o, m-—o, n/m-— qe0 ). (7.2)

The results given in this results are also valid when only the number of all observa-
tions n + m is fixed, while the sample sizes n and m are random (see the discussion
on p. 108).

Note that with the help of the central limit theorem

Vu (p1 - p1) = N(0,p1(1 - p1)) and Vm (P2 - p2) < N(0, p2(1 = p2)).

Further thanks to independence p; and p, we get in the same way as in the proof of
Theorem 6.2 that

ﬁl - i> 0 p1(1-p1) 0
vm (152 - Pz) NZ((O) , ( 0 p2(l-p2)| | 3

7.2.1. THE RISK DIFFERENCE

The risk difference is given by dx = p; — p2. This difference says by how much is

the risk in population 1 larger than in population 2. This parameter can take values

between —1 and 1. The zero value of dx corresponds to the situation when p; = p».
The consistent and unbiased estimator of parameter dy is d = 1 — pa.

Proposition 7.1 Let p;, p2 € (0,1) and it holds that (7.2). Then

—

d—-dx

P(-p) , pa(l-p2)
\/lnl+2m2

<, N, 1).

Proof. The proof is completely analogous to the proof of Theorem 6.2.
First we rewrite

d - dy ~ Vm (d - dx)
\/ﬁlun—ﬁl) y R20P) \/51(1 — )™+ Po(1 - o)

Now with the help of law of large numbers (Proposition 1.4) and continuous map-
ping theorem (Proposition 1.2) one can show that

P P .
\/191(1—191)% +p2(l-p2) — \/WHMI—W)-

With the help of Cramér-Slutsky theorem (Theorem 1.3) it remains to show that
VI (@~ dx) 5 N(0, 282 4 py (1~ ),

which can be proved analogously as in the proof of Theorem 6.2 from the joint asymp-
totic normality of estimators p; and p, v (7.3). i
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7. One-sample and two-samples problems for binary data

For the asymptotic test hypothesis Hy : dx = 0 against the alternative H; : dx # 0
we will use the test statistic

~ d
Ty =
\/751(1—51) L B2(1-P2)

n m

and the hypothesis will be rejected when ’T}i| > Ul_q/2-
From Proposition 7.1 we get by the straightforward algebra that

P[g_ul_a/z\/ﬁlun—ﬁl) AATE SIS NS NN CYIE TRNATE A

From this one can easily get the asymptotic confidence interval for the difference of
probabilities dy.

Remark. As the null hypothesis Hy : dx = 0 implies that p; = pz, one can also instead
of T; use the test statistic

—~

_ d
JPL=P)(5+ %)
X1+Xo

where p = <122 is the estimate of the joint probability under the null hypothesis. The
test statistic T; has asymptotic distribution N(0, 1) under the null hypothesis. The ad-
vantage of this test statistic is that the actual level of the corresponding test is usually
closer to a than actual level of the test based on 7;. On the other hand the disad-
vantage of this test statistic is that it cannot be used to to construct the confidence

interval for the difference of probabilities dx = p; — p».

Ta , (7.4)

Exercise. Alternatively one can use also the two-sample ¢-test (see Chapter 6.2) for
testing the hypothesis Hy : ux = py. Show that in this situation the test statistic T;,,,,
is of the form _
~ d
\/51(1—171) 4 2-p2) .

Tn,m =
n-1 m—1

7.2.2. RELATIVE RISK

A different way of comparing probabilities (risk) is the relative risk ry = p1/p2. This
parameter says how many times is the risk in population 1 bigger than in popula-
tion 2 and it can take values in the interval (0, ). The probabilities (risks) are the
same if and only if ry = 1.

The estimator 7 = p,/p» is consistent (but not unbiased) estimator of the parameter
rx.

Although we can derive the asymptotic distribution of 7 = p;/p>, it is known that
the normal approximation is more appropriate for the logarithm of the 7.
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7. One-sample and two-samples problems for binary data

Proposition 7.2 Let py, p2 € (0, 1) and it holds that (7.2). Then

log7 - logrx KR

5 —
Lh,lp
npi mp

N(0, 1).

Proof. Again we will proceed analogously as in the proof of Theorem 6.2.

First rewrite R
log7—logry _ Vm (log7-logry)

—— ——
\/4 + L \/m@ + L
npi mp2 n p p2

Now with the help of law of large numbers (Proposition 1.4) and continuous map-
ping theorem (Proposition 1.2) it is straightforward to show that

1-p -7 P _ -
m_.-p1 & — I-p + 1-pp .
nop1 p2 qp1 p2

Thus with the help of Cramér-Slutsky theorem (Theorem 1.3) it remains to show
that

-~ d - _
Vim (log7-logrx) —- N(0, 224 + Lt2),

But this is implied by delta-method (Proposition 1.6) and the joint asymptotic nor-
mality (7.3), as the gradient of the function

g(p1, p2) = log (%) = logp, —logpy
is (5r) % )- Thus the asymptotic variance of the random variable v (log7 - ry) is

(L __1) w 0 pil _1—p1+1—P2
e 0 p2(1 —p2) ;,—21 ap p2

O

Suppose we are interested in testing rx = 1. This can be also expressed as logrx = 0.
Thus for the test of Hy : rxy = 1 against the alternative H; : rx # 1 one can use the test

statistic log?
ogr
I = %
1-p1 " 1-p2
npi mpa
The hypothesis is rejected when |T;| > uy_q/2.

Proposition 7.2 implies that

1-p1 |, 1-p» = 1-py | 1-p»
Ly —22 <] <1 +Uj_ L=l 51-a.
np mpa 087x <1087+ Ul-q/2 np mpa @

P

log'f— Ul—a/2

Thus the asymptotic confidence interval for rx is of the form

= _ I-p1 |, 1-p2| = 1-pr , 1-p
(rexp{ Ul—q/2 n + s | rexpiil-a/2 T +_mﬁ2 .

132



7. One-sample and two-samples problems for binary data

Exercise. What would be the critical region for testing the hypothesis Hy : rx = 2
against the alternative H; : ry # 22
7.2.3. ODDS RATIO

The another way of comparing two probabilities is with the help odds ratio

_ p1/(1-p1) _ p1(1—p2)
T/ -p)  p(l-p)

This parameter quantifies how much is is the odd in population 1 larger than in pop-
ulation 2. This parameter can take values in the interval (0, ). The probabilities
(risks) in both populations are equal if and only if ox = 1.

The consistent estimator of the parameter oy is given by

p1(1—p2) _Xi(m - Xp)
p2(1-p1) Xo(n-X1)

0=

Although one can derive the asymptotic distribution of the estimator o = %,

it has been observed that the normal approximation works better for the logarithm
of this estimator.

Proposition 7.3 Let py1, p2 € (0,1) and it holds that (7.2). Put

~ 1 1 1 1 1 1 1 1
Vo=—+ —+ —+ — =+ ———+—+ .
npy n(l-p1) mp m(l-p) X1 n-X3 Xo m-X

Then log 5 1
20807089 4, N0, 1).

—~

Vo
Proof. Similarly as in the proof of Theorem 6.2 first we rewrite

logo —logox  Vm(logo - logox)

Vo MV,
Now with the help of the law of large numbers (Proposition 1.4) and the continuous
mapping theorem (Proposition 1.2) one can show that

—~ P
1 1 1 1 1 1
NmV, =2 + -2t =+ —— —>\/—+—+—+—
0 \/nm n(l-p1) " p2 ' (1-p2) gp1 T q(@-py) " p2 T (A-p2)

Further using Cramér-Slutsky theorem (Theorem 1.3) it remains to show that

~ d 1 1 1 1
vVm (logo - logox) — N(O, ey Tt —(1_p2)),
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7. One-sample and two-samples problems for binary data

which follows from the delta-method (Proposition 1.6) from (7.3) as the gradient of
the function

p1 / p2
1—]91 l—pg

1+1 1 1).

g(p1, p2) =log ( ) =logp1 —log(1 - p1) — log p2 +log(1 - p2)

T I-p pr I

is ( m

The probabilities (odds) in the two populations are equal if and only if ox = 1 (or
alternatively if logox = 0). For the asymptotic test of the hypothesis Hy : ox = 1
against the alternative H; : ox # 1 we will use the test statistic

T, = logo

S

and the hypothesis is rejected when |T,| > u_q/2.

Proposition 7.3 implies that

P[log5— ul_a,z\/%, <logox <logo + ul_a/z\/go] —1-a.

Thus the asymptotic confidence interval for odds ratio oy is of the form

(5exp{—u1_a/2\/§0}, 5exp{u1_a/2\/50}).

Exercise. What would be the critical region for the hypothesis Hy : ox < 2 against
the alternative H; : ox > 2?
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7. One-sample and two-samples problems for binary data

Sample examples for the preparation for the exam.

The solution of “the practical exercises” should contain the mathematical model, the
null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. From 100 (randomly chosen) university graduates there were 11 who support
the given party. On the other hand from 200 (randomly chosen) high-school
graduates there were 84 people who support that party.

a) Itis possible to say that that the party has the support at least 35% among
high-school graduates?

b) Is it possible to say that the support among high-school graduates is at
least two times larger than among university graduates?

2. The mayor of a small municipality would like to organize a new-year firework
but he is not sure if the citizens are in favor of that. He has found that 61 from
100 citizens are in favor of the firework. Based on this data can the mayor be
sufficiently sure that at least half of the citizens are in favor of firework?
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8. MULTINOMIAL DISTRIBUTION AND
CONTINGENCY TABLES

In this chapter we will be dealing with categorical variables, which can take in general
more than two values. The term categorical variable was explained in chapter 3.2.2.
Shortly speaking, it is a discrete variable which takes values from a finite set typically
denoted as 1,..., K. The values from this does not have to have numerical interpreta-
tion. Usually they denote a membership in a given group (category). The parameters
used in the analysis of categorical data are typically the probabilities of the categories.

8.1. MULTINOMIAL DISTRIBUTION

Multinomial distribution generalises binomial distribution to allow for situations where
the categorical variable can take more than two different values.

8.1.1. MULTINOMIAL DISTRIBUTION: DEFINITION AND PROPERTIES

Definition 8.1 (Multinomial distribution) Let K > 2 and n > 1 are non-negative
integers and p = (p1,...,pk) ' is the vector of the constants such that p; > 0 Vk and
Zle pr = 1. We say that the random vector X = (Xi,...,Xx)" has a multinomial
distribution Multg (n, p), if his density with respect to the counting measure on ZX is

n!
XI'H'XK'pflpgz...p;gK ZfZka:n
P[XIZXLXZZXZ,...,XK:)CK]: xkENO Vk
0 otherwise.

A multinomial distribution is the distribution of the numbers of elements in each
of the K boxes (compartments) in n independent experiments, when in each of the
experiments the probability of the putting of the element in the boxes is given by p.

Theorem 8.1 (Representation of multinomial distribution.) Let Yj,...,Y, be inde-
pendent random vectors with the distribution Multg (1, p). Then 27" | ¥; ~ Multg (n, p).

Proof. We will proceed by the mathematical induction.
For n = 1 the statement obviously holds.

Assume now that the statement holds forn — 1, i.e. X = Z;’:‘ll Y; ~ Multg(n -1, p).
We will show that X + Y, ~ Multg(n, p).
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8. Multinomial distribution and contingency tables

Denote Y, = (Yu1...., Y,,K)T and for ZI,le xr = n we can make use of the induction
assumption and calculate

P[X1+Yn1 =x1,...,Xg +Yux IXK]

PlX1+ Y =x1,..., Xk + Yok = xx | Yor = 1] P[ Ve = 1]

(n 1) ka_l( ﬁ p’.‘f)pk
o= DT e ! © e

O

Theorem 8.2 (Properties of the multinomial distribution.) Let X ~ Multg(n, p). Then
(i) Xx ~ Bi(n, pr),

(ii) EXx = npx, var Xi = npr(1 - py),

(iii) cov (Xj, Xx) = —np;p, for j + k,

(iv) the variance matrix of X is

varX =n [diag (p) —p®2],

where diag (p) is the diagonal matrix with the diagonal given by the elements of
the vector p = (p1,...,px) ap® =pp'.

Proof. With the help of theorem 8.1 we can represent X as X = )", Y;, where Y3, ..., Y,
are independent random vectors with the distribution Multg (1, p).

Part (i) follows from the fact that X; = )7, Yit.

Part (ii) follows from the properties binomial distribution.

Part (iii). With the help of the above representation one can calculate for j # k

n n n n
D Yin ) Y| = D > cov (¥ij, Vi)

i=1 =1 i=1 I=1

cov (Xj, Xi) = cov

n

= Zcov (Yij, Yik) = ncov (Yij, Yix)
i=1

=n (EY;;Y;x — EY;; EYix) = —np;px,

where we make use of the fact that cov (Y;;, Yix) = 0 for i # j (by the independence
of random vectors Y; and Y}), EY;;Y;x = 0 (as only one element of the vector Y; is
non-zero), EY;; = p; and EYj; = px.
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8. Multinomial distribution and contingency tables

Part (iv). From the statements (ii) and (iii) it follows that

npir(l-p1) -npip2 ...  —npipx
varx =| “mpepr npe(l-p2) ... -mpepx | [diag (p) - pp"].
—npxp1 -npxp2 ... npr(l-pk)

Theorem 8.3 (Asymptotic properties of a multinomial distribution.)
Let X, ~ Multg(n, p). Then

(i)

d .
(X, — np) —= Nk (0, diag (p) — p®?),

Sl-

(ii)

ZK: (Xkn — npk)z d 2

}’Zpk n—oo

Proof. Part (i). With the help of the theorem 8.1 we can represent X, = 3" ; Y;, where
Yi,..., Y, are independent random vectors with the distribution Multx (1, p). Further
from the theorem 8.2 we know that

EY;=p, varY;=diag(p) — p*

Thus with the help of central limit theorem for independent identically distributed
random vectors (Proposition 1.5)

1

ﬁ(X n—1D) \/_ZY p)—>NK(Odlag(p) p® )

Part (ii). Note that

X _
Z (Xnk — npr)? - 777,
=l npg

where
Z, = —dlag (\%)(Xn - np).

<|

Now wit the help of part (i)

Zy — Z ~ Nk (0,3), (8.1)
n—oo
where diag (%) is the diagonal matrix with the elements — \F’ e \lﬁ on the diagonal.

> = diag (\/iﬁ) [diag (p) — p®*|diag (\/iﬁ) = Ix — Vp*2.
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Note that

2 2 2 T T
(0 = V™) (e = VB*) = i = 2 VD™ + VDD VPP
as yp' yp = 1. Thus the matrix Iy — y/p®* is idempotent.

Further with the help of (8.1) and continuous mapping theorem (Proposition 1.5)
one gets that

Z2'z, 77z

n—oo

Let the matrix X = g — @®2 be idempotent. Then with the help of Lemma A.1 with
A = I we get that the quadratic form ZT Z follows y?-distribution with the degrees
of freedom given by

K
tr(AZ) =tr (lk - vP*) =K - ) pr =K - 1.
k=1

8.1.2. ESTIMATING PARAMETERS OF A MULTINOMIAL DISTRIBUTION

For estimating the parameters py, testing hypotheses about p; and for the construc-
tion of the confidence intervals for pr we can use the methods described in Chap-
ter 7.1 as by Theorem 8.2(i) it holds that X ~ Bi(n, py).
The entire vector p can be estimated by p,, = % The joint asymptotic distribution
of the estimate p,, follows from Theorem 8.3(i):
Vi (pn —p) = %(X — np) VH%’ Nk (0, diag (p) — p®°).

For an arbitrary K-dimensional vector of constants c it holds that
Vr (c'pn - c'p) 7_%: N(0, ¢ [diag (p) — p**]c).
The unknown asymptotic variance V, = ¢' [diag (p) — p®?]c can be estimated as
V. = ¢' [diag (Pn) — P%?]c.
Then V, # 0 and moreover with the help of Cramér-Slucky theorem (Proposition 1.3)

Vr(e'pn—c'p) 4
—~ n—oo

Vi

N(O, 1). (8.2)

With the help of that one can easily derive the asymptotic test of the hypothesis

Hy : CTp =v, H: CTp # Y0-
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8. Multinomial distribution and contingency tables

Consider the following test statistic

Thanks to (8.2) under the null hypothesis this statistic has asymptotically standard
normal distribution. Thus we reject Hy if only if |T.| > u1_4/2.
The asymptotic confidence interval for ¢ p based on (8.2) is given by

T~ V. T= V.
(C Pn — Ul-q/2\ 3 C Pn+u1—a/2\j;‘)-

The vector c is chosen in such a way so that the linear combination c' p represents
the parameter that we are interested in. For instance if we are interested to know if
the probabilities of the first and the last category is the same and we want to cal-
culate the confidence interval for the difference of these probabilities then we take
c=(1,0,...,0,-1)T and y = 0.

8.1.3. y*>-TEST OF GOODNESS OF FIT FOR MULTINOMIAL DISTRIBUTION

By y2-test of goodness of fit we understand the test of the hypothesis Hy : p = p°
based on Theorem 8.3(ii). This hypothesis states that the probabilities of categories
p = (p1,...,px)" are equal to the given hypothetical probabilities p° = (p?,...,p0)7,
i.e. pr = p} for each k € {1,...,K}.

By Theorem 8.3(ii) under Hy

5 (X —nPO)Z d

k

= Z : O oo X1 (8.3)
k=1 Py

Note that the test statistic compares the observed frequency X; in the category k
with the frequency np]‘z expected under the null hypothesis. Large values test statistic
speaks against Hy. Thus the null hypothesis Hj is rejected when

Hy is rejected & y* > ¥+ (1 - a), (8.4)

where y2 | (1 - a) stands for the (1 - a)-quantile of the distribution 2 _,.
Let s, be observed value of the test statistic y?>. Asymptotic p-value of this test is
calculated with the help of (4.12) as

p(x) =1-Gg-1(s2),

where Gx_1 is cumulative distribution function of y?-distribution with K — 1 degrees
of freedom.
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8. Multinomial distribution and contingency tables

Remark. The asymptotic approximation with the help of y? distribution requires
that the sample size n is sufficiently large. A simple rule of thumb is that the ex-
pected frequencies np,g should be at least 5 for each k € {1,...,K}. Otherwise the
y?-approximation might be rather inaccurate.

Remark. For K =2, p) = py, Xo = n— X1, p) = 1 - po one gets

2

\/ﬁ(pn_pO) , kdeﬁn=)%

vVpo(1 = po)

Thus the test statistic of y2-test for K = 2 categories coincides with the square of the
Wilson test statistic introduced in Chapter 7.1.3.

= (X1 — npo)? N [n—- X —n(1-po)l?
npo n(l - po)

Remark. Note that for K > 2 one cannot express the null hypothesis and the alter-
native with a one-dimensional parameter. Thus one cannot simply use the duality
of confidence intervals and statistical testing (Proposition 4.2). Analogously this hold
true for all the tests that follow (with the exception of Chapter 8.2.1) in this chapter.
That is why no confidence intervals are given below.

Example (Is the dice regular?). We throw the dice n-times. Let X, ..., Xg be the ab-
solute frequencies of the numbers 1-6 on the dice. The dice is regular when pg =1/6,
k=1,...,6. If the the null hypothesis Hj is rejected then we have proved that the dice
is not regular.

Example (Are child-births uniform in the calendar year?). Suppose we know the num-
ber of babies Xj, ..., X;2 born in the each of the months (from January to December).
Then we put p? = &, where my is the number of days in the k-th month. By rejecting
Hy we prove that the child-births are not uniform in the calendar year.

Example (Follow data the distribution given by cdf Fy?). Suppose we have a random
sample 7, ..., Z, and we are interested if this sample is from the distribution given
by the cumulative distribution function Fy(x) = F(x; 6y), where 6y is known.

Introduce the intervals (ax_1,ar), k = 1,...,K, where ag = —o and ax = . The
number K should be chosen in such a way that it is much smaller than n. Denote
Xk = 21 Vae_y,a.) (Zi) the number of observations in the k-th interval. Now if Fy(x) =
F(x;0y) is the true distribution function of Z;, then the random vector X = (Xi,..., Xx)"
follows the multinomial distribution Multg (n, p°), where probabilities of the cate-
gories are given by pg = F(ay; 0y) — F(aj_1;09).

Now we test the null hypothesis Hy : p = p° with the y2-test of goodness of fit,
see (8.4). By rejecting Hy we prove that F(x; 6y) is not the true distribution function
of Z;.
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8. Multinomial distribution and contingency tables

8.1.4. )(Z-TEST OF GOODNESS OF FIT FOR MULTINOMIAL DISTRIBUTION WITH
ESTIMATED (NUISANCE) PARAMETERS

In the last example we see that the probabilities of categories p} may depend on the
vector parameter 6y. The test statistic of goodness of fit statistic (8.3) can be calcu-
lated only if this parameter is known. In practice we are often interested in situations
when this parameter is not known but we can estimate it. We will show how to mod-
ify the test statistic (8.3) and the critical region (8.4) for the situation of the unknown
parameter 6.

Consider the model ¥, given as follows. Let the random vector X = (Xi,...,Xg)"
follow multinomial distribution MuItK(n, p(0x)), where 6x € © C R% is unknown d-
dimensional parameter, d < K — 1, and p is a function mapping © into (0, 1)X so that
p(0)T1x = 1 for each 8 € © (the sum of the coordinates of p(8) is always 1). We are
interested whether the distribution X can be described with this model or not.

Example. Suppose that in a given population there are two variants of a given gene.
Denote these variants as A (e.g. dark eyes) and a (e.g. blue eyes). Let 0x € (0,1)
be the proportion of A in the population of the given gene. Each individual has two
variants of the given gene (one from the father and one from the mother). Thus each
individual has one of the pairs AA or Aa or aa. If the variants of the genes are mixing
independently (i.e. it holds Hardy-Weinberg equilibrium), then the following table
give the probabilities of the three possible pairs.

Genotype Probability
AA 0%

Aa 20)((1 - Hx)
aa (1-0x)2

Suppose now that we observe n independent individuals. Denote X;, X», X3 the num-
ber of individuals with the corresponding pair AA, Aa, aa. Provided that Hardy-Weinberg
equilibrium holds then the vector X = (Xj, X2, X3) " follows the multinomial distribu-
tion Multz(n, p(0x)), where p(0x) = (02,26x(1 — 0x), (1 — 0x)?)T. Base on the obser-
vations X we would like to show if the population is in the Hardy-Weinberg equilib-
rium.

The parameter 6x needs to be estimated. For this reason it is natural to use the
maximum likelihood method. Note that the log-likelihood is of the form

K
01(8) = 10g (grrr [P1O)] -+ [pxc()1%%) = 3" Xi log pi(8) +10g (er1)-
k=1

00,(6)

Thus the system of the likelihood equations is given by =55 = 0, leads to the

|0:§,,
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8. Multinomial distribution and contingency tables

system of d equations that determines a d-dimensional parameter 0,.:

X 0pe(9n) _, (8.5)
= pe(6,) 99

Consider now the hypotheses
Hy:30x €©® p=p(Ox) (model F, holds)
against the alternative
Hy :V0x € ©® p+ p(Ox) (model %y does not hold).

First we get the estimator 6,, of the unknown parameter 6y by solving (8.5). Then
we can test Hy by the test of goodness of fit with estimated parameters (instead of
unknown parameters). The asymptotic distribution of the test statistic is still y2. But
for each estimated one-dimensional parameter we loose one degrees of freedom.

Proposition 8.4 Let the hypothesis Hy holds. Then (under appropriate regularity as-
sumption) the test statistic

2= i [ X - npk(én)]z
k=1 npk(én)

has asymptotically y? -distribution with K — d — 1 degrees of freedom, where d is the
number of estimated parameters.

Note that under the null hypothesis E X; = npi(0x). Thusi\ the test statistic com-
pares the observed frequency X; in the category k with np(6,). The latter quantity
can be viewed as the estimate of the expected frequencies under the null hypothesis.
As large values of the test statistic speaks against Hy one gets the critical region

H, is rejected < ¥’ > Xf(_d_l(l -a), (8.6)
where y%_, (1 - a) denotes the (1 — a)-quantile of the distribution 3% _, ;.

Example (Testing goodness-of-fit with a given parametric family?). Suppose we have
arandom sample 73, ..., Z,. We are interested if the distribution of Z; is given by the
cumulative distribution function Fx(x) = F(x; 0x), where 0x € O is not know (e.g. a
normal distribution, a gamma distribution, a Poisson distribution).

Introduce the intervals (ay_1,ax), k =1,...,K, ag = —, ag = oo, where K is small in
comparison with 7. Let the observed frequencies by given by Xi = > 14, ,,4,)(Zi)-

If the distribution of Z; is given by F(x; 0x), then the random vector X = (Xj, ... X)) T
follows the multinomial distribution Multk (r, p(6x)), where the probabilities of indi-
vidual categories are given by p(6x) = F(ay; 0x) — F(ax-1;0x).
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8. Multinomial distribution and contingency tables

By solving the system of equations (8.5) we get the estimate 6, of the parameter
0x. Now we can perform the test as in (8.6). If the null hypothesis is rejected then we
have proved that the distribution of Z; is not in a given parametric family.

Note that we need that Proposition 8.4 requires that the parameter 8y is estimated
with the help of maximum likelihood in the model X ~ Multk (n, p(6x)). Proposi-
tion 8.4 is not true when the maximum likelihood estimator is used in the model
Z; ~ F(-;0x). L.e. when the estimate of @ is found as

6, = argmax ) logf(Z;;0),
1

0cO i=

where f(-; 0) is the density of the random variable Z; with respect to the o-finite mea-
sure y.

8.2. CONTINGENCY TABLES

Let (ﬁ) be arandom vector whose both components are categorical. More specifically
suppose that X € {1,...,/}and Z € {1,...,K}. Let

X1 XN
2l 2y
be a random sample from the distribution given by the vector (}) with the fixed sam-

ple size N. Denote the number of individuals classified into the j-th category of X
and the k-th category of Z as

N

npk= ) WXi=j,Zi=k}, je{l,...J}hk=1..K
i=1

The random variable n;; is called the observed frequency for the combination of cat-
egories j and k. Denote pjx = P[X = j,Z = k] and p = (p11,...,psx) ' . As the observed
frequencies were classifying N independent individuals into JK categories, the ran-

dom vector n = (n11,...,n5x) " follows the multinomial distribution Mult;x (N, p). As
we work with the multinomial distribution, we can make use of the results presented
in Chapter 8.1.

Further denote

K J J K
nj+:ank; Nk =ank, My :Zzn]k =N,
k=1 j=1 j=1 k=1
K J] K
Pj+ = ijk, Pik = ijk, Pit = Z ijk =1
k=1 j=1 j=1 k=1
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8. Multinomial distribution and contingency tables

While the probabilities pji characterize the joint distribution of X and Z, proba-
bilities p;, = P[X = j] characterize the marginal distribution of X and probabilities
p+k = P[Z = k] characterize marginal distribution of Z.

Observed frequencies can be represented by the table that is called the contin-
gency table.

Z =1 Z=K | Z
X=1 ni nik ni+
X=2 no1 nok oy
X=] ngp nix nyy
Z ni1 cee 11794 N

Analogously one can put together the table of probabilities that describes the joint
distribution of the vector (X, Z)T and the corresponding marginal distribution of the
random variables X and Z.

Z =1 . Z =K >
X=1| pu ... pix | P+
X=2| pa P2k | P+
X=J| pn Pik | P+
z P+1 P+k 1

Finally denote the conditional probabilities as

. Dk
PIX=j|Z=k]=pjm =&
[X=jl 1 =pjw ™
. Pjk
PIZ=k|X=j]=pgr="-
Pj+

TESTING INDEPENDENCE Xz -TESTEM

Random variables X and Z are independent if and only if for each j € {1,...,J} and
k € {1,...,K} it holds that

P[X=j,Z=k]=P[X=j]P[Z=k] neboli pji=pjpsr.

If the null hypothesis holds, then X and Z are independent random variables and
the joint probabilities p = (p11,...,p;x)" can be written as functions of d = J + K — 2
parameters

Ox = (Plos- - PU=1)0 Poly -+ ) Pa(k-1)) ' -
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8. Multinomial distribution and contingency tables

Maximum likelihood estimator of the parameter 6y under the null hypothesis of in-
dependence can be found as the solution of the system of equations (8.5) which is

now of the form _
ii njk  0pjx(0n) o
. 0, 00

Note that differentiating with respect to the parameter p;, gives

J K K K K

Z Njk 5ij(9) _ Z nji p nk ek = Z (n,-k n,k) iy njy
= - +k — +k = e T ol - -

| pjk(O) ap]+ p Pj+P+k Pj+P+k Pj+ Pj+ Pj+ pj+

Thus we get the equations

Nj+ Ny

— = -, j=1...,J-1.
Pi+ PJ+

Analogously for differentiating with respect to the parameter p,

Lk LK — ) k=1 K-1
P+k P+k ’ T :

Solving the above system of equations gives p;, = % and p,i = % yielding that

~ o - - o~ T Ve ny -\ T
071 = (p1+) e )p(]—1)+)p+l) . '!p+(K—1)) = (%» R n(llvl) ) %) ceey %) .
Maximum likelihood estimator of the vector parameter p under the hypothesis inde-

pendence has components

Nj Ny

Pik(8n) = PjsPek = 7 Jell Jhk={1... K}

Thus the estimated expected frequencies in the contingency table under the null hy-
pothesis of independence are
NjyNyg

ijk(an) = Npj+Psk = N

So the test statistic of Proposition 8.4 is (for the test of independence) of the form

NjyNyf 2
o
j=1 k=1 N

By Proposition 8.4 under the null hypothesis the asymptotic distribution of this
statistic is y?-distribution with the degrees of freedom equal to JK — d — 1, where
d=J]+K-2. ie. X%]—l)([(—l)' The hypothesis of independence is rejected when

2 2
Xz xg-yw-n1 - @)
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8. Multinomial distribution and contingency tables

Remark. The test described above is called the y?-test of independence in the con-
tingency table. It can be summarized as follows.

Model (for the conting. table): (}Z?) ..., (3") be a random sample from the distribution

given by the random vector ()Z() Thus for the frequency in the contingency table it
holds that

n ~ Mult]K(N, (pll,...,p][()), where Pjk = PIX=j,Z=k]. (88)

This model will be called the joint multinomial model.

Hypothesis and alternative:

Hp : X and Z are independent, i.e. pjx = pj+p+k Vj €{1,...,J}, Yk € {1,...,K} (8.9)

..........

Test statistic: y? given by (8.7)
Distribution of the test statistic under Hy: y> = X%]fl)(Kfl)

Critical region: Hy is rejected & y? > X%}—l)([{—l)(l -a).

XZ-TEST TEST AS A TEST OF THE HOMOGENEITY OF MULTINOMIAL DISTRIBUTIONS

Sometimes is natural to view the contingency table column-wise as the realizations
of K independent multinomial distributions. But before formulating the model for-
mally note that the components of the random vector (}) are independent, if and
onlyifforall je{1,...,J}and k € {1,...,K} it holds that

P[XIleZk]ZP[XZj] neboli Pjk) = Pj+ -
L.e. the null hypothesis of independence holds, if and only if
Pi(1) =Pje) =-..=pjx) foreach j e {1,...,J}.

Denote p(x) = (P1(k), - - -» p](k))T. From the above thoughts one can conclude that in-
dependence X of Z is equivalent to the fact that the the vectors of conditional prob-
abilities p(1), ..., p(k) are equal.

Let us now formalize the columns-wise view on the contingency table. Denote
n) = (M, ..., nsr) ! the vector of frequencies in the k-th column.

Model (for conting. table):
Ny ~ Mult;(nir, py), k €{1,...,K}, where n.,...,n.x are independent. (8.10)

This model will be called the column-wise multinomial model.

Hypothesis and alternative:

Ho:pa)y=...=px)y Hi:3kieq,. k3 Pk) P (8.11)
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8. Multinomial distribution and contingency tables

From the above considerations we know that the above null hypothesis is equiv-
alent to independence X of Z (8.9) in the joint multinomial model (8.8). From this
one can conclude that the test statistic y* given by (8.7) is also a suitable statistic
for testing the null hypothesis (8.11) in the column-wise model (8.10). Further it can
be proved that under the null hypothesis and appropriate assumptions on the col-
umn sizes (n,1, ..., nyx) it holds that y?> = 7(%]_1) («-1)- Thus the test of the hypothesis
of homogeneity of multinomial distributions (8.11) in the column-wise multinomial
model can be performed in the completely same way as a test of independence in

the joint multinomial model.

Remark. The above considerations can be summarized as follows. The test statistic
(8.7) can be used for testing hypotheses independence (8.9) in the model (8.8) as well
as for testing the hypothesis of homogeneity multinomial distributions (8.11) in the
model (8.10). The choice of the model and the corresponding hypothesis depends on
the given applications.

Further it is also worth noting that in the column-wise multinomial model and
hypothesis (8.11) we perform in fact a K-sample test.*

8.2.1. CONTINGENCY TABLES 2 X 2

Consider now the special situation when / = 2 and K = 2, i.e. both components of the
random vector ()Z() can take only two values. The corresponding contingency table is

Z=1 z=2] = Z=1 z=2]
X=1| nn niz | Nt X=1| pn P12 | b1+
X=2| ny np |no X=2| pa  p2 |px
2 Nyl N2 N 2 P+1 p+2 1

The test statistic is given by

2 2 ( o— ——
XZ:ZZW”TZV (8.12)

Under the null hypothesis of independence the test statistic has asymptotically y?
distribution. The hypothesis of independence is rejected when y? > ﬁ(l -a).

)CZ-TEST AS A TEST OF HOMOGENEITY OF TWO BINOMIAL DISTRIBUTIONS

Suppose that the variable Z stands for the number of the sample. Then we have one
sample consisting of random variables X representing individuals for which Z = 1.
The second sample consists of random variables X of individuals satisfying Z = 2.
In the first sample consisting of n,; observations there are n;; individuals for which
X =1 (a success) and ny; values with X = 2 (a failure). The probability of success in

* K-sample tests for quantitative data will be considered in Chapter 9.
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8. Multinomial distribution and contingency tables

the first sample can be denoted as p;(1) = p11/p+1. In the second sample consisting
of n,» observations there are n;, individuals for which X = 1 (success) and n,, values
with X = 2 (a failure). The probability of success in the second sample is p;2) =
p12/p+2-

From the considerations on the previous pages we know that y?-test can be also
viewed as a test of the equality of the parameters p;(1) and p;(2) of two indepen-
dent binomial distribution Bi(7.1, p1(1)) and Bi(n.2, p1(2)). This problem was already
treated in Chapter 7.2.

Notation used in Chapter 7.2 can be easily transformed to the notation used here
(and otherwise around). The contingency table rewritten in the notation of Chap-
ter 7.2 is given by:

Z=1 Z=2 z
X=1 X Xo X1+Xo
X=2|n-Xg m-X |n+m-X1-Xp
z n m n+m

The only difference is that while in Chapter 7.2 we consider two independent ran-
dom samples here we consider one random sample from the multinomial distribu-
tion with 2x2 possible values. While in Chapter 7.2 the sample sizes n, m are consid-
ered as fixed, now the sample size are binomial random variables and only the total
number of observations N = n + m is fixed. Thus we are again facing two possible
formulations of the two-sample problem as discussed at the beginning of Chapter 6
about two-sample tests for quantitative data. Similarly as there it does not matter
which of the formulations is chosen and which of the two models is more appropri-
ate for the given contingency table. All the methods presented here are valid for both
of the models.

Chapter 7.2 explains how to compare probabilities (risks) of the event [X = 1] for
different values of Z. Basically we can make us of one of the three methods of com-
parison:

« difference of probabilities dx = p1(1) — p1(2) is estimated by d = ol

e ratio of probabilities rx = p1(1)/p1(2) Is estimated by 7= J1L7;
_ ny(d-p12))
e (-p)
is also called cross ratio).

is estimated by o0 = 222 (that is why the odds ratio

. .
odds ratio ox M2

The methods for testing and confidence intervals for these parameters are described
in Chapter 7.2.
Note that the independence of random variables X and Z are equivalent to one of
the equalities below
dX=0, rX=1, 0x=1-

Thus the test of null risk difference, the unit relative risk or odds ratio is equivalent
to the test of independence of X and Z.
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8. Multinomial distribution and contingency tables

Remark. It can be shown that for the test statistic of y?-test of independence (8.12)
it holds that
=15

where T is a test statistic for the difference of probabilities give by (7.4).

8.2.2. CONTINGENCY TABLE2 X K

Now consider the special situation when J = 2 and K > 2. The contingency table
consists of 2 x K frequencies:

Z=1 Z=2 Z=K | Z
X=1| nn ni2 nik | N+
X=2| np N2 Mok | Moy
> ny1 nyp nyg N

Z=1 Z=2 Z=K | 2
X=1| pn P12 Pik | P1+
X=2] pa p2 P2r | P2+
z P+1 P+2 P+k N

One can view the table column-wise as having K independent samples from the bi-
nomial distributions with potentially different probabilities of success pix/p+x. This
can be viewed as a generalization of the two-sample problem treated Chapter 7.2 to
more then two samples.

Alternatively one can also view the table row-wise as two samples from the multi-
nomial distribution with potentially different vectors of probabilities

N
(& P12 PI_K)

T
a P21 p22 P2k
p1+’ p1+’ "7 pie

P2+’ p2+’ "7 poy

TESTING INDEPENDENCE BY THE )(Z-TEST

X and Z are independent, if and only if p;(1) = p12) = ... = p1(x). This requires that
for each pair of the groups Z = k; and Z = k, the difference of the risks 0 (alternatively
the relative risk or odds ratio is 1).

When the null hypothesis of independence of X and Z holds then the probabili-
ties p = (p11, P21, ..., P1x, p2x) | specifying the multinomial distribution vector n are
functions of K parameters (p1+ @ p11, ..., P+x-1))- Thus we get that the test statistic is

2
Nj+ Nk
2 S (njk_ N )
X _ZZ Ry Tlsk
j=1 k=1 N

Under the null hypothesis this test statistic has asymptotically ¥ _, distribution. The
null hypothesis is rejected when y* > y2_ (1 - a).
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8. Multinomial distribution and contingency tables

Analogously as in Chapter 8.2.1 one can view the y2-test of independence as a test
of homogeneity of binomial distributions (i.e. a K-sample tests for binomial distri-
butions).

Alternatively one can view the test also a test that two multinomial distributions
have the same vectors of probabilities (i.e. a two-sample test in the multinomial dis-
tribution).

Example. Suppose that we observe data about the highest gained education (pri-
mary, high-school, university) and whether the given person is a regularly smoker or
not. Suppose that we are interested in the relationship of smoking and gained edu-
cation.
The null hypothesis that the smoking is independent of the gained education can
be viewed in two equivalent ways:
« for each of the groups (according to the gained education) the probability of
smoking is the same (i.e. we compare three binomial distributions);
e the structure of gained education is the same in the group of smokers as in the
group of non-smokers (i.e. we compare two multinomial distributions).

Remark. Suppose we observe K independent random variables Xj, ..., Xx, where
Xi ~ Bi(ng, pr) foreach k € {1,...,K}. We want to test the hypotheses

Hy:p1=--=px, H1:Elk¢jpk¢l7j-

For this situation in statistical textbooks one can often find that the null hypothesis
should be rejected when

K
1 -
Q> x5 (1-a), whereQ==—— > m(pr-p)>
K-1 p(l _ ﬁ) kZ:; (
with py = %, p= % lele Xrand N = Zle ng.
It can be proved that
Q=1x%
where y? is test statistic of y2-test of independence calculated from the following con-
tingency table

Z=1 Z=2 ... Z=K z
X=1| X X ... Xk X Xk
X=2|m-Xi m-Xo ... ng—Xg |N-Yr Xk
> nm no ng N

Thus the test based on test statistic Q is the same as the approach based on the y?-
test of independence.
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8. Multinomial distribution and contingency tables

Sample examples for the preparation for the exam.

The solution of “the practical exercises” should contain the mathematical model, the
null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. The target is divided into 4 segments. They were n; shots in the j-th segment
G=1,...,4).
(a) Suggest a test of the hypothesis that the probabilities of hitting the first and
the second segment are equal.
(b) Suggest a test of the hypothesis that the probability of hitting the first seg-
ment is at least two times larger than the probability of hitting the fourth seg-
ment.

2. In a large shopping centre there are 3 elevators. The management of the shop-
ping centre would like to know if the customers have some preferences regard-
ing these elevators. Suggest a way what data to collect and how to statistically
test the hypothesis that the customers have no preferences.

3. Four universities have decided to compare how many left-handed students they
have. Each of the university taken a sample of 100 randomly sampled students.
Suggest a test of the hypothesis that there is no difference among the universi-
ties in the proportions of left-handed students.
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9. K-SAMPLE PROBLEM FOR QUANTITATIVE
DATA

Two-sample tests verify whether two groups of independent samples differ in some
characteristic, usually in the expected value. The question is, how to compare more
than two groups at the same time. The problem of comparing several groups of cat-
egorical data (binomial or multinomial distribution) was addressed in the previous
chapter. In this chapter, we will study this problem for the case of quantitative ran-
dom variables.

Let us have K > 2 independent random samples (groups)

Yi1,..., Y1, from the distribution F,
Y21,..., Yo, from the distribution F,

and Yxi,..., Ykn, from the distribution Fg.

Individual observations are denoted by Yi;, where the index k stands for the num-
ber of the sample the observation belongs to and it attains values from 1 to K, while
i is the index of the observation within said sample and it attains values from 1 to ny,
where ny is the size of kth sample. Denote N = Zle ny and n = (ny,...,ng)". Then
we have that 17 n = ¥5_, nx = N.

K-sample problem tests the null-difference hypothesis

Hp: Fi(x) =F(x)=...=Fx(x), VxE€R,
against the alternative that there exists at least one pair of different groups, i.e.

Hy @ 3gzj 3x € R : Fi(x) # Fj(x).

9.1. ANALYSIS OF VARIANCE (ANOVA)

We will assume a model that requires all the distributions Fj, ..., Fx to have the
same variance.

Similarly as in the case of one-sample and two-sample ¢-test with the assumption
of equality of variances (see Sections 5.3 and 6.3) the further described test will be
exact under the assumption of normality and asymptotic without this assumption.

Model:
Fn = {Fr =N(ur, o), pr € R,k € {1,...,K},0* >0} (9.1)
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9. K-sample problem for quantitative data

or
Fus = {Fk € .Ef, k €{1,...,K}, where var (Y1) = var (Y21) = var (Yx1) := 02}.

Notice that in the normal model #,, individual groups can only differ in expected
values.

Let u denote the expected value of the kth group, i.e. yi = E Yi;. We will deal with
the question whether all groups have the same expected value.

Tested parameters: Expected values uy = E ;.
Null hypothesis and alternative

Ho:py=---=px, Hi:Jgzj ui # Yj-

Notation(.jf Let g
* Vi, = Z?:’CI Yi; and Yy, = n,;l 27:"1 Y; be the sum and sample mean of each group
ey, & Yo 2 Yi; be the total sum and Y., o N1 Yo 2% Yii be the total
sample mean. .
Notice that Y., is the weighted mean of all group means Y}, with weights ny, i.e.

Furthermore, denote the observations in the groups Y; = (Y¢1, ..., Yk,,k)T, ke{l,...,K}
and all of the observations Y = (Y{',..., Y.

Our approach will be based on several kinds of sums of squares presented in the
following definition.

Definition 9.1 The sum of squares in the analysis of variance:
* SSc df >k S (Y - 7++)2 is called the total sum of squares,
o 55, & Sy e (Yies — ?++)2 is called the between group sum of squares,
e SS, o ZIk(:l Z:-l:kl (Yii —?k+)2 is called the residual sum of squares or the error sum

of squares.

Theorem 9.1 It holds that
S8Sc = 8S4 + SS,.
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9. K-sample problem for quantitative data

Proof.
K ng — K ng _ _ —
SS¢ = Z Z (Yki - Y++) = Z Z (Ykz Yir + Vi — Y++)
k=1 i=1 k=1 i=1
K ng _ K ng N K ng _
= (Yki - Yk+) + Z (Yk+ - Y++ +2 Z Z Yii — ch+ Yk+ - Y++)
k=1 i=1 k=1 i=1 k=1 i=1

S

k
(Yk+ - Y++) (Yki - Yk+)
i=1

K
k=1
=88, +8S4+0.

I

We have used the fact that

3
Z(Yki—?k+):Yk+—nk7k+:0, fOI‘kE{l,...,K}.
i=1

O

Remark. SS; measures the total variability of our data. This variability can be de-
composed into two parts, the variability between individual groups expressing their
difference (SS4) and the variability within each group SS..

Y. is an estimate of ur and Y,, is an estimate of the total expected value (under
Hp), therefore SS4 should be small compared to SS, under the null hypothesis. If SS4
is too large compared to SS,, it implies that the means of the individual groups differ
too much from each other and we should reject the hypothesis of equal expected
values.

The test statistic will compare the variability of the sample means (SS,) and the
variability within individual groups (SS.). In the following part, we will examine
properties of statistics SS, and SSa.

Lemma 9.2 Suppose that model ¥, holds.
(i) Then it holds that
ESS, = (N - K) o2.

e Xg
a2 N-K*

(ii) Furthermore, if model 7,

Proof. Part (i) Notice that
K ng

K
§Se= ) D (Ve = Vi) = Y (e =1 S, (9:2)
k=1

k=1 i=1
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where S,% = nkl_l l’.l:kl (Yii — ?;CJr)2 is the sample variance of the kth group. According
to Theorem 2.6(ii), S,% is an unbiased estimate of the variance o?. Therefore

K
ESS, = Z(nk ~1) %= (N - K) o%
k=1

Part (ii) Using (9.2), we can write

sse i (g — 1) 82

k=1

_ 2
For k € {1,...,K}, the random variables m'“g# have, according to Theorem 2.8(i),

y2-distribution with n; — 1 degrees of freedom. Furthermore, these random vari-
ables are independent. Therefore, the random variable % has y2-distribution with

Sk (ng = 1) = N - K degrees of freedom.
O

The following lemma summarises the properties of SS,. At first, let us denote

_ 1 K ng 1 K
ﬁ:EYH:_ZZEYkl_N Nyl
k=1 i=1 k=1
Lemma 9.3 Assume that the model ¥, holds.
(i) Then

X 2

ESS, = Z me (e - 1)° + (K - 1o,
k=1

(ii) Furthermore, if the model ¥, holds, then SS, and SS, are independent.
(iii) Furthermore, if the model ¥, and the null hypothesis H; hold, then SU%A ~ x5

Proof. To prove this theorem, we use the following fact from Theorem 9.1:
SSa = SSc — SS.. (9.3)

Part (i). Let us at first compute E SS¢c. Similarly as in Theorem 2.4(ii) we can write

K ng

1
$Sc=> > (Yii=Yu)*=YTACY, where Ac=ly- NlNlL' (9.4)
k=1 i=1

So, with the help of Lemma 2.5, we have that

K ng
ESSc=EYTACEY +tr (AC var (Y)) =33 (e -2+ 0P (Ac)
k=1 i=1

K
= Z nk(‘U,k —ﬁ)z + UZ(N — 1).
k=1
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Furthermore, we know from Lemma 9.2 that ESS, = (N - K) o2. Using (9.3), we can
write

K
ESSy=ESSc —ESSe = ) nipk = 1) + 02(K - 1).
k=1

Part (ii). Notice that Y ~ Ny(-, 0?ly). Since our aim is to use Lemma 2.7(ii), we have
to, at first, express SS, and SS4 as quadratic forms of all observations Y.
Notice that by using (9.2) we get, similarly as in (9.4), that

K K
8Se =Y (e =1)SE = Vil (In, - £ 1,10 )Yi =Y (Iy - B)Y, (9.5)
k=1 k=1
where
alnln Opxn, oo Oppng
®n2><n1 an]-nz]--rll—z e @}’ZZXI’Z[(
B =
Onexm Ongxmy -+ 7=LngLig

Moreover, using (9.3), (9.4) and (9.5), we get that

884 =8Sc—-8Se =Y (ly - +1n13)Y - Y T (Iy - B)Y
=Y (B-11y1})Y. (9.6)

Since we have X = var (Y) = o?ly, it is now enough to verify, thanks to Lemma 2.7(ii),
that the product of matrices (IB - ﬁl N 1}) (Iy — B) is a null matrix. We can compute

B-11y13)(Iy-B)=B- L1151} -BB+ 11518
=B- 1y1y - B+ 21y1y = Onxy,
where we have used the fact that
BB=B and 1,B=1j. (9.7)

Part (iii). Notice at first that the statistic SS, is invariant under translations, i.e. the

value SS, does not change, if we compute it from Y=Y - cly, forany c € R.
So, using (9.6), we get that

SS4  (vy-piy)' 1 T\ (Y-p1
= () (B - duwad) ()

where p is the common value of parameters y;, ..., ux under the null hypothesis.
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We have that % ~ Ny (0,Iy). So we are in the situation of Lemma A.1 with
A =B- +1y1} and = = Iy. It remains to verify that the matrix A = B - + 151} is
idempotent. Let us compute

(B-F1v1])(B- $1n1]) =BB - F1n1TB-BEINI] + F1nv1] AN,
=B- 1nv1ly - yInly + y1nly =B - 1y1y,

where we have used (9.7), the symmetry of the matrix B and the fact that +17 1y =
1. So, according to Lemma A.], SJ%A has y?-distribution with the following degrees of
freedom

tr(B- F1n1k) =K -1

O

Notice that, according to Lemma 9.2 (i), the statistic % is also an unbiased esti-
mate of o2. On the other hand, by Lemma 9.3 (i), we have that I‘?‘i‘*l is an unbiased
estimate of o only under the null hypothesis, while under the alternative we have
that E % > o2, This brings us to the following test.

Test statistic:

_ SSa/(K-1)
4788, /(N-K)
The null hypothesis will be rejected for too large values of F4.

Theorem 9.4 Suppose that the model ¥, and also the null hypothesis Hy hold, then
Fy ~ Fx-1,N-k-

Proof. The statistic F4 can be rewritten as

Sk -1
TSNk

From Lemma 9.3(ii) and Lemma 9.2(iii) we have that Sgiz’*

The independence of random variables Sgiz" and Sai; follows from Lemma 9.3(ii). The
theorem then follows from the definition of F-distribution (see Definition 2.5). i

2 SS 2
~ Xi-p and F o~ xn ke

Using Theorem 9.4 and the reasoning before it, we get the following.
Critical region:
Hy is rejected & Fp > Fxoin-x(1 - a),
where Fx_1 y-x (1-a) is (1-a)-quantile of F-distribution with K—1 and N-K degrees
of freedom.

P-value: 1 — F*(s), where s is the observed value of the test statistic F4 and F* is the
distribution function of the distribution Fx_; n_x.

Remark.
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* The above described method is called the analysis of variance or ANOVA due to
the way the test statistic is constructed (we essentially compare two estimates
of 0?). However the purpose of ANOVA is not to analyse the variance. The
test itself is called the F-test of analysis of variance.

* In Gaussian model with equal variances (i.e. in the model #,) we have that
the F-test of analysis of variance is an exact test of equality of expected values
in K > 2 independent samples.

e It can be shown that without the assumption of normality but with the assump-
tion of equal variances (i.e. in the model ¥,;), F-test of analysis of variance
keeps the significance level at least asymptotically.

Remark. The results of analysis of variance are usually given in a table

Source of Sum of Degrees of

.. Quotient F
variation squares freedom
SS SS4 / SSe
Group SS, K-1 = 7= [
. SSe
Residual SS. N-K T

Total SSc N-1

Proposition 9.5 For K = 2 we have that
Fo=T7

ny,nz’
where F, is the test statistic in analysis of variance and 7,2 ,, is the square of the test
statistic of two-sample ¢-test for the case of equal variances (see Chapter 6.3).
Proof. Using (9.2), the numerator of the test statistic F4 can be rewritten as
ss, 1
N-K m+ny-2

((m = DSF+(n2 - 1)S3) =S5 . (9.8)

where S,% is the sample variance in kth group.
After this, we notice that

Y- vV v mYis + noY: 1o (Y. — Y-
Yie =Y =Y1, - L1+ 272+ _ 2 (Y14 2+).

ny +ny ny+nz
Similarly
- = Yo, - Y,
¥y -7, = 02 V1)
n + nyp
So
= = \2
SS4 - = 2 = = 2 (Yia-Y2) 2 2
=n (Y1, - Y +ny (Yo, - Y. =—— (mn5 +non
K-1 1( 1+ ++) 2( 2+ ++) (n1+n2)2 ( 17t9 2 1)
= = \2 = = \2
3 ning(Yis — You) 3 (Y14 — You) (9.9)
ny+np nl1+nl2 ’ '
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Now, with the help of (9.8) and (9.9) we get that

_ SSA/(K - 1) _ ?1+ _?2+ _ T2
- - - Tm,ny’
SS./(N — K) 1 )

2 141
Snlan ( ny ny

A

which was to be proven. o

So, if we compare only two groups, the analysis of variance is equivalent to the
two-sample ¢-test with the assumption of equal variances (see Chapter 6.3). In this
case, i.e. for K = 2, it is usually preferred to use the z-test, since it allows us to test
one-sided hypothesis and we are able to easily derive a confidence interval from it.

On the other hand, if K > 2, then we are not able to talk about one-sided hypothesis
or deal with this problem with the help of one confidence interval.

Remark. The analysis of variance is further generalised into multi-way analysis of
variance. This generalisation is discussed in the class Linear regression. For exam-
ple, two-way analysis of variance is based on dividing observations into KJ groups
according to two categorical variables with K and J possible values. We are inter-
ested in whether one of those categorical variables influences the mean value of our
observations.

VIOLATION OF ASSUMPTIONS

Violation of equality of variances. In this case, F-test of analysis of variance does
not keep the exact or asymptotic significance level. However, published simulation
studies show that if the number of observations is roughly the same in all groups,
then the true significance level of F-test of analysis of variance is close to the required
level.

For the case of unequal variances, a generalization of the test statistic and approx-
imation of its distribution has been proposed already in (1951). It is a gener-
alization of the two-sample Welch test for a situation with more samples. The test
statistic of this test takes into account the potentially different variances and it is
given by the formula

S T \2
o= Zlk(:l Wi (Yk+ - Yw) 1
v K-1 1+2A(K -2)’
— K YV,
where wy = 2—1’2: is a weight assigned to the kth group, Y, = % is an estimate of
=1

the common mean value and

ZK 1 1 — & 2
k=1 n-1 Z]I,(:l w;

A=
K2-1

160



9. K-sample problem for quantitative data

is a certain correction, which is close to zero if we have large sample sizes in all of the
groups.

It can be shown that under the null hypothesis, even without the assumption of
equal variances (and also without the assumption of normality), it holds that

d
(K-1F, — X?(—l
where the sample sizes of all samples grow to infinity, i.e.
min {ny,...,ng} - o and simultaneously %t — Ax >0, k € {1,...,K}.  (9.10)

However, similarly as for the two-sample Welch ¢-test (see page 113), it is recom-
mended, out of caution, to compare the test statistic F,, with quantiles of the F-
distribution with K — 1 and 1/(3A) degrees of freedom.

9.2. MULTIPLE COMPARISONS

In the analysis of variance we compare expected values of K groups. If the F-test of
analysis of variance rejects the null hypothesis that all groups have the same expected
value, we conclude that at least two groups differ in their expectations. However, we
do not know, how many and what groups actually differ in their expectations.

If we wanted to compare the expectations of two groups, for example groups k
and j, we would use two-sample ¢-test. We could perform two-sample ¢-tests for
all £ (K ) possible pairs of groups and test all hypotheses H; ki . gx = pj on level a.
However the probability that at least one of these hypotheses w1ll be rejected, under
the condition that all of them hold, is not equal to a, it is in fact higher.

The problem of simultaneous testing of several hypotheses is usually called multi-
ple comparisons or multiple testing.

The general problem of multiple testing can be formulated as follows. We want to
test m null hypotheses Hy, ..., H". To test hypothesis Hg we use the test statistic T;
with critical region C; chosen such that each test has level ay. Then we have that for
allje{1,...,m}

PH({ [TJ € Cj] = @o.

The probability of rejecting at least one hypothesis, under the condition that all
hypotheses hold, is then

P jnilH({ (U]nil[T] < C]]) = Qac.

Naturally, ac is larger than ap, usually distinctly. Our aim is to find, for a prescribed
level «a, tests T with critical region Cj, so that

PﬁjW;lHé (U]”il [T] € 5]]) sa
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The situation is similar for confidence intervals. Let By, ..., B,, be the confidence
intervals for parameters 0)((1), cee 9)((’"), that satisfy

P(Bja 9)({)) —l-a jefl,...,m}

where 1 — «a is the prescribed probability of coverage.

Then typically
P(B13 64", Bn 3 6") <1-a.
Our aim is to construct such confidence intervals By, ..., B,,, for which we will have
P(El ) Hﬁl),...,ﬁm > 6}(('")) >1-a.
Such intervals By, ..., B,, are called simultaneous confidence intervals.

In the following chapter, we will introduce one universal approach to this problem
and after that a special method for comparing expected values of several indepen-
dent random samples.

9.2.1. BONFERRONI CORRECTION

We are given the total required level a and we want to guarantee that a¢ < a. To do
that, we use the following lemma.

Lemma 9.6 (Boole’s inequality) For any random events A4, ..., A,, we have that

m
U4

j=1

P

m
< > P(4)).
j=1

This inequality is trivial for m = 2 and it can easily be proven for higher m by math-
ematical induction.
We have that

ac=P ” 1) (anll[Tj € Cj]) < may.

If we choose ay = a/m, then it must hold that ac < a. Therefore, if me want to
perform m tests and keep the total level of all tests (the probability of rejecting at least
one hypothesis under the condition that they all hold) to be at least «, we perform
individual tests on level a/m.

Similarly, if we want to construct m confidence intervals, which satisfy that all of
them cover their respective parameters with probability at least 1 — «, it is enough
to choose the individual intervals with probability of coverage at least 1 — a/m. This
approach to multiple testing and construction of simultaneous confidence intervals
is called the Bonferroni correction.

The advantage of Bonferroni correction is its simplicity and universality. On the
other hand its disadvantage is that the correction of level a to a/m is almost always
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too strict. Therefore, this method produces tests with low power and overly wide con-
fidence intervals. Special methods of multiple testing, derived for specific problems
(for example Tukey method described below) try to overcome these disadvantages of
Bonferroni correction.

Application of Bonferroni correction to multiple comparisons in the analysis of vari-

ance looks as follows: we perform all K(KT_I) two-sample ¢-tests for all possible pairs
of groups and test all hypotheses H(;” : Mx = pj on level % If at least one of
these hypotheses is rejected, we proclaim the expected values of these two groups as
significantly different on the total level a.

Imagine that we have chosen a = 0,05 and we have K = 6 groups, then we per-
form 15 tests of equality of expected values for 15 different pairs of groups on level
0,05/15 = 0,0033. This significance level is so low that it may be difficult to find two
significantly different groups, even though the F-test of analysis of variance rejects

the hypothesis that the expected values of all groups are the same.

Remark. While using a method, which takes into account the problem of multiple
testing, we sometimes define the so called p-value adjusted for multiple comparisons.
For Bonferroni correction, this adjusted p-value can be easily computed as

ﬁj:min{mpj,l}, jed{l,...,m},

where p; is the standard (non-adjusted) p-value of the jth test.

9.2.2. TUKEY METHOD

This method is derived from normal (homoscedastic) model (9.1) assumed for the
analysis of variance. Under the assumptions of this model, this new method has
higher power and it produces shorter confidence intervals compared to Bonferroni
correction.

Rem.: This part was not presented during 2020/21.

Let us have independent random variables Z; ~ N(y, 02), where j € {1,..., m}. Let
$2 be an estimate of the variance o2 such that S? is independent with 71, ..., Z,, and
for some v natural we have that VU—SZZ ~ 12

Let us define the studentized range as

.....

S

It can be shown that the random variable Q has distribution which depends only
on the values m and v. Denote by g, ,(a) the quantile function of this distribution.
(We will not present formulas for density and cumulative distribution function here.)*

* Sometimes, studentized range is defined as Q/V2. One needs to be aware of this while using values of
qm,v(a) from the tables or software. To check correctness of our values, we can compare distribution Q
with m = 2 with distribution |T|, where T ~ t;.. For our definition, these two distributions are the same.
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Studentized range can be used to construct simultaneous confidence intervals for
differences of expected values. This approach is called the Tukey method, the Tukey’s
range test or Tukey’s HSD (honest significant difference) test.

Theorem 9.7 (Tukey) Let 7y, ..., Z,, be independent random variables with distribu-
tions Z; ~ N(u;, 0%). Let S be an estimate of the variance ¢ such that $? is indepen-

dent with 73, ..., Z,, and for some v natural it holds that VU—SZZ ~ %2. Then
P[Zk—z,-—Sqm,v(l—a) < Uk =k S Zk—Zj+Sqmy(1—-a), Vk £ j e {1,...,m}| = 1 —a.

The above theorem can be used for hypothesis testing as well. The hypothesis Hécj :
i = pj is rejected, if |Zx — Zj| > Sqmv(1 — @). The null hypothesis Hy : g1 = ... = pm
is rejected on total significance level «, if for at least one pair k # j we have that
|Z = Zi| > S, (1 - a).

Tukey theorem can be directly used for the problem of multiple comparison in the
analysis of variance, if the sample sizes of all groups are the same, i.e. n; =--- = ng =
n. Then it holds that Yy,,..., Y, are independent random variables with distribu-

tions Yi, ~ N(ux, %2). We take n(]f,SfK) as S, the estimate of %2 . Wehave v = N — K.

The null hypothesis Hy : u = ; is rejected, if

SS. 1
VN = K\/;qK,N—K(l - a). (9.11)

If the sample sizes of all groups are not the same, we cannot use Tukey theorem di-
rectly, since its assumptions do not hold. However, it can be shown that, if we replace

the formula \/% in (9.11) by ,/ﬁ + zinj’ then the total probability of rejecting one of

the true hypotheses Hécj does not exceed a. So, Tukey method still works after this
adjustment, however, it does become somewhat more conservative.

|?k+ - ?j+

9.3. KRUSKAL-WALLIS TEST

Kruskal-Wallis test is a generalization of the two-sample Wilcoxon test to compare
K > 2 samples. The notation used in this section is the notation for K-sample prob-
lem defined at the beginning of this chapter.

Model: F = {Elg(-) increasing function 3F continuous CDF 34y,...,0x € R :
g(Xk1) ~ Fr, Fe(x) = F(x - 8p) Vx e R,k € {1,...,K}}

It is a model for K continuous distributions which are, after a suitable transforma-
tion g, mutually shifted in location.

The null hypothesis and alternative:
Hy:6y=---=06k, Hi:3kz Ok # 6.
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Remark. Ifboth model ¥ and hypothesis Hy hold, then the distributions of all groups
are the same. In that case all K groups share coinciding characteristics.

Test statistic:

It can be shown that the test statistic of two-sample Wilcoxon test is equivalent
to the numerator of the test statistic of two-sample z-test (i.e. difference of sample
means), if, instead of the original observations, we use their ranks. We can try to pro-
ceed with the same logic and use the construction of the F-test of analysis of variance,

where instead of using the observations in joint random sample Y = (Y11, ..., Yiu) T,
we use their ranks Ry, ..., Ring-
Then
—_—~ K J— —_
$Sa= ) n(Rer - Res)”,
k=1

where R, = n! X7 Ry; is the mean rank in kth group and

K ng

— 1 N+1
RH:N;;RM: 5

is the total mean rank.

Notice that in the standard analysis of variance the random variable ]\ffeK estimates
the unknown variance var (Y;;) = 0. However, in the case of ranks we know, thanks
to Theorem 2.16(iii), that under the null hypothesis 62 = var (Ry;) = % Therefore,
the candidate for our test statistic seems to be

S S 12 &
Q= 52  (N-1)(N+1) ;"’“(R’“_ T) ' (9.12)

It can be shown that an asymptotic analogy of Lemma 9.3(iii) holds, i.e. under the
null hypothesis and with increasing number of observations, see (9.10), we have that
~ d
Q— X?(—r
As we will show below, it holds that E (3 = (K - 1)%. However, since the expected

value of the asymptotic distribution y2 | is K — 1, we use the following test statistic
(to improve on the asymptotic approximation)

K
N-1~ 12 _ >
- — R _N+1).
Q=—x ¢ N(N+1);nk( 772

Critical region: Since large values of the test statistic indicate against the null hypoth-
esis, we get for our asymptotic test the following rule
Hp is rejected & Q > y+_,(1 - a).

The above stated test is called the Kruskal-Wallis test. Similarly as for the (two-sample)
Wilcoxon test, it is possible to use exact critical values, which are tabulated, for small
sample sizes (if there are no ties in our data).
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Remark. Let Ry, = 3%, Ry;. Then

RY, N(N+1)?

Ny 4

M=

K
:Z—(R — Repni (N + 1) + n2 0L ):

=~
Il

1

Hence the test statistic Q is often given in a computationally easier formula

Remark. We will use the formula (9.13) to calculate the expected value of the test
statistic Q under the null hypothesis. To do that, we will at first carry out the fol-
lowing calculation, using Theorem 2.16

ERZ, =var (Ris) + (ERiy)”

ng 2
Zvar (Rgi) + Z Z cov (Ryi, Rrir) + (Z N; 1)

i=1 i’=1,i"#i i=1

_ (N2 =) (e = DN+ np(N+1)?
- 12 12 4 '

Therefore (under the null hypothesis)

2

EQ:N(N+1)Z t_3(N+1)
(N2—1) (ne —1D(N+1) np(N+1)?
N(N 1) Z 12 T -3+
=K(N—1)_(N—K)

N N +3(N+1)-3(N-1)=K - 1.

This corresponds to the expected value of the distribution y2 | and it is the reason
why instead of the test statistic Q given by the formula (9.12) we use the test statis-
tic Q.

VIOLATION OF ASSUMPTIONS

Ties due to rounding. We often see ties in our data because of rounding. The test
statistic Q is then calculated using the so called average ranks. It can be shown that,
under the null hypothesis, we have

Q )

1-kor. (9.10) Ax-v
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where kor. is the variance adjusting correction, given by the formula*

1 3
kor. = m Zy: (ty - ty).

where t, denotes the number of the random variables Y1; ..., Yk, which attain the
value y. It is worth noticing that, without this adjustment, the test would be (asymp-
totically) conservative.

The generalized location model does not hold. Notice at first that the test keeps
the significance level (asymptotically), if the observations Y1, ..., Yxn, are indepen-
dent and identically distributed. Therefore, the fact that the model does not hold
has, similarly as for the two-sample Wilcoxon test (see Chapter 6.4), two unpleasant
consequences regarding the behaviour of the test under the alternative:

1. Interpretation problem - if the generalized location model does not hold, then
we are only able to conclude that the distributions are not the same in indi-
vidual groups from the rejection of the null hypothesis. However, we generally
cannot conclude that their expected values or medians are different.

2. The power of the test - similarly as for Mann-Whitney formulation of two-
sample Wilcoxon test (see page 121), it can be shown that the Kruskal-Wallis test
tests whether P[Y;; < Yj1] = 1/2 holds for all k, j € {1, ..., K}. In the generalized
location model, if we have 6 # §;, then indeed P[Y;1 < Yj;1] # 1/2. However, if
under the alternative we have some additional changes and not only the change
in the location parameters, then it is not clear what will be the consequence of
this on the power of the test.

* See for example (2013), page 205.
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Sample examples for the preparation for the exam.

Your solution to the "practical problem" should include a mathematical model, a
null hypothesis, a test statistic and its exact (or asymptotic) distribution under the null
hypothesis. It should also include a critical region or a formula for p-value and you
should state whether the test is exact or asymptotic.

1. We have data about the height of 500 adult women and about the colour of their
eyes, where we distinguish between brown, blue and green. Propose a suitable
test to find out whether the height is connected with the colour of the eyes.

2. We have data about the salaries of 2000 employees from the IT domain and
about the region (8 possibilities) they live in. Propose appropriate method which
will find, while keeping the required significance level, two regions whose salaries
can be considered as different.
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A. APPENDIX

A.l. y’- AND {-DISTRIBUTION

Definition A.1 (y?-distribution) Let Xi,...,X; be independent and identically dis-
tributed random variables with distribution N(0, 1). Then the distribution of the ran-
dom variable ¥f ; X2 is the y-distribution of k degrees of freedom. We write that
Y ~ )(i

Definition A.2 (¢-distribution) Let X ~ N(0,1) and Z ~ x? be independent. Then the

distribution of the random variable 7 & \/%/k is called the [Student] ¢ distribution

with k degrees of freedom. We write T ~ #.

A.2. IDEMPOTENT MATRICES

Definition A.3 The squared matrix A (of dimension nxn) is idempotent, when AA =
A.

Lemma A.l1 Let X ~ N,(0,X) and A be a positively semidefinite matrix of dimension
n x n such that AX is non-null and idempotent. Then

T 2
X' 'AX ~ Xer (A3)-

A.3. TRANSFORMATION OF THE RANDOM VARIABLE WITH ITS
CUMULATIVE DISTRIBUTION FUNCTION

Lemma A.2 Let the random variable X have continuous distribution function F.
Then the random variable F(X) follows the uniform distribution on the interval (0, 1).

Proof. For u € (0,1) calculate
P[F(X) <u| =P[X < F Y (w)]=FF '(w)=u,
where in the last equality we use the continuity of F. |

The following lemma is inverse to the lemma above. It is used for generating ran-
dom variables. Note that it does not require the continuity of F.
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Lemma A.3 Let the random variable U follows the uniform distribution on (0, 1) and
F is a cumulative distribution function. Then the random variable F~1(U) follows the
distribution given by F.

Proof. Let x € R. Calculate

P[F1(U) < x| =P|U < F(x)| = F(x).

O
A.4. GAMA FUNCTION AND BETA FUNCTION
Gama function is for z > 0 definied as
[(z) = / x*te *dx.
0
From the properties of the gama function it is often used that I'(n) = (n — 1)!.
Beta function is for a, b > 0 defined as
1
B(a,b) = / x 11 = x)P 1 ax.
0
It holds that C(a) T(b)
a
B(a,b) = ———=. Al
@b) =T+ m (A1)
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