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1. Spatial models on lattices

1.1 Markov random fields

Let L ⊆ Rd be a finite set that will be referred to as a lattice. It could be a regular grid, e.g. L =
{1, 2, . . . , N}d (for N = 10 and d = 2 see Figure 1 left). The elements of L (called sites) can also
represent some regions (an example is shown in Figure 1 right). The number of sites will be denoted by
n = |L|.

Figure 1. Two examples of lattices in the plane. Left: regular square grid 10× 10. Right: capitals of 13
regions of the Czech Republic, two sites are connected if the regions share a common border.

Definition 1. A family of random variables {Zi : i ∈ L} defined on a probability space (Ω,A,P) is
called a random field on the lattice L. The state space of the random variables Zi will be denoted by
S ⊆ R.

The simplest random field is obtained from independent random variables. It serves as the basis for
definition of more interesting random fields that allow spatial dependence.

Definition 2. A random field {Zi : i ∈ L} is said to be a (spatial) strict white noise if the random
variables Zi are centred, independent and identically distributed.

Sometimes it is convenient to order the sites by numbers 1, . . . , n. Then the random field Z = {Zi :
i ∈ L} can be viewed as a random vector Z = (Z1, . . . , Zn)T. Its distribution is given by the density
p(z) w.r.t. σ-finite measure νn on Sn. Here, νn denotes the n-th power of the measure ν on S in the
sense of the product of measures. As a measure ν we usually consider the counting measure (discrete
states) or the Lebesgue measure (continuous states). Taking into account the isomorphism between L
and {1, . . . , n} we use the same symbol p(z) for the density on SL (z = {zi : i ∈ L} ∈ SL) and by νL we
denote the corresponding product measure on SL. For A ⊆ L we write shortly zA = {zj : j ∈ A}. For
disjoint sets A,B ⊆ L we denote zAwB = {yj : j ∈ A ∪B}, where

yj =

{
zj, for j ∈ A,
wj , for j ∈ B.

Let ∼ be a symmetric relation on L × L. We say that two sites are neighbours if they are in this
relation. For simplicity we use the following notation: ∂i = {j ∈ L : j ∼ i, j 6= i}, −i = L \ {i} for i ∈ L
and −A = L \ A for A ⊆ L. The set L together with relation ∼ generates an unoriented graph where
the set of nodes is L and two nodes i, j ∈ L are connected by an edge if and only if i ∼ j. On the other
hand, every unoriented graph determines the system of neighbours. Figure 1 shows two examples of such
unoriented graphs.

Definition 3. A set A ⊆ L is called a clique w.r.t. ∼ if i ∼ j for any i, j ∈ A, i 6= j.
Remark 1. The empty set and all singletons {i} are cliques.
To simplify the notation, we use the symbol p not only for joint density but also for marginal and

conditional densities. The type of the density will be clear from the arguments of p.
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Definition 4. A random field {Zi : i ∈ L} is called Markov w.r.t. ∼ if the conditional distribution
of Zi | Z−i coincides with the conditional distribution of Zi | Z∂i for every i ∈ L. In the language of
conditional densities it means that p(zi|z−i) = p(zi|z∂i) for νL-a.a. z = {zi : i ∈ L} ∈ SL satisfying
p(z) > 0. This condition is known as the local Markov property. The densities p(zi|z∂i) are called local
characteristics .

Remark 2. If ∂i = ∅ the local Markov property means that the conditional distribution of Zi | Z−i is
the same as the distribution of Zi. In other words, Zi and Z−i are independent.

Remark 3. The local Markov property is equivalent to the condition p(zi|zA) = p(zi|z∂i) for νA-
a.a. z ∈ SA satisfying p(zA) > 0 and for any i ∈ L and ∂i ⊆ A ⊆ L.

Example: It is obvious that the strict white noise is an example of a Markov random field.

Example: A Markov chain {Z1, . . . , Zn} is a one-dimensional Markov random field (d = 1 and L =
{1, . . . , n}) w.r.t. the relation i ∼ j ⇔ |i − j| ≤ 1 (see Exercise class).
Definition 5. Let A, B, C be pairwise disjoint subsets of L. We say that ZA and ZB are conditionally
independent given ZC if

p(zAzB|zC) = p(zA|zC) p(zB|zC)
for νL-a.a. z satisfying p(zC) > 0.

Lemma 1. Let {Zi : i ∈ L} be a random field and let A, B, C be pairwise disjoint subsets of L. Then
ZA and ZB are conditionally independent given ZC if and only if

p(zA|zBzC) = p(zA|zC)

for νL-a.a. z satisfying p(zBzC) > 0, which happens if and only if

p(zB|zAzC) = p(zB|zC)

for νL-a.a. z satisfying p(zAzC) > 0.

Proof: By simple manipulation it follows from the definition of the conditional density that

p(zA|zBzC) =
p(zAzBzC)

p(zBzC)
=
p(zAzB|zC)
p(zB|zC)

.

The second equation is obtained by interchanging A and B.

Hence, the local Markov property from Definition 4 is equivalent to the fact that Zi and Z−({i}∪∂i)

are conditionally independent given Z∂i.

Remark 4. Instead of an unoriented graph we can work with a directed acyclic graph. Its nodes are sites
from L. If there is a directed edge from i to j, then i is referred to as a parent of j and j is referred to as a
child of i. We say that {Zi : i ∈ L} is a Bayesian network , if Zi and Z−({i}∪de(i)∪pa(i)) are conditionally
independent given Zpa(i) for every i ∈ L. Here, de(i) is the set of all descendants of i (i.e. all nodes that
can be reached by a direct path from i) and pa(i) is the set of parents of i. Since the graph is acyclic we
have pa(i) ⊆ −({i} ∪ de(i)). The joint density is then given by the relation

p(z) =
∏

i∈L

p(zi | zpa(i)).

Bayesian networks are widely used in the field of artificial intelligence.

The number of neighbours is usually much smaller than the number of sites. While the full conditional
distributions Zi | Z−i can be very complicated, the local characteristics depend only on the neighbours
of a given site. The structure of the random field is then simpler thanks to the local Markov property.
This is used in MCMC methods, where the steps in Gibbs sampler are typically much easier.
We know that for Markov chains the transition probabilities (or transition densities) together with

the initial distribution determine the joint distribution of the chain. We can ask when the system of local
characteristics determines the joint density of the random field. As opposed to the case of Markov chains
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we can not expect that the local characteristics may be chosen arbitrarily so that the joint density exists
and is unique (see Exercise class). The following theorem states that the conditional distributions well
define the joint distribution if they are derived from a joint density of a particular form.

Definition 6. We say that a random field with the joint density p(z) satisfies the positivity condition
if p(z) > 0 for all z ∈ SL.

Theorem 2. (Hammersley-Clifford theorem) A random field satisfying the positivity condition is Markov
if and only if there exist functions gC : S

C → R+ such that

p(z) =
∏

C∈C

gC(zC), z ∈ SL,

where C = {C ⊆ L : C is a clique}.
Proof: The simpler implication is from right to left. If the density has the required form then

p(zi|z−i) =
p(z)

p(z−i)
=

∏
C∈C gC(zC)∫

S

∏
C∈C:i∈C gC(wiz−i∩C)

∏
C∈C:i6∈C gC(zC) ν(dwi)

∝
∏

C∈C:i∈C

gC(zC),

where the symbol ∝ means that p(zi|z−i) is proportional to
∏
C∈C:i∈C gC(zC). Since i ∈ C implies

C ⊆ {i} ∪ ∂i, we also have
p(zi|z∂i) =

p(z{i}∪∂i)

p(z∂i)
∝

∏

C∈C:i∈C

gC(zC).

Now assume that the random field is Markov. Fix some configuration w ∈ SL and define

ΨA(zA) = − log p(zAw−A) and ΦA(zA) =
∑

B⊆A

(−1)|A|−|B|ΨB(zB), A ⊆ L.

From Lemma 3 it follows that ΨA(zA) =
∑
B⊆A ΦB(zB). For the density p(z) we get

p(z) = exp{−ΨL(zL)} = exp



−

∑

B⊆L

ΦB(zB)



 =

∏

B⊆L

gB(zB),

where gB(zB) = exp{−ΦB(zB)}. It remains to show that if B is not a clique then gB(zB) = 1, which
is equivalent to ΦB(zB) = 0. If B is not a clique then there exist two sites i, j ∈ B such that i 6∼ j. For
A ⊆ B \ {i, j} let us denote Ai = A ∪ {i}, Aj = A ∪ {j}, Aij = A ∪ {i, j}. Then

ΦB(zB) =
∑

A⊆B

(−1)|B|−|A|ΨA(zA)

=
∑

A⊆B\{i,j}

(−1)|B|−|A|
[
ΨA(zA)−ΨAi(zAi)−ΨAj (zAj ) + ΨAij (zAij )

]

=
∑

A⊆B\{i,j}

(−1)|B|−|A| log
p(zAiw−Ai)p(zAjw−Aj )

p(zAijw−Aij )p(zAw−A)

=
∑

A⊆B\{i,j}

(−1)|B|−|A| log
p(zi|zAw−Ai)p(wi|zAjw−Aij )

p(zi|zAjw−Aij )p(wi|zAw−Ai)

=
∑

A⊆B\{i,j}

(−1)|B|−|A| log
p(zi|zAw−Aij )p(wi|zAw−Aij )

p(zi|zAw−Aij )p(wi|zAw−Aij )
= 0.

The positivity condition assures that the conditional densities are well-defined. We have used the relation
p(zi|zAw−Ai) = p(zi|zAw−Aij ) = p(zi|zAjw−Aij ) which follows from the local Markov property (see
Remark 3) because i 6∼ j.
Note that Φ∅ = Ψ∅ = − log p(w) and g∅ = e−Φ∅ = p(w) is a normalizing constant which is generally

difficult to compute.
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Lemma 3. (Möbius inversion formula) Let Φ and Ψ be real-valued functions defined on the power set
of a finite set L. Then

Φ(A) =
∑

B⊆A

(−1)|A|−|B|Ψ(B) ∀A ⊆ L ⇐⇒ Ψ(A) =
∑

B⊆A

Φ(B) ∀A ⊆ L.

Proof: First we show the implication from left to right:

∑

B⊆A

Φ(B) =
∑

B⊆A

∑

D⊆B

(−1)|B|−|D|Ψ(D) =
∑

D⊆A

∑

C⊆A\D

(−1)|C|Ψ(D) = Ψ(A)

because
∑

C⊆A\D(−1)|C| is distinct from zero only if A \ D = ∅. This can be seen from the identity∑n
k=0

(
n
k

)
(−1)k = 0 for n ∈ N which follows from the binomial theorem.

The reverse implication is shown analogously:

∑

B⊆A

(−1)|A|−|B|Ψ(B) =
∑

B⊆A

∑

D⊆B

(−1)|A|−|B|Φ(D) =
∑

D⊆A

∑

C⊆A\D

(−1)|A|−|D|−|C|Φ(D) = Φ(A).

Definition 7. The distribution of a random field {Zi : i ∈ L} with density

p(z) = exp

{
−
∑

C∈C

ΦC(zC)

}
, z ∈ SL, (1)

is called the Gibbs distribution. The random field {Zi : i ∈ L} is then called the Gibbs random field .
It plays an important role in statistical mechanics where its density is usually written as p(z) =
1
Z exp{−E/T }. The term E is interpreted as the total energy (Hamiltonian) of the configuration z,
it is given as the sum of potentials VC(zC) over all non-empty cliques,

E =
∑

C∈C\{∅}

VC(zC).

The parameter T is a constant called the temperature and Z is a normalizing constant called the partition
function,

Z =

∫

SL

exp



− 1

T

∑

C∈C\{∅}

VC(zC)



 νL(dz).

In this context, VC(zC) = TΦC(zC) is the potential of the configuration zC , TΨC(zC) is the energy of
zC and the partition function is Z = e

Φ∅ .

The Hammersley-Clifford theorem says that every Markov random field satisfying the positivity
condition is a Gibbs random field where gC(zC) = exp{−ΦC(zC)}. We have already mentioned that
the conditional distributions do not determine the joint distribution. Therefore, we can not specify the
conditional distributions directly. However, we may instead construct them by the choice of the potential
functions ΦC . Since the expression

p(z) =
∏

C∈C

gC(zC)

is not unique, also the potentials are not uniquely determined. For given gC(zC), C 6= ∅, the normalizing
constant g∅ = e

−Φ∅ is already uniquely determined. It is given by

g∅ =



∫

SL

∏

C∈C\{∅}

gC(zC) ν
L(dz)




−1
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provided that the integral is finite and positive. Therefore, it is enough to specify the functions gC
or ΦC (or equivalently VC and the temperature T ) for non-empty cliques C. We can write the local
characteristics in terms of the potentials in the following way:

p(zi|z−i) ∝ exp
{
−

∑

C∈C:i∈C

ΦC(zC)

}
. (2)

Let us give some examples of Markov random fields.

Example: The simplest non-trivial situation is when the state space has only two elements. Consider
S = {0, 1}. In image analysis, the sites of the lattice L represent pixels, zi = 1 usually denotes black
colour and zi = 0 white colour of the pixel i. Define (for C 6= ∅)

ΦC(zC) =

{
−β, if C = {i, j}, i ∼ j and zi = zj,
0, otherwise,

where β ≥ 0 is a parameter (in statistical mechanics it is referred to as the inverse temperature). Then
we get the joint density (w.r.t. the counting measure)

p(z) =
1

c(β)
exp



β

∑

{i,j}:i∼j

1[zi=zj ]



 ,

where

c(β) =
∑

z∈{0,1}L

exp



β

∑

{i,j}:i∼j

1[zi=zj ]



 = e

Φ∅

is the partition function (here also sometimes called the partition sum) which is finite because S is finite.
The local characteristics satisfy

p(zi|z∂i) = P(Zi = zi | Z∂i = z∂i) =
exp

{
β
∑
j∈∂i 1[zj=zi]

}

exp
{
β
∑

j∈∂i 1[zj=1]

}
+ exp

{
β
∑

j∈∂i 1[zj=0]

} .

For β = 0 every configuration has the same probability. It means that the values 0 and 1 are independently
and uniformly randomly assigned to the sites. For β > 0 the configurations with attractive forces among
the neighbours are more probable. The probability that a given pixel is black given that it has k black
neighbours is proportional to eβk. For β → ∞ one state prevails in the whole configuration. Figure
2 shows simulated realizations of random fields on a regular grid 25 × 25 for different choices of the
parameter β.
This random field is known as the Ising model [8]. It has been proposed as a mathematical model

of ferromagnetism in statistical mechanics. The value Zi represents the atomic spin at the site i, usually
+1 is used for the upward orientation and −1 is used for the downward orientation.
The Ising model (as well as other Markov random fields) can be extended to an infinite lattice.

The problem is that C may be uncountable and the expression (1) does not have sense. However, we
can still consider local characteristics (if every site has finitely many neighbours) of the form (2). A
Gibbs distribution can be defined so that its conditional distributions are determined by given local
characteristics. The question is the existence and uniqueness of such distribution. It turns out that the
Gibbs distribution on an infinite lattice exists (if the state space is compact) but generally it is not
unique. In this case we speak about a phase transition. In particular, consider a regular planar grid
LN = {−N, . . . , N}2. We are interested in the behaviour of the Ising model for N → ∞, i.e. LN ր Z2.
There exists a critical value βc = log(1+

√
2)

.
= 0.881 (analytically computed by Onsager [12]), at which

the phase transition occurs. For β ≤ βc the Gibbs distribution is unique, while for β > βc it is not. In
the case β > βc the values at the boundary of lattice LN influence the marginal distribution of Z(0,0),
when N → ∞. It means that there are long-range interactions in the configuration. From the physics
point of view, the particle is magnetized.
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beta= 0 beta= 0.3

beta= 0.6 beta= 1

Figure 2. Simulations of the Ising model on the rectangular lattice 25× 25 for β ∈ {0; 0.3; 0.6; 1}.

In the definition of ΦC we can allow non-zero values for one-point cliques: Φ{i}(zi) = −βhi. Then
the total energy is

E = −
∑

i∈L

hi −
∑

{i,j}:i∼j

1[zi=zj]

and the joint density is p(z) ∝ exp{−E/T } = exp{−βE}. The values hi can be interpreted as the
influence of an external magnetic field. Further possible generalization is to admit the dependence of
the interaction strength on the sites or the values of the field in these sites. It means that β is then the
function of i, j, zi and zj . We can also consider the interactions of higher order than just pair interactions.

Even though the local structure is simple the Ising model is already quite complex. The joint
density contains a computationally demanding normalizing constant. Therefore, direct simulations from
the model are practically unfeasible and one has to exploit MCMC or other methods.

Example: The Potts model is a multicolour generalization of the Ising model. Let

S = {0, 1, . . . , nc − 1},
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where nc > 2 denotes the number of colours. The potential functions ΦC are defined exactly as in the
case of the Ising model. The local characteristics become

p(zi|z∂i) = P(Zi = zi | Z∂i = z∂i) =
exp

{
β
∑

j∈∂i 1[zj=zi]

}

∑nc−1
k=0 exp

{
β
∑

j∈∂i 1[zj=k]

} , zi ∈ {0, . . . , nc − 1}.

In statistical mechanics, the Potts model is a model of interacting spins.

Example: In the Potts model the arrangement of the state space S does not play any role. There is
equal strength of attraction for all colours. However, we can imagine that 0 corresponds to white colour,
nc− 1 to black colour and other states to different shades of grey. Then it would be desirable to take the
ordering into account. The attraction could be larger for similar colours. For example, we can consider
the model with the following local characteristics:

p(zi|z∂i) = P(Zi = zi | Z∂i = z∂i) =

(
nc − 1
zi

)
π(z∂i)

zi
(
1− π(z∂i)

)nc−1−zi

=

(
nc − 1
zi

)(
1− π(z∂i)

)nc−1
exp

{
zi log

π(z∂i)

1− π(z∂i)

}
,

where π(z∂i) are prescribed probabilities. It means that Zi | Z∂i = z∂i has a binomial distribution with
the parameters nc − 1 and π(z∂i). If we assume that π(z∂i), i ∈ L, satisfy

log
π(z∂i)

1− π(z∂i)
= −βi −

∑

j∈∂i

βijzj, (3)

then we get the Markov random field with potentials Φ{i}(zi) = βizi − log
(
nc−1
zi

)
, Φ{i,j}(zizj) = βijzizj

and ΦC(zC) = 0 for |C| > 2. The relation (3) is analogous to the logistic regression model. Therefore,
such model for a random field {Zi : i ∈ L} is known as the autologistic model .
Example: Let us move to the countable state space: S = N0. In practice, this situation appears when we
deal with count data, e.g. disease-incidence counts in some region. Consider a model where these counts
have a Poisson distribution with intensity λ(z∂i) that depends on the counts in neighbouring sites:

p(zi|z∂i) = P(Zi = zi | Z∂i = z∂i) = exp{−λ(z∂i)}
λ(z∂i)

zi

zi!
= exp{−λ(z∂i) + zi logλ(z∂i)− log zi!}.

These local characteristics are called auto-Poisson. In order to get a Gibbs distribution of {Zi : i ∈ L}
we require

log λ(z∂i) = −βi −
∑

j∈∂i

βijzj .

Moreover, we have to make sure that the normalizing constant is finite:

∑

z∈SL

exp



−

∑

i∈L

(log zi! + βizi)−
∑

{i,j}∈C

βijzizj



 <∞.

It can be shown that the sum is finite if and only if βij ≥ 0 for all i, j ∈ L such that i ∼ j, i 6= j (see
Exercise class). The condition βij ≥ 0 means that large values of neighbours of the site i result in higher
probability of smaller values in i. This restricts the practical application of the auto-Poisson model.

1.2 Gaussian models

Gaussian random fields are the most frequently used examples of random fields with continuous states.
Let {Zi : i ∈ L} have n-dimensional Gaussian distribution with the mean µ and positive definite
covariance matrix Σ, i.e. the joint density has the form

p(z) =
1

(2π)n/2
√
detΣ

exp

{
−1
2
(z − µ)TΣ−1(z − µ)

}
, z ∈ RL.
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The inverse of the covariance matrix is commonly referred to as the precision matrix . We denote it by
Q = Σ−1 and its elements by qij , i, j ∈ L. Then the conditional distributions Zi | Z−i = z−i are
Gaussian with the mean

µi −
1

qii

∑

j 6=i

qij(zj − µj)

and variance 1/qii (cf. Theorem 86). This suggests a convenient choice of neighbourhood relation that
ensures the local Markov property. If we put i ∼ j ⇔ qij 6= 0, then we get a Markov random field because
the conditional distribution Zi | Z−i does not depend on Zj for j that is not a neighbour of i.

Definition 8. A random field Z = {Zi : i ∈ L} with n-dimensional normal distribution with positive
definite covariance matrix Σ is called a Gaussian Markov random field . It is a particular case of a
Markov random field w.r.t. the relation defined by i ∼ j ⇔ qij 6= 0, where qij are elements of the matrix
Q = Σ−1.

The following theorem states that the random variables corresponding to non-neighbouring sites are
conditionally independent.

Theorem 4. Let Z = {Zi : i ∈ L} be a Gaussian Markov random field. Then, for i 6= j, Zi and Zj are
conditionally independent given Z−{i,j} if and only if i 6∼ j (i.e. qij = 0).

Proof: We could simply use Lemma 1 and the knowledge of the distribution of Zi | Z−i. However, let us
proceed directly from the definition. Recall that the conditional independence of Zi and Zj given Z−{i,j}

means that p(zi, zj|z−{i,j}) = p(zi|z−{i,j})p(zj |z−{i,j}). Since the joint distribution of Z is Gaussian,
also the conditional densities are Gaussian densities. From the relation for the joint density

p(z) =
1

(2π)n/2
√
detΣ

exp



−1
2

∑

k,l

(zk − µk)qkl(zl − µl)





we deduce that

p(zi, zj | z−{i,j}) ∝ exp
{
−(zi − µi)(zj − µj)qij −

1

2
(zi − µi)

2qii −
∑

k 6=i,j

(zi − µi)(zk − µk)qik

− 1
2
(zj − µj)

2qjj −
∑

l 6=i,j

(zj − µj)(zl − µl)qjl

}
. (4)

If qij = 0, then

p(zi, zj|z−{i,j}) ∝ exp



−1
2
(zi − µi)

2qii − (zi − µi)
∑

k 6=i,j

(zk − µk)qik





× exp



−1
2
(zj − µj)

2qjj − (zj − µj)
∑

l 6=i,j

(zl − µl)qjl



 ,

where, apart from the normalizing constant, the first term is p(zi | z−{i,j}) and the second term is
p(zj |z−{i,j}).
Conversely, if p(zi, zj |z−{i,j}) = p(zi|z−{i,j})p(zj|z−{i,j}), the right-hand side of (4) does not contain

the term with (zi − µi)(zj − µj). Hence, qij = 0.

The simplest example of a Gaussian Markov random field is obtained for Σ = σ2I, where I is the
identity matrix. Then any two distinct sites are not neighbours.

Definition 9. We say that a random field {Zi : i ∈ L} is a Gaussian (spatial) white noise if the random
variables Zi form a strict white noise and have Gaussian distribution N(0, σ

2).

Another simple example of a Gaussian Markov random field is a Gaussian autoregressive sequence
of order 1 (see Exercise class). More information on the theory and applications of Gaussian Markov
random fields can be found in the monograph [15].
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The Gaussian Markov random fields were defined by their joint density that is determined by the
mean µ and the precision matrix Q. Alternatively, we can specify the full conditional distributions
Zi | Z−i. Obviously, we are not allowed to choose the conditional distributions arbitrarily (see Exercise
class).

Lemma 5. (Brook lemma) Let p be the density of an n-dimensional random vector. For x,y ∈ Rn

satisfying p(x), p(y) > 0 the following relation holds:

p(x)

p(y)
=

n∏

i=1

p(xi|x1, . . . , xi−1, yi+1, . . . , yn)
p(yi|x1, . . . , xi−1, yi+1, . . . , yn)

=

n∏

i=1

p(xi|y1, . . . , yi−1, xi+1, . . . , xn)
p(yi|y1, . . . , yi−1, xi+1, . . . , xn)

.

Proof: From the relation

p(xn|x1, . . . , xn−1) p(x1, . . . , xn−1)
p(yn|x1, . . . , xn−1) p(x1, . . . , xn−1)

=
p(x1, . . . , xn−1, xn)

p(x1, . . . , xn−1, yn)

it follows that

p(x) =
p(xn|x1, . . . , xn−1)
p(yn|x1, . . . , xn−1)

p(x1, . . . , xn−1, yn).

Now we can similarly express the last term on the right-hand side:

p(x1, . . . , xn−1, yn) =
p(xn−1|x1, . . . , xn−2, yn)
p(yn−1|x1, . . . , xn−2, yn)

p(x1, . . . , xn−2, yn−1, yn).

In this way we inductively obtain the desired equation. The second equation is obtained analogously by
adjusting the formula

p(x) =
p(x1|x2, . . . , xn)
p(y1|x2, . . . , xn)

p(y1, x2 . . . , xn).

The Brook lemma gives instructions how to get the joint density from the conditional densities.
We fix some y and apply the Brook lemma to compute p(x) up to the normalizing constant p(y). The
normalizing constant is determined so that the integral of the joint density is equal to one. If we obtain
a function that is not integrable, then our system of conditional densities does not lead to a proper joint
density. The system of full conditional densities that gives a proper joint density is called consistent.

Definition 10. The system of conditional densities {p(zi|z−i) : i ∈ L} is called consistent if there
exists the joint density p(z) of a random field {Zi : i ∈ L} such that p(zi|z−i) are the corresponding full
conditional densities. The random field {Zi : i ∈ L} is called conditional autoregressive model which is
abbreviated as CAR.

If we choose Gaussian conditional densities, then we obtain Gaussian CAR model. LetB = (bij)i,j∈L
be a zero-diagonal matrix (bii = 0 for all i ∈ L). Let τ2i , i ∈ L, be positive parameters. Denote by D a
diagonal matrix with elements dii = τ

2
i in its diagonal. Consider the system of conditional distributions

such that Zi | Z−i has Gaussian distribution with the mean
∑
j∈L bijZj and variance τ

2
i . Enumerate the

sites of L by 1, . . . , n and fix y = o as the null vector in Rn. Then by Lemma 5 we have

p(z)

p(o)
= exp



−

n∑

i=1

z2i
2τ2i
+

n∑

i=2

i−1∑

j=1

bij
τ2i
zizj



 = exp



−

n∑

i=1

z2i
2τ2i
+

n−1∑

i=1

n∑

j=i+1

bij
τ2i
zizj



 , z ∈ Rn.

Comparing these expressions we get the necessary conditions

bij
τ2i
=
bji
τ2j

for all i, j. (5)
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Under these conditions,

p(z) = p(o) exp



−

n∑

i=1

z2i
2τ2i
+

n∑

i=1

n∑

j=1

bij
2τ2i

zizj



 = p(o) exp



−1
2

n∑

i=1

n∑

j=1

qijzizj



 ,

where qij are the elements of the matrix Q = (I −B)D−1. From this we see that under the assumption
of the positive definiteness of Q (which is equivalent to the positive definiteness of I −B) the density
p(z) is the density of a centred n-dimensional normal distribution with the precision matrix Q. The
normalizing constant p(o) is equal to (2π)−n/2

√
detQ. The matrix Q is symmetric due to (5). Note that

the matrix B is not symmetric unless all τ2i are equal. Our choice of n conditional normal distributions is
consistent under the condition (5) and if I −B is assumed to be positive definite. In this case we obtain
the Gaussian CAR model which can be viewed as the Gaussian Markov random field w.r.t. the relation
i ∼ j ⇔ qij 6= 0. The whole system can be briefly written as Z = BZ + ε, which is equivalent to the
expression (I −B)Z = ε. Since Z has a centred n-dimensional normal distribution with the covariance
matrix Q−1 = D(I − B)−1, the vector ε has a centred n-dimensional normal distribution with the
covariance matrix D(I −B)T. It means that the elements of ε are not independent. For simplicity we
have considered the centred case. However, we can easily incorporate the mean µ in the model:

Z = µ+B(Z − µ) + ε. (6)

Besides the approach using the conditional distributions it is possible to consider spatial Gaussian
models where the random field is specified simultaneously. This approach is motivated by the generali-
zation of autoregressive sequences from stochastic processes in time. The relation (6) can be rewritten
as

Zi − µi =
∑

j∈L

bij(Zj − µj) + εi, i ∈ L.

While for the CAR models Z induces the distribution of ε, we now let ε induce the distribution of Z.

Definition 11. Let ε = {εi : i ∈ L} be a Gaussian white noise. Again we assume that B is a matrix
whose diagonal elements are zero and that (I−B)−1 exists. The matrix B is not necessarily symmetric.
We define the random field Z = {Zi : i ∈ L} by the relation

(I −B)(Z − µ) = ε. (7)

We speak about the simultaneous autoregressive model and abbreviate it by SAR.

Clearly, EZ = µ and the covariance matrix of Z is

E(Z − µ)(Z − µ)T = σ2(I −B)−1(I −BT)−1.

Since Z is a linear transformation of ε, the distribution of Z is Gaussian. The relation (7) coincides with
(6). The difference is that now we considered (in analogy with the time series autoregressive model) ε to
be a white noise. The elements of matrix B determine the spatial dependence. If bij = 0, then Zi and
Zj are conditionally independent given Z−{i,j}. The joint density has the form

p(z) =
det(I −B)

(2πσ2)n/2
exp

{
− 1

2σ2
(z − µ)T(I −BT)(I −B)(z − µ)

}
, z ∈ Rn.

Note that cov(ε,Z) = σ2(I −BT)−1, and so (as opposed to a causal autoregressive sequence in time)
the εi may depend on the autoregressors.
Similarly we can consider generalizations of the moving average (MA) models or ARMA models to

spatial models.

Definition 12. Let ε = {εi : i ∈ L} be a Gaussian white noise, let µ be a vector of means and let E
be a matrix of real coefficients. The random field Z = {Zi : i ∈ L} given by Z = µ+ (I −E)ε is called
a spatial moving average and is abbreviated by SMA. If we moreover consider the matrix B such that
I −B is invertible, then we define a SARMA model by

(I −B)(Z − µ) = (I −E)ε.

For the SMA model, Z has an n-dimensional normal distribution with the mean µ and covariance
matrix σ2(I−E)(I−ET). The covariance matrix for the SARMA model has the form σ2(I−B)−1(I−
E)(I −ET)(I −BT)−1.
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1.3 Spatial autocorrelation

A random field {Zi : i ∈ L} is used to model dependent data. Typically the variables at neighbouring sites
appear to be correlated (either positively or negatively). Our aim is to quantify this spatial autocorre-
lation. We introduce some statistical measures that are used to determine the degree of autocorrelation
in spatial data.
Since usually closer observations are more related than distant observations, we would like to take

into account the “closeness” of individual sites. For Markov random fields this is expressed by the relation
∼. We assign a non-negative weight wij to each pair (i, j) of sites from L. We only require that wij = 0
if i = j or i 6∼ j. The weights wij are called the spatial proximity weights or spatial connectivity weights .
The simplest example is given by the binary weights

wij =

{
1, if i ∼ j, i 6= j,
0, otherwise.

Another popular choice is obtained by the normalized binary weights

wij =

{
1

|∂i| , j ∈ ∂i,

0, j 6∈ ∂i,

where |∂i| denotes the cardinality of ∂i. Notice that the weights do not have to be symmetric, i.e. the
relation wij = wji may not hold. Denote by W the matrix with entries wij , i, j ∈ L. In case of the
normalized binary weights this matrix is stochastic (the row sums are 1) if we assume that each site has
at least one neighbour.
First consider binary random fields, i.e. the state space S = {0, 1} has only two elements. The states

often represent whether the event of interest occurred at site i (Zi = 1) or not (Zi = 0). In image analysis,
1 typically corresponds to black colour of the pixel i and 0 to white colour.

Definition 13. Let Z = {Zi, i ∈ L} be a random field with the state space S = {0, 1}. Define the
black-black join count statistic as

BB =
1

2

∑

i∈L

∑

j∈L

wijZiZj

and the black-white join count statistic as

BW =
1

2

∑

i∈L

∑

j∈L

wij(Zi − Zj)
2.

Remark 5. In these statistics we make a weighted sum over those pairs of neighbours that are both
black (Zi = Zj = 1) or one is black and the second is white (Zi = 1 and Zj = 0 or the other way round).
For the binary weights, BB is directly equal to the number of neighbours that are both black. Similarly
BW is the number of neighbours with different colours.

Assume that n sites have m values 1 (black) and n−m values 0 (white). No spatial autocorrelation
in the data can be understood so that black and white colours are assigned to the sites completely at
random. There are several ways how to make such an assignment. The most natural are the binomial and
hypergeometric samplings. For the binomial sampling we assume that each site gets a colour indepen-
dently of the other sites, it is black with probability π (which we would estimate from the data as m/n)
or white with probability 1− π. Then P(Zi = 1) = π for every i ∈ L and the number of black sites has
the binomial distribution with parameters n and π. Obviously, EBB = 1

2π
2w and EBW = π(1 − π)w,

where w = 1TW1 =
∑

i∈L

∑
j∈L wij and 1 = (1, . . . , 1)

T. The hypergeometric sampling is appropriate
if we want to guarantee that the number of black sites is exactly m. From n sites we randomly select
(without replacement) m sites that obtain black colour. The remaining n − m sites are white. In this

case P(Zi = 1) = m/n, P(Zi = 1, Zj = 1) =
m(m−1)
n(n−1) and P(Zi = 1, Zj = 0) =

2m(n−m)
n(n−1) . Hence,

EBB =
w

2
· m(m− 1)
n(n− 1) and EBW = w

m(n−m)

n(n− 1) .
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The formulas for the variance are a little bit more complicated in both models (see [3]). If the statistics
BB computed from the data is considerably larger than EBB it indicates the presence of positive
autocorrelation. Neighbouring sites have tendency to have the same colour. On the contrary, large values
of BW correspond to negative autocorrelation because neighbouring sites have rather distinct colours.
For realizations of the Ising model from Figure 2 the values of BW as β increases are 588, 489, 352
and 133. At the same time the theoretical expectation for the case β = 0 (no spatial autocorrelation
– independent uniform assignment of 0 and 1 to the sites) is 600. With increasing β there is stronger
positive autocorrelation.
For continuous data the similarity of variables at sites i and j is often measured by (Zi− Z̄)(Zj− Z̄)

or (Zi−Zj)2. If we sum all these contributions over the pairs of neighbours and normalize by the variance
estimate, we get the following indices.

Definition 14. Let {Zi : i ∈ L} be a random field with constant mean EZi = µ and constant variance
varZi = σ

2. The Moran index is defined as

I =
n

w

∑
i∈L

∑
j∈L wij(Zi − Z̄)(Zj − Z̄)
∑
i∈L(Zi − Z̄)2

,

where Z̄ = 1
n

∑
i∈L Zi. The Geary index is given by the formula

c =
n− 1
2w

∑
i∈L

∑
j∈L wij(Zi − Zj)

2

∑
i∈L(Zi − Z̄)2

.

For the normalized binary weights (under the assumption that every site has at least one neighbour)
we have w = n and the normalizing constant for the Moran index is equal to one.
We will consider two distinct assumptions that both correspond to no spatial autocorrelation:

1. normality assumption: the random field Z is obtained by independent random variables with normal
distribution N(µ, σ2);

2. randomization assumption: each of n! permutation of observed values at n sites is equally probable.

Lemma 6. Let Eg and Er denote the expectation under the normality assumption and the randomization
assumption, respectively. Then

EgI = ErI = − 1

n− 1 and Egc = Erc = 1.

Proof: Denote Yi = Zi−Z̄,M2 =
∑
i∈L Y

2
i , R =

∑
i∈L

∑
j∈L wijYiYj , and V =

∑
i∈L

∑
j∈L wij(Zi−Zj)2.

Obviously, EgYi = 0, EgY
2
i = Eg(Zi − Z̄)2 = (1 − 1/n)σ2, EgYiYj = Eg(Zi − Z̄)(Zj − Z̄) = −σ2/n

and Eg(Zi − Zj)
2 = 2σ2 for i 6= j. Recalling that wii = 0 we obtain

EgM2 =
∑

i∈L

EgY
2
i = (n− 1)σ2,

EgR =
∑

i∈L

∑

j∈L

wijEgYiYj = −σ
2

n
w,

EgV =
∑

i∈L

∑

j∈L

wijEg(Zi − Zj)
2 = 2σ2w.

Since the index I remains unchanged when we multiply the Zi by a non-zero constant, M2 and I are
independent under the normality assumption by Theorem 87. Therefore,

n

w
EgR = EgIM2 = EgI · EgM2 = (n− 1)σ2EgI,

which gives EgI = − 1
n−1 . Similarly, Theorem 87 guarantees the independence of M2 and c. This leads

to
n− 1
2w

EgV = EgcM2 = Egc · EgM2 = (n− 1)σ2Egc,
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and thus Egc = 1.
Under the randomization assumption the values Z̄ = z̄ and M2 =

∑
i∈L(zi − z̄)2 = m2 are constant

(every permutation leads to the same value of the mean and sample variance). For i 6= j we have

ErYiYj =
∑

k∈L

∑

l∈L:l 6=k

1

n(n− 1)(zk − z̄)(zl − z̄) = − 1

n(n− 1)
∑

k∈L

(zk − z̄)2 = − m2
n(n− 1)

and

Er(Zi − Zj)
2 =

∑

k∈L

∑

l∈L:l 6=k

1

n(n− 1)(zk − zl)
2 =

1

n(n− 1)
∑

k∈L

∑

l∈L

(yk − yl)
2 =

2m2
n− 1 ,

where yi = zi − z̄ and we used the fact that
∑
i∈L yi = 0. This implies

ErI =
n

wm2

∑

i∈L

∑

j∈L

wijErYiYj = − 1

n− 1 ,

Erc =
n− 1
2wm2

∑

i∈L

∑

j∈L

wijEr(Zi − Zj)
2 = 1.

We have shown that the expectations under the normality and randomization assumptions coincide
for both Moran and Geary index. However, the variances are different (see [3]). The interpretation of
Moran and Geary statistics is the following: if I > EI or c < Ec, the site has tendency to be connected
to the site with a similar value of the field, i.e. there is a positive spatial autocorrelation. Conversely, for
I < EI or c > Ec, the values at two neighbouring sites have tendency to be dissimilar.
The assumption of constant mean and variance of the random field is important. Otherwise the

values at neighbouring sites could be similar not due to positive spatial autocorrelation but because they
are independent realizations from distributions with similar expectation. Similarly, the values at distant
sites could appear distinct because the mean of the random field is changing.

2. Random fields

By a random field we understand a stochastic process with d-dimensional index set D. In this section
we consider the case when D is connected and has positive d-dimensional Lebesgue measure. The basic
definitions and propositions are analogous to the one-dimensional case. For d = 1 they can be found in
[13].

2.1 Basic definitions

Definition 15. Let D be a fixed subset of Rd. A random field is a collection of real random variables
{Z(x) : x ∈ D} defined on a probability space (Ω,A,P).
Finite-dimensional distributions of the random field are described by the distribution functions

Fx1,...,xn(t1, . . . , tn) = P(Z(x1) ≤ t1, . . . , Z(xn) ≤ tn), t1, . . . , tn ∈ R, (8)

where n ∈ N and x1, . . . , xn ∈ D. The family of finite-dimensional distributions uniquely determines the
distribution of {Z(x) : x ∈ D}.
Definition 16. We say that the system of distribution functions {Fx1,...,xn : n ∈ N, x1, . . . , xn ∈ D}
is projective if for any n ∈ N, x1, . . . , xn ∈ D, t1, . . . , tn ∈ R and a permutation i1, . . . , in of numbers
1, . . . , n we have

Fx1,...,xn(t1, . . . , tn) = Fxi1 ,...,xin
(ti1 , . . . , tin)

and

Fx1,...,xn(t1, . . . , tn) = lim
tn+1→∞

Fx1,...,xn,xn+1(t1, . . . , tn, tn+1).
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Distribution functions of finite-dimensional distributions of the random field clearly form a projective
system. Conversely, we have the following result.

Theorem 7. (Daniell-Kolmogorov existence theorem) Let {Fx1,...,xn : n ∈ N, x1, . . . , xn ∈ D} be
a projective system of distribution functions. Then there exists a random field {Z(x) : x ∈ D} on some
probability space (Ω,A,P) such that (8) holds for any n ∈ N, x1, . . . , xn ∈ D.

Proof: [19], Theorem I.10.3 or [9], Theorem 6.16.

The most studied are Gaussian random fields for which all their finite-dimensional distributions are
Gaussian.

Definition 17. A random field {Z(x) : x ∈ D} is called Gaussian random field if the random vector
(Z(x1), . . . , Z(xn))

T has n-dimensional normal distribution for every n ∈ N and x1, . . . , xn ∈ D.

Remark 6. The distribution of every Gaussian random field is completely determined by its mean
µ(x) = EZ(x) and autocovariance function C(x, y) = cov(Z(x), Z(y)), x, y ∈ D.

Three realizations of Gaussian random fields with constant mean and different choices of autocova-
riance functions C(x, y) are shown in Figure 3.

Figure 3. Simulated realizations of Gaussian random fields in the square D = [0, 10]2. Constant
mean and variance (µ(x) = 0 and varZ(x) = 1 for each x ∈ D) and three different autocovariance
functions were considered. Left: there are no correlations (C(x, y) = 1[x=y]). Middle: stronger correlations

(C(x, y) = e−2‖x−y‖). Right: the strongest correlations (C(x, y) = e−0.1‖x−y‖).

In practice we only observe one realization z of a random field Z = {Z(x) : x ∈ D} in finitely
many points x1, . . . , xn. In order to make some statistical inference, we would need to impose further
assumptions on the random field Z.

Definition 18. We say that a random field {Z(x) : x ∈ D} is strict(ly) stationary, if the finite-
dimensional distributions of random vectors (Z(x1), . . . , Z(xn))

T and (Z(x1 + h), . . . , Z(xn + h))
T are

equal for every n ∈ N, x1, . . . , xn ∈ D and h ∈ Rd such that x1 + h, . . . , xn + h ∈ D.
A random field with finite second moments is called weak(ly) stationary if it has constant mean

(EZ(x) = µ for all x ∈ D) and its autocovariance function C(x, y) = cov(Z(x), Z(y)) is translation
invariant, i.e. C(x + h, y + h) = C(x, y) for all x, y ∈ D and h ∈ Rd satisfying x + h, y + h ∈ D. In this
case C(x, y) = C(x−y) for all x, y ∈ D and with a slight abuse of notation we use C also for the function
of one argument in Rd.
If only the condition on the autocovariance function is satisfied (the expectation is not necessarily

constant), then the random field is covariance stationary.

Remark 7. A strictly stationary random field with finite second moments is weakly stationary. For
Gaussian random fields weak stationarity implies strict stationarity. Realizations in Figure 3 are examples
of strictly stationary Gaussian random fields.

We will need one further kind of stationarity.

Definition 19. We say that a random field {Z(x) : x ∈ D} is intrinsic(ally) stationary if for each
x, y ∈ D we have E(Z(x) − Z(y)) = 0 and var(Z(x)− Z(y)) is a function of x− y.
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Remark 8. For a weak stationary random field it follows that E(Z(x) − Z(y)) = µ− µ = 0 and

var(Z(x)− Z(y)) = varZ(x) + varZ(y)− 2 cov(Z(x), Z(y)) = 2
(
C(o) − C(x− y)

)
. (9)

It means that every weak stationary random field is also intrinsic stationary. The reverse implication is
not true. For example, for d = 1 the Wiener process is intrinsic stationary (var(Z(x+ h)− Z(x)) = |h|)
but it is not weak stationary (varZ(x) = |x|).
Stationarity expresses translation invariance of distributions or moments. In our spatial case we can

also consider rotation invariance.

Definition 20. A random field {Z(x) : x ∈ D} is called strict(ly) isotropic if the finite-dimensional
distributions of random vectors (Z(x1), . . . , Z(xn))

T and (Z(Ox1), . . . , Z(Oxn))T coincide for each n ∈ N,
x1, . . . , xn ∈ D and rotation O around the origin such that Ox1, . . . ,Oxn ∈ D.
A random field with finite second moments is weak(ly) isotropic if for every x, y ∈ D and ro-

tation O around the origin satisfying Ox,Oy ∈ D we have EZ(x) = EZ(Ox) and cov(Z(x), Z(y)) =
cov(Z(Ox), Z(Oy)).
Remark 9. A strictly isotropic random field with finite secondmoments is weakly isotropic. For Gaussian
random fields weak isotropy implies strict isotropy. Realizations in Figure 3 come from stationary and
isotropic Gaussian random fields.

Definition 21. A random field is called strictly (or weakly) motion-invariant if it is both strictly (or
weakly) stationary and strictly (or weakly) isotropic.

For a weak motion-invariant random field {Z(x) : x ∈ Rd} we have C(x, y) = C(‖x − y‖) for any
x, y ∈ D. Again we slightly abuse the notation and use C both for the function of two arguments x and
y and for the function of one argument ‖x− y‖ ∈ R+.

Definition 22. We say that a random field {Z(x) : x ∈ D} is L2-continuous or mean square continuous
at x ∈ D if E(Z(x + h)− Z(x))2 → 0 for ‖h‖ → 0+. The field is L2-continuous if it is L2-continuous at
each point x ∈ D.

Remark 10. It is good to realize that L2-continuity does not mean continuity of realizations of the
random field.

The Kolmogorov-Chentsov theorem gives the conditions for the existence of a sample continuous
modification.

Definition 23. We say that a random field {Z̃(x) : x ∈ D} is a modification of a random field
{Z(x) : x ∈ D} if P(Z(x) = Z̃(x)) = 1 for every x ∈ D.

Theorem 8. (Kolmogorov-Chentsov theorem) Let {Z(x) : x ∈ D} be a random field, where D =
[a1, b1]× · · ·× [ad, bd] is a bounded rectangle. Suppose that there are positive constants α, β, C such that

E|Z(x) − Z(y)|α ≤ C‖x− y‖d+β

for all x, y ∈ D. Then there exists a modification {Z̃(x) : x ∈ D} such that the mapping x 7→ Z̃(x) is
continuous almost surely.

Proof: [10], Problem 2.9.

The smoothness of a random field is studied via its differentiability.

Definition 24. Assume that D is open. A random field {Z(x) : x ∈ D} is L2-differentiable or mean
square differentiable at x ∈ D in direction h ∈ Rd if there exists an L2-limit of (Z(x + th)− Z(x))/t as
t→ 0. If we denote this limit by Z ′(x, h), then the following relation must be satisfied,

lim
t→0

E

(
Z(x+ th)− Z(x)

t
− Z ′(x, h)

)2
= 0.

Let {e1, . . . , ed} be the canonical basis of Rd, then Z ′(x, ej), j = 1, . . . , d, are the partial derivatives of
a random field Z at point x.
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2.2 Variogram and autocovariance function

Definition and properties

Random fields are used as the models for geostatistical data (e.g. temperature, air quality or soil mineral
content). In geostatistics a popular tool for describing the spatial correlation is so called variogram.

Definition 25. For an intrinsic stationary random field {Z(x) : x ∈ D} we define its variogram as

2γ(h) = var(Z(x+ h)− Z(x)), h ∈ D −D,

where D−D = {h ∈ Rd : h = x− y, x ∈ D, y ∈ D}. The function γ(h) itself is called the semivariogram.
If the function γ(h) depends only on ‖h‖, we speak about an isotropic semivariogram or variogram. In
this case we use the letter γ also for the function γ(‖h‖) which is defined on non-negative real numbers.
From definition it is clear that γ(h) = γ(−h), γ(o) = 0 and γ(h) ≥ 0. A weak motion-invariant

random field has an isotropic (semi)variogram. The semivariogram of a weak stationary random field
is bounded and it is related to the autocovariance function by the formula γ(h) = C(o) − C(h) which
follows from (9). Generally the function γ needs not to be bounded.

Lemma 9. Let {Z(x) : x ∈ D} be an intrinsic stationary random field with the semivariogram γ. Then
γ(h)→ 0 for ‖h‖ → 0+ if and only if the random field is L2-continuous.
Proof: The result follows directly from the definition as for an intrinsic stationary random field we have
2γ(h) = var(Z(x+ h)− Z(x)) = E(Z(x+ h)− Z(x))2.

If γ(h) is not continuous at the origin then we speak about so called nugget effect .

Definition 26. If there exists a limit lim‖h‖→0+ 2γ(h) = 2τ
2 > 0, it is called the nugget . If there exists

a finite limit lim‖h‖→∞ 2γ(h) = 2(τ
2 + σ2), it is called the sill . In this case we define the range as

r = inf{s ≥ 0 : 2γ(h) = 2(τ2 + σ2) for all h ∈ Rd : ‖h‖ ≥ s}.

The value 2σ2 is referred to as the partial sill .

An example of an isotropic variogram with nugget, sill and finite range is depicted in Figure 4.
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Figure 4. An illustration of the definition of the nugget, sill and range.
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The nugget appears when the repeated measurements at the same location give different values.
It happens, for example, when we are not observing directly the realization of a random field, but the
observations are affected by some error. Let {S(x) : x ∈ D} be an intrinsically stationary random field
(so called signal) with variogram 2γS(h), which is continuous at the origin. Let {ε(x) : x ∈ D} be
an intrinsically stationary random field (so called noise) that is independent of {S(x) : x ∈ D}. We
observe a realization of the random field {Z(x) : x ∈ D}, where Z(x) = S(x) + ε(x). If the ε(x) are
uncorrelated random variables with zero mean and variance τ2 (so called white noise), then the variogram
of {Z(x) : x ∈ D} is

2γ(h) = 2γS(h) + 2τ
21[h 6=o]

and thus the nugget is equal to 2τ2.
The autocovariance function of any weakly stationary random field has the following properties:

C(h) = C(−h); C(o) = varZ(x) ≥ 0; |C(h)| ≤ C(o), and so C is always a bounded function. The
following theorem gives the connection between the L2-continuity of the random field and the continuity
of its autocovariance function.

Theorem 10. Let {Z(x) : x ∈ D} be a random field with finite second moments (i.e. EZ(x)2 <∞ for
each x ∈ D) such that its mean µ(x) = EZ(x) is continuous on D. The random field is mean square
continuous if and only if its autocovariance function C(x, y) is continuous at the points satisfying x = y.

Proof: We can use the relation

E(Z(x + h)− Z(x))2 = var(Z(x+ h)− Z(x)) + (µ(x+ h)− µ(x))2

= C(x+ h, x+ h)− 2C(x+ h, x) + C(x, x) + (µ(x+ h)− µ(x))2.

If C(x, y) is continuous at the points x = y, then the right-hand side tends to zero as ‖h‖ → 0+.
Therefore, the random field is L2-continuous.
On the contrary, L2-continuity of the random field implies

lim
‖h‖→0+

[C(x+ h, x+ h)− 2C(x+ h, x) + C(x, x)] = 0, (10)

which after taking squares gives

4 lim
‖h‖→0+

C(x+ h, x)2 =

(
lim

‖h‖→0+
C(x+ h, x+ h) + C(x, x)

)2
.

From the Cauchy-Schwarz inequality we have

C(x + h, x)2 ≤ C(x + h, x+ h)C(x, x),

and so

4 lim
‖h‖→0+

C(x+ h, x+ h)C(x, x) ≥
(
lim

‖h‖→0+
C(x+ h, x+ h) + C(x, x)

)2
.

Denote a = lim‖h‖→0+ C(x+ h, x+ h) and b = C(x, x). We have obtained the inequality 4ab ≥ (a+ b)2
which is possible only if a = b. It means that lim‖h‖→0+ C(x + h, x + h) = C(x, x). Due to (10) it also
follows that lim‖h‖→0+ C(x+ h, x) = C(x, x) for any x ∈ D. Finally,

|C(x+ h, x+ h′)− C(x, x)| ≤ |C(x + h, x+ h′)− C(x + h, x)|+ |C(x+ h, x)− C(x, x)|

and both terms on the right-hand side converge to zero as ‖h‖, ‖h′‖ → 0+.

Corollary 11. A weak stationary random field is L2-continuous if and only if its autocovariance function
is continuous at the origin.

Proof: The assertion follows directly from Theorem 10. However, it is easy to prove it directly. It suffices
to realize the relation (9) between the variogram and autocovariance function and use Lemma 9.
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Similarly, it can be shown that L2-differentiability of a weak stationary (or intrinsic stationary)
random field is related to the differentiability of its autocovariance function (or variogram) at the origin.
Now we state an auxiliary result that will be useful for calculation of the second order characteristics

of the random field.

Lemma 12. For a covariance stationary random field {Z(x) : x ∈ D} we have

cov




n∑

j=1

αjZ(xj),

n∑

j=1

βjZ(xj)


 =

n∑

j=1

n∑

k=1

αjβkC(xk − xj)

for any n ∈ N, x1, . . . , xn ∈ D and α1, . . . , αn, β1, . . . , βn ∈ R.
For an intrinsic stationary random field {Z(x) : x ∈ D} we have

cov




n∑

j=1

αjZ(xj),

n∑

j=1

βjZ(xj)


 = −

n∑

j=1

n∑

k=1

αjβkγ(xk − xj)

for any n ∈ N, x1, . . . , xn ∈ D and α1, . . . , αn, β1, . . . , βn ∈ R satisfying
∑n

j=1 αj =
∑n
j=1 βj = 0.

Proof: The first relation is a well-known formula for the covariance of linear combinations of random
variables. For the proof of the second relation we use

n∑

j=1

αjZ(xj) =

n∑

j=1

αj(Z(xj)− Z(x1)),

n∑

j=1

βjZ(xj) =

n∑

j=1

βj(Z(xj)− Z(x1))

and the identity

2γ(xj − xk) = 2γ(xj − x1) + 2γ(xk − x1)− 2 cov(Z(xj)− Z(x1), Z(xk)− Z(x1)),

which follows from Z(xj)− Z(xk) = (Z(xj)− Z(x1)) − (Z(xk) − Z(x1)) by computing the variance on
both sides. Altogether we get

cov




n∑

j=1

αjZ(xj),

n∑

j=1

βjZ(xj)


 =

n∑

j=1

n∑

k=1

αjβk cov(Z(xj)− Z(x1), Z(xk)− Z(x1))

=

n∑

j=1

n∑

k=1

αjβk(γ(xj − x1) + γ(xk − x1)− γ(xj − xk))

= −
n∑

j=1

n∑

k=1

αjβkγ(xj − xk).

Definition 27. Let f : Rd → R be a symmetric function, i.e. f(x) = f(−x) for every x ∈ Rd. We say
that f is positive semidefinite if

n∑

j=1

n∑

k=1

αjαkf(xj − xk) ≥ 0

for every n ∈ N, x1, . . . , xn ∈ Rd and α1, . . . , αn ∈ R. The function f is called conditional negative
definite if

n∑

j=1

n∑

k=1

βjβkf(xj − xk) ≤ 0

for every n ∈ N, x1, . . . , xn ∈ Rd and β1, . . . , βn ∈ R satisfying
∑n

j=1 βj = 0.

Corollary 13. The autocovariance function of a covariance stationary random field is positive semide-
finite. The variogram of an intrinsic stationary random field is conditional negative definite.

19



Proof: From Lemma 12 it follows that

0 ≤ var
n∑

j=1

αjZ(xj) = cov




n∑

j=1

αjZ(xj),

n∑

j=1

αjZ(xj)


 =

n∑

j=1

n∑

k=1

αjαkC(xj − xk)

for arbitrary α1, . . . , αn ∈ R and

0 ≤ var
n∑

j=1

βjZ(xj) = cov




n∑

j=1

βjZ(xj),

n∑

j=1

βjZ(xj)


 = −

n∑

j=1

n∑

k=1

βjβkγ(xj − xk)

for arbitrary β1, . . . , βn ∈ R satisfying
∑n

j=1 βj = 0.

Moreover, the class of all autocovariance functions of covariance stationary random fields coincides
with the class of positive semidefinite functions. Similarly, the class of all variograms of intrinsic stationary
random fields coincides with the class of conditional negative definite functions that attain value zero at
the origin.

Theorem 14. For each positive semidefinite function C : Rd → R there exists a covariance stationary
random field such that C is its autocovariance function. For each conditional negative definite function
γ : Rd → R satisfying γ(o) = 0 there exists an intrinsic stationary random field such that 2γ is its
variogram.

Proof: For arbitrary n ∈ N and x1, . . . , xn ∈ Rd, the matrix Σ = (C(xi − xj))i,j=1,...,n is positive
semidefinite (it follows from the positive semidefiniteness of C) and we can consider n-dimensional centred
normal distribution with the covariance matrix Σ. We get a projective system of finite-dimensional
distributions. By Daniell-Kolmogorov theorem (Theorem 7) there exists a Gaussian random field {Z(x) :
x ∈ Rd} that satisfies cov(Z(x), Z(y)) = C(x − y). In the same way we can show that for any positive
semidefinite function C on Rd×Rd there exists a centred Gaussian random field with the autocovariance
function C(x, y).
Let β0, β1, . . . , βn ∈ R satisfy

∑n
j=0 βj = 0. Then for each x0, x1, . . . , xn ∈ Rd we have

0 ≤ −
n∑

j=0

n∑

k=0

βjβkγ(xj − xk) =

n∑

j=0

n∑

k=0

βjβk(γ(xj) + γ(xk)− γ(xj − xk)). (11)

We consider the function C(x, y) = γ(x) + γ(y) − γ(x − y). It satisfies C(o, x) = C(x, o) = 0 for any
x ∈ Rd. If we put x0 = o, then for arbitrary α1, . . . , αn ∈ R,

n∑

j=1

n∑

k=1

αjαkC(xj , xk) =

n∑

j=0

n∑

k=0

αjαkC(xj , xk),

which is non-negative due to (11) because we can take α0 = −∑n
j=1 αj . We found out that C(x, y) is

positive semidefinite function on Rd × Rd. Hence, by the first part of the proof there exists a centred
Gaussian random field {Z(x) : x ∈ Rd} such that cov(Z(x), Z(y)) = C(x, y). It remains to verify that it
is intrinsic stationary and its variogram is 2γ:

var(Z(x) − Z(y)) = C(x, x) + C(y, y)− 2C(x, y)
= 2γ(x) + 2γ(y)− 2γ(x)− 2γ(y) + 2γ(x− y) = 2γ(x− y).

Spectral decomposition

Similarly to the stochastic processes we can consider a spectral decomposition of the autocovariance
function of a random field. It is based on the Bochner theorem which states that every continuous
positive semidefinite function has a unique representation in the form of a Fourier transform of some
finite measure.
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Theorem 15. A complex-valued function C on Rd is an autocovariance function of a weak stationary
L2-continuous complex-values random field {Z(x) : x ∈ Rd} if and only if it can be expressed as

C(h) =

∫

Rd

eiω
Th dS(ω), h ∈ Rd, (12)

where S has the following properties:
1. limmini=1,...,d ωi→∞ S(ω1, . . . , ωd) = C(o),
2. limωi→−∞ S(ω1, . . . , ωd) = 0 for every i = 1, . . . , d,
3. S is right continuous in every coordinate,
4. S is non-decreasing in ω, i.e. for each ω, ϑ ∈ Rd satisfying ωi < ϑi, i = 1, . . . , d, we have

µS((ω, ϑ]) =

1∑

δ1=0

· · ·
1∑

δd=0

(−1)d−
∑d

i=1
δiS(ω1 + δ1(ϑ1 − ω1), . . . , ωd + δd(ϑd − ωd)) ≥ 0,

where (ω, ϑ] = (ω1, ϑ1]× · · · × (ωd, ϑd].
Proof: [16], Theorem 1.9.6.

The function S is called a spectral distribution function. It generates a finite Lebesgue-Stieltjes
measure µS . The integral in (12) is understood as the integral with respect to this measure (instead of
dS(ω) we can write µS(dω)). Thus, it is the Lebesgue-Stieltjes integral. If there exists a density s(ω) of
the function S(ω), then it is called a spectral density. The inverse formula for the spectral density has
the form (if

∫
Rd |C(h)| dh <∞)

s(ω) =
1

(2π)d

∫

Rd

e−iω
ThC(h) dh, ω ∈ Rd.

For a real-valued random field we get

C(h) =

∫

Rd

cos(ωTh) dS(ω) =

∫

Rd

cos(ωTh)s(ω) dω, h ∈ Rd

and

s(ω) =
1

(2π)d

∫

Rd

cos(ωTh)C(h) dh, ω ∈ Rd,

if the spectral density exists.
Now let us add an assumption of the weak isotropy of the random field. Then the autocovariance

function is isotropic, i.e. it satisfies C(h) = C(‖h‖). Therefore, for r ≥ 0 and u ∈ Sd−1 an element of the
unit sphere in Rd, we have C(r) = C(ru) =

∫
Sd−1

C(ru)U(du), where U(·) = Hd−1(·)/Hd−1(Sd−1) is the

probability spherical measure. The symbol Hd−1 stands for the (d − 1)-dimensional Hausdorff measure.
Plugging in the integral from the spectral decomposition yields

C(r) =

∫

Sd−1

∫

Rd

cos(rωTu) dS(ω)U(du) =

∫

Rd

∫

Sd−1

cos(rωTu)U(du) dS(ω).

The inner integral can be expressed as

∫

Sd−1

cos(rωTu)U(du) = Ωd(r‖ω‖),

where

Ωd(t) =

(
2

t

)ν
Γ(d/2)Jν(t),

ν = d/2 − 1 and Jν is the Bessel function of the first kind of order ν (see Subsection 6.2). The result
depends on ω only through its norm ‖ω‖. In this way we can replace the d-dimensional Fourier transform
with a one-dimensional integral (so called Hankel or Bessel transform):

C(‖h‖) =
∫ ∞

0

Ωd(‖h‖v) dH(v). (13)

21



The function H(u) is non-decreasing on R+ with finite limit for u → ∞ and it is connected with the
spectral distribution function by the relation

H(u) = µS(b(o, u)) =

∫

b(o,u)

dS(ω),

where b(x, r) denotes the closed ball with centre x and radius r. The function Ωd is called a basis function
of the autocovariance function. Particular examples of the basis function are Ω1(t) = cos t, Ω2(t) = J0(t),

Ω3(t) =
sin t
t and limd→∞Ωd(t) = e

−t2 . These functions are shown in Figure 5.
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Figure 5. The basis functions Ωd(t) for d = 1, d = 2, d = 3 and d→ ∞.

The variogram of an intrinsic stationary random field has the spectral representation as well:

2γ(h) =

∫

Rd

1− cos(ωTh)
‖ω‖2 dF (ω), h ∈ Rd,

where F induces a measure on Rd, which has no atom at the origin and satisfies
∫
Rd(1+‖ω‖2)−1 dF (ω) <

∞. In the isotropic case we have

2γ(‖h‖) =
∫ ∞

0

1− Ωd(ω‖h‖)
ω2

dF (ω),

where F does not have an atom at 0 and
∫∞

0
(1 + ω2)−1 dF (ω) <∞.

Lemma 16. Every variogram of an intrinsic stationary random field satisfies

2γ(h)

‖h‖2 → 0 for ‖h‖ → ∞.

Proof: From the spectral decomposition it follows that

2γ(h)

‖h‖2 =
∫

Rd

1− cos(ωTh)
‖ω‖2‖h‖2 dF (ω).

Since for ‖h‖ ≥ 2 we have
∣∣∣∣
1− cos(ωTh)
‖ω‖2‖h‖2

∣∣∣∣ ≤
1

2
min

(
1,
1

‖ω‖2
)

≤ 1

1 + ‖ω‖2 ,

the assertion follows from the Lebesgue dominated convergence theorem.
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Parametric models

We mention several basic parametric models for an isotropic semivariogram of an intrinsic stationary
random field. In all these models one of the parameters is the nugget 2τ2 ≥ 0.
1. power :

γ(h) =

{
0 pro h = o,
τ2 + σ2‖h‖ν pro h 6= o,

where 0 ≤ ν < 2 and σ > 0. If ν > 0, then this model does not have sill and the corresponding random
field is not weak stationary. The case ν = 0 is known as the nugget model . An example of a random field
with this variogram is a white noise which is formed by uncorrelated random variables with constant
mean and finite variance τ2+σ2. One realization of the white noise is shown in Figure 3 left. The power
model for ν = 1 is called linear because it is a linear function of ‖h‖. The semivariogram for different
choices of ν is shown in Figure 6. For d = 1 and τ = 0 the corresponding Gaussian process is known as
the fractional Brownian motion with Hurst parameter H = ν/2, 0 < H < 1. For d > 1 and τ = 0 we
have the so called fractional isotropic Brownian motion in Rd or also Lévy’s fractional Brownian random
field [2], see Exercise class.
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Figure 6. Power model of the isotropic semivariogram for τ2 = 0.5, σ2 = 1 and different choices of the
parameter ν.

2. spherical :

γ(h) = τ21[h 6=o] + σ
2

(
1− |b(o, ̺) ∩ b(h, ̺)|

|b(o, ̺)|

)
,

where σ2 ≥ 0, ̺ > 0. The sill of this model is 2(τ2+ σ2) and the range is r = 2̺, see Figure 7. The most
commonly used is the spherical model for d = 3:

γ(h) =





0 for h = o,

τ2 + σ2
(
3‖h‖
2r − ‖h‖3

2r3

)
for 0 < ‖h‖ ≤ r,

τ2 + σ2 for ‖h‖ ≥ r.

This model is also valid in the lower dimensions d = 1 and d = 2. However, the model that is valid in
the lower dimension does not have to be valid in a higher dimension (see Exercise class). The explicit
expression of the spherical semivariogram for d = 2 (also known as the circular semivariogram) contains
goniometric functions and is left to the Exercise class. For d = 1 we obtain the so called triangular
semivariogram

γ(h) = τ2 + σ2
h

2̺
, 0 < h ≤ 2̺.
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Figure 7. Spherical semivariogram in dimensions d = 1, d = 2 and d = 3 for the following choice of
parameters: τ2 = 0, σ2 = 1 and r = 1.

3. generalized exponential :

γ(h) = τ21[h 6=o] + σ
2 (1− exp{−(‖h‖/a)ν}) ,

where σ2 ≥ 0, a > 0 and 0 < ν ≤ 2. The sill of this model is 2(τ2 + σ2) and the range is infinite. The
corresponding graph of the function γ is depicted in Figure 8. Two special cases are the most often used:
for ν = 1 we speak about the exponential model and for ν = 2 we get the Gaussian model.
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Figure 8. Generalized exponential model of the isotropic semivariogram for the following choice of
parameters: τ2 = 0.2, σ2 = 1, a = 1 and ν ∈ {0.5, 1, 2}.

Both the spherical and the generalized exponential models have sill and thus they lead to a weak
stationary random field with the autocovariance function C(h) = σ2 + τ2 − γ(h). The quite wide and
flexible class of parametric models for isotropic autocovariance functions is obtained by the Whittle-
Matérn model :

C(h) = τ21[h=o] + σ
2 1

2ν−1Γ(ν)
(α‖h‖)ν Kν(α‖h‖), (14)
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where τ2 ≥ 0, ν > 0, α > 0, σ2 ≥ 0 are real parameters and Kν denotes the modified Bessel function
of the second kind of order ν (see Subsection 6.2). The parameter τ2 is half of the nugget, τ2 + σ2

gives the variance of the random field, α is the scale parameter and the parameter ν is related to the
differentiability of the autocovariance function and thus to the differentiability of the random field. For
Gaussian random fields it holds that their realizations are k-times differentiable if and only if ν > k. The
graph of this autocovariance function for several choices of ν can be found in Figure 9. For ν = 1/2 we
have an exponential autocovariance function C(h) = σ2 exp{−α‖h‖}. The case ν = 1 was proposed in
Whittle’s original paper [21]. The spectral density of the autocovariance function (14) has the following
form:

s(ω) = σ2
Γ
(
ν + d

2

)

Γ(ν)πd/2
· α2ν

(α2 + ω2)ν+
d
2

.
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Figure 9. The Whittle-Matérn autocovariance function for α = 5, σ = 1 and three values of ν.

3. Random measures

Let (E, ̺) be a separable metric space. Recall that separability means that E contains a countable dense
subset. We assume that (E, ̺) has the Heine-Borel property, i.e. every closed and bounded subset is
compact. It can be shown that E is complete and locally compact, i.e. every point x ∈ E has a compact
neighbourhood Ux. Then E is also σ-compact which means that it can be represented as a countable
union of compact sets. Indeed, we can write E = ∪x∈SUx, where S is a countable dense subset that
exists due to separability.

Example: The most important case for applications is the d-dimensional Euclidean space E = Rd with
the Euclidean metric ̺(x, y) = ‖x− y‖d. For geometric models it is often considered that E = K′(Rd) is
the space of non-empty compact subsets of Rd with the Hausdorff metric

̺(K,L) = max

{
sup
x∈K

inf
y∈L

‖x− y‖d, sup
y∈L
inf
x∈K

‖x− y‖d
}
.

We will use the following notation for the systems of subsets of the space E:

B(E) . . . Borel sets,
B0(E) . . . bounded Borel sets,
F(E) . . . closed sets,
G(E) . . . open sets,
K(E) . . . compact sets,
K′(E) . . . non-empty compact sets.

If it does not lead to confusion, we will omit the symbol E and write shortly B, B0, F , G, K, K′.
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3.1 Locally finite measures

Definition 28. A measure µ on (E,B) is locally finite, if it is finite on B0, i.e. µ(B) <∞ for any B ∈ B0.
By M = M(E) we denote the space of all locally finite measures on (E,B) and by Mf = Mf (E) =
{µ ∈ M : µ(E) <∞} we denote the space of all finite measures on (E,B). Moreover, we denote

N = N (E) = {µ ∈ M : µ(B) ∈ N ∪ {0,∞} ∀B ∈ B}

the space of all locally finite counting measures on (E,B) and Nf = Mf ∩ N the space of all finite
counting measures.

Lemma 17. A locally finite measure µ on E is σ-finite.

Proof: From our requirements on the space E it follows that there exist Kn ∈ K such that E = ∪nKn

with µ(Kn) <∞ for each n ∈ N.

Definition 29. For B ∈ B(E), a one-dimensional projection is the mapping πB :M → [0,∞] defined
as πB(µ) = µ(B). On the spaceM(E) we introduce a σ-algebra M as the smallest σ-algebra for which
all one-dimensional projections are measurable. Shortly we write

M = σ{πB measurable, B ∈ B}.

The space N ⊆ M is endowed with the σ-algebra N defined as the trace of the σ-algebra M on N :

N = {U ∩ N : U ∈ M}.

Remark 11. If we denoteMB,I = {µ ∈ M : µ(B) ∈ I} for B ∈ B and I ∈ B([0,∞]), then π−1
B (I) =

MB,I . Hence, M = σ{MB,I : B ∈ B, I ∈ B([0,∞])}. Moreover, it is enough to consider I = [0, r),
r ∈ [0,∞]. Then we write shortly MB,[0,r) = MB,r and M = σ{MB,r : B ∈ B, r ∈ [0,∞]}. Since
Mf =ME,∞, it is clear thatMf ∈ M. Consequently, Nf ∈ N.

Lemma 18. Let S ⊆ B0 be a π-system that generates B (i.e. σS = B) and let there exist the sets
An ∈ S such that An ր E. Then

M = σ{πA measurable, A ∈ S}.

Proof: Denote

M̃ = σ{πA measurable, A ∈ S} = σ{π−1
A ([0, r)) : A ∈ S, r ∈ [0,∞]}.

Then obviously M̃ ⊆ M. If we define

Dn = {B ∈ B : πB∩An is M̃-measurable},

then we can easily verify that it is a Dynkin system which contains S. Therefore, we obtain Dn = σS = B
by Dynkin’s theorem (Theorem 88). For each B ∈ B we have µ(B ∩ An) ր µ(B). It means that the

mapping πB is M̃-measurable (limit of measurable mappings). Since M is the smallest σ-algebra such

that the πB are measurable, we get M ⊆ M̃.

Lemma 19. It holds that N ∈ M. Hence, N is correctly defined.

Proof: Consider the system S as in Lemma 18 that it is moreover countable. Then

N0 = {µ ∈ M : µ(A) ∈ N ∪ {0} ∀A ∈ S} ∈ M,

because it is a countable intersection of measurable sets. Clearly N ⊆ N0. Define Dn = {B ∈ B :
µ(B ∩ An) ∈ N ∪ {0} ∀µ ∈ N0}. It is a Dynkin system that contains S. Hence, Dn = B by Dynkin’s
theorem. For each µ ∈ N0 and B ∈ B we have µ(B) = limn→∞ µ(B ∩ An) ∈ N ∪ {0,∞}, and so µ ∈ N .
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For B1, . . . , Bn ∈ B0 we denote the σ-algebra generated by the mappings πB1 , . . . , πBn :

MB1,...,Bn = σ{πBi is measurable for each i ∈ {1, . . . , n}}.

Lemma 20. Let S ⊆ B0 be a ring such that σS = B. Then

M0 =
⋃

{MA1,...,An : n ∈ N, A1, . . . , An ∈ S pairwise disjoint}

is an algebra and σM0 =M.

Proof: Since MA1,...,An is a σ-algebra, the system M0 is closed under complements and contains ∅ and
M. We can show that it is closed under finite unions (intersections) by considering sets U = {µ : µ(A) ∈
D1} ∈ MA and V = {µ : µ(B) ∈ D2} ∈ MB. Then we have

U ∩ V = {µ : µ(A) ∈ D1, µ(B) ∈ D2} = {µ : µ(A \B) + µ(A ∩B) ∈ D1,

µ(B \A) + µ(A ∩B) ∈ D2} ∈ MA\B,A∩B,B\A ⊆ M0

and similarly U ∪ V ∈ MA\B,A∩B,B\A ⊆ M0. Analogously we can prove U ∩ V ,U ∪ V ∈ M0 for U ∈
MA1,...,Am and V ∈ MB1,...,Bn .
Denote D = {B ∈ B : πB is σM0-measurable}. Obviously, it is a monotone system that contains S.

Thus, by Theorem 89, we get σS = B ⊆ D, which gives D = B. According to the definition of M we
haveM ⊆ σM0. Hence, M = σM0.

Definition 30. We say that a sequence of finite measures µn ∈ Mf converges weakly to µ ∈ Mf (we

write µn
w−→

n→∞
µ), if

∫

E

f(x)µn(dx) −→
n→∞

∫

E

f(x)µ(dx)

for any continuous and bounded function f on E. The sequence µn ∈ M converges vaguely to µ ∈ M
(we write µn

v−→
n→∞

µ), if
∫

E

f(x)µn(dx) −→
n→∞

∫

E

f(x)µ(dx)

for any continuous and bounded function f : E → R with compact support.

Example: For E = R consider µn = δn as the Dirac measure at point n ∈ N. Then µn converges vaguely
to zero measure but it does not converge weakly.

Definition 31. The Prochorov distance between two finite measures µ, ν ∈ Mf is defined as

̺P (µ, ν) = inf{ε > 0 : µ(F ) ≤ ν(F ε) + ε, ν(F ) ≤ µ(F ε) + ε for every F ∈ F},

where F ε = {x ∈ E : ∃y ∈ F, ̺(x, y) < ε} is the open ε-neighbourhood of the closed set F . For µ, ν ∈ M
we put

̺̂P (µ, ν) =
∫ ∞

0

e−r
̺P (µ

(r), ν(r))

1 + ̺P (µ(r), ν(r))
dr,

where µ(r) is the restriction of measure µ to the ball b(x0, r) for an arbitrarily chosen fixed point x0 ∈ E.

Remark 12. It is not difficult to see that ̺P defines a metric onMf and ̺̂P defines a metric onM
(see Exercise class).

Proposition 21.
a) The space (Mf , ̺P ) is a complete separable metric space and the metric generates the weak con-
vergence of measures:

̺P (µn, µ) −→
n→∞

0⇐⇒ µn
w−→

n→∞
µ.

b) The space (M, ̺̂P ) is a complete separable metric space. Its Borel σ-algebra coincides with M and
the convergence in (M, ̺̂P ) coincides with the vague convergence of measures:

̺̂P (µn, µ) −→
n→∞

0⇐⇒ µn
v−→

n→∞
µ.

Proof: [14], Theorem 2.2.
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3.2 Random measures

Definition 32. Let (Ω,A,P) be a probability space. A random measure Ψ is a measurable mapping
Ψ : (Ω,A,P) → (M,M). A point process Φ is a measurable mapping Φ : (Ω,A,P) → (N ,N). The
distribution of a random measure Ψ is the probability measure Q on (M,M) given by Q(U) = P({ω ∈
Ω : Ψ(ω) ∈ U}), U ∈ M.

Remark 13. A point process is a special case of a random measure. In the case E = Rd the term
“process” has nothing to do with a dynamic evolution in time, so a more appropriate term would
probably be a “point field”.

Remark 14. A random measure Ψ is the mapping from (Ω,A,P) to (M,M). It means that for ω ∈ Ω,
Ψ(ω) is a locally finite measure. The value of this measure for the set B ∈ B would be denoted by the
symbol Ψ(ω)(B). Often we omit the argument ω and write only Ψ(B). Then Ψ(B): Ω → [0,∞] defines
a random variable.

Lemma 22. The mapping Ψ : Ω → M is a random measure if and only if Ψ(B) is a random variable
for all B ∈ B.
Proof: Exercise class.

Remark 15. The statement of Lemma 22 remains true if we consider only Borel sets B that form
a system S from Lemma 18.
Definition 33. For a random measure Ψ we define its intensity measure by the relation Λ(B) = EΨ(B),
B ∈ B.
Remark 16. An intensity measure is a Borel measure, σ-additivity follows from Levi’s monotone
convergence theorem ([11], Theorem 8.5). An intensity measure does not have to be locally finite. There
could exist B ∈ B0 such that Ψ(B) <∞ but Λ(B) = EΨ(B) =∞.
The distribution of a random measure is uniquely determined by the finite-dimensional projections.

Theorem 23. Let S ⊆ B0 be a ring such that σS = B. Let Ψ1 and Ψ2 be two random measures defined
on the same probability space. If the random vectors (Ψ1(A1), . . . ,Ψ1(An))

T and (Ψ2(A1), . . . ,Ψ2(An))
T

have equal distributions for any n ∈ N and A1, . . . , An ∈ S pairwise disjoint, then Ψ1 and Ψ2 are equally
distributed.

Proof: By the assumption, the distributions of Ψ1 and Ψ2 coincide on algebraM0, which is the π-system
and thus Theorem 90 states that Ψ1 and Ψ2 have the same distribution on σM0, which is equal to M
by Lemma 20.

Proposition 24. Let {ξA, A ∈ B0} be a family of non-negative and a.s. finite-valued random variables
on (Ω,A,P) satisfying:
1. A,B ∈ B0, A ∩B = ∅ ⇒ ξA∪B

a.s.
= ξA + ξB,

2. An ∈ B0, An ց ∅ ⇒ ξAn

a.s.−→
n→∞

0.

Then there exists a random measure Ψ such that Ψ(A)
a.s.
= ξA for all A ∈ B0.

Proof: It is a slight generalization of the theorem stating the existence of a regular version of conditional
expectation ([19], Theorem VI.1.21). The complete proof can be found in [6], Theorem 9.1.XV.

Remark 17. We assume that P({ω : ξA∪B(ω) 6= ξA(ω) + ξB(ω)}) = 0 for each A and B disjoint.
However, we need P({ω : ξA∪B(ω) 6= ξA(ω) + ξB(ω) for each A and B disjoint}) = 0.
Theorem 25. (existence of random measure with given finite-dimensional projections) Let a probability
measure QB1,...,Bn on ([0,∞)n,B([0,∞)n)) be given for any n ∈ N and B1, . . . , Bn ∈ B0 pairwise disjoint.
Assume that the following conditions are satisfied:
1. (projectivity) QB1,...,Bn(·) = QB1,...,Bn,Bn+1((Π

n+1
n )−1(·)), where Πn+1n : [0,∞)n+1 → [0,∞)n is

a canonical projection (u1, . . . , un, un+1)
T 7→ (u1, . . . , un)T,

2. (symmetry) QB1,...,Bn(U1 × · · · ×Un) = QBπ(1),...,Bπ(n)
(Uπ(1) × · · · ×Uπ(n)) for every permutation π

of the set {1, . . . , n},
3. (additivity) QA∪B(U) = QA,B({(u, v) ∈ [0,∞)2 : u+ v ∈ U}) for A ∩B = ∅,
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4. (continuity in ∅) An ∈ B0, An ց ∅ ⇒ QAn

w−→
n→∞

δ0.

Then there exists a unique probability measure Q on (M,M) such that QB1,...,Bn are the finite-
dimensional distributions of Q.

Proof: For A1, . . . , An ∈ B0 (not necessarily pairwise disjoint), we define the distribution QA1,...,An as
follows. Let B1, . . . , Bk ∈ B0 be pairwise disjoint such that, for i = 1, . . . , n, we can write Ai = ∪j∈IiBj ,
where Ii ⊆ {1, . . . , k}. The collection of sets B1, . . . , Bk will be called a disjoint decomposition of the
sets A1, . . . , An. We put

QA1,...,An(U) = QB1,...,Bk
(φ−1U), U ∈ B([0,∞)n),

where

φ : (x1, . . . , xk) 7→
(
∑

i∈I1

xi, . . . ,
∑

i∈In

xi

)
.

The correctness of the definition follows from the following fact: if Ai, Bj , Ii and the mapping φ are as
above and if furthermore A1, . . . , An ∈ B0 are pairwise disjoint, then

QA1,...,An(U) = QB1,...,Bk
(φ−1U), U ∈ B([0,∞)n).

This can be proved by induction on n using the assumed properties (projectivity, additivity and symme-
try).

Now we verify that the distributions {QA1,...,An : A1, . . . , An ∈ B0, n ∈ N} form a consistency
system. Let C1, . . . , Cl be a disjoint decomposition of A1, . . . , An+1 such that Ci ⊆ A1 ∪ · · · ∪ An for
i = 1, . . . , l− 1 (i.e. Cl = An+1 \∪ni=1Ai) and Ai = ∪j∈IiCj , i = 1, . . . , n+1 (thus l ∈ In+1). If we define
the mappings

φ : (x1, . . . , xl−1) 7→
(
∑

i∈I1

xi, . . . ,
∑

i∈In

xi

)

and

ψ : (x1, . . . , xl) 7→


∑

i∈I1

xi, . . . ,
∑

i∈In

xi,
∑

i∈In+1

xi


 ,

then φ ◦Πll−1 = Πn+1n ◦ ψ. From the commutativity of the diagram

QC1,...,Cl

Πl
l−1−→ QC1,...,Cl−1

↓ ψ ↓ φ
QA1,...,An+1

Πn+1
n−→ QA1,...,An

the required projectivity follows:

QA1,...,An(·) = QA1,...,An+1((Π
n+1
n )−1(·)).

Therefore, we can apply the Daniell-Kolmogorov existence theorem. It assures the existence of a pro-
bability measure Q0 on ([0,∞)B0 ,B([0,∞)B0) such that QA1,...,An , for A1, . . . , An ∈ B0, are the finite-
dimensional distributions of Q0. Let {ξA : A ∈ B0} be a family of random variables that has the
distribution Q0. The conditions 3. and 4. guarantee that the assumptions of Proposition 24 are satisfied.

The fourth condition QAn

w−→
n→∞

δ0 means that ξAn

D−→
n→∞

0, which is equivalent to ξAn

P−→
n→∞

0, and hence

ξAnk

a.s.−→
k→∞

0 for some subsequence nk. This already implies ξAn −→
n→∞

0 because the sequence is monotone

a.s. Therefore, by Proposition 24, there exists a random measure Ψ and its distribution Q on (M,M) is
the desired probability measure. It is unique by Theorem 23. This completes the proof.
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3.3 Simple point processes

Definition 34. Let N ∗ = {ν ∈ N : ν({x}) ≤ 1 for every x ∈ E}. We say that a locally finite counting
measure ν ∈ N is simple if ν ∈ N ∗.

To show the measurability of N ∗ we will need to introduce the sequence of nested countable decom-
positions of the metric space E.

Definition 35. We say that the sequence {Sn, n ∈ N} is a DC-system (dissecting-covering system) for
E if
1. Sn = {An1 , An2 , . . .} ⊆ B0(E) is a disjoint countable decomposition of E for each n ∈ N, i.e. Ani ∩Anj =

∅ for i 6= j and E = ∪jAnj ,
2. for any n ∈ N and A ∈ Sn there exist A1, . . . , Ak ∈ Sn+1 such that A = A1 ∪ · · · ∪ Ak,
3. limn→∞ supA∈Sn

diamA = 0, where diamA = sup{̺(x, y) : x, y ∈ A}.
Lemma 26. There exists a DC-system on E. If Λ is an arbitrary locally finite and diffuse (i.e. Λ({x}) = 0
for any x ∈ E) Borel measure on E, then there exists a DC-system on E that furthermore satisfies

lim
n→∞

sup
A∈Sn

Λ(A) = 0. (15)

Proof: First we construct a disjoint decomposition S1 of E into Borel sets with diameters smaller or
equal to one. Let S be a countable dense subset of E. Then E = ∪x∈Sb(x, 1/2) = ∪∞

i=1Ãi. The sets Ãi
are not necessarily disjoint so we define A11 = Ã1, A

1
2 = Ã2 \ Ã1, A13 = Ã3 \ (Ã1 ∪ Ã2), . . . Successively

we construct decompositions S2,S3, . . . by induction in the following way. If we already have Sn−1 and
if A ∈ Sn−1, then from the open cover of the compact set Ā by open balls

Ā ⊆ ∪x∈Ā int b
(
x,
1

2n

)

we can select a finite subcover from which we obtain a disjoint decomposition of A = A1 ∪ . . . ∪Ak into
Borel sets of diameter at most 1/n. The decomposition Sn is created by the union of dissections of all
sets from Sn−1.
If a non-atomic measure Λ ∈ M is given, then

lim
ε→0
Λ(b(x, ε)) = 0

for arbitrary x ∈ E. We can modify the above construction of the DC-system by considering balls
int b(x, ε(x, n)) with ε(x, n) ≤ 1/2n and Λ(int b(x, ε(x, n))) < 1/n in the construction of Sn. In such a
way we ensure that the condition (15) is satisfied.

Lemma 27. The set of all simple locally finite counting measures is measurable, i.e. N ∗ ∈ N.

Proof: Consider a DC-system {Sn, n ∈ N} in E and put S = ∪∞
n=1Sn. Then

N ∗ = {ν ∈ N : ∀A ∈ S ∃n ∈ N ∀B ∈ Sn : B ⊆ A⇒ ν(B) ≤ 1}
=
⋂

A∈S

⋃

n∈N

⋂

B∈Sn:B⊆A

{ν ∈ N : ν(B) ≤ 1},

and so N ∗ ∈ N.

Now we are ready to define a simple point process.

Definition 36. A point process Φ is called simple if P(Φ ∈ N ∗) = 1.

Remark 18. A simple point process can be also understood as a measurable mapping Φ : (Ω,A,P)→
(N ∗,N∗), where N∗ = {U ∩ N ∗ : U ∈ N} is the trace of the σ-algebra N on N ∗.

Definition 37. We say that a point x ∈ E is an atom of ν ∈ N if ν({x}) > 0. A pair (x,m) ∈ E ×N is
called an atomic pair if x is an atom and m = ν({x}).
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Since ν ∈ N is locally finite it has at most countably many atoms. The following lemma states that
the atoms may be enumerated in a measurable way.

Lemma 28. There exist measurable mappings ζi : N → E such that

ν =

ν(E)∑

i=1

δζi(ν)

for ν ∈ N .
Proof: Consider a DC-system {Sn}, where Sn = {An1 , An2 , . . .} ⊆ B0(E). Let B ∈ B be a Borel set with
ν(B) > 0. We can inductively define a sequence i1, i2, . . . such that A

1
i1

⊇ A2i2 ⊇ · · · and ν(Arir ∩B) ∈ N

for r ∈ N. It follows that ν(∩k∈NA
k
ik

∩ B) ∈ N. From the properties of the DC-system, ∩k∈NA
k
ik
has

diameter zero. Therefore, B contains an atom. It means that ν can be written as

ν =
∑

(x,m)

mδx,

where the sum runs over the atomic pairs (x,m) of ν.
For x ∈ E, the relations x ∈ Akjk(x), k ∈ N, define uniquely a sequence (j1(x), j2(x), . . .) of integer

numbers. This allows us to define a linear order ≺ on the space E:

x ≺ y ⇐⇒ (j1(x), j2(x), . . .) ≤lex (j1(y), j2(y), . . .),

where≤lex denotes the lexicographical order. For each p ∈ N, we construct a measurable map ζp : N → E.
It will associate with every counting measure ν its p-th atom (counted w.r.t. ≺ with multiplicities). Let
(x,m) be an atomic pair of ν, then all atoms y of ν with y ≺ x and y 6= x, lie in the bounded set

∪j1(x)i=1 A
1
i . Hence, their number is finite and the sum of their multiplicities gives a finite number, say n.

We define ζn+j(ν) = x for j = 1, . . . ,m. If this is done for all atomic pairs (x,m) of η, then ζp(ν) is
defined for all p ∈ N if ν(E) =∞, and it is defined for p = 1, . . . , q if ν(E) = q < ∞. In the latter case,
we put ζp(ν) = a for p > q, where a ∈ E is an arbitrary given point. For p ∈ N and B ∈ B, the set
{ν ∈ N : ν(E) < p, ζp(ν) ∈ B} is either empty (if a 6∈ B) or equal to {ν ∈ N : ν(E) < p}. Thus, it is
measurable in both cases. Furthermore, we have

{ν ∈ N : ν(E) ≥ p, ζp(ν) ∈ B} =
∞⋃

j=1

∞⋃

i1,...,ij=1

{
ν ∈ N : ν(B ∩ A1i1 ∩ · · · ∩ Ajij ) = ν(A

1
i1 ∩ · · · ∩Ajij ) ∈ N,

ν
(
∪(r1,...,rj)<lex(i1,...,ij)A1r1 ∩ · · · ∩ Ajrj

)
≤ p− 1,

ν
(
∪(r1,...,rj)≤lex(i1,...,ij)A1r1 ∩ · · · ∩ Ajrj

)
≥ p
}
∈ N,

which shows the measurability of ζp.

For a simple measure ν ∈ N ∗ we have ζi(ν) 6= ζj(ν) for each i 6= j. A simple point process Φ is

then a random measure given as the sum of Dirac measures: Φ =
∑Φ(E)
i=1 δXi , where the Xi are random

elements in E.

Lemma 29. Define N ∗
B,r = {ν ∈ N ∗ : ν(B) = r} for B ∈ B and r ∈ N ∪ {0,∞}. Then N∗ = σ{N ∗

K,0 :
K ∈ K}.
Proof: In Lemma 18 we can take S = K ⊆ B0 and obtain

N∗ = σ{{ν ∈ N ∗ : ν(K) < r} : K ∈ K, r ∈ [0,∞]} = σ{N ∗
K,r : K ∈ K, r ∈ N0}.

Using the DC-system {{An1 , An2 , . . .}, n ∈ N} we can write

N ∗
K,r =

⋃

n0∈N

⋂

n≥n0

⋃

i1,...,im

[
(N ∗

K∩Ān
i1
,0)

c ∩ (N ∗
K∩Ān

i2
,0)

c ∩ · · · ∩ (N ∗
K∩Ān

im
,0)

c ∩ N ∗
K\(Ān

i1
∪···∪Ān

im
),0

]
,
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which is the element of σ{N ∗
K,0 : K ∈ K}. Since N∗ is the smallest σ-algebra containing N ∗

K,r, we see
that N∗ ⊆ σ{N ∗

K,0 : K ∈ K}. The reverse inclusion is obvious.

Corollary 30. The mapping Φ : (Ω,A,P)→ (N ∗,N∗) is a simple point process if and only if the events
{Φ(K) = 0} ∈ A for any K ∈ K.
Definition 38. Let Φ be a point process. Void probabilities are P(Φ(K) = 0), K ∈ K.
The distribution of a simple point process is uniquely determined by the void probabilities.

Theorem 31. Let Φ1 and Φ2 be two simple point processes on E such that P(Φ1(K) = 0) = P(Φ2(K) =

0) for any K ∈ K. Then Φ1 D
=Φ2.

Proof: Let Q1 and Q2 be the distributions of Φ1 and Φ2, respectively. Then Q1(N ∗
K,0) = P(Φ1(K) =

0) = P(Φ2(K) = 0) = Q2(N ∗
K,0) for any K ∈ K. It means that the distributions coincide on the family

{N ∗
K,0 : K ∈ K} which is a π-system that generates N∗ (Lemma 29). Now it suffices to apply Theorem

90.

Remark 19. For E = R it is impossible to replace the collection of compact sets by a smaller class of
test sets such as the intervals. Once can construct two simple point processes with different distributions
satisfying P(Φ1(I) = 0) = P(Φ2(I) = 0) for any interval I ⊆ R (see Exercise class).

Simple locally finite counting measures are uniquely related to locally finite sets.

Definition 39. A set A ⊆ E is called locally finite when A ∩ B is a finite set for every B ∈ B0(E).
Obviously, every locally finite set is closed. Denote Flf = {A ∈ F : A locally finite} the family of all
locally finite sets.

Definition 40. The support of a locally finite measure µ ∈ M(E) is defined as the smallest closed
subset A of E such that µ(E \A) = 0. It is denoted by suppµ and it can be written as

suppµ =
⋂

{F ∈ F : µ(E \ F ) = 0}.

Remark 20. The support of ν ∈ N is a locally finite set:

supp ν = {x ∈ E : ν({x}) ≥ 1} ∈ Flf .

For A,A1, . . . , Ak ⊆ E we define the following subsets of the system F of closed sets:

FA = {F ∈ F : F ∩A = ∅}, FA = {F ∈ F : F ∩ A 6= ∅}

and

FA
A1,...,Ak

= FA ∩ FA1 ∩ · · · ∩ FAk
= {F ∈ F : F ∩ A = ∅, F ∩ A1 6= ∅, . . . , F ∩Ak 6= ∅}.

For k = 0 we put FA
A1,...,Ak

= FA.

Definition 41. We define the σ-algebra F on F as F = σ{FK : K ∈ K}. A random closed set in E is
a measurable mapping Ξ : (Ω,A,P)→ (F ,F).
Remark 21. The space F of closed sets could be endowed with the topology T generated by the set
system

{FK
G1,...,Gk

: K ∈ K, G1, . . . , Gk ∈ G, k ∈ N0}.

This set system contains F = F∅ and is closed under finite intersections because

FK
G1,...,Gk

∩ FK′

G′
1,...,G

′
m
= FK∪K′

G1,...,Gk,G′
1,...,G

′
m
.

The topology T is known as the Fell topology or also the hit-or-miss topology.
Lemma 32. The system of all locally finite sets is measurable: Flf ∈ F.
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Proof: Let {Sn, n ∈ N} be a DC-system in E and define S = ∪∞
n=1Sn. Then

Flf = {F ∈ F : ∀A ∈ S∃k ∈ N∀n ∈ N : card{B ∈ Sn : B ⊆ A,F ∩ B̄ 6= ∅} ≤ k}.

Definition 42. A random locally finite set in E is a measurable mapping Ξ : (Ω,A,P) → (Flf ,Flf ),
where Flf = {U ∩ Flf : U ∈ F} is the trace of the σ-algebra F on Flf .

Lemma 33. The map i : ν 7→ supp ν is a bijection between (N ∗,N∗) and (Flf ,Flf ). It is measurable
and its inverse i−1 : F 7→∑

x∈F δx is measurable as well.

Proof: It is enough to realize that i−1(FK ∩ Flf ) = {ν ∈ N ∗ : supp ν ∩ K = ∅} = {ν ∈ N ∗ : ν(K) =
0} ∈ N∗.

Corollary 34. If Φ is a simple point process on E, then suppΦ is a random locally finite set in E.
Conversely, if Ξ is a random locally finite set in E, then

∑
X∈Ξ δX is a simple point process on E.

Theorem 35. (Choquet-Matheron) The distribution of a random closed set Ξ is uniquely determined
by the probabilities P(Ξ ∩K = ∅), K ∈ K.
Proof: The family F0 = {FK : K ∈ K} forms a π-system that generates the σ-algebra F. Hence, if two
distributions coincide on F0, they also coincide on F by Theorem 90. The distribution Q of Ξ is thus
uniquely determined by Q(FK) = P(Ξ ∩K = ∅), K ∈ K.

Theorem 31 is a consequence of Theorem 35 and Lemma 33.

3.4 Poisson point process

The most elementary example of a point process is δX where X is a random element in E. Obviously,
δX(B) is a Bernoulli random variable with parameter P(X ∈ B). By Lemma 22, δX is indeed a point
process.

Definition 43. Let ν be a measure on E. Consider B ∈ B(E) such that 0 < ν(B) < ∞. For n ∈ N let
X1, . . . , Xn be independent identically distributed (ν-uniformly) random elements in B, i.e.

P(Xi ∈ A) =
ν(A)

ν(B)
, A ⊆ B, A ∈ B.

Then Φ(n) =
∑n
i=1 δXi is a binomial point process of n points in B according to ν.

Remark 22. The measurability of Φ(n) is clear (it is sum of measurable). We may notice that Φ(n)(A),
A ∈ B, has a binomial distribution with parameters n and ν(A∩B)/ν(B). The intensity measure of Φ(n)
is

Λ(A) = EΦ(n)(A) = n
ν(A ∩B)
ν(B)

.

If ν is a diffuse measure, Φ(n) is a simple point process.

Figure 10 provides examples of three realizations of a binomial point process of 10 uniformly distri-
buted points.

More generally, we can consider a binomial point process with a random number of points in B.

Definition 44. Let ν be a diffuse measure and consider B ∈ B such that 0 < ν(B) < ∞. Let N be
a non-negative integer-valued random variable. Furthermore, let X1, X2, . . . be independent ν-uniformly
distributed random elements in B that are independent of N . Then Φ =

∑N
i=1 δXi is a mixed binomial

point process . If N = 0 we put Φ = 0.
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Figure 10. Three different realizations of a binomial point process of 10 uniformly distributed points
in the unit square window.

The Poisson point process serves as a canonical model in point process theory. It serves as a reference
model when studying the summary characteristics. It is used as a cornerstone for the construction of
more complex models.
On the real line (E = R) the homogeneous Poisson point process is used to model events occurring

completely at random in time. It is defined by imposing that the increments are independent and ex-
ponentially distributed. In the spatial case, the Poisson point process represents the locations (points)
of randomly scattered objects. There are no interactions among the points (we speak about complete
spatial randomness). Instead of the time increments we have to work with the numbers of points in
disjoint regions.

Definition 45. Let Λ be a locally finite measure on E. A point process Φ satisfying
(i) Φ(B) has a Poisson distribution with parameter Λ(B) for each B ∈ B0,
(ii) Φ(B1), . . . ,Φ(Bn) are independent for each n ∈ N and B1, . . . , Bn ∈ B0 pairwise disjoint,
is called a Poisson point process with intensity measure Λ.

Three realizations of a Poisson point process are shown in Figure 11.

Figure 11. Three different realizations of a Poisson point process in the unit square window. The
intensity measure is a multiple of the Lebesgue measure. The expected number of points in the window
is 10. The actual observed numbers are 10, 7 and 13.

The uniqueness and existence is ensured by Theorem 25.

Corollary 36. Let Λ be a locally finite measure on E. Then there exists the Poisson point process with
intensity measure Λ and its distribution is uniquely determined.

Proof: For B1, . . . , Bn ∈ B0 pairwise disjoint the finite dimensional projections have by definition the
distribution QB1,...,Bn = PB1 × · · · × PBn , where PBi is the Poisson distribution with parameter Λ(Bi).
It suffices to use Theorem 25.
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Lemma 37. The Poisson point process Φ with intensity measure Λ ∈ M is simple if and only if Λ is
diffuse.

Proof: If Λ is not diffuse, then there exists x ∈ E such that Λ({x}) > 0. It follows that

P(Φ({x}) = k) = e−Λ({x})Λ({x})
k

k!
> 0, k ∈ N,

hence the point process Φ is not simple.
For the converse implication, suppose by contradiction that Λ is diffuse and Φ is not simple. that is

P(Φ ∈ N ∗) < 1. Then there is a compact set K ∈ K with α = P(Φ|K 6∈ N ∗) > 0, where Φ|K denotes the
restriction of Φ to the set K. Denote ε = Λ(K) > 0. For arbitrary k ∈ N there exist pairwise disjoint

Borel sets B
(k)
1 , . . . , B

(k)
k ∈ B such that K = ∪ki=1B

(k)
i and Λ(B

(k)
i ) = ε/k, i = 1, . . . , k. There must be a

number i ∈ {1, . . . , k} with
P(Φ(B

(k)
i ) > 1) ≥

α

k
.

Therefore,

1− e−Λ(B(k)i
)(1 + Λ(B

(k)
i )) ≥

α

k
,

which after multiplying by k yields

k − e−ε/k(k + ε) ≥ α > 0.

The left-hand side converges to 0 for k → ∞, which is a desired contradiction.

From Lemma 37 and Theorem 31, it follows that a point process Φ is Poisson with diffuse intensity
measure Λ if and only if it is simple and P(Φ(K) = 0) = e−Λ(K), K ∈ K.
Theorem 38. Let Φ be a Poisson point process with diffuse intensity measure Λ ∈ M. Choose a Borel
set B ∈ B such that 0 < Λ(B) < ∞. Then conditionally on Φ(B) = n the restriction of Φ to B has the
same distribution as a binomial point process of n points in B according to Λ.

Proof: For arbitrary compact set K ⊆ B we have

P(Φ|B(K) = 0 | Φ(B) = n) =
P(Φ(K) = 0,Φ(B \K) = n)

P(Φ(B) = n)
=

P(Φ(K) = 0)P(Φ(B \K) = n)
P(Φ(B) = n)

=
e−Λ(K) Λ(B\K)n

n! e−Λ(B\K)

Λ(B)n

n! e
−Λ(B)

=

(
Λ(B \K)
Λ(B)

)n
,

which are the void probabilities of a binomial point process. Since Λ is diffuse we work with simple point
processes and it suffices to apply Theorem 31.

Theorem 38 says that from a single realization we are unable to distinguish the difference between a
binomial point process and a Poisson point process. The number of points in the window is deterministic
for a binomial point process while it is random (and has the Poisson distribution) for a Poisson point
process, see Figure 10 and Figure 11.
A mixed binomial point process with N having the Poisson distribution is a Poisson point process

(see Exercise class).

Definition 46. Denote by PΛ the distribution of the Poisson point process ΦΛ on E with locally
finite intensity measure Λ ∈ M. Let Ψ be a random diffuse measure on E with distribution QΨ. The
Cox point process ΦΨ with driving random measure Ψ has distribution given as the mixture Q(·) =∫
M PΛ(·)QΨ(dΛ).
Remark 23. The previous definition means that conditionally on Ψ = Λ, ΦΨ is the Poisson point process
with intensity measure Λ. Therefore, ΦΨ is sometimes also called doubly stochastic Poisson process . We
have assumed that Ψ is diffuse to ensure that ΦΨ is simple.

Lemma 39. The intensity measure of a Cox point process with driving measure Ψ is equal to the
intensity measure of the random measure Ψ.
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Proof: For arbitrary B ∈ B we have

EΦΨ(B) =

∫

N

µ(B)Q(dµ) =

∫

M

∫

N

µ(B)PΛ(dµ)QΨ(dΛ)

=

∫

M

EΦΛ(B)QΨ(dΛ) =

∫

M

Λ(B)QΨ(dΛ) = EΨ(B).

Using the conditioning one can get an equivalent and more transparent argument:

EΦΨ(B) = E[E(ΦΨ(B) | Ψ)] = EΨ(B).

A Cox point process is a natural generalization of a Poisson point process obtained by supposing
that the intensity measure is not deterministic but random. The Poisson point process is a special case of
the Cox point process (Ψ = Λ is deterministic). The simplest non-trivial example of a Cox point process
is provided by taking Ψ to be a random multiple of some deterministic measure Λ.

Definition 47. Consider a deterministic measure Λ ∈ M. Let PtΛ be the distribution of a Poisson
point process with intensity measure tΛ. Let Y be a non-negative random variable with distribution R.
A point process with the distribution Q =

∫∞

0 PtΛR(dt) is called the mixed Poisson point process . It is
an example of a Cox point process where the driving random measure Ψ is Y Λ.

According to Lemma 39, the intensity measure of the mixed Poisson point process is Λ(·)EY .

3.5 Moment measures

We have already defined the intensity measure of Λ(·) = EΨ(·) of a random measure Ψ.
Definition 48. The n-th order moment measure of the random measure Ψ is defined as

M (n)(A) = EΨn(A), A ∈ B(En),

where Ψn denotes the n-th power of Ψ in the usual sense of product of measures. In particular,

M (n)(A1 × · · · ×An) = EΨ(A1) · · ·Ψ(An), A1, . . . , An ∈ B.

Remark 24. The measure M (n) is in fact the intensity measure of the random measure Ψn on En. For
the point process Φ on E, Φn is the point process on En with atoms being ordered n-tuples of the atoms
of Φ.

Denote by E[n] = {(x1, . . . , xn) ∈ En : xi 6= xj for i 6= j} the set of n-tuples of pairwise distinct
points from E. It is an open subset of En. The trace of Bn in E[n] will be denoted by B[n]. For µ ∈ M
let µ[n] = µn|E[n] .
Definition 49. The n-th order factorial moment measure of the random measure Ψ is defined as

α(n)(A) = EΨ[n](A), A ∈ Bn.

Remark 25. First order moment measures coincide with the intensity measure: M (1) = α(1) = Λ.
The relation between the n-th order moment measure and the moments of the numbers of points is the
following:

M (n)(B1 × · · · ×Bn) = E[Φ(B1) · · ·Φ(Bn)], B1, . . . Bn ∈ B.
In particular,M (n)(B×· · ·×B) = EΦ(B)n for B ∈ B. Similarly, the n-th order factorial moment measure
yields the n-th factorial moment of the number of points in B:

α(n)(B × · · · ×B) = E[Φ(B)(Φ(B) − 1) · · · (Φ(B)− n+ 1)].

The verification of these relations is left to Exercise class.
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Let Φ be a simple point process. Then

M (n)(A) = E
∑

X1,...,Xn∈suppΦ

1[(X1,...,Xn)∈A], A ∈ Bn,

and

α(n)(A) = E
∑ 6=

X1,...,Xn∈suppΦ

1[(X1,...,Xn)∈A], A ∈ Bn,

where
∑ 6=

X1,...,Xn∈suppΦ
means that the summation is only over the n-tuples of pairwise distinct points

X1, . . . , Xn.
The factorial moment measure has a simple form for the Poisson point process.

Theorem 40. Let Φ be a Poisson point process with diffuse intensity measure Λ. Its n-th order factorial
moment measure is α(n) = Λn.

Proof: For B1, . . . , Bn ∈ B pairwise disjoint we get

α(n)(B1 × · · · ×Bn) = EΦ(B1) · · ·Φ(Bn).

From the property (ii) of the Poisson process (Definition 45) it follows that

α(n)(B1 × · · · ×Bn) = EΦ(B1) · · ·EΦ(Bn) = Λ(B1) · · ·Λ(Bn).

The family {B1 × · · · ×Bn : Bi ∈ B and Bi ∩Bj = ∅ for i 6= j} is the π-system that generates the Borel
σ-algebra B[n] on E[n]. Since the measures α(n) and Λn coincide on this system, by Theorem 90 they
also coincide on B[n]. This finishes the proof as both α(n) and Λn have zero measure on En \ E[n].

Remark 26. The factorial moment measure of the Cox point process with driving measure Ψ is
α(n) = EΨn.

The following theorem will be often very useful.

Theorem 41. (Campbell’s theorem)
(i) Let Ψ be a random measure and let h be an arbitrary non-negative measurable function on En.
Then

E

∫

En

h(x1, . . . , xn)Ψ
n(d(x1, . . . , xn)) =

∫

En

h(x1, . . . , xn)M
(n)(d(x1, . . . , xn))

and

E

∫

E[n]
h(x1, . . . , xn)Ψ

[n](d(x1, . . . , xn)) =

∫

E[n]
h(x1, . . . , xn)α

(n)(d(x1, . . . , xn)).

(ii) For a simple point process Φ and an arbitrary non-negative measurable function h on En we have

E
∑

X1,...,Xn∈suppΦ

h(X1, . . . , Xn) =

∫

E

· · ·
∫

E

h(x1, . . . , xn)M
(n)(dx1, . . . , dxn)

and

E
∑ 6=

X1,...,Xn∈suppΦ

h(X1, . . . , Xn) =

∫

E

· · ·
∫

E

h(x1, . . . , xn)α
(n)(dx1, . . . , dxn).

Proof: For the indicators both relations follow directly from Definition 48. The rest of the proof proceeds
by a standard argument of measure theory.

Definition 50. The Laplace transform of a random measure Ψ is the functional LΨ defined by the
relation

LΨ(f) = E exp{−
∫

E

f(x)Ψ(dx)},
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where f is a non-negative measurable function on E.

Remark 27. In particular, if we choose f =
∑n

i=1 ti1Bi to be a simple function, then

LΨ(f) = E exp{−
n∑

i=1

tiΨ(Bi)}

is the Laplace transform of the random vector (Ψ(B1), . . . ,Ψ(Bn)) in (t1, . . . , tn) ∈ (R+)n.
Corollary 42. The Laplace transform uniquely determines the distribution of a random measure.

Proof: Since the Laplace transform of a non-negative random vector uniquely determines its distribution,
the assertion follows from Theorem 23.

Lemma 43.
(i) The Laplace transform of a Poisson point process Φ with intensity measure Λ is

LΦ(f) = exp

{
−
∫

E

(
1− e−f(x)

)
Λ(dx)

}
.

(ii) The Laplace transform of a mixed Poisson point process with driving measure Y · Λ is

LΦ(f) = LY

(∫

E

(1− e−f(x)) Λ(dx)
)
,

where LY (t) = Ee−tY , t ≥ 0, is the Laplace transform of the non-negative random variable Y .
Proof:
(i) For a simple function f =

∑n
i=1 ti1Bi , where Bi ∈ B are pairwise disjoint, we get

LΦ(f) = E exp

{
−

n∑

i=1

tiΦ(Bi)

}
=

n∏

i=1

Ee−tiΦ(Bi)

=

n∏

i=1

e−Λ(Bi)(1−e
−ti ) = exp

{
−

n∑

i=1

Λ(Bi)(1− e−ti)
}
.

We have used knowledge of the Laplace transform of the Poisson distributed random variables Φ(Bi).
A standard argument of measure theory yields the result for arbitrary non-negative measurable
function f .

(ii) Successively, we can write

LΦ(f) =

∫

N

e
−
∫
E
f(x)µ(dx)

Q(dµ) =

∫ ∞

0

∫

N

e
−
∫
E
f(x)µ(dx)

Qt(dµ)R(dt)

=

∫ ∞

0

exp{−t
∫

E

(1− e−f(x)) Λ(dx)}R(dt) = LY (
∫

E

(1− e−f(x)) Λ(dx)),

where Qt is the distribution of the Poisson point process with intensity measure tΛ and R is the
distribution of Y .

3.6 Palm distribution

Definition 51. Let (S,S) and (T, T ) be two measurable spaces. A map K : S × T → [0,∞] is called
kernel from (S,S) to (T, T ) if it satisfies the following properties:
(i) the map s 7→ K(s,B) is a non-negative measurable function on S for every B ∈ T ,
(ii) K(s, ·) is a measure on (T, T ) for every s ∈ S.
We say that K is a Markov kernel or probability kernel if K(s, ·) is a probability measure for every

s ∈ S.

Example: A random measure on E is a kernel from (Ω,A) to (E,B).
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Example: Let X be a random variable defined on (Ω,A,P) that takes values in (S,S), and let F ⊆ A be
a σ-algebra. A regular conditional distribution of X given F is a Markov kernel K from (Ω,A) to (S,S)
such that K(ω,A) = P(X ∈ A | F)(ω) for almost all ω ∈ Ω and for each A ∈ S. It is known that the
regular conditional distribution exists if S is a complete separable metric space with Borel σ-algebra S.
Example: Let X and Y be random variables defined on (Ω,A,P) that take values in (T, T ) and (S,S),
respectively. Then the conditional distribution K(y,A) = PX|Y (A | y) is a Markov kernel from (S,S) to
(T, T ) that satisfies

P(X ∈ A, Y ∈ B) =

∫

B

PX|Y (A | y)PY (dy), A ∈ T , B ∈ S,

where PY is the distribution of Y .

Theorem 44. (desintegration theorem) Let (S,S) be a measurable space and let (T, T ) be a complete
separable metric space with Borel σ-algebra. Consider a measure µ on (S × T,S ⊗ T ) and assume that
its projection ν(·) = µ(· × T ) is a σ-finite measure on (S,S). Then there is a Markov kernel K from
(S,S) to (T, T ) so that the relation

∫

S×T

f(s, t)µ(d(s, t)) =

∫

S

∫

T

f(s, t)K(s, dt) ν(ds) (16)

holds for any non-negative measurable function f on S×T . If K ′ is another kernel from (S,S) to (T, T )
with this property, then ν({s ∈ S : K(s,B) 6= K ′(s,B)}) = 0 for any B ∈ T .
Proof: For every B ∈ T the measure µ(· ×B) on (S,S) is absolutely continuous w.r.t. ν. It is so because
µ(A × B) ≤ ν(A). Hence, there is its Radon-Nikodym derivative ξB =

dµ(·×B)
dν(·) , which can be chosen to

satisfy ξB(s) ∈ [0, 1] for every s ∈ S (again because µ(A×B) ≤ ν(A)). In particular, ξT = 1 a.s.
First let us assume that ν is a probability measure (i.e. ν(S) = 1). Then {ξB, B ∈ T } is a family of

non-negative random variable on a probability space (S,S, ν). This family satisfies the assumptions of
Proposition 24. The additivity ξB∪B′ = ξB+ξB′ a.s. for disjoint B,B′ ∈ T follows from µ(·×(B∪B′)) =
µ(· × B) + µ(· × B′). For the sets Bn ∈ T satisfying Bn ց ∅ we have µ(S × Bn) =

∫
S
ξBn(s) ν(ds) =

EξBn −→
n→∞

0 and so the ξBn converge to zero in L1. Since ξB1 ≥ · · · ≥ ξBn ≥ · · ·, they converge also a.s.
Now by Proposition 24 we obtain a random measure Ψ on T such that Ψ(B) = ξB a.s. for every B ∈ T .
Moreover, Ψ is a probability measure a.s. (because ξT = 1 a.s.) and we may put K(s,B) = Ψ(s)(B).
From the definition of the Radon-Nikodym derivative we have

µ(A×B) =

∫

S

K(s,B) ν(ds), A ∈ S, B ∈ T .

This is a special case of (16) for f = 1A×B. In order to show (16) for arbitrary f on S × T we proceed
by standard measure theory arguments.
The procedure can be easily generalized to the case of finite measure ν (ν(S) < ∞). We just work

with the measure µ̃(·) = µ(·)
ν(S) and the probability measure ν̃(·) = µ̃(· × T ) = ν(·)

ν(S) . For σ-finite measure

ν we use the spaces (Sn,Sn, νn), where Sn ր S, ν(Sn) <∞ and νn = ν|Sn .
The uniqueness follows from the fact that the Radon-Nikodym derivative is unique ν-a.s.

Definition 52. We define the Campbell measure associated with a random measure Ψ as

C(A) = E

∫

E

1A(x,Ψ)Ψ(dx), A ∈ B ×M.

In particular,
C(B × U) = E1U (Ψ)Ψ(B), B ∈ B, U ∈ M.

Remark 28. From

C(B × U) =
∫

M

∫

E

1B(x)1U (µ)µ(dx)Q(dµ),
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we get by standard measure theory arguments,
∫

E×M

f(x, µ)C(d(x, µ)) =

∫

M

∫

E

f(x, µ)µ(dx)Q(dµ) = E

∫

E

f(x,Ψ)Ψ(dx),

where Q is the distribution of the random measure Ψ and f is an arbitrary non-negative measurable
function f on E ×M.
Corollary 45. Let Ψ be a random measure on E with distribution Q and intensity measure Λ ∈ M.
Then there exists a Markov kernel P from (E,B) to (M,M) satisfying

∫

M

∫

E

f(x, µ)µ(dx)Q(dµ) =

∫

E

∫

M

f(x, µ)P (x, dµ) Λ(dx) (17)

for arbitrary non-negative measurable function f on E × M. If P ′ is another Markov kernel with this
property, then Λ({x ∈ E : P (x,U) 6= P ′(x,U)}) = 0 for any U ∈ M.

Proof: SinceM forms a complete separable metric space (Proposition 21), we can use Theorem 44 with
S = E, T =M, ν = Λ and µ = C.

Definition 53. If P is the Markov kernel from Corollary 45, then the distribution Px(·) = P (x, ·) is
called Palm distribution of the random measure Ψ at point x ∈ E.

Remark 29. It actually does not make sense to speak about the Palm distribution at one particular
point because this could be defined arbitrarily. Nevertheless, Corollary 45 assures that the family {Px :
x ∈ E} of Palm distributions is uniquely determined for Λ-a.a. x. If {Px} and {P̃x} would be two Palm
distributions of the random measure Ψ, then for any U ∈ M we have Px(U) = P̃x(U) for Λ-a.a. x ∈ E.

Lemma 46. For a point process Φ with intensity measure Λ ∈ M we have Px({µ ∈ M : µ({x}) ≥
1}) = 1 for Λ-a.a. x ∈ E.

Proof: Take f(x, µ) = 1A(x)1[µ({x})≥1] for arbitrary A ∈ B0. Then the definition of Palm distribution
gives

∫

A

Px({µ ∈ M : µ({x}) ≥ 1}) Λ(dx) =
∫

M

∫

A

1[µ({x})≥1] µ(dx)Q(dµ)

=

∫

M

µ(A)Q(dµ) = EΦ(A) = Λ(A).

In the second step we used that Φ is the point process with distribution Q. Therefore,
∫

A

[1− Px({µ ∈ M : µ({x}) ≥ 1})] Λ(dx) = 0,

which implies Px({µ ∈ M : µ({x}) ≥ 1}) = 1 for Λ-a.a. x ∈ A.

Remark 30. If Q is the distribution of a point process, then the Px are distributions of point processes
for Λ-a.a. x ∈ E. The desintegration theorem is used for N instead ofM.
Definition 54. For a point process Φ we define the reduced Palm distribution at point x as a probability
measure P !x given by the relation

∫

N

g(ν)P !x(dν) =

∫

N

g(ν − δx)Px(dν)

for arbitrary non-negative measurable function g.

Theorem 47. Assume that Φ is a simple point process (i.e. Q(N ∗) = 1). Then Px(N ∗) = 1 for
Λ-a.a. x ∈ E.

Proof: For arbitrary A ∈ B0 we get by the definition of Palm distribution
∫

A

Px(M\N ∗) Λ(dx) =

∫

M

∫

E

1M\N∗(µ)1A(x)µ(dx)Q(dµ) =

∫

M\N∗

µ(A)Q(dµ) = 0.
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The last equation follows from Q(M\N ∗) = 0. Now we see that Px(M\N ∗) = 0 for Λ-a.a. x ∈ A.

Remark 31. The Palm distribution Px of a simple point process Φ can be interpreted as the conditional
distribution of Φ under the condition that x is an atom of the point process. For ε > 0 small we have

P(Φ ∈ U | Φ(b(x, ε)) > 0) = P(Φ ∈ U ,Φ(b(x, ε)) > 0)
P(Φ(b(x, ε)) > 0)

≈ E1[Φ∈U ]Φ(b(x, ε))

EΦ(b(x, ε))
=
C(b(x, ε) × U)
Λ(b(x, ε))

≈ Px(U),

where b(x, ε) denotes the ball of center x and radius ε. Lemma 7.2 in [14] provides mathematically
rigorous proof. Similarly P !x can be interpreted as the conditional distribution of a point process under
the condition that x is an atom that is not counted.

Remark 32. In the theory of point processes the term typical point is often used. Its meaning can
be interpreted by the Palm distribution. We say that a typical point x has some property if it has this
property under the Palm distribution Px.

Theorem 48. (Campbell-Mecke theorem) Let Φ be a simple point process. For an arbitrary non-negative
measurable function h,

E
∑

X∈suppΦ

h(X,Φ) =

∫

E×N

h(x, ν)C(d(x, ν)) =

∫

E

∫

N

h(x, ν)Px(dν) Λ(dx)

and

E
∑

X∈suppΦ

h(X,Φ− δX) =

∫

E

∫

N

h(x, ν)P !x(dν) Λ(dx).

Proof: The first equation in the first relation can be shown by the standard measure theory arguments.
For h(x, ν) = 1A(x)1U (ν) we have

E
∑

X∈suppΦ

h(X,Φ) = EΦ(A)1[Φ∈U ] = C(A× U).

The second equation follows from Corollary 45. The second relation can be deduced from the first one
and Definition 54.

Theorem 49. (Slivnyak theorem) Let Φ be a Poisson point process having distribution Π and intensity
measure Λ ∈ M. Then Px = Π ∗ δ(δx), i.e. P !x = Π, for Λ-a.a. x ∈ E. The symbol ∗ stands for the
convolution of measures. In other words, Φ+ δx has the distribution Px for Λ-a.a. x ∈ E.

Proof: The general proof can be found in [6], Proposition 13.1.VII or [14], Theorem 7.3. Here we show
the proof for diffuse Λ. In this case, Lemma 37 states that Φ + δx is a simple point process. Denote
by Φ̃x a simple point process with distribution Px. According to Theorem 31 it suffices to verify that
Φ + δx and Φ̃x have the same void probabilities. Let A ∈ B0 and K ∈ K be arbitrary. Recall that
N ∗
K,0 = {ν ∈ N ∗ : ν(K) = 0}. We show that

∫

A

Px(N ∗
K,0) Λ(dx) =

∫

A

P((Φ + δx)(K) = 0)Λ(dx).

The left-hand side is equal to C(A×N ∗
K,0) = EΦ(A)1[Φ(K)=0]. The right-hand side can be rewritten as

∫

A

P(Φ(K) = 0, x 6∈ K) Λ(dx) =

∫

A\K

∫

N

1[ν(K)=0]Π(dν) Λ(dx)

= Λ(A \K)P(Φ(K) = 0) = EΦ(A \K)1[Φ(K)=0],
where in the last step we have used the independence of Φ(A\K) and Φ(K). Clearly, EΦ(A)1[Φ(K)=0] =
EΦ(A \K)1[Φ(K)=0], which completes the proof.

4. Spatial point processes

In this section we consider the Euclidean space E = Rd with the standard Euclidean metric. The
corresponding Borel σ-algebra B(E) will be denoted by Bd. A point process on Rd will be referred to as
the spatial point process .
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4.1 Stationary spatial point processes

Definition 55. For z ∈ Rd we denote by tz the shift operator onM. It is given by the relation

(tzµ)(A) = µ(A− z), µ ∈ M, A ∈ Bd.

We say that a random measure Ψ on Rd is stationary if tzΨ and Ψ have the same distribution for all
z ∈ Rd, i.e. the distribution of the random measure is translation invariant.

Remark 33. If µ =
∑τ

i=1 δxi , then tzµ =
∑τ

i=1 δxi+z.

Definition 56. For a rotation O around the origin we denote by RO the rotation operator onM. It is
defined as

(ROµ)(A) = µ(O−1A), µ ∈ M, A ∈ Bd.
A random measure Ψ on Rd is called isotropic if ROΨ and Ψ have the same distribution for any rotation
O, i.e. the distribution of the random measure is rotation invariant.
Definition 57. A random measure is called motion-invariant if it is both stationary and isotropic.

Lemma 50. If Ψ is a stationary random measure with locally finite intensity measure Λ, then Λ is a
non-negative multiple of the Lebesgue measure, i.e. Λ(B) = λ|B|, B ∈ Bd, for some λ ≥ 0.
Proof: From stationarity we have Λ(B + z) = Λ(B) for each z ∈ Rd. The assertion follows from the fact
that up to a multiplicative constant, the Lebesgue measure is the only translation-invariant measure on
(Rd,Bd), see Exercise 26.6 in [11].

Definition 58. The multiple λ ≥ 0 from Lemma 50 is called intensity of a stationary random measure.
The intensity gives the mean measure per unit volume. In case of point processes it is the expected

number of points per unit volume.

Definition 59. Let Ψ be a random measure with intensity measure Λ. If there exists a density λ of Λ
w.r.t. the Lebesgue measure (i.e. Λ(B) =

∫
B λ(x) dx, B ∈ Bd), then λ is called the intensity function.

From Lemma 50 we know that the intensity measure of a stationary random measure is the Lebesgue
measure multiplied by the intensity. Hence, the intensity function is constant and is equal to the intensity.

Definition 60. The Poisson point process Φ on Rd, for which the intensity function λ exists and is
constant, is called the homogeneous Poisson point process with intensity λ. If this intensity is furthermore
equal to 1, then we speak about the standard Poisson point process.

Remark 34. Every homogeneous Poisson point process is both motion-invariant (see Exercise class).

Definition 61. Let Ψ be a random measure on Rd with the n-th order factorial moment measure α(n).
If there exists a density λ(n) of α(n) w.r.t. the (nd)-dimensional Lebesgue measure, then it is called the
n-th order product density.

Remark 35. The first order product density coincides with the intensity function and we write λ(1) = λ.

Remark 36. A heuristic interpretation of the n-th order product density of a spatial point process is the
following. Consider n infinitesimally small disjoint balls with centres x1, . . . , xn and volumes dx1, . . . , dxn.
Then λ(n)(x1, . . . , xn) dx1 · · · dxn is the probability that each of these ball contains a point of the process.
Corollary 51. If there exists the intensity function λ of the Poisson point process Φ, then its n-th order
product density satisfies λ(n)(x1, . . . , xn) =

∏n
i=1 λ(xi), x1, . . . , xn ∈ Rd.

Proof: The assertion follows from Theorem 40.

From the definition of stationarity (Definition 55) it follows that the moment measures of a stationary
point process are invariant under diagonal shifts, i.e.

M (n)(B1 × · · · ×Bn) =M
(n)
(
(B1 + y)× · · · × (Bn + y)

)

and
α(n)(B1 × · · · ×Bn) = α

(n)
(
(B1 + y)× · · · × (Bn + y)

)

42



for arbitrary n ∈ N, B1, . . . , Bn ∈ Bd and y ∈ Rd. If the n-th order product density exists, then it satisfies

λ(n)(x1, . . . , xn) = λ
(n)(x1 + y, . . . , xn + y) (18)

for almost all x1, . . . , xn ∈ Rd and y ∈ Rd.

Theorem 52. Let Ψ be a stationary random measure on Rd with intensity 0 < λ < ∞. Choose
arbitrary bounded Borel set A ∈ Bd0 with positive Lebesgue measure (|A| > 0). For U ∈ M and x ∈ Rd,
let t−1x U = {µ : txµ ∈ U} be the preimage of U under tx. Then

Po(U) =
1

λ|A|E
∫

A

1U (t−xΨ)Ψ(dx), U ∈ M,

Px(U) = Po(t−1x U), U ∈ M,

define Palm distributions of Ψ.

Proof: We verify that this system of distributions satisfies (17), and so it meets the definition of Palm
distribution. It is enough to take f(x, µ) = 1B(x)1U (µ) in (17). From stationarity we know that Λ is
proportional to the Lebesgue measure (Lemma 50). Hence,
∫

B

Px(U) Λ(dx) = λ
∫

B

Po(t
−1
x U) dx = λ

∫

B

1

λ|A|E
∫

A

1t−1x U(t−yΨ)Ψ(dy) dx

=
1

|A|

∫

B

E

∫

A

1U (tx−yΨ)Ψ(dy) dx =
1

|A|E
∫

Rd

∫

Rd

1A(y)1B(y + z)1U(tzΨ)Ψ(dy) dz,

where in the last step we used Fubini’s theorem and the change of variables z = x − y. Now we make
the substitution Ψ(dy) = (tzΨ)(dx) and employ stationarity of Ψ. We obtain

∫

B

Px(U) Λ(dx) =
1

|A|E
∫

Rd

∫

Rd

1A(x− z)1B(x)1U (tzΨ) (tzΨ)(dx) dz

=
1

|A|E
∫

Rd

∫

Rd

1A(x− z)1B(x)1U (Ψ)Ψ(dx) dz

= E

∫

B

1U (Ψ)Ψ(dx) = C(B × U).

If we speak about the Palm distribution of a stationary random measure, then we mean the system
of distributions {Px, x ∈ Rd} from Theorem 52. This system is determined by the Palm distribution Po
in the origin and by the relation Px(·) = Po(t

−1
x ·). Similarly, we consider the reduced Palm distribution

of a stationary simple point process Φ in the form

P !o(U) =
1

λ|A|E
∑

X∈suppΦ∩A

1U(t−X(Φ− δX)), U ∈ N,

P !x(U) = P !o(t−1x U), U ∈ N.

The Campbell-Mecke theorem then has the following form.

Theorem 53. For a stationary simple point process Φ with intensity λ and an arbitrary non-negative
measurable function h on Rd ×N ,

E
∑

X∈suppΦ

h(X,Φ) = λ

∫

Rd

∫

N

h(x, ν)Px(dν) dx = λ

∫

Rd

∫

N

h(x, txν)Po(dν) dx

and

E
∑

X∈suppΦ

h(X,Φ− δX) = λ

∫

Rd

∫

N

h(x, ν)P !x(dν) dx = λ

∫

Rd

∫

N

h(x, txν)P
!
o(dν) dx.

Remark 37. The expectation with respect to Po will be denoted by the symbol Eo. Similarly, E
!
o stands

for the expectation with respect to P !o. It means that

Eoh(Φ) =

∫
h(ν)Po(dν) and E!oh(Φ) =

∫
h(ν)P !o(dν).
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4.2 Point process characteristics

In this subsection we deal with summary characteristics of spatial point processes. We can distinguish
numerical and functional characteristics. Numerical characteristics describe specific properties of the
point process by a single number. For stationary point processes the simplest and the most important
numerical characteristic is the intensity (Definition 58). Modern point process statistics often uses functi-
onal summary characteristics. An example of a functional characteristic could be the intensity function
(Definition 59). Intensity and intensity function are first order characteristics (both are derived from
the first order moment measure). Intensity function is defined also for non-stationary point processes.
However, we focus mainly on stationary point processes in this subsection.
First we mention two examples of numerical summary characteristics that are based on mutual

distances between the atoms of a point process.

Definition 62. Let Φ be a stationary simple point process with intensity λ. By Do denote the distance
from the origin o to the nearest point of Φ, i.e. Do = inf{r ≥ 0 : Φ(b(o, r)) > 0}. We define Pielou’s
index of randomness as

PI = λωdE(Do)
d

and the aggregation index or also the Clark-Evans index by the relation

CE =
d(λωd)

1/d

Γ(1/d)
E!oDo,

where ωd = |b(o, 1)| = πd/2

Γ(1+d/2) is the volume of d-dimensional unit ball.

These indices are closely related to the following functional summary characteristics.

Definition 63. Let Φ be a stationary simple point process with intensity λ and let Do be the distance
from o to the nearest point of Φ. The spherical contact distribution function is defined as

F (r) = P(Φ(b(o, r)) > 0) = P(Do ≤ r), r > 0.

The nearest-neighbour distance distribution function is defined as

G(r) = P !o({ν ∈ N : ν(b(o, r)) > 0}), r > 0.

Furthermore, the J-function is

J(r) =
1−G(r)

1− F (r)
, r > 0 : F (r) < 1.

Remark 38. The generalization of F and G functions can be obtained by replacing balls b(o, r) with
sets rB, where B is some convex and compact set containing o.

The aggregation index and the G-function are so called point-related characteristics. We are inte-
rested in the distances from a typical point of the process to the nearest point of the process (called
neighbour). In contrast, Pielou’s index of randomness and the F -function are location-related characte-
ristics. We look at the distance from some fixed location (e.g. origin) to the nearest point of the process.

Theorem 54. In case of a homogeneous Poisson point process with intensity λ we get PI = CE = 1,

F (r) = G(r) = 1− e−λωdr
d

and J(r) = 1.

Proof: Left to Exercise class.

Remark 39. The deviations of characteristics from the theoretical values for Poisson point process
indicate either clustering of points or tendency towards regularity. Cluster processes have Pielou’s index
of randomness larger than 1, the Clark-Evans index smaller than 1 and values of the J-function smaller
than 1. For regular processes the situation is reversed: PI < 1, CE > 1 and J(r) > 1.

So far defined characteristics are “short-sighted” as they take into account only distances to the
nearest points. The distances to more distant points are disregarded. However, the spatial correlation
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often exhibits among the points that are close in space. Another class of characteristics is based on the
second-order moment measures. Such characteristics can be defined more generally for random measures.

Definition 64. Let Ψ be a stationary random measure on Rd with intensity 0 < λ < ∞. The reduced
second-order moment measure K is defined by the relation

λK(B) =
∫

M

µ(B \ {o})Po(dµ), B ∈ Bd.

Furthermore, we define the reduced second-order moment function or shortly the K-function as

K(r) = K(b(o, r)), r ≥ 0.

Remark 40. In particular, if Φ is a stationary simple point process, then λK(B) = E!oΦ(B), B ∈ Bd. It
means that λK(r) can be interpreted as the expected number of points (distinct from o) of the process
in the centred ball of radius r under the condition that o is the point of the process.

Lemma 55. For a stationary random measure Ψ with intensity 0 < λ <∞ we have

α(2)(A×B) = λ2
∫

A

K(B − x) dx, A,B ∈ Bd.

Proof: The right-hand side can be rewritten by Definition 64, Lemma 50, the relation between Px and
Po from Theorem 52, Corollary 45 and Definition 49:

λ2
∫

A

K(B − x) dx =

∫

A

∫

M

µ((B − x) \ {o})Po(dµ) Λ(dx)

=

∫

A

∫

M

(t−xµ)((B − x) \ {o})Px(dµ) Λ(dx) =
∫

M

∫

A

µ(B \ {x})µ(dx)Q(dµ)

= E

∫

A

Ψ(B \ {x})Ψ(dx) = α(2)(A×B).

Lemma 56. Let Ψ be a stationary random measure and let A ∈ Bd0 be an arbitrary bounded set with
finite Lebesgue measure |A| > 0. Then

K(B) = 1

λ2|A|E
∫

A

Ψ((B + x) \ {x})Ψ(dx), B ∈ Bd.

Proof: Similarly as in the proof of Lemma 55 we get

λ2
∫

A

K(B) dx =
∫

A

∫

M

µ(B \ {o})Po(dµ) Λ(dx)

=

∫

A

∫

M

µ((B + x) \ {x})Px(dµ) Λ(dx)

= E

∫

A

Ψ((B + x) \ {x})Ψ(dx).

For a stationary simple point process we can write

K(B) = 1

λ2|A|E
∑

X∈suppΦ∩A

Φ((B +X) \ {X}) = 1

λ2|A|E
∑

X∈suppΦ

∑

Y ∈suppΦ

1A(X)1(B+X)\{X}(Y )

=
1

λ2|A|E
∑ 6=

X,Y ∈suppΦ

1A(X)1B(Y −X), B ∈ Bd.
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Corollary 57. For a stationary Poisson point process, K(B) = |B| for all B ∈ Bd. In particular,
K(r) = ωdr

d for all r ≥ 0.
Proof: From Definition 64 and Theorem 49 we get λK(B) = EΦ(B) = λ|B|, B ∈ Bd. Therefore, K(B) =
|B| and specially K(r) = ωdrd.

Definition 65. Often instead of the K-function its transformation is used,

L(r) =

(
K(r)

ωd

)1/d
, r ≥ 0,

and it is called the L-function. It contains the same information as K(r) but its popularity comes from
more advantageous graphical interpretation. From Corollary 57 we know that L(r) = r in case of the
Poisson point process. The graphical comparison of the L-function to a line (L(r) = r) can be better
visualised than the comparison of the K-function to a parabolic or higher degree polynomial curve
(K(r) = ωdr

d). Furthermore, there are also some statistical advantages of using the L-function.

Definition 66. Let Ψ be a random measure on Rd (not necessarily stationary). Under the assumption
that the intensity function λ and the second-order product density λ(2) exist we define the pair correlation
function by the relation

g(x, y) =
λ(2)(x, y)

λ(x)λ(y)
, x, y ∈ Rd : λ(x) > 0, λ(y) > 0.

When Ψ is stationary we know by (18) that λ(2)(x, y) = λ(2)(x − y, o) = λ(2)(x − y) and g(x, y) =
λ(2)(x−y)

λ2 = g(x− y) are the functions of x− y. If Ψ is moreover isotropic, then λ(2)(x, y) = λ(2)(‖x− y‖)
and g(x, y) = g(‖x− y‖) are the functions of Euclidean distance between x and y. Note that here and in
the sequel we use slight abuse of notation and we use the same symbol for the function of the difference
x− y or the distance ‖x− y‖ as for the function of the pair (x, y).
Remark 41. The pair correlation function may attain values from the interval [0,∞). Therefore, the
term „correlation functionÿ could be somewhat misleading.

The pair correlation function has particularly simple form in the case of Poisson point process.

Corollary 58. Let Φ be the Poisson point process for which the intensity function exists. Then g(x, y) =
1 for any x, y ∈ Rd.

Proof: From Corollary 51 we have λ(2)(x, y) = λ(x)λ(y), which yields g(x, y) = 1.

Remark 42. For point processes the pair correlation function provides a useful tool for graphical
demonstration of deviations from the Poisson point process. If g(x, y) > 1, then simultaneous occurrence
of points x and y is more likely than for the Poisson process with the same intensity function. For
motion-invariant point processes, the values of pair correlation function g(r) greater than 1 correspond
to the fact that the distances r among the points are more typical than in the model of complete spatial
randomness. In other words, g(r) > 1 indicates aggregation of points at distances r, while g(r) < 1 means
regularity in the corresponding distances r.

Theorem 59. Let Ψ be a stationary random measure with pair correlation function g. Then K is
absolutely continuous with respect to the Lebesgue measure and

K(B) =
∫

B

g(u) du, B ∈ Bd.

Proof: According to Lemma 56 we have

K(B) = 1

λ2|A|E
∫

A

Ψ((B + x) \ {x})Ψ(dx)

=
1

λ2|A|E
∫

Rd

∫

Rd

1[x∈A,y−x∈B]Φ
[2](dx, dy)
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=
1

λ2|A|

∫

Rd

∫

Rd

1[x∈A,y−x∈B]α
(2)(dx, dy)

=
1

λ2|A|

∫

Rd

∫

Rd

1[x∈A,y−x∈B]λ
(2)(x, y) dxdy =

1

|A|

∫

Rd

∫

Rd

1[x∈A,y−x∈B]g(y − x) dxdy

=
1

|A|

∫

Rd

∫

Rd

1[x∈A,u∈B]g(u) dxdu =

∫

B

g(u) du, B ∈ Bd.

We used Campbell’s theorem (Theorem 41), Definition 61 and Definition 66.

Corollary 60. Let Ψ be a stationary random measure with pair correlation function that is invariant
under rotations, i.e. g(x, y) = g(y − x) = g(‖y − x‖). Then

g(r) =
K ′(r)

σdrd−1
,

where K ′(r) is the derivative of K-function and σd = dωd =
2πd/2

Γ(d/2) is the surface area of unit sphere

Sd−1 in Rd.

Proof: From Theorem 59 we obtain

K(r) =

∫

b(o,r)

g(u) du.

Using the polar decomposition of the Lebesgue measure (spherical coordinates) we get

K(r) =

∫

b(o,r)

g(‖u‖) du =
∫ r

0

σds
d−1g(s) ds.

4.3 Point process models

Cluster point processes

Definition 67. Let Φp be a simple point process (so called parent process) and let {ζx : x ∈ Rd} be a
collection of finite point processes defined on the same probability space. Define

Φ(B) =

∫

Rd

ζx(B)Φp(dx), B ∈ Bd,

and assume that Φ(B) <∞ for all B ∈ Bd0 with probability 1. Then Φ is called a cluster point process .
For X ∈ suppΦp we refer to ζX as the daughter point process associated with the parent point X .
Definition 68. A cluster point process Φ such that {ζx : x ∈ Rd} are independent and independent of
Φp is called the point process with independent clusters . If moreover Φp is a Poisson point process, then
we speak about the Poisson cluster point process .

The following theorem shows that some Poisson cluster point processes are Cox point processes as
well.

Theorem 61. Let Φ be a Poisson cluster point process such that Φp has diffuse intensity measure Λp
and the ζx are finite Poisson point processes with diffuse intensity measures Λx, x ∈ Rd. Assume that
Λ(B) =

∫
Rd Λx(B)Φp(dx) < ∞ for all B ∈ Bd0 a.s. Then Φ has the same distribution as the Cox point

process with driving intensity measure Λ.

Proof: For K ∈ K(Rd) we get

P(Φ(K) = 0) = E [P(Φ(K) = 0 | Φp)] = E


P


 ⋂

X∈suppΦp

[ζX(K) = 0] | Φp






= E[
∏

X∈suppΦp

P(ζX(K) = 0 | Φp)] = E[
∏

X∈suppΦp

e−ΛX (K)]

= E exp
{
−

∑

X∈suppΦp

ΛX(K)
}
= Ee−Λ(K),
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which is the void probability of Cox point process. The assertion follows from Theorem 31.

In the following definition we introduce an important class of Poisson cluster point processes.

Definition 69. Let p be a probability density on Rd and let Φ be a Poisson cluster point process
satisfying

• ζx(R
d), x ∈ Rd, are independent identically distributed random variables,

• ζx is the mixed binomial point process formed by independent identically distributed random vectors
with density p(·−x), i.e. the points of centred processes t−xζx are independent identically distributed
with intensity p.

Then Φ is called the Neyman-Scott point process . If moreover ζx(R
d) has Poisson distribution with

parameter λc, then Φ is called the Neyman-Scott Poisson point process . In the latter case, ζx is the
Poisson point process with intensity function λcp(· − x). The proof of this fact is left to Exercise class.

In Figure 12 (left) there is an explanation of the Neyman-Scott process construction. The parent
process Φp is a stationary Poisson point process (the points are shown by crosses), the numbers of
daughter points are independent identically distributed random variables with binomial distribution
with mean Eζx(R

d) = 5 and the daughter points are independent identically distributed random vectors
with uniform distribution in the square centred at the parent point and of size length 0.2, i.e. the density
p has the form p(x) = 1/0.22 for x ∈ [−0.1, 0.1]2. Since the supports of individual daughter densities
are overlapping, we are not able to distinguish which point belongs to which cluster (daughter process).
Furthermore, we can notice that the daughter points in the observation window may come from the
parent points that lie outside the window. The resulting realization of the Neyman-Scott process is
shown in Figure 12 (right). In this realization no parent points appear.

Figure 12. A realization of the Neyman-Scott point process in a unit square window. The intensity
of the parent process is 10 (the points are shown by crosses in the left figure), the numbers of daughter
points have the binomial distribution with parameters 10 and 1/2, and the daughter points (bullets) are
uniformly distributed in the square of size length 0.2 (shown in the left figure). The resulting realization
of the point process (only daughter points) is shown on right.

Theorem 62. Let Φ be a Neyman-Scott Poisson point process such that Φp is stationary Poisson
point process with intensity λp. Then Φ is a stationary point process with intensity λ = λpλc and pair
correlation function

g(x) = 1 +
h(x)

λp
,
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where h(x) =
∫
p(y)p(y − x) dy is the density of the difference X1 − X2 of two independent daughter

points X1 and X2. If p is radially symmetric function (that is, p(x) = p(‖x‖) = p(r)), then Φ is also
isotropic and g(x) = g(‖x‖) = g(r).
Proof: Stationarity of Φ follows from stationarity of Φp and the fact that the centred daughter processes
t−xζx are independent and identically distributed. By Theorem 61, Φ is the Cox point process with
driving measure Λ(B) =

∑
X∈suppΦp

ΛX(B), where the measure Λx has the density λcp(· − x) w.r.t. the
Lebesgue measure. The intensity measure of Φ can be expressed using Theorem 41 as

EΛ(B) = E
∑

X∈suppΦp

ΛX(B) = λp

∫

Rd

Λx(B) dx = λp

∫

Rd

∫

B

λcp(y − x) dy dx = λpλc|B| = λ|B|.

Similarly, by the second-order Campbell theorem (Theorem 41) and Theorem 40 we obtain the
second-order factorial moment measure of Φ:

EΛ(B1)Λ(B2) = E
∑

X,Y ∈suppΦp

ΛX(B1)ΛY (B2)

= E
∑6=

X,Y ∈suppΦp

ΛX(B1)ΛY (B2) + E
∑

X∈suppΦp

ΛX(B1)ΛX(B2)

= λ2p

∫

Rd

∫

Rd

Λx(B1)Λy(B2) dy dx+ λp

∫

Rd

Λx(B1)Λx(B2) dx

= λ2pλ
2
c

∫

Rd

∫

Rd

∫

B1

∫

B2

p(u− x)p(v − y) dv du dy dx

+ λpλ
2
c

∫

Rd

∫

B1

∫

B2

p(u− x)p(v − x) dv du dx

= λ2 · |B1| · |B2|+ λλc
∫

B1

∫

B2

∫

Rd

p(u− x)p(v − x) dxdv du.

Hence, the second-order product density exists and has the form

λ(2)(u, v) = λ2 + λλc

∫

Rd

p(u− x)p(v − x) dx.

The pair correlation function is then

g(u, v) = 1 +
1

λp

∫

Rd

p(u− x)p(v − x) dx.

The change of variables y = u− x yields

g(u, v) = 1 +
1

λp

∫

Rd

p(y)p(v − u+ y) dy

and we see that g(u, v) is the function of u− v: g(u, v) = g(u− v, o) = g(u− v).

Notice that the pair correlation function of the Neyman-Scott Poisson point process is always at
least 1. The most often used choices of radially symmetric density p give the following point processes:

a) Thomas point process : p is the density of d-dimensional normal distribution Nd(0, σ
2I) with zero

mean and variance matrix that is a multiple of the identity matrix,

b) Matérn cluster point process : p is the density of uniform distribution on the ball b(o,R).

Particular examples of realizations of these models can be found in Figure 13.
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Figure 13. The realizations of Thomas point process (left) and Matérn cluster point process (right) in
the unit square. The parent point process is the same in both cases and has intensity 10. The numbers
of points per cluster have Poisson distribution with parameter 5 and in both cases they are the same for
every parent point. The only difference is in the distribution of daughter points. For the Thomas process
it is the normal distribution with standard deviation σ = 0.05 while for the Matérn cluster process the
daughter points are uniformly distributed in the ball of radius R = 0.1 centred at the parent point.

Thinned point processes

One of the simplest operations associated with point processes is thinning. It is based on deleting some
points of the process. We consider the case of so called independent thinning, where removing or keeping
the point is independent of other points.

Definition 70. Let p : Rd → [0, 1] be a measurable function. Independently thinned point process is a
cluster point process with independent clusters such that

ζx =

{
δx with probability p(x),
∅ with probability 1− p(x),

where ∅ stands for the null measure, i.e. ∅(B) = 0 for every B ∈ Bd.
Remark 43. Assume that {U(x) : x ∈ Rd} is the collection of independent random variables uniformly
distributed on (0, 1) and independent of a simple point process Φp. Then Φ =

∑
X∈suppΦp

1[U(X)<p(X)]δX
is the point process created by independent thinning of Φp.

Theorem 63. By independent thinning of a point process Φp with intensity measure Λp we obtain the
point process Φ with intensity measure

Λ(B) =

∫

B

p(x) Λp(dx), B ∈ Bd.

Proof: We can write

EΦ(B) = E
[
E[Φ(B) | Φp]

]
= E

[
E[

∫

Rd

ζx(B)Φp(dx) | Φp]
]

= E

∫

Rd

Eζx(B)Φp(dx) = E

∫

B

p(x)Φp(dx) =

∫

B

p(x) Λp(dx).

We have used independence of {ζx} and Φp, and Campbell’s theorem (Theorem 41).
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By independent thinning of a Poisson point process we get again a Poisson point process.

Theorem 64. For a Poisson point process Φp with diffuse intensity measure Λp ∈ M the corresponding
independently thinned point process Φ is a Poisson point process with intensity measure

Λ(B) =

∫

B

p(x) Λp(dx), B ∈ Bd.

Proof: We compute the void probabilities of the thinned point process Φ and we show that they are
equal to the void probabilities of a Poisson point process with intensity measure Λ. The assertion then
follows from Theorem 31. For K ∈ K(Rd) we have

P(Φ(K) = 0) =
∞∑

n=0

P(Φp(K) = n)P(Φ(K) = 0 | Φp(K) = n)

=

∞∑

n=0

Λp(K)
n

n!
e−Λp(K)P

(
∪X∈suppΦp∩K [ζX(R

d) = 0] | Φp(K) = n
)

=
∞∑

n=0

Λp(K)
n

n!
e−Λp(K)

n∏

i=1

P
(
ζXi(R

d) = 0
)

=

∞∑

n=0

e−Λp(K)

n!

[∫

K

(1 − p(x)) Λp(dx)

]n

= e−Λp(K) exp

{∫

K

(1− p(x)) Λp(dx)

}
= e

−
∫
K
p(x) Λp(dx).

In the third line we expressed the conditional probability by use of Theorem 38, which states that
conditionally on Φp(K) = n the atoms X1, . . . , Xn of the process Φp are independent and identically
distributed according to the probability measure Λp|K/Λp(K).

Hard-core point processes

Many point process models result from thinning of a given point process. In Definition 70 we considered
independent thinning.
For hard-core point processes there are no points in distance smaller than a given distance r > 0. The

most natural construction is to use some thinning rule. Since the atoms are removed or kept depending
on their location in relation to other atoms of the process, we speak about the dependent thinning. Such
procedure is used in the definition of the following two hard-core point processes.

Definition 71. Let Φ be a stationary Poisson point process with intensity λ and let r > 0 (so called
hard-core distance) be given. The point process

ΦI(·) =
∫

Rd

δx(·)1[Φ(b(x,r)\{x})=0]Φ(dx)

is called the Matérn hard-core point process of type I . Let Φm be a Poisson point process on Rd × [0, 1]
with intensity measure Λ(B × I) = λ · |B| · |I|, B ∈ Bd, I ∈ B([0, 1]). The point process

ΦII(·) =
∫

Rd×[0,1]

δx(·)1[Φm((b(x,r)\{x})×[0,u])=0]Φm(d(x, u))

is called the Matérn hard-core point process of type II .

For the first type we remove every point of the process Φ for which there is at least one another
point at distance smaller than r. In the second type each point X ∈ suppΦ has associated some weight
U(X) ∈ [0, 1] and we remove only the points for which there exists at least one another point with
smaller weight at distance smaller than r. Equivalently, we can imagine that for each pair of distinct
points X,Y ∈ suppΦ satisfying 0 < ‖X − Y ‖ ≤ r, we remove either both points (type I) or only the
point with larger weight (type II).

51



In Figure 14 a realization of stationary Poisson point process is depicted. By its thinning Matérn
hard-core point processes of types I and II are obtained. Obviously, we have less points in the process of
type I than in type II due to stricter thinning condition.

Figure 14. Left: a realization of stationary Poisson point process with intensity 50 in the unit square.
From this configuration of points the realizations of Matérn hard-core point processes of type II (middle)
and type I (right) are derived. The hard-core distance is chosen to be r = 0.1.

Theorem 65. Point processes ΦI and ΦII from Definition 71 are stationary and their intensities are

λI = λe
−λωdr

d

and λII =
1− e−λωdr

d

ωdrd
,

respectively.

Proof: Stationarity follows from the construction. We determine the intensities by computing the expected
numbers of point in the set B ∈ Bd0 .
First consider the type I process. From Campbell-Mecke theorem and Slivnyak theorem we get

EΦI(B) = E

∫

B

1[Φ(b(x,r)\{x})=0]Φ(dx) = λ

∫

B

∫

N

1[ν(b(x,r))=0] P
!
x(dν) dx

= λ

∫

B

P(Φ(b(x, r)) = 0) dx = λe−λωdr
d |B|.

For type II process we again use Campbell-Mecke theorem and Slivnyak theorem. We get

EΦII(B) = E

∫

B×[0,1]

1[Φm((b(x,r)\{x})×[0,u])=0]Φm(d(x, u)) = λ

∫

B

∫ 1

0

P(Φm(b(x, r) × [0, u]) = 0) du dx

= λ|B|
∫ 1

0

e−λuωdr
d

du = λ|B|1 − e
−λωdr

d

λωdrd
,

which leads to the required relation EΦII(B) = λII |B|.

Another possibility how to construct a hard-core point process is based on the sequential approach.
The points are added one-by-one.

Definition 72. Let r > 0 and B ∈ Bd0 be given. A random sequential adsorption (or simple sequential
inhibition) model is the point process inside the set B constructed by the following algorithm:
(i) generate X1 from the uniform distribution on B,
(ii) if k − 1 points are generated, then generate Xk from the uniform distribution in B \ ∪k−1i=1 b(Xi, r),
(iii) the construction ends in n steps provided that B ⊆ ∪ni=1b(Xi, r).
The output is the point process Φ =

∑n
i=1 δXi .

Remark 44. The sets B \ ∪k−1i=1 b(Xi, r) may have quite complicated geometrical shape. Hence, it is
common in practice to use the rejection method. The point Xk is generated uniformly in B and it is
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rejected whenever it falls closer than r to any of the points X1, . . . , Xk−1. In that case a new candidate
Xk is generated and the procedure is repeated until it falls in B \∪k−1i=1 b(Xi, r). The algorithm is usually
terminated if the desired number of points is reached or the number of consecutive rejections reached
some prescribed value. Three examples of the realizations for different choices of r are shown in Figure
15.

Figure 15. Three realizations of the random sequential adsorption point process in the unit square for
r = 0.05 (left), r = 0.1 (middle) and r = 0.15 (right).

Definition 72 gives an example of finite point process. In the following subsection we will deal with
finite point processes given by the density w.r.t. the distribution of Poisson point process.

4.4 Finite point processes with density

In this subsection we will work with finite point processes in Rd. Denote the system of finite counting
measures by

Nf = {ν ∈ N : ν(Rd) <∞}.

The system of simple finite counting measures will be denoted as N ∗
f = Nf ∩ N ∗.

Let ΦP be a Poisson point process with finite diffuse intensity measure Λ. The distribution of ΦP
can be expressed as follows (for U ∈ N):

Π(U) = P(ΦP ∈ U) =
∞∑

n=0

P(ΦP (R
d) = n)P(ΦP ∈ U | ΦP (Rd) = n)

= e−Λ(R
d)

[
1[∅∈U ] +

∞∑

n=1

Λ(Rd)n

n!

∫

Rd

· · ·
∫

Rd

1[
∑

n

i=1
δxi

∈U ]

Λ(dx1)

Λ(Rd)
· · · Λ(dxn)
Λ(Rd)

]

= e−Λ(R
d)

[
1[∅∈U ] +

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

1[
∑

n

i=1
δxi

∈U ]Λ(dx1) · · ·Λ(dxn)
]
. (19)

We are going to investigate point processes whose distribution is absolutely continuous w.r.t. Π.

Definition 73. Let Π be the distribution of a finite simple Poisson point process. Assume that p :
N ∗
f → R+ is a measurable function such that

∫
N∗
f
p(ν)Π(dν) = 1. We say that Φ is a point process with

density p w.r.t. Π if its distribution satisfies

P(Φ ∈ U) =
∫

U

p(ν)Π(dν) = E1[ΦP∈U ]p(ΦP ), U ∈ N.

Thanks to (19) we can rewrite this distribution as

P(Φ ∈ U) = e−Λ(Rd)

[
1[∅∈U ]p(∅) +

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

1[
∑n

i=1
δxi

∈U ]p(
n∑

i=1

δxi) Λ(dx1) · · ·Λ(dxn)
]
.
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The point process Φ with density p is finite (because Λ(Rd) <∞) and simple (because Λ is diffuse).
Often we consider Λ to be the restriction of the Lebesgue measure to some bounded set B ∈ Bd0 . The
density p is then w.r.t. the distribution of the standard Poisson point process on B.
Notice that Eh(Φ) = Eh(ΦP )p(ΦP ) for arbitrary Π-integrable function h on N ∗

f .

Example: Consider the density p in the form

p(

n∑

i=1

δxi) = α

n∏

i=1

β(xi),

where α > 0 and β : Rd → R+ is a measurable function such that
∫
Rd β(x) Λ(dx) < ∞. By an empty

product (n = 0) we understand one, i.e. p(∅) = α. Define a finite measure

Λβ(B) =

∫

B

β(x) Λ(dx), B ∈ Bd.

We make sure that
∫
Nf
p(ν)Π(dν) = 1 for suitable choice of α. The distribution of the point process Φ

with density p is

P(Φ ∈ U) = αe−Λ(Rd)

[
1[∅∈U ] +

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

1[
∑

n

i=1
δxi

∈U ]β(x1) · · ·β(xn) Λ(dx1) · · ·Λ(dxn)
]

= αe−Λ(R
d)

[
1[∅∈U ] +

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

1[
∑n

i=1
δxi

∈U ]Λβ(dx1) · · ·Λβ(dxn)
]
.

By comparison with (19) we see that it is again the distribution of Poisson point process. The intensity

measure is now Λβ and the normalising constant α must be α = e
Λ(Rd)−Λβ(R

d) = e

∫
Rd
(1−β(x))Λ(dx)

.

For the definition of a point process with density we can use arbitrary non-negative measurable
function h with 0 < α =

∫
Nf
h(ν)Π(dν) < ∞. If we divide by α we get the density function p = h/α.

The equality up to the normalising constant is written as p(ν) ∝ h(ν). In order to recognize whether h
is Π-integrable several sufficient conditions are useful.

Definition 74. Let Λ be a finite diffuse measure on Rd. We say that a measurable function h : N ∗
f → R+

is locally stable if there exists a non-negative measurable function k : Rd → R+ with
∫
Rd k(x) Λ(dx) <∞

so that
h(ν + δx) ≤ k(x)h(ν) ∀ν ∈ N ∗

f , x ∈ Rd \ supp ν.
The function h is Ruelle stable if there exist a constant c ≥ 0 and a non-negative measurable function k
with

∫
Rd k(x) Λ(dx) <∞ so that

h(ν) ≤ c
∏

x∈supp ν

k(x) ∀ν ∈ N ∗
f .

If we can obtain ν ∈ N ∗
f from µ ∈ N ∗

f by omitting some of the atoms, we write ν � µ. This relation
is equivalent to supp ν ⊆ suppµ.
Definition 75. A non-negative measurable function h on N ∗

f is called hereditary if the implication

h(µ) > 0⇒ h(ν) > 0 ∀ν � µ

holds for any µ ∈ N ∗
f .

Theorem 66. Let h : N ∗
f → R+ be a measurable function and let Π be a distribution of finite Poisson

point process with diffuse intensity measure Λ.
a) If h is locally stable, then it is Ruelle stable.
b) If h is Ruelle stable, then it is Π-integrable.
c) If h is locally stable, then it is hereditary.
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Proof: a) Put c = h(∅). The assertion is easily shown by induction on n = ν(Rd). For n = 0 it is obvious
that h(ν) = c ≤ c. If the claim is true for some n, then

h(ν + δx) ≤ k(x)h(ν) ≤ k(x)c
∏

y∈supp ν

k(y) = c
∏

y∈supp(ν+δx)

k(y).

b) Denote K =
∫
Rd k(x) Λ(dx). Then

∫

N∗
f

h(ν)Π(dν) = e−Λ(R
d)

[
h(∅) +

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

h(

n∑

i=1

δxi) Λ(dx1) · · ·Λ(dxn)
]

≤ e−Λ(Rd)

[
c+

∞∑

n=1

1

n!

∫

Rd

· · ·
∫

Rd

ck(x1) · · · k(xn) Λ(dx1) · · ·Λ(dxn)
]

= ce−Λ(R
d)

∞∑

n=0

1

n!
Kn = ce−Λ(R

d)eK <∞.

The first equality follows from (19) by the standard measure theory arguments.
c) From the definition of local stability we have h(ν + δx) > 0⇒ h(ν) > 0.

Definition 76. For a finite simple point process Φ with density p, the Papangelou conditional intensity
is defined as

λ∗(x, ν) =
p(ν + δx)

p(ν)
, x ∈ Rd, ν ∈ N ∗

f : p(ν) > 0.

Remark 45. The local stability of a hereditary density function p can be equivalently defined by the
condition λ∗(x, ν) ≤ k(x) for every x ∈ Rd and ν ∈ N ∗

f with p(ν) > 0, where
∫
Rd k(x) Λ(dx) <∞.

Theorem 67. (Georgii-Nguyen-Zessin identity) Let Φ be a finite simple point process with Papangelou
conditional intensity λ∗. Then

E
∑

X∈suppΦ

h(X,Φ− δX) =

∫

Rd

Eh(x,Φ)λ∗(x,Φ)Λ(dx) (20)

for an arbitrary non-negative measurable function h on Rd ×N ∗
f .

Proof: Since Φ has a density p w.r.t. the distribution of Poisson point process ΦP , we can write

E
∑

X∈suppΦ

h(X,Φ− δX) = E
∑

X∈suppΦP

h(X,ΦP − δX)p(ΦP ).

Now we can apply the Campbell-Mecke theorem (Theorem 48) and the Slivnyak theorem (Theorem 49),

E
∑

X∈suppΦP

h(X,ΦP − δX)p(ΦP ) =

∫

Rd

Eh(x,ΦP )p(ΦP + δx) Λ(dx),

where Λ is the intensity measure of ΦP . The integrand can be rewritten as

Eh(x,ΦP )p(ΦP + δx) = Eh(x,ΦP )λ
∗(x,ΦP )p(ΦP ) = Eh(x,Φ)λ∗(x,Φ),

which completes the proof.

Corollary 68. Let Π be the distribution of the standard Poisson point process on a bounded set B ∈ Bd0 .
Let Φ be a finite point process with density p w.r.t. Π and Papangelou conditional intensity λ∗. Then
its intensity function is λ(x) = Eλ∗(x,Φ), x ∈ B.

Proof: In Theorem 67 it suffices to take h(x, ν) = 1A(x), A ⊆ B. Then EΦ(A) =
∫
A Eλ∗(x,Φ)dx.
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In many applications point processes with pairwise interactions appear.

Definition 77. Let
p(ν) ∝

∏

x∈supp ν

g(δx)
∏

{x,y}⊆suppν

g(δx + δy), ν ∈ N ∗
f , (21)

where g is a non-negative measurable function such that the right-hand side in (21) is Π-integrable.
A point process Φ with density p w.r.t. the distribution of Poisson point process is then called the
pairwise interaction point process . The function g is called the interaction function. We define the range
of interaction as

R = inf{r > 0 : g(δx + δy) = 1 for all ‖x− y‖ > r}.
The point process Φ is called repulsive if g(δx + δy) ≤ 1 for all x 6= y.
If g(δx) = β > 0 is constant and g(δx+δy) = θ(‖x−y‖) is invariant under translations and rotations,

then we speak about homogeneous pairwise interaction point process. Motivated by the statistical physics
we use the term pair potential function for θ : (0,∞) → R+. It determines the strength of interaction
between two points. The values smaller than 1 correspond to repulsive interactions while the values larger
than 1 mean attractive interactions.

The Papangelou conditional intensity of a pairwise interaction point process has the form

λ∗(x, ν) = g(δx)
∏

y∈supp ν

g(δx + δy).

The function (21) is clearly hereditary and it is also locally stable provided that

∫

Rd

g(δx) Λ(dx) <∞ (22)

and g(δx + δy) ≤ 1, because then λ∗(x, ν) ≤ g(δx) and we can take k(x) = g(δx) in Remark 45. It
means that under the assumption (22) the density of repulsive pairwise interaction point processes is
always Π-integrable. The condition (22) holds automatically for homogeneous pairwise interaction point
processes.
We have shown earlier that the Poisson point process is obtained in a particular case g(δx+ δy) = 1.

The range of interaction is then R = 0.
Different choices of θ lead to various models of homogeneous pairwise interaction point processes. A

trivial choice θ(r) = 1 for every r > 0 corresponds to the Poisson point process with intensity measure
βΛ. The simplest and the most well-known non-trivial example of a homogeneous pairwise interaction
point process is the Strauss process for which

θ(r) = γ1[r≤R] , 0 ≤ γ ≤ 1, R > 0,

where 00 is understood as 1.

Definition 78. Let β > 0, 0 ≤ γ ≤ 1 and R > 0 be real parameters. The Strauss point process Φ is
given by the density

p(ν) = αβν(R
d)γSR(ν), ν ∈ N ∗

f ,

where α is the normalizing constant and SR(ν) =
∑

{x,y}⊆supp ν 1[‖x−y‖≤R] is the number of pairs of
atoms of ν with distance at most R.

The Papangelou conditional intensity of the Strauss point process is λ∗(x, ν) = βγtR(x), where
tR(x) =

∑
y∈supp ν 1[‖y−x‖≤R]. The condition γ ≤ 1 entails λ∗(x, ν) ≤ β which in turn implies that p

is locally stable. The normalizing constant α =
(∫

N∗
f

βν(R
d)γSR(ν)Π(dν)

)−1
is mostly unknown. It can

be computed for the case γ = 1 which corresponds to the Poisson point process with intensity measure

βΛ. Then α = e(1−β)Λ(R
d). The case γ = 0 leads to the hard-core point process with hard-core distance

R because p(ν) > 0 is only possible for SR(ν) = 0 (remember that we put 0
0 = 1). Then there does

not exist any pair of points in ν with distance smaller than R. The parameter R is also the range of
interaction of the process. Figure 16 shows simulated realizations of the Strauss point process for extreme
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values γ = 1 (left) and γ = 0 (right) as well as for intermediate value γ = 0.5 (middle), where the pairs
of points appear at distance smaller than R but less often than in the Poisson point process (γ = 1).

Figure 16. Three realizations of the Strauss point process in the unit square window [0, 1]2. The choice
of parameters is β = 50, R = 0.1 and γ = 1 (left), γ = 0.5 (middle) and γ = 0 (right). The distribution
is considered w.r.t. the standard Poisson point process on [0, 1]2.

Strauss proposed this process as a model of clustering [18]. This would correspond to γ > 1. However,
p(ν) is not Π-integrable (see Exercise class) in this case. For 0 ≤ γ ≤ 1, Π-integrability follows from local
stability (Theorem 66). Therefore, the Strauss point process models only repulsive interactions. It is an
example of repulsive pairwise interaction point process.

Definition 79. Let Π be the distribution of the standard Poisson point process on a bounded set
B ∈ Bd0 . Let β > 0, γ > 0 and R > h > 0 be real parameters. The Strauss hard-core point process is
given by the density

p(ν) =

{
0, if there exist x, y such that ν({x, y}) = 2 and 0 < ‖x− y‖ < h,
αβν(B)γSR(ν), otherwise,

w.r.t. Π. Hence, it is an example of homogeneous pairwise interaction point process with pair potential
function

θ(r) =

{
0 pro r ≤ h,
γ pro h < r ≤ R,
1 pro r > R.

Remark 46. Since B is bounded and the pairs at distances smaller than h > 0 are excluded, there
exists an upper bound for the number of points. This ensures Π-integrability of p also for γ > 1.

Let us mention an example where higher order interactions occur.

Definition 80. The Widom-Rowlinson point process is given by the density

p(ν) = αβν(B)γ−|Uν,R|, ν ∈ N ∗
f ,

w.r.t. the distribution Π of the standard Poisson point process on a bounded set B ∈ Bd0 , where Uν,R =⋃
x∈supp ν b(x,R) and β > 0, R > 0 and γ > 0. In d = 2 it is also known as the area-interaction point
process .

The Papangelou condition intensity of the Widom-Rowlinson process has the form

λ∗(x, ν) = βγ−|b(x,r)\∪y∈supp νb(y,r)|.

It is easy to verify that λ∗ is bounded:

λ∗(x, ν) ≤
{
β for γ ≥ 1,
βγ−ωdr

d

for γ < 1,

which means that the density p is locally stable and thus Π-integrable by Theorem 66.

Pairwise interaction point processes as well as the Widom-Rowlinson point process are special cases
of a more general class of point processes, so called Markov point processes.
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Markov point processes

Definition 81. Let ∼ be a reflexive and symmetric relation on Rd×Rd. Two points x, y ∈ Rd satisfying
x ∼ y are said to be neighbours . For B ∈ Bd0 we define the neighbourhood of B as ∂B = {x ∈ Rd \ B :
∃y ∈ B, x ∼ y}.
The most often used neighbourhood relation is defined by x ∼ y ⇔ ‖x− y‖ ≤ R for given R > 0 (so

called R-neighbourhood).

Definition 82. A measurable function h : N ∗
f → R+ satisfies local Markov property w.r.t. ∼ if for every

ν ∈ N ∗
f with h(ν) > 0 and every x with ν({x}) = 0 we have

h(ν + δx)

h(ν)
=
h(ν + δx −

∑k
i=1 δyi)

h(ν −∑k
i=1 δyi)

for any y1, . . . , yk ∈ supp ν \ ∂{x}, i.e. the yi are atoms of ν that are not related to x (yi 6∼ x). We say
that h is a Markov function w.r.t. the relation ∼ if it is hereditary and satisfies local Markov property.
Definition 83. Let Φ be a finite point process with a density p. We say that Φ is a Markov point process
if p is a Markov function.

Remark 47. The Papangelou conditional intensity λ∗(x, ν) of a Markov point process depends only on
x and ν|∂{x}.
Definition 84. A set A ⊆ Rd is a clique w.r.t. ∼ if x ∼ y for all x, y ∈ A. We say that a non-negative
measurable function g is an interaction function w.r.t. ∼, if g(ν) = 1 whenever supp ν is not a clique.
Theorem 69. (Hammersley-Clifford-Ripley-Kelly theorem) A measurable function h : N ∗

f → R+ is a
Markov function if and only if there is an interaction function g : N ∗

f → R+ such that

h(µ) =
∏

ν�µ

g(ν), µ ∈ N ∗
f . (23)

Proof: One implication is obvious. The function h given by (23) is hereditary and satisfies local Markov
property.
Assume that h is Markov and define g inductively: g(∅) = h(∅); g(µ) = 1 if suppµ is not a clique;

and

g(µ) =
h(µ)∏
ν≺µ g(ν)

if suppµ 6= ∅ is a clique, where ν ≺ µ means both ν � µ and ν 6= µ. When
∏
ν≺µ g(ν) = 0, there exists

ν ≺ µ such that g(ν) = 0. Therefore, h(ν) = 0, which in turn implies h(µ) = 0 from hereditarity of h.
In this case we define g(µ) = 1 (i.e. we put 0/0 = 1). The function g is correctly defined and it is an
interaction function. We distinguish three cases in order to show that it also fulfills (23).
1. suppµ is a clique: h(∅) = g(∅) and h(µ) =

∏
ν�µ g(ν) for µ 6= ∅.

2. h(µ) = 0 and suppµ is not a clique: there exist x, y ∈ suppµ such that x 6∼ y. If
∏
ν≺µ g(ν) = 0,

then
∏
ν�µ g(ν) = 0 = h(µ). We will show that the complementary case is impossible. For contradiction,

assume that
∏
ν≺µ g(ν) > 0. From local Markov property we know that

h(µ)

h(µ− δx)
=

h(µ− δy)

h(µ− δx − δy)
.

Since h(µ) = 0, it could not happen that both h(µ− δx) and h(µ− δy) are positive. Therefore, we found
ν which has one atom less than µ and at the same time h(ν) = 0. Furthermore, supp ν could not be a
clique because then h(ν) = 0 would imply g(ν) = 0. Now repeat the arguments and find ν̃ ≺ ν such
that supp ν̃ is not a clique and contains one point less than supp ν. We can continue with removing the
atoms and at some point we have to end with a clique (all singletons are cliques). In this way we get the
contradiction with

∏
ν≺µ g(ν) > 0.

3. h(µ) > 0: we will show (23) by induction on n = µ(Rd). From construction of g, we have
h(∅) = g(∅) and h(δz) = g(∅)g(δz). Hence, the relation (23) holds for n = 0 and n = 1. Assume that it

58



is satisfied for n− 1 and consider µ with µ(Rd) = n ≥ 2 such that suppµ is not a clique (for cliques we
already know that (23) holds). There exist x, y ∈ suppµ such that x 6∼ y. Denote ν = µ− δx − δy. Since
h is hereditary, we get h(ν) > 0. Moreover, h satisfies local Markov property which yields

h(µ) =
h(ν + δx + δy)

h(ν + δx)
h(ν + δx) =

h(ν + δy)

h(ν)
h(ν + δx).

Now we utilize the induction hypothesis,

h(µ) =

∏
ϕ�ν+δy

g(ϕ)
∏
ϕ�ν+δx

g(ϕ)
∏
ϕ�ν g(ϕ)

=
∏

ϕ�ν+δx+δy

g(ϕ).

We have used that x 6∼ y implies g(ϕ) = 1 for ϕ with ϕ({x, y}) = 2.

According to Theorem 69 every Markov point process possesses a density in the form

p(µ) =
∏

ν�µ

g(ν) = g(∅) exp





∑

ν�µ,ν 6=∅

log g(ν)



 =

exp{−U(µ)}
Z

.

In statistical physics the term Gibbs point process is used and

U(µ) = −
∑

ν�µ,ν 6=∅

log g(ν)

is interpreted as the potential energy of the configuration µ. The terms log g(ν) are the potentials and
the constant Z = 1/g(∅) is called the partition function. The Papangelou conditional intensity is then
λ∗(x, µ) = e−E(x,µ), where E(x, µ) = U(µ + δx) − U(µ) is the energy needed for adding the point x to
the configuration µ.
An example of a Markov point process w.r.t. the R-neighbourhood is the Strauss point process from

Definition 78. Its Papangelou conditional intensity λ∗(x, µ) = βγµ(∂{x}) depends only on x and µ|∂{x}.
The interaction function from Theorem 69 is

g(ν) =





α, ν(Rd) = 0,
β, ν(Rd) = 1,
γ, ν(Rd) = 2, where 0 < ‖x− y‖ ≤ R for x, y ∈ supp ν,
1, otherwise.

The Strauss point process contains only pairwise interactions.
A Markov point process with higher order interactions is given in Definition 80. The Papangelou

conditional intensity λ∗(x, ν) = βγ−|b(x,r)\∪y∈suppνb(y,r)| depends on y satisfying ‖x−y‖ ≤ 2r. Therefore,
the Widom-Rowlinson point process satisfies the local Markov property w.r.t. the (2r)-neighbourhood.
The interaction function g from Theorem 69 is obtained from the inclusion-exclusion formula,

g(ν) =





α, ν(Rd) = 0,

βγ−ωdr
d

, ν(Rd) = 1,

γ(−1)
k|b(x1,r)∩···∩b(xk,r)|, ν =

∑k
i=1 δxi , k ≥ 2.

We see that g(ν) could be distinct from 1 also for configurations with more than two points.

4.5 Inhomogeneous point processes

We have already seen models and constructions that could lead to inhomogeneous spatial point processes.
The simplest example is the Poisson point process with non-constant intensity function. Inhomogeneity
could be easily introduced in finite point processes possessing a density. For example, we can consider

p(ν) = α
∏

x∈supp ν

β(x) · γSR(ν), ν ∈ N ∗
f ,

where γ ∈ [0, 1] and R > 0 are parameters and β is a non-negative bounded measurable function. This
leads to the Strauss point process with non-constant first-order interactions. For γ = 1 it reduces to
inhomogeneous Poisson point process.
In this subsection we consider some further examples of inhomogeneous spatial point processes.
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Second-order intensity reweighted stationary point processes

We consider a special class of spatial point processes where we allow non-constant intensity function but
the second-order characteristics will be translation invariant.

Definition 85. Let Φ be a simple point process with intensity function λ. Assume that

Kinhom(B) =
∫

N

∫

B+x

1

λ(y)
µ(dy)P !x(dµ), B ∈ Bd,

does not depend on x for a.a. x ∈ Rd. Then Φ is called a second-order intensity reweighted stationary
point process. For this process we can introduce the inhomogeneous K-function

Kinhom(r) = Kinhom(b(o, r)), r > 0.

Lemma 70. Let Φ be a second-order intensity reweighted stationary point process. Then for arbitrary
A ∈ Bd with positive and finite Lebesgue measure (0 < |A| <∞) we have

Kinhom(B) =
1

|A|E
∑ 6=

X,Y ∈suppΦ

1[X∈A,Y−X∈B]

λ(X)λ(Y )
, B ∈ Bd. (24)

Proof: We apply the Campbell-Mecke theorem (Theorem 48) for the function

h(x, µ) =
1[x∈A]

λ(x)|A|

∫

Rd

1[y−x∈B]

λ(y)
µ(dy).

It yields

E
∑

X∈suppΦ

h(X,Φ− δX) =
1

|A|E
∑

X∈suppΦ

1[X∈A]

λ(x)

∑

Y ∈suppΦ,Y 6=X

1[Y−X∈B]

λ(Y )

and

∫

Rd

∫

N

h(x, ν)P !x(dν) Λ(dx) =
1

|A|

∫

A

∫

N

∫

B+x

1

λ(x)λ(y)
ν(dy)P !x(dν)λ(x) dx

=
1

|A|

∫

A

Kinhom(B) dx = Kinhom(B).

Remark 48. Note that the right-hand side in (24) is well defined because λ(X) > 0 a.s. for all
X ∈ suppΦ.
Lemma 71. Every stationary point process Φ is second-order intensity reweighted stationary. Moreover,
Kinhom(B) = K(B) for B ∈ Bd, where K is the reduced second-order moment measure of Φ.
Proof: The reduced Palm distributions for stationary point processes are P !x(·) = P !o(t−1x ·). Hence,

∫

N

∫

B+x

1

λ(y)
µ(dy)P !x(dµ) =

∫

N

∫

B+x

1

λ(y)
(txµ)(dy)P

!
o(dµ)

=

∫

N

∫

B

1

λ(y)
µ(dy)P !o(dµ)

= E!o

∑

Y ∈suppΦ∩B

1

λ(Y )
=
1

λ
E!oΦ(B) =

1

λ
λK(B) = K(B).

Lemma 72. Every Poisson point process with intensity function λ is second-order intensity reweighted
stationary and Kinhom(B) = |B|, B ∈ Bd.
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Proof: Using Slivnyak’s theorem (Theorem 49) we get

Kinhom(B) =
∫

N

∫

B+x

1

λ(y)
µ(dy)P !x(dµ)

= E

∫

B+x

1

λ(y)
Φ(dy) = E

∑

Y ∈B+x

1

λ(Y )

=

∫

Rd

1[y∈B+x]
1

λ(y)
λ(y) dy = |B|.

Theorem 59 could be extended into the following statement.

Theorem 73. Let Φ be a simple point process on Rd such that its pair correlation function exists and
is translation invariant, i.e. g(x, y) = g(y − x). Then Φ is second-order intensity reweighted stationary
and

Kinhom(B) =
∫

B

g(u) du, B ∈ Bd.

Proof: If we denote

Kxinhom(B) =
∫

N

∫

B+x

1

λ(y)
µ(dy)P !x(dµ), B ∈ Bd,

then for any A ∈ Bd,
∫

A

Kxinhom(B) dx =
∫

A

∫

N

∫

B+x

1

λ(x)λ(y)
µ(dy)P !x(dµ) Λ(dx)

= E
∑

X∈suppΦ∩A

∑

Y ∈suppΦ,Y 6=X

1[Y ∈B+X]

λ(X)λ(Y )
= E

∑ 6=

X,Y ∈suppΦ

1[X∈A]1[Y ∈B+X]

λ(X)λ(Y )

=

∫ ∫
1[x∈A,y−x∈B]

λ(x)λ(y)
α(2)(dx, dy) =

∫ ∫
1[x∈A,y−x∈B]g(x, y) dxdy

=

∫ ∫
1[x∈A,u∈B]g(u) dxdu = |A|

∫

B

g(u) du.

From this relation we see that Kxinhom(B) =
∫
B
g(u) du does not depend on x.

Remark 49. Under the assumptions of Theorem 73 the reduced second-order moment measure Kinhom
is absolutely continuous with respect to the Lebesgue measure and its density is equal to the pair
correlation function g. A randomly translated regular grid is an example of a point process with the
reduced second-order moment measure that is not absolutely continuous (see Exercise class).

There are further possibilities how to obtain tractable models of inhomogeneous point patterns.
They can be based on operations that produce an inhomogeneous point process from a homogeneous
one. According to Theorem 63, by independent thinning (Definition 70) of a point process with constant
intensity function λ we obtain a point process with intensity function given by the product of λ and the
retention probability function that could be non-constant. Here we mention two operations (local scaling
and transformation) that work on finite point processes defined in a bounded domain.

Local scaling

A class of inhomogeneous spatial point processes obtained by a location-dependent scaling has been
introduced in [7].
Denote by H = (H0, . . . ,Hd) the vector of k-dimensional Hausdorff measures in Rd. For c > 0 we

consider the scaled k-dimensional Hausdorff measure (k = 0, . . . , d)

Hk
c (A) = Hk(c−1A), A ∈ Bd.

Put Hc = (H0c , . . . ,Hd
c ).
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Definition 86. Let Φ be a finite point process with density p w.r.t. the distribution Π of the standard
Poisson point process on B ∈ Bd0 . Assume that p(ν) ∝ g(ν,H), where g is scale-invariant, i.e. g(cν,Hc) =
g(ν,H) for all ν ∈ N ∗

f and c > 0. Furthermore, we consider a scaling function c : R
d → R+ and a locally

scaled version of Hk, k = 0, . . . , d, given by

Hk
c (A) =

∫

A

c(u)−kHk(du), A ∈ Bd,

Again we write Hc = (H0c , . . . ,Hd
c). The scaling function c is assumed to be bounded from below and

from above, i.e. there exist positive constants c1 and c2 such that 0 < c1 < c(u) < c2 for all u ∈ Rd. We
assume that g(ν,Hc) is integrable w.r.t. the distribution Πc of the Poisson point process with intensity
measure Hd

c on B. A locally scaled point process Φc on B with scaling function c and template process
Φ is then a finite point process defined by the density

p(c)(ν) ∝ g(ν,Hc)

w.r.t. Πc.

Remark 50. The density of Φc w.r.t. Π is

pc(ν) = exp

{
−
∫

B

[c(u)−d − 1] du
} ∏

x∈supp ν

c(x)−dp(c)(ν).

The classical examples of homogeneous point processes have scale-invariant density and thus can be
used as a template process Φ. For example, for the Strauss point process we get

g(ν,H) = βH0(supp ν)γ

∑
{x,y}⊆supp ν

1[0<H1([x,y])≤R] ,

where [x, y] is the segment with endpoints x and y. The locally scaled Strauss point process Φc has
density w.r.t. Πc of the form

p(c)(ν) ∝ βν(B)γS
(c)

R
(ν),

where S
(c)
R (ν) =

∑
{x,y}⊆suppν 1[0<H1c([x,y])≤R]

.

Transformation

Theorem 74. Let Φ be a finite simple point process with density p w.r.t. the distribution of the
standard Poisson point process on an open set B ∈ Bd0 . Let A ∈ Bd0 be open and let h : B → A be
a diffeomorphism. Let Jh−1 be the Jacobian of h−1. Then h(Φ) =

∑
X∈suppΦ δh(X) is the finite point

process with density ph w.r.t. the distribution of the standard Poisson point process on A. The density
ph has the form

ph(ν) = p(h
−1(ν)) e|A|−|B|

∏

y∈supp ν

Jh−1(y),

where h−1(ν) =
∑
y∈supp ν δh−1(y).

Proof: Using the change of variable theorem ([11], Theorem 34.18) and (19) we obtain

P(h(Φ) ∈ U) = e−|B|
∞∑

n=0

1

n!

∫

B

· · ·
∫

B

1[h(
∑

n

i=1
δxi
)∈U ]p(

n∑

i=1

δxi) dx1 · · ·dxn

= e−|B|
∞∑

n=0

1

n!

∫

A

· · ·
∫

A

1[
∑n

i=1
δyi∈U ]p(

n∑

i=1

δh−1(yi))

n∏

i=1

Jh−1(yi) dyi

= e−|A|
∞∑

n=0

1

n!

∫

A

· · ·
∫

A

1[
∑n

i=1
δyi∈U ]ph(

n∑

i=1

δyi) dy1 · · · dyn,

where the terms for n = 0 are 1[∅∈U ]p(∅) and 1[∅∈U ]ph(∅).
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Corollary 75. Let Φ be a Markov point process w.r.t. the relation ∼. Its density w.r.t. the distribution
of the standard Poisson point process on B ∈ Bd0 can be expressed as

p(µ) =
∏

ν≺µ

g(ν),

where g is an interaction function. Let h : B → A be a diffeomorphism. Then h(Φ) =
∑

X∈suppΦ δh(X)
is the Markov point process w.r.t. the induced relation ∼h that is defined as

y1 ∼h y2 ⇐⇒ h−1(y1) ∼ h−1(y2), y1, y2 ∈ A.

Furthermore, the density of h(Φ) w.r.t. the distribution of the standard Poisson point process on A ∈ Bd0
has the form

ph(ϕ) =
∏

ψ⊆ϕ

gh(ψ),

where gh is an interaction function given as

gh(ν) =




g(∅)e|A|−|B|, ν = ∅,
g(h−1(y))Jh−1(y), ν = δy,
g(h−1(ν)), ν(A) ≥ 2.

Proof: The form of the density follows from Theorem 74. It remains to verify that gh is an interaction
function w.r.t. ∼h. Let ν be such that supp ν is not a clique w.r.t. ∼h. Then ν must have at least two
atoms and gh(ν) = g(h

−1(ν)) = 1 because h−1(ν) is not a clique w.r.t. ∼.

Notice that the transformation may introduce inhomogeneity in first-order interactions. However,
the higher-order interaction structure is not affected.

Example: Consider A = B = (0, 1)d and assume that we want to describe the first-order inhomogeneity
by the function η(y), y ∈ A. If we can find a diffeomorphism h such that η(y) = Jh−1(y), then by
Corollary 75, h(Φ) is the Markov point process with density

ph(µ) =
∏

y∈suppµ

η(y)
∏

ν≺h−1(µ)

g(ν).

The change of variable theorem implies that

∫

A

Jh−1(y) dy = |B|.

Therefore, η(y) has to satisfy
∫
A η(y) dy = 1. In particular, consider independent contributions to the

inhomogeneity (η(y) = η1(y1) · · · ηd(yd)) having the exponential form

ηi(u) =

{
θie

θiu

eθi−1
for θi 6= 0,

1 for θi = 0,
u ∈ (0, 1), i = 1, . . . , d.

Then h(x) = (h1(x1), . . . , hd(xd)), where

hi(u) =

{
1
θi
log(1 + (eθi − 1)u) for θi 6= 0,

1 for θi = 0,
u ∈ (0, 1), i = 1, . . . , d.

θi ∈ R, i = 1, . . . , d. If Φ is the Strauss point process with density

p(ν) = αβν(B)
∏

{x,y}⊆suppν

γ1[0<‖x−y‖≤R] ,
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then the transformed point process h(Φ) has density

ph(ν) = αβ
ν(B)

∏

y∈supp ν

η(y)
∏

{x,y}⊆supp ν

γ1[0<‖h−1(x)−h−1(y)‖≤R] .

The transformation h could be more generally considered between k-dimensional differentiable ma-
nifolds in Rd (see [20]).

5. Marked point processes

5.1 Basic definitions

A marked point process is obtained from a point process by assigning a certain value to each atom of
the process. This additional information is referred to as the mark.

Definition 87. Consider a complete separable locally compact metric space M, which will be called
the mark space. Its Borel σ-algebra is denoted by B(M). By a marked point process we understand a
simple point process Φm on R

d×M such that its intensity measure Λm satisfies Λm(B×M) <∞ for any
B ∈ Bd0 . For each marked point process we can consider the corresponding unmarked point process or
ground process Φ that is given by the projection on the first component of Rd×M: Φ(B) = Φm(B×M),
B ∈ Bd.

Remark 51. Every point process on Rd can be represented as a marked point process with the mark
space N. The marks correspond to the multiplicities of the atoms.

It is good to realize that not every point process on Rd×M is a marked point process. For example,
take M = R and consider a stationary Poisson point process on Rd+1 (the last component is the mark)
with positive intensity. Then the number of points in B ×M (B ∈ Bd0 , |B| > 0) is almost surely infinite.
Hence, Λm(B ×M) =∞.
The unmarked point process Φ is obtained from Φm if we forget the marks and take into account only

the locations of points. It could happen that Φm has atoms (X,M1) and (X,M2) with X ∈ Rd andM1 6=
M2 two different marks from M. Then Φ would not be simple (X is counted at least twice). Therefore,
we usually add the assumption that Φ is a simple point process. If we would like to speak about the mark
corresponding to the point X ∈ suppΦ, we will denote it M(X). It means that (X,M(X)) ∈ suppΦm.
It follows from Lemma 28 that the marked point process can be expressed by a finite or countable

sum of Dirac measures and its atoms could be enumerated in a measurable way:

Φm =

Φ(Rd)∑

i=1

δ(Xi,Mi). (25)

The mark space could be quite complex. Later we focus mainly on discrete or categorical marks
(Subsection 5.3) and real marks (Subsection 5.4). The case where M is the space of non-empty compact
sets plays an important role in stochastic geometry (see [17]). Functional marks are studied in the paper
[4]. The simplest mark space is the finite space, its elements could be without loss of generality labelled
by 1, . . . , k.

Definition 88. A marked point process Φm with the mark spaceM = {1, . . . , k} is called themultivariate
point process . It can be viewed as the k-tuples of point processes in Rd: Φm = (Φ1, . . . ,Φk), where
Φi(·) = Φm(· × {i}), i = 1, . . . , k. When we want to stress the number of components, we speak about
the k-variate point process (in particular, bivariate, trivariate, etc.).

An example of multivariate point process (k = 3) is shown in Figure 17.
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Figure 17. A realization of stationary Poisson trivariate point process with intensities 3 (triangles), 5
(bullets) and 7 (circles).

Stationary marked point processes have distribution that is invariant under the transformations
that shift the points and keep the marks unchanged. Similarly, the distribution of isotropic marked point
processes is invariant under rotations of the points around the origin in Rd and keeping the marks.

Definition 89. We say that a marked point process Φm is stationary if the distribution of tzΦm is the
same as the distribution of Φm for any z ∈ Rd, where (tzµ)(B×L) = µ((B− z)×L), B ∈ Bd, L ∈ B(M),
µ ∈ N (Rd ×M). A marked point process Φm is isotropic, if ROΦm and Φm have the same distribution
for arbitrary rotation O around the origin, where (ROµ)(B × L) = µ(O−1B × L). We say that Φm is
motion-invariant if it is both stationary and isotropic.

Remark 52. If Φm is stationary (or isotropic) marked point process, then also the corresponding
ground process Φ is stationary (or isotropic). By the intensity of a stationary marked point process we
understand the intensity of the point process Φ.

Theorem 76. For a stationary marked point process Φm with finite and positive intensity λ there exists
a uniquely determined probability measure Q on M such that the intensity measure of Φm has the form

Λm(B × L) = λ |B|Q(L), B ∈ Bd, L ∈ B(M). (26)

Proof: For every L ∈ B(M) we consider a locally finite measure µL(B) = Λm(B × L), B ∈ Bd. From
the assumption of stationarity it follows that it is translation invariant measure on Rd. Hence, it is a
multiple of the Lebesgue measure: µL(B) = λL|B|. If we put Q(L) = λL

λ , then we easily see that Q is a
probability measure that satisfies (26).

Definition 90. The probability measureQ from Theorem 76 is called the stationary mark distribution. A
random elementM0 in the spaceM (a measurable mapping from (Ω,A,P) to (M,B(M))) with distribution
Q is called the typical mark .

Corollary 77. (Campbell theorem of first order for stationary marked point processes) Let Φm be a
stationary marked point process and let h be a non-negative measurable function on Rd ×M. Then it
follows that

E
∑

(X,M)∈suppΦm

h(X,M) = λ

∫

Rd

∫

M

h(x,m)Q(dm) dx.

Proof: The assertion follows from Theorem 41 and Theorem 76.
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The second-order factorial moment measure of a marked point process Φm is denoted by α
(2)
m . For

fixed L1, L2 ∈ B(M) it is obvious that the measure α(2)m (·×L1×·×L2) is absolutely continuous w.r.t. the
second-order factorial moment measure α(2)(· × ·) = α(2)m (· ×M× · ×M) of the unmarked point process
Φ. If we assume that α(2) is σ-finite measure, then (for fixed L1, L2 ∈ B(M)) there exists the Radon-
Nikodym derivative Px1x2(L1 × L2). Similarly as in the definition of Palm distribution we can consider
the regular version, i.e. such that Px1x2(· × ·) is a probability measure for given x1, x2 ∈ Rd.

Theorem 78. Let Φm be a marked point process such that its ground process Φ has σ-finite second-
order factorial moment measure α(2). Then there exists a Markov kernel (x1, x2) 7→ Px1x2 from (R

d ×
Rd,Bd × Bd) to (M×M,B(M)× B(M)) such that

α(2)m (B1 × L1 ×B2 × L2) =

∫

B1×B2

Px1x2(L1 × L2)α
(2)(d(x1, x2)),

B1, B2 ∈ Bd, L1, L2 ∈ B(M).
Proof: The assertion follows from Theorem 44.

Definition 91. The distribution Px1x2 from Theorem 78 is called the two-point mark distribution in
points x1, x2 ∈ Rd, x1 6= x2.
Remark 53. The two-point mark distribution can be interpreted as the distribution of marks in x1 and
x2 under the condition that x1 and x2 are atoms of the process. If Φm is motion-invariant, then Px1x2
depends only on the distance r = ‖x1 − x2‖. In this case we write Por instead of Px1x2 . The expectation
w.r.t. Por will be denoted by Eor.

The Palm distribution (or the reduced Palm distribution) of a marked point process Φm at point
(x,m) is denoted by Pmx (or P

!m
x ). For stationary Φm we can take P

m
x (·) = Pmo (t

−1
x ·) (or P !mx (·) =

P !mo (t
−1
x ·)).

5.2 Marking models

Definition 92. A Poisson point process Φm on Rd × M with diffuse intensity measure Λm such that
Λm(B×M) <∞ for every B ∈ Bd0 , is called a Poisson marked point process with intensity measure Λm.
Remark 54. The corresponding unmarked point process Φ is the Poisson point process on Rd with
intensity measure Λ(·) = Λm(· ×M).

Remark 55. If M is a finite set, say {1, . . . , k}, we speak about multivariate Poisson point process
Φm = (Φ1, . . . ,Φk). In this case, it follows directly from the definition that Φ1, . . . ,Φk are independent
Poisson point processes on Rd.

Another way how to obtain the Poisson marked point process comes from so called independent
marking. In this moment it will be useful to represent Φm by means of (25).

Definition 93. The marked point process Φm =
∑

i δ(Xi,Mi) is called independently marked if the
random marks {Mi} are i.i.d. and independent of the unmarked point process Φ =

∑
i δXi . The common

distribution Q of the marks {Mi} is called the mark distribution of Φm.
Theorem 79. Let Φm be an independently marked point process with mark distribution Q. Then its
intensity measure is

Λm(B × L) = Λ(B)Q(L), B ∈ Bd, L ∈ B(M), (27)

where Λ is the intensity measure of the unmarked point process Φ. If Φm is stationary, the mark distri-
bution coincides with the stationary mark distribution from Definition 90.

Proof: Denote τ = Φm(R
d ×M) = Φ(Rd). For B ∈ Bd and L ∈ B(M) we obtain

Λm(B × L) = E

τ∑

i=1

δ(Xi,Mi)(B × L) =
∑

k∈N0∪{∞}

E

[
1[τ=k]

k∑

i=1

δ(Xi,Mi)(B × L)

]

=
∑

k∈N0∪{∞}

k∑

i=1

E1[τ=k]1[Xi∈B,Mi∈L] =
∑

k∈N0∪{∞}

k∑

i=1

E1[τ=k]1[Xi∈B]E1[Mi∈L]

=
∑

k∈N0∪{∞}

E

[
1[τ=k]

k∑

i=1

δXi(B)

]
Q(L) = EΦ(B) ·Q(L) = Λ(B)Q(L).
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For stationary marked point process we have Λ(B) = λ|B|. From (26) it follows that the stationary mark
distribution is Q.

We have already several times used the principle of independent marking. It appears in the definition
of independent thinning (Definition 70) or Matérn hard-core point process of type II (Definition 71). In
the proof of Theorem 65 we actually utilized the fact that the Poisson marked point process is obtained
by independent marking of the Poisson point process.

Theorem 80. Consider an independently marked point process Φm such that the corresponding un-
marked point process Φ is the Poisson point process in Rd. Then Φm is the Poisson marked point process.

Proof: The void probabilities of a Poisson marked point process are exp{−Λm(A)}, A ∈ K(Rd × M).
We again denote τ = Φm(R

d × M) = Φ(Rd). Then the void probabilities of Φm are (for compact
A ∈ B(Rd ×M))

P(Φm(A) = 0) =
∑

k∈N0∪{∞}

P(τ = k,∩ki=1[(Xi,Mi) 6∈ A])

=
∑

k∈N0∪{∞}

E1[τ=k]

k∏

i=1

1[(Xi,Mi) 6∈A] =
∑

k∈N0∪{∞}

E1[τ=k]

k∏

i=1

∫

M

1[(Xi,m) 6∈A]Q(dm)

= E

τ∏

i=1

∫

M

1[(Xi,m) 6∈A]Q(dm) = E

τ∏

i=1

(
1−

∫

M

1[(Xi,m)∈A]Q(dm)

)
.

Now it suffices to exploit the identity

E
∏

X∈suppΦ

f(X) = exp

{
−
∫

Rd

(1− f(x)) Λ(dx)

}

for an arbitrary measurable function f : Rd → [0, 1] and a Poisson point process Φ on Rd with intensity
measure Λ (see lemma 43). We obtain

P(Φm(A) = 0) = exp

{
−
∫

Rd

∫

M

1[(x,m)∈A]Q(dm) Λ(dx)

}
,

which by Theorem 79 equals to exp{−Λm(A)}. Then from Theorem 31 it follows that Φm has the same
distribution as a Poisson marked point process.

The previous theorem tells us that by applying independent marking to the Poisson point process
we obtain the Poisson marked point process. However, not every Poisson marked point process can be
obtained by this procedure. According to Theorem 79 the resulting process has intensity measure of the
product form. Therefore, Poisson marked point processes with general intensity measure could not be
obtained by independent marking. The corresponding unmarked point process is still Poisson but the
marks could depend on the locations. Nevertheless, this does not happen in stationary case.

Theorem 81. A stationary Poisson marked point process is independently marked.

Proof: We may assume that the intensity measure Λm is non-trivial (for Λm = 0 there is nothing to
prove). Then the representation (25) becomes Φm =

∑∞
i=1 δ(Xi,Mi), because stationarity implies τ =

Φm(R
d ×M) = ∞ a.s. By Theorem 76 we have Λm(B × L) = λ|B|Q(L). Consider a sequence {M̃i} of

i.i.d. random elements with values in M and distribution Q, independent of the unmarked point process
Φ =

∑∞
i=1 δXi . Then Φ̃m =

∑∞
i=1 δ(Xi,M̃i)

is independently marked point process with intensity measure

which is by Theorem 79 equal to Λm(B×L) = λ|B|Q(L). Therefore, both Poisson marked point processes
Φm and Φ̃m have the same distribution.

Remark 56. The assumption of stationarity was used only to get the appropriate form of intensity
measure. In the same way we get that every Poisson marked point process with intensity measure in the
product form Λm(B × L) = Λ(B)Q(L) is independently marked.
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Independent marking gives the simplest model for marked point processes: the marks are mutually
independent and also independent of the locations. For multivariate point processes we can consider
another model that exploits the independence.

Definition 94. A multivariate point process Φm = (Φ1, . . . ,Φk) fulfills the random superposition model
if the subprocesses Φ1, . . . ,Φk are independent.

In general, the independent marking and random superposition are different models. However, they
coincide for stationary Poisson multivariate point process. Independent marking follows from Theorem
81 while random superposition is the consequence of the following lemma.

Lemma 82. A Poisson multivariate point process Φm = (Φ1, . . . ,Φk) fulfills the random superposition
model.

Proof: Consider the setsN ∗
K1,r1

, . . . ,N ∗
Kk,rk

, whereK1, . . . ,Kk are compact subsets of R
d and r1, . . . , rk ∈

N ∪ {0}. Then

P(Φ1 ∈ N ∗
K1,r1 , . . . ,Φk ∈ N ∗

Kk,rk
) = P(Φm(K1 × {1}) = r1, . . . ,Φm(Kk × {k}) = rk)

=

k∏

i=1

P(Φi(Ki) = ri) =

k∏

i=1

P(Φi ∈ N ∗
Ki,ri).

One of the possible approaches that allows dependent marks is so called geostatistical marking.

Definition 95. Let Φ be a simple point process on Rd and let {M(x) : x ∈ Rd} be a random field,
independent of Φ, taking values in the mark space M. Then Φm =

∑
X∈suppΦ δ(X,M(X)) is called geosta-

tistically marked point process or externally marked point process.

Spatial correlations present in the random field {M(x) : x ∈ Rd} cause that the marks of Φm are
correlated. Even if geostatical marking is suitable in many applications the assumption of independence
of marks on the locations may be restrictive in other applications.
As an example of situation where the marks depend on the location we can mention so called

constructed marks . These are generated by a certain mechanism from given unmarked points. The con-
struction usually reflects geometric arrangement of the points. A simple example may be the distance to
the nearest neighbour M(X) = d(X,Φ \ {X}), or the number of further points in the distance smaller
than r > 0, M(X) = Φ(b(X, r))− 1.

5.3 Multivariate point processes

In this subsection we will deal with marked point processes with qualitative marks. We assume that
the mark space is M = {1, . . . , k}. The multivariate point process was introduced in Definition 88.
We restrict to stationary case and define basic numerical and functional summary characteristics which
capture spatial aspects of marks.
Thus, we consider a stationary multivariate point process Φm = (Φ1, . . . ,Φk). The point processes

Φi are stationary as well and we denote their intensities by λi, i = 1, . . . , k. The unmarked point process
Φ =

∑k
i=1 Φi has the intensity λ =

∑k
i=1 λi. The stationary mark distribution Q is an atomic measure

on M. We denote by pi = Q({i}) the probability of the mark i. By (26) we have

EΦi(B) = Λm(B × {i}) = λpi|B|.

Therefore, the intensity of Φi satisfies λi = λpi. Then pi is given by the ratio of the intensity λi and the
overall intensity λ.
First we introduce two numerical characteristics.

Definition 96. Let Dj be the distance from the origin to the nearest point of Φj . The bivariate
aggregation index or also the bivariate Clark-Evans index is defined as

CEij =
d(λjωd)

1/d

Γ(1/d)
E!ioDj , i, j = 1, . . . , k.
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Remark 57. The index reports the expected distance from the point with mark i to the nearest
neighbour with mark j for given process normalized by the same quantity for Poisson multivariate point
process with identical intensities. It means that CEij = 1 for the Poisson multivariate point process. The
values CEij > 1 indicate repulsion among the points with marks i and j. On the other hand, CEij < 1
shows the attraction of these points. For i = j we get the aggregation index of the point process Φi (see
Definition 62).

Definition 97. Let Zi be the i-th nearest point of Φ from the origin. The mingling index takes into
account p nearest neighbour of the typical point and gives the expected ratio of those who are of different
type. It is defined as

M̄p =
1

p
E!o

p∑

i=1

1[M(o) 6=M(Zi)],

where we use the convention that M(o) denotes the mark of the origin and M(Zi) denotes the mark of
Zi.

Remark 58. The mingling index takes larger values if the typical point is surrounded rather by points
with different mark. On the contrary, it takes smaller values when the points with distinct marks have
tendency to separate from each other.

Now we define basic functional characteristics for stationary multivariate point processes. Let
Di(x) = d(x, suppΦi) be the distance of x from the nearest point of the process having mark i. Let
D(x) = d(x, suppΦ) be the distance of x from the nearest point of the process with arbitrary mark.

Definition 98. The cross nearest-neighbour distribution function or also the cross G-function is given
by

Gij(r) = P
!i
o (Dj(o) ≤ r), r ≥ 0.

The condensed G-function is defined by

Gi·(r) = P
!i
o (D(o) ≤ r), r ≥ 0.

Remark 59. The cross G-function is the distribution function of the distance from the typical point
with mark i to the nearest neighbour with mark j. The condensed G-function is the distribution function
of the distance from the typical point with mark i to the nearest neighbour with arbitrary mark.

Definition 99. We define the cross J-function by the relation

Jij(r) =
1−Gij(r)

1− Fj(r)
, r ≥ 0 : Fj(r) < 1,

where Fj(r) is the spherical contact distribution function of Φj (see Definition 63). Next we define the
condensed J-function by the relation

Ji·(r) =
1−Gi·(r)

1− F (r)
, r ≥ 0 : F (r) < 1,

where F (r) is the spherical contact distribution function of Φ.

For stationary Poisson multivariate point process we have Gij(r) = 1 − e−λjωdr
d

and Gi·(r) =

1 − e−λωdr
d

. Consequently, Jij(r) = 1 and Ji·(r) = 1. The cross J-function is identical to 1 for any
random superposition model. In that case Φi and Φj are independent which leads to Gij(r) = Fj(r) and
Jij(r) = 1.

Definition 100. Let J(r) be the J-function of the point process Φ. We define the I-function by

I(r) =
k∑

i=1

piJii(r)− J(r), r ≥ 0 : F (r) < 1.
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Remark 60. Under the assumption of random superposition the I-function is identically equal to zero.
The deviations from zero function may indicate either attractive or repulsive interactions among the
points with distinct marks.

Definition 101. The cross reduced second-order moment measure Kij is defined by the relation

λjKij(B) = E!ioΦj(B), B ∈ Bd,

where λj is the intensity of Φj . Further, we define the cross K-function as

Kij(r) = Kij(b(o, r)), r ≥ 0.

Similarly we define the condensed reduced second-order moment measure by

λKi·(B) = E!ioΦ(B), B ∈ Bd

and the condensed K-function by

Ki·(r) = Ki·(b(o, r)), r ≥ 0.

Remark 61. It means that λjKij(r) represents the mean number of points with mark j in the ball of
radius r and centre in the typical point with mark i. For i = j we get the K-function of the subprocess
Φi. Similarly, λKi·(r) denotes the mean number of points (with arbitrary mark) in the ball of radius r
and centre in the typical point with mark i, the centre is not counted. The condensed K-function can
be obtained from the cross K-functions using the relation

λKi·(r) =
k∑

j=1

λjKij(r).

If g is the pair correlation function of a multivariate point process Φm, we write shortly gij(x, y) =
g((x, i), (y, j)).

Theorem 83. Let Φm be a multivariate point process and assume that its second-order product density

λ
(2)
m exists. The cross reduced second-order moment measure is absolutely continuous w.r.t. the Lebesgue
measure and it can be expressed as

Kij(B) =
∫

B

gij(u) du, B ∈ Bd.

Furthermore,

Kij(B) = Kji(−B), B ∈ Bd.

In particular, the cross K-function is symmetric,

Kij(r) = Kji(r), r ≥ 0.

Proof: In analogy with the proof of Theorem 59 we obtain

Kij(B) =
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,y−x∈B]α
(2)
ij (dx, dy),

where α
(2)
ij (B1×B2) = α

(2)
m (B1×{i}×B2×{j}). For the second-order product density λ(2)m ((x, i), (y, j))

we use shorter notation λ
(2)
ij (x, y). From stationarity we have that λ

(2)
ij (x, y) = λ

(2)
ij (y−x) is the function

of y− x. The definition of second-order factorial moment measure yields α
(2)
ij (B1×B2) = α

(2)
ji (B2×B1).
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Therefore, λ
(2)
ij (x, y) = λ

(2)
ji (y, x), which can be written as λ

(2)
ij (u) = λ

(2)
ji (−u). Using the last relation we

get

Kij(B) =
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,y−x∈B]λ
(2)
ij (y − x) dxdy

=
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,u∈B]λ
(2)
ij (u) dxdu

=
1

λiλj

∫

B

λ
(2)
ij (u) du =

∫

B

gij(u) du.

By similar arguments we get

Kji(−B) =
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,y−x∈−B]λ
(2)
ji (y − x) dxdy

=
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,u∈−B]λ
(2)
ji (u) dxdu

=
1

λiλj |A|

∫

Rd

∫

Rd

1[x∈A,u∈B]λ
(2)
ij (u) dxdu =

1

λiλj

∫

B

λ
(2)
ij (u) du =

∫

B

gij(u) du.

Corollary 84. The pair correlation function of a motion-invariant multivariate point process is sym-
metric: gij(r) = gji(r). Furthermore, the following relation with the cross K-function holds,

gij(r) =
K ′
ij(r)

σdrd−1
, r > 0.

Proof: The proof is analogous to the proof of the relation between the pair correlation function and the
K-function for point processes (Corollary 60). Theorem 83 states that the pair correlation function is
the density of the cross second-order reduced moment measure,

Kij(B) =
∫

B

gij(u) du.

Now isotropy and polar decomposition of the Lebesgue measure lead to

Kij(r) =

∫

b(o,r)

gij(‖u‖) du =
∫ r

0

σds
d−1g(s) ds.

5.4 Processes with quantitative marks

Now we move from qualitative marks to quantitative ones. We will assume that the mark space isM = R+.
In this subsection Φm will be a stationary marked point process with intensity λ and stationary mark
distribution Q. As usual the corresponding unmarked point process is denoted by Φ. Again we define basic
numerical and functional summary characteristics. Naturally we can apply commonly used characteristics
to describe stationary mark distribution. If M0 is the typical mark of Φm, then F (t) = Q([0, t]) is its
distribution function, EM0 =

∫∞

0 mQ(dm) is the mean typical mark and varM0 is the variance of typical
mark.

Definition 102. The mark-sum measure is defined as

S(B) =

∫

B×M

mΦm(d(x,m)), B ∈ Bd.

Remark 62. It is a stationary random measure on Rd. Its intensity is

λS = ES([0, 1]d) = λEM0.
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This follows from Theorem 77 with h(x,m) = m1[x∈[0,1]d].

Definition 103. We define the index of mark-sum dispersion as

IMD =
varS(B)

λ|B|EM0
,

where B is some test set, e.g. a ball of radius r. This index gives the ratio of the variance of the mark-sum
in B and the corresponding mean.

Definition 104. Let Z1 be a point of Φ that is the nearest neighbour of o. For a measurable function
f : R+ × R+ → R+ we define the non-normalised nearest-neighbour correlation index as

ν̄f = E!of(M(o),M(Z1)).

If we put

cf =

∫ ∞

0

∫ ∞

0

f(m1,m2)Q(dm1)Q(dm2)

and if cf > 0, then we get the nearest-neighbour correlation index

n̄f =
ν̄f
cf
.

Remark 63. A value of n̄f larger than 1 indicates that the mean function f of the marks at the typical
point and its nearest neighbour is greater than the mean function of the typical mark and its independent
copy. We have n̄f = 1 when the marks of the typical point and its nearest neighbour are independent.
The most common choice of f is f(m1,m2) = m1m2. Then we speak about the nearest-neighbour mark
product index . The values larger than 1 happen when the mean mark product of the typical point and its
nearest neighbour is above the average, i.e. it indicates some mutual stimulation. Other common choices
for f are f(m1,m2) = m2 or f(m1,m2) =

1
2 (m1 −m2)

2.

In the following we assume that Φm is motion-invariant.

Definition 105. For a measurable function f : R+ × R+ → R+ we define the second-order factorial
moment measure associated with f by the relation

α
(2)
f (B1 ×B2) = E

∑ 6=

(X1,M1),(X2,M2)∈suppΦm

f(M1,M2)1[X1∈B1,X2∈B2].

Assume that there exists a density λ
(2)
f (x, y) of this measure w.r.t. the Lebesgue measure. From stationa-

rity and isotropy it follows that λ
(2)
f (x, y) = λ

(2)
f (‖x− y‖) is the function of ‖x− y‖. If the second-order

product density λ(2) of Φ exists we define the non-normalized f -mark correlation function as

κf (r) =
λ
(2)
f (r)

λ(2)(r)
, r > 0 : λ(2)(r) > 0.

We put

cf =

∫ ∫
f(m1,m2)Q(dm1)Q(dm2)

and assume that cf > 0. Then the f -mark correlation function is

kf (r) =
κf (r)

cf
, r > 0.

Remark 64. The non-normalized f -mark correlation function can take arbitrary non-negative values.
Therefore, the notion „correlation functionÿ could be misleading.
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The interpretation of the non-normalized f -mark correlation function is clearer from the following
lemma.

Lemma 85. Let Φm be a motion-invariant marked point process. Denote by M(o) the mark of the
origin o and by M(r) the mark of arbitrary point in the distance r from o. The non-normalized f -mark
correlation function satisfies

κf (r) = Eorf(M(o),M(r)), r > 0.

Proof: We rewrite α
(2)
f by the second-order Campbell theorem (Theorem 41) and apply Theorem 78:

α
(2)
f (B1 ×B2) =

∫

B2×R+

∫

B1×R+

f(m1,m2)α
(2)
m (d(x1,m1), d(x2,m2))

=

∫

B2

∫

B1

∫

R+

∫

R+

f(m1,m2)Px1,x2(dm1, dm2)α
(2)(dx1, dx2)

From this we see that

λ
(2)
f (x, y) = λ

(2)(x, y)

∫

R+

∫

R+

f(m1,m2)Px,y(dm1, dm2).

Consequently,

κf (r) =

∫

R+

∫

R+

f(m1,m2)Por(dm1, dm2).

The function κf (r) represents the mean of f -function of two marks corresponding to the points of
the process at distance r. It is also seen that the normalization cf is chosen so that kf (r) is equal to 1
whenever the marks at distance r are independent. By taking special choices of the function f different
second-order characteristics are obtained. We will summarize the most often used choices.

Definition 106. If the mean mark is positive, we define Stoyan’s mark correlation function as

kmm(r) =
EorM(o)M(r)

(EM0)2
, r > 0,

i.e. it is kf (r) with f(m1,m2) = m1m2, and the r-mark function as

km·(r) =
EorM(o)

EM0
, r > 0,

i.e. km·(r) = kf (r) with f(m1,m2) = m1.
The mark variogram is defined by

γm(r) =
1

2
Eor(M(o)−M(r))2, r > 0,

i.e. γm(r) = κf (r) with f(m1,m2) =
1
2 (m1 −m2)

2. By taking f(m1,m2) = m1 we get the E-function

E(r) = EorM(o), r > 0.

Furthermore, we define the V -function as

V (r) = Eor(M(o)− E(r))2, r > 0.

Remark 65. The function E(r) gives the mean mark of the point for which there is another point of
the process in distance r. When marks and locations are independent, the existence of another point at
distance r may influence the magnitude of the mark of given point. By normalizing with mean mark we
obtain the function km·(r).
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6. Appendix

6.1 Gaussian distribution

Theorem 86. Assume that the random vector X = (X1, . . . , Xn)
T has the n-dimensional normal

distribution with mean µ = (µ1, . . . , µn)
T and covariance matrix Σ. For k ∈ {1, . . . , n − 1} divide the

vector X into X1 = (X1, . . . , Xk)
T and X2 = (Xk+1, . . . , Xn)

T, the vector µ into µ1 = (µ1, . . . , µk)
T

and µ2 = (µk+1, . . . , µn)
T, and the matrix Σ into 4 submatrices Σ11, Σ12, Σ21 and Σ22 of orders k× k,

k × (n− k), (n− k)× k and (n− k)× (n− k), respectively,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then the conditional distribution of X1 given X2 is the k-dimensional normal distribution with mean
µ1 +Σ12Σ

−1
22 (X2 − µ2) and covariance matrix Σ11 −Σ12Σ−1

22 Σ21.

Proof: It can be found e.g. in [1].

Theorem 87. Let X1, . . . , Xn be independent identically distributed random variables with standard
Gaussian distribution N(0, 1). Let h : Rn → R be an arbitrary measurable scale-invariant function,
that is h(ax1, . . . , axn) = h(x1, . . . , xn) for every a > 0 and x1, . . . , xn ∈ R. Then the random variables
H = h(X1, . . . , Xn) and Q = X

2
1 + · · ·+X2n are independent.

Proof: Assume that there exists the moment generating function of the random variable H at some
neighbourhood U of zero. Then the moment generating function of the random vector (H,Q)T is

Eet1H+t2Q =
1

(2π)n/2

∫

Rn

et1h(x1,...,xn)e−(1−2t2)
∑

n

i=1
x2i/2 d(x1, . . . , xn)

=
1

(2π)n/2

∫

Rn

et1h(y1,...,yn)e−
∑n

i=1
y2i /2(1 − 2t2)−n/2 d(y1, . . . , yn)

= (1− 2t2)−n/2Eet1H , t1 ∈ U, t2 < 1/2,

which is in the form of the product of two moment generating functions. Therefore, H and Q are
independent and Q has the χ2-distribution with n degrees of freedom. If the moment generating function
of H does not exist, we have to use the characteristic function to reach the same conclusion.

6.2 Bessel functions

The Bessel function of the first kind of order ν is defined as

Jν(z) =

∞∑

k=0

(−1)k
k!Γ(k + ν + 1)

(z
2

)2k+ν
, z ∈ C.

It is a solution of the Bessel differential equation

y′′ +
1

z
y′ +

(
1− ν2

z2

)
y = 0.

There exist two kinds of the modified Bessel functions . They are the solutions of the modified Bessel
equation

w′′ +
1

z
w′ −

(
1 +

ν2

z2

)
w = 0.

The modified Bessel function of the first kind of order ν is

Iν(z) = i
−νJν(zi) = e

− 1
2νπiJν(zi) =

∞∑

k=0

1

k!Γ(k + ν + 1)

(z
2

)2k+ν

and the modified Bessel function of the second kind of order ν has the form

Kν(z) =
π

2
· I−ν(z)− Iν(z)

sinπν
.

In particular, for ν = 1/2 we get

I1/2(z) =

√
2

πz
sinh z, K1/2(z) =

√
π

2
e−zz−1/2.
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6.3 Measure theory

Let E be a given set. We recall some basic definitions of families of certain subsets of E.

Definition 107. A collection R is called a ring, if it contains the empty set ∅ and it is closed under
finite unions and set differences. If it additionally contains the whole space E, then it is called an algebra.

Definition 108. A collection P is a π-system if it is non-empty and closed under finite intersections
(A ∩B ∈ P whenever A,B ∈ P).
Definition 109. A collection D is called a Dynkin system or λ-system if
(i) ∅ ∈ D, E ∈ D,
(ii) A ∈ D ⇒ Ac ∈ D,
(iii) A1, A2, . . . ∈ D pairwise disjoint ⇒ ∪iAi ∈ D.
Remark 66. A σ-algebra is both a π-system and a Dynkin system. Conversely, a class that is both a
π-system and a Dynkin system is a σ-algebra.

We often use the following result.

Theorem 88. (Dynkin) Let P be a π-system and D a Dynkin system such that P ⊆ D. Then σP ⊆ D.
Proof: See Theorem 1.1 in [9].

Definition 110. We say thatM is a monotone system if
(i) A1 ⊆ A2 ⊆ · · · ∈ M ⇒ ∪iAi ∈ M,
(ii) A1 ⊇ A2 ⊇ · · · ∈ M ⇒ ∩iAi ∈ M.
Remark 67. A Dynkin system is a monotone system.

Theorem 89. (monotone class theorem) If R is a ring andM is a monotone system such that R ⊆ M,
then σR ⊆ M.
Proof: See 11.4 in [11].

Theorem 90. (uniqueness of measure extension) Let (E, E) be a measurable space and S ⊆ E be a
π-system such that σS = E . If two σ-finite measures µ and ν coincide on S, then µ = ν.
Proof: See Lemma 1.17 in [9] or Lemma 2.2 in [14].

References

[1] J. Anděl (2011): Základy matematické statistiky, in Czech, 3. vydání, Matfyzpress, Praha.

[2] Z. Ciesielski and A. Kamont (1995): Levy’s fractional Brownian random field and function
spaces, Acta Sci. Math. (Szeged) 60, 99–118.

[3] A. D. Cliff and J. K. Ord (1981): Spatial Processes; Models and Applications, Pion Limited,
London.

[4] C. Comas, P. Delicado and J. Mateu (2011): A second order approach to analyse spatial point
patterns with functional marks, TEST 20, 503–523.

[5] D. J. Daley and D. Vere-Jones (2003): An Introduction to the Theory of Point Processes,
Volume I: Elementary Theory and Methods, second edition, Springer-Verlag, New York.

[6] D. J. Daley and D. Vere-Jones (2008): An Introduction to the Theory of Point Processes,
Volume II: General Theory and Structure, second edition, Springer-Verlag, New York.

[7] U. Hahn, E. B. Vedel Jensen, M.-C. van Lieshout and L. S. Nielsen (2003): Inhomogeneous
spatial point processes by location-dependent scaling, Adv. Appl. Prob. (SGSA) 35, 319–336.

[8] E. Ising (1925): Beitrag zur Theorie des Ferromagnetismus, Z. Physik 31, 253–258.

[9] O. Kallenberg (2002): Foundations of Modern Probability, 2nd edition, Springer, New York.

[10] I. Karatzas and S. E. Shreve (1988): Brownian Motion and Stochastic Calculus, Springer-
Verlag, New York.

[11] J. Lukeš and J. Malý (2005): Measure and Integral, Matfyzpress, Prague.

75



[12] L. Onsager (1944): Crystal statistics. I. A two-dimensional model with an order-disorder transi-
tion, Phys. Rev. 65, 117–149.

[13] Z. Prášková (2004): Základy náhodných procesů II, in Czech, Karolinum, Praha.

[14] J. Rataj (2006): Bodové procesy, in Czech, Karolinum, Praha.

[15] H. Rue and L. Held (2005): Gaussian Markov Random Fields: Theory and Applications, Chap-
man & Hall/CRC, Boca Raton.

[16] Z. Sasvári (1994): Positive Definite and Definitizable Functions, Akademie Verlag, Berlin.

[17] R. Schneider, W. Weil (2008): Stochastic and Integral Geometry, Springer-Verlag, Berlin.

[18] D. J. Strauss (1975): A model for clustering, Biometrika 62, 467–475.

[19] J. Štěpán (1987): Teorie pravděpodobnosti – matematické základy, in Czech, Academia, Praha.

[20] E. B. Vedel Jensen and L. S. Nielsen (2000): Inhomogeneous Markov point processes by
transformation, Bernoulli 6, 761–782.

[21] P. Whittle (1954): On stationary processes in the plane, Biometrika 41, 434–449.

76


