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Abstract:

• We propose two-sample gradual change analysis motivated by gender differences ob-
served in a real data set containing jumping speeds of 432 girls and 364 boys aged 6
to 19 years. Looking at this data set from the point of view of change-point analysis
is more natural and it leads to more precise estimators than application of standard
two-sample t-test in each age group. Apart of establishing the asymptotic distribu-
tion of the proposed two-sample change-point estimator, we also investigate its small
sample properties in a simulation study.

Key-Words:

• change point; gradual change; multiple comparison; two-sample test; wild bootstrap.

AMS Subject Classification:

• 62F10, 62F25, 62F40, 62F03.
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1. INTRODUCTION

In Table 5 and Figure 3, we present summary statistics of jumping speeds

observed in a sample of 432 girls and 364 boys between 6 and 19 years measured

by Leonardo Mechanograph Ground Reaction Force Plate (Šumńık et al., 2013).

In this data set, one is naturally interested in investigating the location of the

unknown change point: looking at the p-values of two-sample t-tests calculated

for each of the thirteen age categories, it seems that jumping speeds for boys and

girls are about the same from 6 to 10 years and boys’ jumping speeds are clearly

higher from 13 years on.

Unfortunately, applying the two-sample t-test thirteen times cannot be rec-

ommended without multiple testing corrections. Therefore, Table 5 contains also

the p-values adjusted for multiple comparisons using Bonferroni and Benjamini–

Hochberg (BH) method. The conclusions based on these two multiple comparison

methods are similar although the Bonferroni method controls the family-wise er-

ror rate while the Benjamini–Hochberg method (Benjamini and Hochberg, 1995)

controls the false discovery rate. It is interesting that also other standard multi-

ple comparisons methods (Holm, 1979; Hommel, 1988; Hochberg, 1988; Benjamini

and Yekutieli, 2001) implemented in the function p.adjust() in R (R Core Team,

2015) detect statistically significant differences at the same age category (13 years

and above) while statistically significant differences are not detected for the two

most “suspicious” un-adjusted p-values (0.061 and 0.047 for 11 and 12 years,

respectively).

In Section 2, we study this two-sample testing problem from the point of

view of change-point analysis using a simple model of gradual change (Hušková,

1999) so that instead of many independent two-sample t-tests we only estimate

a single change-point. In Sections 3 and 4, we investigate the asymptotic prop-

erties of the proposed estimators under various assumptions (motivated by the

application to the jumping speeds data set) and we show that the wild bootstrap

provides both confidence intervals and p-values controlling the overall significance

level.

Section 5 contains a small simulation study to check the behavior for finite

sample situations. The jumping speeds data set is analyzed in Section 6 and we

will see that the change-point approach detects statistically significant differences

earlier (i.e., for younger children) than the two-sample t-tests. A short summary

is given in Section 7.
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2. PROCEDURES

We assume that our observations fall into two distinct subgroups that are

further split into n distinct ordered categories and that the nji observations in the

j-th subgroup and i-th category are summarized by their sample mean Yji and

sample variance σ̂2
ji, j ∈ {1, 2}, i = 1, ..., n. Under additional assumptions one

could naturally apply n independent two-sample t-tests in order to compare the

two subgroups within each category and use some of the multiple test procedures

as discussed above.

However, we propose another approach based on ideas of the change point

analysis. Particularly, motivated by the above data set on the jumping speeds,

we introduce a simple two sample model with gradual changes:

(A1) Observations Yjik (j = 1, 2; k = 1, ..., nji) are obtained at time i

(i = 1, ..., n).

(A2) All observations are independent.

(A3) E(Y1i −Y2i) = µ + δ((i− k0)/n)+ (i = 1, ..., n), where µ, δ are un-

known parameters and k0 = nθ0 for some θ0 ∈ (0, 1).

(A4) Var(Yjik) = σ2
ji > 0 (j = 1, 2; i = 1, ..., n; k = 1, ..., nji).

We use the notation Yji =
∑nji

k=1 Yjik/nji, a+ = max(a, 0) with k0 denoting the

unknown location of the change point, µ the unknown expectation of difference

before the change, and δn the slope (speed) of the gradual change after k0. Notice

that, generally, variances of the single observations need not be the same.

Assumptions (A1)–(A4) are motivated by the application in Section 6: par-

ticularly, in this case, Assumption (A2) is satisfied since we observe only one

measurement per subject. In other applications, Assumptions (A2) and (A3)

may require some modifications to cover panel (longitudinal) data or time series.

Also the trend after the change may not necessarily be linear; more generally, it

can be some nondecreasing function strictly increasing after the change point.

We propose to estimate the unknown parameters by the least squares

method. In the following, we deal separately with the homoscedastic case (Sec-

tion 3) and the heteroscedastic case (Section 4).
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3. HOMOSCEDASTIC CASE

Here we deal with a two sample homoscedastic model with gradual changes

assuming additionally:

(A4*) Var(Y1i − Y2i) = σ2/m (i = 1, ..., n), where σ2 > 0 is an unknown

parameter and m can depend on n.

One-sample homoscedastic models with various gradual changes were stud-

ied by a number of authors, e.g., Hinkley (1971); Feder (1975); Shaban (1980);

Jarušková (1998); Hušková (1999); Hušková and Steinebach (2000, 2002). They

constructed procedures for testing the null hypothesis no change versus the al-

ternative there is a change, derived the least squares estimators, and studied its

limit behavior for n → ∞. We use the same method for our problem.

The least squares estimators µ̂, δ̂, k̂µ are defined as minimizers of the sum

of squares
∑n

i=1

{
Y1i − Y2i − a− d((i−k)/n)+

}2
with respect to a, d, k. Denoting

xik = ((i − k)/n)+ and x̄k =
∑n

i=1 xik/n, direct calculations give:

k̂µ = arg max
k∈(1,n)

[{∑n
i=1(xik − xk) (Y1i − Y2i)

}2

∑n
i=1(xik − xk)2

]
,(3.1)

δ̂µ =

∑n
i=1(xibk − xbk) (Y1i − Y2i)∑n

i=1(xibk − xbk)2 ,

µ̂ =
1

n

n∑

i=1

(Y1i − Y2i) − δ̂µxbk .

Assuming additionally that µ = 0, the least squares estimators are:

k̂0 = arg max
k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)

}2

∑n
i=1 x2

ik

]
,(3.2)

δ̂0 =

∑n
i=1 x

ibk(Y1i − Y2i)∑n
i=1 x2

ibk .

Unfortunately, there are no explicit expressions for k̂µ and k̂0 and these

estimators have to be found as a solution of an optimization problem. The prop-

erties of these estimators can be studied either through asymptotics (if n is large

enough) or through a simulation study. We start with asymptotics and simula-

tions are presented in Section 5.
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Following the proofs in Jarušková (1998) and Hušková (1998, 1999) we get

that in our homosecastic setup ((A1)–(A3) and (A4*)) for n → ∞

(nm)1/2 δ

σ

{
θ0(1 − θ0)

1 + 3θ0

}1/2 k̂µ − k0

n

D
−→ N(0, 1)

and

(nm)1/2 (1 − θ0)
3/2

σ

(
1 + 3θ0

12

)1/2

(δ̂µ − δ)
D
−→ N(0, 1) ,

where N(0, 1) denotes the standard normal distribution and
D
−→ denotes conver-

gence in distribution. Both assertions hold true both for m fixed and m → ∞

together with n → ∞. The limit properties remain true even if δ depends on n

and tends to 0 for n → ∞ but no faster than n−1/2 log log n. The above results

also imply consistency:

(nm)1/2 δ(k̂µ − k0)/n = OP (1) and (nm)1/2 (δ̂µ − δ) = OP (1) .

Quite analogously when µ = 0 we get that the limit distributions of

(nm)1/2 δ

σ

(
1 − θ0

4

)1/2 k̂0 − k0

n
and (nm)1/2 (1 − θ0)

3/2

31/2 σ
(δ̂0 − δ)

are standard normal N(0, 1).

In Figure 1, the asymptotic distributions of k̂µ and k̂0 for nine distinct values

of k0 are compared to histograms obtained by 1000 Monte Carlo simulations. Very

good approximations via the limit distribution are evident for k0 ≤ 15 and, as

expected, they are slightly worse but still acceptable for k0 > 15. The assumption

µ = 0 visibly improves the precision of k̂0 for smaller values of k0.

In case the trend in the means is not linear after the change (as in (A3))

but nondecreasing with strict monotonicity after the change point, the proposed

change point estimators may be biased (Hušková and Steinebach, 2002).

Under the assumption of homoscedasticity, we may combine the estimators

σ̂2
ji observed in each category into the standard pooled estimator σ̂2

pooled of the

variance σ2. The assumption that Var(Y1i − Y2i) does not depend on i is rather

restrictive and a more general case of variances will be studied in the next section.
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Figure 1: Densities of asymptotic distributions and histograms of 1000
simulated values of k̂µ (upper plot) and k̂0 (lower plot) in the
homoscedastic case for n = 20, σ2 = 1, m = 20, µ = 0, δ = 1,
and k0 ∈ {2, 4, ..., 18}.

4. HETEROSCEDASTIC CASE

4.1. Change-point estimators

Let us assume (A1)–(A4) with µ = 0. We may still use the estimators

introduced in the previous section: they still have the same limit distributions

but with different standardizations. Denoting by τ2
i = Var(Y1i − Y2i) = σ2

1i/n1i +

σ2
2i/n2i, we define the estimator k̂0(τ

2) taking also the heteroscedasticity into

account:

k̂0(τ
2) = arg max

k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)/τ2

i

}2

∑n
i=1 x2

ik/τ2
i

]
.

In practice, the unknown true variances τ2
i are replaced by τ̂2

i = σ̂2
1i/m1i + σ̂2

2i/m2i

leading to the change-point estimator:

(4.1) k̂0(τ̂
2) = arg max

k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)/τ̂2

i

}2

∑n
i=1 x2

ik/τ̂2
i

]
= arg max

k∈(1,n)
T2,bτ2(k) .

Concerning properties of these estimators under Assumptions (A1)–(A4)

with the additional assumption

(4.2) τ2
−/n ≤ τ2

i ≤ τ2
+/n , i = 1, ..., n ,
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for some 0 < τ2
− ≤ τ2

+ < ∞, the asymptotic distribution remains normal with zero

mean but the asymptotic variance has a more complicated structure and we do

not give here explicit formulas. This can again be proved along the lines of

the proofs in Hušková (1999). To get approximation for the distribution of the

estimator k̂0(τ̂
2), a proper version of the wild bootstrap provides a reasonable

approximation. The algorithm is described below.

4.2. Bootstrap approximation for the distribution of k̂ = k̂0(τ̂
2)

For simplicity, we will write k̂ = k̂0(τ̂
2). Under Assumptions (A1)–(A4)

and (4.2), the observed sample mean differences Di = Y1i − Y2i have zero mean

and standard deviation τi = (σ2
1i/n1i + σ2

2i/n2i)
1/2. The distribution of k̂ = k̂0(τ̂

2)

can be approximated by the wild bootstrap (Shao and Tu, 1995):

Algorithm 1. Bootstrap algorithm

Estimate parameters δ and k0.

Calculate fitted values D̂i = δ̂0((i− k̂)/n)+ (i = 1, ..., n).
For b = 1 to b = B

Generate D∗
i = D̂i + τ̂iε

∗
i (i = 1, ..., n), where ε∗i ∼ N(0, 1) are independent.

Calculate the change-point estimator k̂∗
b from the bootstrap sample D∗

1, ..., D
∗
n.

Calculate the empirical quantile q∗α from k̂∗
1 − k̂, ..., k̂∗

B − k̂ for prechosen α ∈ (0, 1).

The empirical bootstrap quantiles q∗α provide approximations for the true

quantiles qα of k̂ − k0, particularly it can be proved:

1 − α = P (k̂ − k0 > qα) = P (k0 < k̂ − qα) = P (k0 < k̂ − q∗α) + oP (1)

and, therefore, k̂ − q∗α can be used as an upper bound of an asymptotic one-sided

(1 − α) confidence interval for k0.

Remark 4.1. As a complementary problem, we can test hypotheses con-

cerning the change-point location, i.e., the null hypothesis H0 : k0 ≥ k1 against

H1 : k0 < k1 for some given k1. Denoting by K a random variable with the same

distribution as k̂ − k0 and defining the p-value as P (K < k̂ − k1) (we reject H0

for small values of k̂), we obtain that, for large B,
∑B

b=1 I(k̂∗
b − k̂ < k̂ − k1)/B is

a reasonable approximation of the p-value.

Remark 4.2. The null hypothesis of no-change can easily be tested by

bootstrapping the test statistic T2,bτ2(k) because, under the null hypothesis of

no-change, we can easily generate the bootstrap samples D∗
i = τ̂iε

∗
i .
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5. SIMULATIONS

5.1. Setup of the simulation study

In this section, we investigate small sample properties of the proposed

asymptotic tests and confidence intervals in various setups. We consider the

model of gradual change (A3). In each step of the simulation we proceed as

follows:

Algorithm 2. Simulation study

Set n and the change-point θ0 = k0/n.
Set variances σ2

1i and σ2
2i and numbers of observations n1i and n2i (i = 1, ..., n).

Calculate variances τ2
i = σ2

1i/n1i + σ2
2i/n2i (i = 1, ..., n).

For s = 1 to s = S
For i = 1 to i = n

Generate Di = Y1i − Y2i from N((i − k0)+, τ2
i ).

Generate τ̂2
i from σ2

1iχ
2
n1i−1/{n1i(n1i − 1)} + σ2

2iχ
2
n2i−1/{n2i(n2i − 1)}.

Calculate k̂
(s)
0 applying one of the change-point estimators k̂ defined by (3.1),

(3.2), or (4.1).
Calculate the 95% confidence interval for k0 using Algorithm 1.

Calculate the bias and the mean squared error of the simulated k̂
(s)
0 (s = 1, ..., S).

Calculate the empirical coverage probability.

Simulations for the homoscedastic case are reported in Section 5.2 while the

heteroscedastic case is investigated in Section 5.3. In Section 5.4, we comment

on some practical problems caused by rounding effects.

5.2. Homoscedastic case

Under homoscedasticity, we may utilize the asymptotic normality of k̂µ and

k̂0 with σ2 estimated by the “pooled” estimator σ̂2
pooled.

A pilot simulation study, not presented here, with n ∈ {10, 20} and m ∈

{20, 40}, comparing the empirical distributions of k̂µ and k̂0 suggests that both

estimators are generally reasonably good but exhibit large mean squared error

and negative bias for k0 close to n. The mean squared error of k̂µ is larger than

the mean squared error of k̂0 for small values of k0. This observation corresponds

to the asymptotic variances derived in Section 3, see also Figure 1. The cover-

age probabilities were close to the nominal values unless k0 was very large (for

both estimators) or very small (only for k̂µ). The coverage probabilities of the

confidence intervals based on σ2 and its estimator σ̂2
pooled were very similar.
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The worse behavior k̂µ for small k0 seems to result from the additional

uncertainty caused by estimating the parameter µ. This leads to the corrected

estimator k̂corr
µ = k̂µ − µ̂/δ̂µ that will also be considered in further simulations.

In Table 1, we investigate the empirical coverage probabilities of one-sided

95% bootstrap confidence intervals calculated with and without homoscedastic-

ity assumptions (homoscedasticity assumptions are applicable only because the

number of observations in each category is constant). Under homoscedasticity

assumptions, we estimate the common variance by σ̂2
pooled and this variance esti-

mator is also used in the bootstrap. More generally, we can also proceed without

assuming homoscedasticity and follow Algorithm 1 from Section 4.2 using all 2n

sample variances σ̂2
ji.

Results in Table 1 confirm that coverage probabilities are rather small if

the change occurs close to n. The heteroscedastic version works well even in the

homoscedastic setup.

Table 1: Coverage probabilities (in %) of one-sided 95% confidence intervals of
four change point estimators in the homoscedastic case (1000 simula-
tions, B = 1000). The confidence intervals are based on bootstrapping
utilizing either the pooled variance estimator σ̂2

pooled (homoscedastic

version) or 2n sample variances σ̂2
ji (heteroscedastic version).

θ0

bσ2
pooled bσ2

jibkµ
bk0

bkcorr
µ

bk0(bτ2) bkµ
bk0

bkcorr
µ

bk0(bτ2)

0.1 88.8 95.2 93.3 94.0 89.5 93.9 93.7 94.5
0.2 92.4 95.9 92.8 94.9 91.7 94.8 94.3 95.6
0.4 94.1 92.3 92.9 91.9 95.5 92.4 93.3 92.0

nji = 10
0.6 92.8 93.2 92.6 92.4 93.9 89.9 92.2 90.2
0.8 90.4 90.5 90.0 90.8 89.6 87.7 89.2 89.1
0.9 78.1 78.3 79.2 78.4 80.1 74.8 76.4 76.0

n = 10
0.1 93.9 92.0 94.4 92.1 95.1 92.8 94.6 93.0
0.2 96.3 92.8 95.6 92.4 95.4 92.7 95.8 94.7
0.4 93.5 92.0 92.3 91.1 92.7 91.6 92.0 90.8

nji = 20
0.6 87.6 90.1 90.1 89.8 89.3 87.1 88.9 88.4
0.8 88.8 89.0 89.7 87.8 89.9 86.9 87.2 88.4
0.9 72.1 70.4 74.9 70.1 72.4 70.9 72.6 70.3

0.1 96.5 94.3 94.0 94.9 94.9 93.5 95.8 93.1
0.2 97.1 94.1 95.0 93.7 96.9 93.0 95.0 93.6
0.4 94.0 93.7 93.8 93.9 94.4 92.1 93.0 92.8

nji = 10
0.6 93.2 90.9 92.7 92.7 91.9 92.1 91.7 91.8
0.8 94.8 95.6 94.3 95.3 93.8 94.5 92.5 93.7
0.9 84.1 84.3 84.8 84.0 83.1 81.8 84.4 80.9

n = 20
0.1 97.3 95.0 94.4 94.9 97.0 93.5 93.4 95.3
0.2 95.1 94.3 94.1 94.3 93.5 93.9 94.1 94.0
0.4 93.0 93.1 93.1 92.9 93.6 93.6 93.1 94.7

nji = 20
0.6 91.9 90.7 92.8 92.8 91.7 93.6 92.0 91.4
0.8 93.2 91.9 91.3 90.7 91.8 92.5 91.5 89.3
0.9 79.5 81.4 83.4 79.3 82.3 80.4 82.4 82.4



Two-Sample Gradual Change Analysis 365

5.3. Heteroscedastic case

Real life is typically heteroscedastic and therefore we pay more attention to

such situations. In Table 2, we investigate the behaviour of the proposed method

in several artificial heteroscedastic situations caused both by different variances

and numbers of observations in the observed categories.

Table 2: Coverage percentages (in %) of 95% bootstrap confidence intervals
based on 4 change point estimators for n ∈ {10, 20}, nji ≡ 10, and
σ2 = 1 based on 1000 bootstrap replicates and 1000 simulations.
The first four columns are obtained from the homoscedastic version
of the bootstrap scheme using the pooled variance estimator σ̂2

pooled.

θ0

n = 10 n = 20bσ2
pooled bσ2

ji bσ2
jibkµ

bk0
bkcorr

µ
bk0(bτ2) bkµ

bk0
bkcorr

µ
bk0(bτ2) bkµ

bk0
bkcorr

µ
bk0(bτ2)

0.1 65.1 66.8 58.0 67.9 88.1 92.5 92.5 93.2 97.5 93.1 95.1 93.8
0.4 69.9 68.9 67.7 70.7 96.3 94.7 95.7 92.2 94.1 93.3 94.4 95.1

H01
0.8 74.7 71.2 72.2 68.5 88.5 86.5 86.7 88.4 95.9 94.9 95.2 91.4
0.9 84.1 82.8 77.9 80.5 78.6 77.4 78.8 78.1 77.5 80.4 80.8 78.9

0.1 60.5 63.2 50.6 65.6 83.7 94.2 92.5 93.9 95.3 93.0 95.0 93.1
0.4 65.9 65.4 63.9 69.6 90.6 88.4 91.0 93.0 93.6 92.5 92.8 93.2

H02
0.8 69.4 69.5 74.1 72.9 90.4 89.2 91.0 86.3 89.6 88.4 90.7 90.4
0.9 80.0 78.2 77.2 83.7 76.8 71.9 75.6 75.8 82.6 84.2 82.3 81.9

0.1 90.0 93.9 92.4 94.0 88.8 94.6 93.4 92.8 92.6 94.0 93.1 95.3
0.4 97.1 99.6 99.7 99.7 92.7 91.5 94.3 91.1 94.6 94.9 94.9 93.3

H10
0.8 89.0 93.6 93.3 92.2 91.6 92.5 90.7 89.0 95.3 91.4 94.8 90.5
0.9 94.1 87.5 87.5 68.5 92.4 88.8 86.1 73.4 87.5 86.6 89.1 82.3

0.1 65.6 65.4 55.6 69.9 89.9 93.1 91.8 93.1 90.4 95.5 91.7 94.2
0.4 71.0 67.2 67.4 70.8 92.4 94.8 93.2 91.9 93.7 92.4 93.1 93.3

H11
0.8 79.0 78.7 76.1 71.0 92.2 84.3 90.7 89.8 96.8 95.9 96.4 89.3
0.9 95.5 92.5 84.6 73.1 93.1 90.3 87.5 66.2 88.4 86.8 86.3 80.1

0.1 58.9 63.9 49.9 64.0 88.3 95.6 92.0 94.2 88.8 94.4 92.4 93.1
0.4 70.3 68.3 65.3 69.5 90.0 87.1 88.6 91.5 94.5 93.0 94.7 92.9

H12
0.8 79.6 77.5 78.8 72.2 91.1 90.1 92.7 87.9 93.9 88.5 91.3 88.8
0.9 93.2 88.3 81.7 78.0 91.3 85.2 85.7 74.3 88.6 87.3 90.9 82.2

0.1 80.9 92.4 91.0 99.4 82.1 91.5 88.0 98.5 97.0 97.2 98.9 99.3
0.4 93.8 94.6 93.2 99.8 93.0 89.6 89.9 93.7 97.4 95.4 96.6 99.2

H20
0.8 78.0 75.5 79.1 74.1 78.2 77.4 76.2 73.8 93.2 90.6 91.1 94.1
0.9 90.6 86.2 84.8 78.3 90.0 86.5 83.3 77.5 79.0 78.4 83.7 74.4

0.1 58.8 63.8 48.8 66.9 76.6 88.7 80.7 94.5 87.8 87.4 87.0 93.3
0.4 60.6 62.8 61.9 65.2 83.9 82.0 83.3 88.4 85.0 85.4 84.2 90.8

H21
0.8 73.3 70.7 68.0 69.3 79.9 79.4 76.9 79.8 84.7 84.8 84.3 88.1
0.9 93.3 88.7 81.8 82.5 87.6 85.4 81.3 78.9 81.1 81.9 79.7 77.4

0.1 49.8 58.4 39.4 69.1 61.6 84.4 73.7 94.8 79.0 83.2 80.4 93.0
0.4 57.1 61.2 56.0 72.5 74.1 68.2 75.6 90.2 78.0 81.9 81.0 93.3

H22
0.8 72.6 67.5 72.1 67.6 82.6 79.0 74.9 73.5 76.7 75.4 75.5 89.4
0.9 92.2 86.6 79.2 79.9 90.3 83.7 83.2 82.1 83.9 78.7 81.9 76.8
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Here, we consider altogether 8 heteroscedastic situations obtained by con-

sidering two simple models for nonconstant variances and two simple models for

nonconstant numbers of observations. The simulation setups (H01,...,H22) are

summarized in the following table:

Nr. of observations (nji)

nji = m m{1 + 3I(i odd)}/2 m{1 + 3I(i > n/2)}/2

σji constant (σji = σ) H01 H02
σji = σ(1 + 2I(i > k0)) H10 H11 H12
σji = σ(1 + 2I(i even)) H20 H21 H22

As expected, Table 2 shows that bootstrap using the pooled estimator of

variance does not lead to reliable results in the heteroscedastic setup. The confi-

dence intervals based on the heteroscedastic estimator k̂0(τ̂
2) provide reasonable

coverage probabilities for all scenarios as long as k0 is not too close to n.

5.4. Rounding effects

In the jumping speeds example, children aged i to i+1 years are included in

the i-th age category. We use summary statistics observed in these age categories

and we have to keep in mind that the i-th observed sample mean and sample

standard deviation correspond to the marginal distribution of jumping speeds for

all children aged from i to i + 1 years.

Assuming that E(Y1 |Age=x) = E(Y2 |Age=x) + δ((x − k0)/n)+ for x ∈

(1, n + 1) and that the age distribution in both groups is the same, it follows

that E(Y1i −Y2i) = 0, for i ≤ ⌊k0⌋, and the true E(Y1i −Y2i) = δ(i− k0)/n for i ≥

⌈k0⌉. Hence, for sample means based on categorization of continuous explanatory

variable, the model (A3) is valid only if k0 is a natural number.

Denoting i0 = ⌊k0⌋ and d0 = k0 − i0, we may calculate the true expectation

of the mean differences E(Y1i0 − Y2i0) = E
{
δ((X − k0)/n)+

}
under the above

assumptions (with uniform distribution of the explanatory variable X in the

i0-th age category and for d0 > 0):

E(Y1i0 − Y2i0) =
δ

n

i0+1∫

i0+d0

(x − k0) dx =
δ

n

1−d0∫

0

x dx =
δ(1 − d0)

2

2n
.

In Figure 2, we plot the theoretical expectation for various values of k0.

Obviously, whenever k0 is not a natural number, the i0-th sample mean can be

“somewhat larger than it should be”.
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Figure 2: Expectations of mean differences for five categories for change
points k0 ∈ (3.2, 3.4, 3.6, 3.8). Each line connects the expecta-
tions (denoted by circles) corresponding to given changepoint
(denoted by star).

In practice, it is more natural to define the i-th category by values of the

explanatory variable x ∈ (i − 0.5, i + 0.5) and this notation is also in accordance

with the theoretical part of this paper. Therefore, we define the bias corrected es-

timator k̂bc
0 by using xbc

ik = I(i > ⌈k−0.5⌉)(i− k)/n+ I(i = ⌈k−0.5⌉) (⌈k− 0.5⌉−

k + 0.5)/(2n) instead of xik in (3.2).

Results of a small simulation study comparing the behavior of k̂0 and k̂bc
0

in a homoscedastic case are given in Table 3. As expected, the empirical bias of

the bias corrected estimator k̂bc
0 tends to be somewhat smaller. The effect of the

rounding bias on the coverage probabilities based on k̂0 is most clearly visible for

n = 20, nji ≡ 20, and k0 lying in the center of the category (i.e., for k0 = 14, 15,

and 16).

6. JUMPING SPEEDS

In order to analyze the real data set given in Table 5, it is important to

understand the meaning of the row-labels. The various labels and its meanings

are summarized in Table 4. In the theoretical part of this paper, we were using

the “Index scale” given in the first column. For practical considerations, it is im-

portant to notice that k = 1 actually corresponds to children aged approximately

6.5 years.

In order to calculate the estimators k̂0(τ̂
2) and k̂bc

0 (τ̂2), we maximize the

function T2+bτ2(k) and its bias corrected version, T bc
2+bτ2(k), plotted in Figure 3.
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Table 3: Empirical mean squared error (MSE), bias and coverage probabilities

of 95% confidence intervals (in %) for k̂0 and k̂bc
0 , 1000 simulations

with 1000 bootstrap replicates.

θ0

bk0
bkbc
0

MSE bias coverage MSE bias coverage

0.20 0.124 0.003 93.6% 0.112 −0.010 94.6%
0.22 0.113 −0.001 95.4% 0.113 −0.016 95.3%
0.25 0.125 −0.018 91.5% 0.123 −0.010 92.9%
0.28 0.122 0.012 91.2% 0.133 0.011 90.3%
0.30 0.116 0.008 93.9% 0.131 0.001 95.0%

nji ≡ 10
0.70 0.432 −0.109 92.7% 0.365 −0.041 93.3%
0.72 0.466 −0.099 94.0% 0.498 −0.065 91.7%
0.75 0.678 −0.151 89.6% 0.726 −0.138 88.4%
0.78 0.936 −0.226 86.5% 0.971 −0.123 91.5%
0.80 1.160 −0.263 91.3% 1.255 −0.224 91.8%

n = 10
0.20 0.053 −0.011 94.1% 0.052 0.002 93.2%
0.22 0.054 −0.013 95.4% 0.050 0.003 98.4%
0.25 0.053 −0.011 95.8% 0.060 −0.017 95.4%
0.28 0.059 0.001 92.8% 0.054 −0.009 95.2%
0.30 0.063 0.000 92.6% 0.060 0.011 92.8%

nji ≡ 20
0.70 0.177 −0.056 86.9% 0.173 0.004 96.3%
0.72 0.194 −0.073 94.1% 0.191 −0.024 95.6%
0.75 0.246 −0.072 94.6% 0.230 −0.052 91.7%
0.78 0.319 −0.116 88.1% 0.302 −0.034 93.2%
0.80 0.399 −0.097 88.0% 0.506 −0.092 96.9%

0.20 0.054 −0.005 93.6% 0.050 −0.004 95.7%
0.22 0.056 −0.005 94.5% 0.057 −0.003 95.3%
0.25 0.056 −0.016 94.6% 0.050 0.003 95.4%
0.28 0.061 0.002 94.5% 0.055 −0.009 94.6%
0.30 0.063 −0.004 93.1% 0.060 −0.012 93.9%

nji ≡ 10
0.70 0.150 −0.040 93.7% 0.158 0.001 94.7%
0.72 0.175 −0.035 93.9% 0.163 −0.033 94.5%
0.75 0.200 −0.051 93.3% 0.178 −0.023 96.7%
0.78 0.220 −0.043 94.0% 0.229 −0.026 90.8%
0.80 0.263 −0.050 94.7% 0.276 −0.022 93.8%

n = 20
0.20 0.027 −0.006 94.0% 0.026 −0.004 93.3%
0.22 0.026 −0.008 94.3% 0.024 −0.010 98.0%
0.25 0.030 −0.006 93.3% 0.029 0.005 93.6%
0.28 0.026 0.005 95.8% 0.030 0.001 95.9%
0.30 0.033 −0.015 93.9% 0.031 −0.004 94.1%

nji ≡ 20
0.70 0.078 −0.024 90.7% 0.072 −0.000 94.1%
0.72 0.089 −0.032 96.7% 0.075 −0.001 95.9%
0.75 0.093 −0.037 90.6% 0.095 −0.006 93.4%
0.78 0.112 −0.046 95.3% 0.103 −0.012 94.3%
0.80 0.114 −0.040 90.0% 0.111 −0.012 95.7%
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Table 4: Meaning of row labels in the jumping speeds example.

Index (k) Label Meaning Interpretation Y1 (bσ1) Y2 (bσ2)

1 6 6–7 years ∼ 6.5 years 1.89 (0.17) 1.87 (0.18)
2 7 7–8 years ∼ 7.5 years 2.00 (0.21) 1.98 (0.20)
...

...
...

...
...

...

13 18 18–19 years ∼ 18.5 years 2.33 (0.17) 2.87 (0.10)

In both plots, the estimator k̂ = 5 (on the “Index scale”) corresponds to the

estimated change point k̂age = 10.5 years.
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Figure 3: Function T2+bτ2(k) and its bias corrected version T bc
2+bτ2(k) for

the jumping speed data. The vertical dashed lines denote the
estimates k̂ and k̂bc.

Applying the bootstrap algorithm described in Section 4.2, we obtain that

the upper limit of the one-sided 95% confidence interval based on k̂0(τ̂
2) is 5.72 +

5.5 = 11.22 years. Applying the bias correction from Section 5.4, we obtain the

one-sided 95% confidence interval (−∞, 11.26) years.

For both estimators, the test of the null hypothesis “no changepoint before

12 years” is actually carried out by testing the index k1 = 12−5.5 (see Remark 4.1

and Table 4). The p-values corresponding to the change-point tests of the null

hypothesis H0 : k0 ≥ k1 against H1 : k0 < k1 for k1 ∈ {0.5, ..., 12.5} are given in

Table 5. Since each test concerns the age k1 + 5.5 years, it seems more natural

to shift the lines with these p-values in order to point out the difference between

the two-sample t-test (comparing the marginal means in i-th age category, i.e.,

for approximately i + 0.5 years) and the change-point approach (testing whether

there is a significant difference for children aged precisely i years).
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Table 5: Observed mean jumping speeds and standard deviations for boys and girls
in 13 age categories. P-values of the two-sample t-test in each age category,
its Bonferroni and Benjamini–Hochberg (BH) adjustments and p-values

of the test for change point location based on k̂0(τ̂
2) and k̂bc

0 (τ̂2).

Age
cat.

girls boys p-values
Age

Y1 (bσ1) n1 Y2 (bσ2) n2 t-test Bonferroni BH bk0(bτ2) bkbc
0 (bτ2)

6–7 1.89 (0.17) 33 1.87 (0.18) 19 0.780 1.000 0.780
1.000 1.000 6

7–8 2.00 (0.21) 43 1.98 (0.20) 38 0.646 1.000 0.763
1.000 1.000 7

8–9 2.01 (0.21) 33 2.06 (0.21) 38 0.369 1.000 0.479
1.000 1.000 8

9–10 2.06 (0.18) 42 2.14 (0.18) 29 0.081. 1.000 0.117
0.999 0.997 9

10–11 2.19 (0.22) 42 2.17 (0.19) 45 0.713 1.000 0.773
0.861 0.846 10

11–12 2.23 (0.15) 30 2.31 (0.23) 37 0.062. 0.800 0.100
0.113 0.117 11

12–13 2.26 (0.13) 41 2.35 (0.23) 40 0.047* 0.615 0.088.
0.003** 0.003** 12

13–14 2.30 (0.22) 32 2.53 (0.21) 36 0.000*** 0.001*** 0.000***
0.000*** 0.000*** 13

14–15 2.28 (0.23) 31 2.66 (0.19) 20 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 14

15–16 2.37 (0.17) 29 2.72 (0.22) 26 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 15

16–17 2.33 (0.19) 17 2.83 (0.28) 9 0.001*** 0.006** 0.001**
0.000*** 0.000*** 16

17–18 2.35 (0.18) 25 2.76 (0.16) 13 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 17

18–19 2.33 (0.17) 34 2.87 (0.10) 14 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 18

We conclude that the estimated change-point is 10.5 years (with 95% confi-

dence interval (−∞, 11.26)) while the two-sample t-tests without multiple testing

correction show statistically significant difference only after 12 years (in the age

category 12 to 13 years).

In order to verify the validity of Assumption (A3), we plot the data set and

the resulting least squares fit in Figure 4.
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Figure 4: Observed sample means of jumping speed for boys (△) and
girls (©) in thirteen age categories. The right plot shows the
observed differences Di and the least squares fit.
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7. SUMMARY AND OUTLOOK

A rigorous approach to multiple hypotheses testing is needed in many real-

life situations. Typically, a Bonferroni-type adjustment increases all p-values in

order to control either the family-wise error rate or the false discovery rate. How-

ever, the structure of the observed data often calls for a more appropriate and

powerful solution. Using gender-specific growth curves as a motivation, we pro-

posed a simple two-sample gradual change model in order to develop bootstrap-

based tests and confidence intervals for the location of the unknown change-point.

In this way, many two-sample t-tests can be replaced by a single test concerning

only the change-point. Therefore, adjustments for multiple hypotheses testing

become unnecessary.

In practice, the linearity assumption may not be fulfilled. This problem

can be solved in a simple way, e.g., by using a finer grid to investigate only a

small neighborhood of the suspected change point.

Obviously, the proposed method is applicable also to different sample char-

acteristics. For example, we could investigate a two-sample gradual change in the

slope using a table of estimated slopes (and estimates of their standard devia-

tions) in each age category. Such a test would correspond to a model of quadratic

change for the original observations.

Depending on further applications, various extensions of the proposed meth-

odology to more general setups may be considered, e.g., dependent observations

and more general changes than a linear trend. Also some aspects of nonparamet-

ric regression can be utilized if one can analyze the original data set instead of only

sample means and sample standard deviations observed in n ordered categories.
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