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Abstract. We find recurrent as well as explicit formulas for the number of tilings of a 2n× 4
rectangle using L-tetrominoes when only rotation of tiles is allowed. We show that the problem
is equivalent to calculating the number of certain two-color integer compositions.

1. INTRODUCTION. Tiling problems fascinate amateur as well as professional
mathematicians. Many of them are accessible to a wide audience and require only
elementary mathematics; an excellent collection of such problems is available in the
first chapter of Alexander Soifer’s book [1]. On the other hand, there are deep results
involving nontrivial mathematics such as the celebrated Fisher–Kasteleyn–Temperley
formula, which counts the number of tilings of a rectangle using dominoes [2, 3]. Two
major recent breakthroughs in the area of tiling are David Smith’s discovery of an ein-
stein (a shape that admits tilings of the plane, but only aperiodic ones, [4]), as well as
Rachel Greenfeld’s and Terence Tao’s recent disproof of the periodic tiling conjecture
(the discovery of a tile whose translations cover the Euclidean space, but only aperi-
odically [5]). A nice survey of tiling problems was provided by Federico Ardila and
Richard P. Stanley [6]. It is also worth mentioning an excellent computer program for
experimenting with tiling problems, the PolySolver, written by Jaap Scherphuis [7].

A common type of a tile is a polyomino, which is composed of unit squares. Tetro-
minoes consist of four unit squares (see Figure 1), and they are familiar to all Tetris
players. Because of their shapes, they are known as the I-tetromino, L-tetromino,
S-tetromino, T-tetromino, and O-tetromino.

Figure 1. Five possible tetrominoes.

Which of these tetrominoes can be used to tile an a× b rectangle with integer sides?
The following necessary and sufficient conditions are well known:

• An I-tetromino tiling exists if and only if at least one of a, b is divisible by 4 (see
[1, Section 1.4]).

• An L-tetromino tiling exists if only if a, b ≥ 2 and ab is divisible by 8 (see [8]).
• No rectangle can be tiled with S-tetrominoes (this is obvious; there are two ways of

covering the upper left corner, both of which lead to a failure).
• A T-tetromino tiling exists if and only if both a and b are divisible by 4 (see [9]).
• An O-tetromino tiling exists if and only if both a and b are even (this is obvious).
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Once we know a tiling exists, the next problem is to calculate the number of all
possible tilings. In the present paper, we focus on tiling rectangles with L-tetrominoes.
These are the only tetrominoes for which it makes sense to distinguish two versions
of the tiling problem: either we permit the tiles to be rotated as well as reflected, or
we allow only rotation (as in Tetris). In both cases, it is straightforward to calculate
the number of all tilings if the length of the shorter side of the rectangle is 2 and
the length of the longer one is divisible by 4. Hence, the smallest nontrivial counting
problem for L-tetrominoes is that of a 2n× 4 rectangle. The case when both rotation
and reflection are allowed was analyzed by Cristopher Moore in [10], and additional
results are available in the OEIS [11], sequence A084480.

As far as we are aware, the second version when only rotation is allowed is new. In
this case, there are only four positions of the L-tetromino that we need to consider; see
Figure 2.

Figure 2. L-tetromino in four available positions.

For each n ∈ N0, denote by an the number of all tilings of a 2n× 4 rectangle with
L-tetrominoes when only rotation is allowed. The first values are a0 = 1, a1 = 1,
a2 = 3, a3 = 5, etc. It was conjectured by Nicolas Bělohoubek that the even-indexed
terms of this sequence (i.e., the numbers of tilings for the 4n × 4 rectangles) cor-
respond to the sequence A166482 in the OEIS. We will confirm this conjecture and
calculate an for all n ∈ N0. We demonstrate several possible approaches for solving
the problem, and reveal connections to other topics in discrete mathematics, namely
two-color integer compositions and nondecreasing Dyck paths.

2. A SYSTEM OF RECURRENCES. Our first solution is similar to [12, Sec-
tion 7.3, Example 3], which deals with domino tilings of an n × 3 rectangle and
involves a system of recurrence relations.

When tiling a 2n × 4 rectangle with the L-tetrominoes from Figure 2, the upper
left corner can be covered using the first, third, or fourth tile. Each of the three choices
inevitably leads to the placement of one or more additional tiles; see Figure 3.

Figure 3. Covering the left end of a 2n× 4 rectangle.

In the first case, the remaining empty part is a (2n− 2)× 4 rectangle, which can
be tiled in an−1 ways. What remains in the second case is a (2n− 4)× 4 rectangle,
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Figure 4. A non-rectangular shape to be tiled by L-tetrominoes.

which can be tiled in an−2 ways. To determine the number of tilings in the third case,
suppose that for each n ∈ N0, we are able to calculate the number of tilings of a figure
obtained from the 2n× 4 rectangle by adjoining a vertical tetromino as in Figure 4.

Then the last case in Figure 3 corresponds to bn−2 tilings, and the previous analysis
leads to the recurrence relation

an = an−1 + an−2 + bn−2, n ≥ 2. (1)

It remains to calculate bn. Figure 5 shows that there are only two possibilities of
tiling the left end of the shape from Figure 4.

Figure 5. Tiling the non-rectangular shape.

Thus, we see that

bn = an + bn−2, n ≥ 2. (2)

The system of recurrences (1) and (2) together with the initial values a0 = a1 = 1
and b0 = b1 = 1 uniquely determines an and bn for all n ∈ N0.

In fact, it is possible to eliminate bn, and obtain a recurrence relation involving
only an. This is the content of the next theorem, which also provides an explicit for-
mula for an.

Theorem 1. For each n ∈ N0, let an be the number of tilings of a 2n× 4 rectangle
using L-tetrominoes when only rotation of tiles is allowed. Then

an = an−1 + 3an−2 − an−3 − an−4, n ≥ 4. (3)

Moreover, let φ = (1 +
√
5)/2 be the golden ratio, and ψ = 1− φ = (1−

√
5)/2.

Then

an = α1x
n
1 + α2x

n
2 + α3x

n
3 + α4x

n
4 , n ∈ N0, (4)

where

x1,2 =
1

4

(
1 +

√
5±

√
2
(
11 +

√
5
))

=
1

2

(
φ±

√
φ+ 5

)
, (5)
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x3,4 =
1

4

(
1−

√
5±

√
2
(
11−

√
5
))

=
1

2

(
ψ ±

√
ψ + 5

)
(6)

(with plus signs corresponding to x1, x3 and minus signs to x2, x4) and

α1,2 =
φ

2
√
5

(
1± φ√

φ+ 5

)
, α3,4 =

−ψ
2
√
5

(
1± ψ√

ψ + 5

)
(7)

(with plus signs corresponding to α1, α3 and minus signs to α2, α4).

Proof. Observe that (1) implies bn−2 = an − an−1 − an−2, and substituting into the
right-hand side of (2) yields bn = 2an − an−1 − an−2. Replacing n by n − 2 and
substituting back to (1), we arrive at (3).

The characteristic polynomial of the recurrence (3) is

P (x) = x4 − x3 − 3x2 + x+ 1 = (x2 − φx− 1)(x2 − ψx− 1). (8)

To verify the second equality, it is helpful to note that φψ = −1 and φ+ ψ = 1, since
φ and ψ are the roots of the polynomial x2 − x− 1.

The subsequent calculations are somewhat tedious, and it is best to use a symbolic
computation program such as Wolfram Mathematica: One finds that the roots of P
are given by (5) and (6). Thus, an explicit formula for the sequence (an)

∞
n=0 has the

form (4), where α1, α2, α3, α4 can be determined from the initial values a0, . . . , a3;
the results are given in (7).

Among the four values in (5) and (6), the number with the largest absolute value
is x1. Thus, for large n, the number of tilings an behaves as

α1x
n
1 ≈ 0.589363 · 2.09529n.

Here is an interesting curiosity related to the golden ratio: Using the fact that the
dominating term on the right-hand side of (4) is α1x

n
1 , one can prove that

lim
n→∞

an+1 − an−1

an
= x1 −

1

x1

= φ.

Table 1 shows the exact values of an up to n = 10.

Table 1. Number of tilings of a 2n× 4 rectangle (A131322 in the OEIS).

n 0 1 2 3 4 5 6 7 8 9 10
an 1 1 3 5 12 23 51 103 221 456 965

An OEIS search reveals that these values agree with the sequence A131322. To
check that the two sequences indeed coincide for all n, one can use the recurrence (3)
and the initial values to obtain the generating function

A(z) =
∞∑

n=0

anz
n =

1− z2

z4 + z3 − 3z2 − z + 1
, (9)
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which agrees with the generating function from the OEIS. A different proof that
(an)

∞
n=0 coincides with A131322 will be sketched in Section 6.

If we look only at the even-indexed terms a0, a2, a4, . . . , we obtain the generating
function

∞∑
n=0

a2nz
n =

∞∑
n=0

a2n(
√
z)2n =

A(
√
z)+A(−

√
z)

2
=

−z3 + 4z2 − 4z + 1

z4 − 7z3 + 13z2 − 7z + 1
,

which coincides with the generating function of the sequence A166482 from the OEIS.
Hence, we have confirmed the conjecture by Nicolas Bělohoubek that the number of
tilings in the 4n× 4 case indeed corresponds to this sequence. We provide yet another
derivation of this fact, which does not involve generating functions. Instead, we show
that the numbers en, which correspond to the even-indexed terms a2n, satisfy the same
recurrence relation as the sequence A166482.

Theorem 2. For each n ∈ N0, let en be the number of tilings of a 4n× 4 rectangle
using L-tetrominoes when only rotation of tiles is allowed. Then

en = 7en−1 − 13en−2 + 7en−3 − en−4, n ≥ 4. (10)

Proof. Because of (4), we have

en = a2n = α1x
2n
1 + α2x

2n
2 + α3x

2n
3 + α4x

2n
4 , n ∈ N0. (11)

This means that the sequence (en)
∞
n=0 satisfies a linear recurrence relation, whose

characteristic polynomial Q has roots x2
1, . . . , x2

4, i.e., the squares of the roots of
the polynomial P given by (8). As explained in [13], we can obtain Q by taking
P (x)P (−x) and replacing x2 by y; this gives

Q(y) = y4 − 7y3 + 13y2 − 7y + 1.

Hence, the sequence (en)∞n=0 indeed satisfies (10).

3. A SINGLE RECURRENCE. It is possible to gain an additional insight into the
structure of all L-tetromino tilings by returning to the analysis in Figure 3. If we begin
as in the third case, what are the possible continuations? Two of them are shown in
Figure 6. In general, the shaded group of four L-tetrominoes arranged into two mu-
tually shifted 4× 2 rectangles can be repeated as many times as we wish. If we take
k ∈ N0 copies of this group instead of one, we fill a 4(k + 1)× 4 rectangle.

Figure 6. Filling 4(k + 1)× 4 rectangles with k ∈ N0.

We also observe that, as soon as we insert at least one such group, we can continue
only by inserting another group, or by placing two L-tetrominoes as in the right part
of Figure 6, thereby leaving an unfilled rectangular part.
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Taking into account these results as well as the first two cases from Figure 3, we
obtain the recurrence

an = an−1 + an−2 +
∑
k≥0

an−2(k+1), n ≥ 2,

where the sum is over all k ≥ 0 such that n− 2(k + 1) ≥ 0. We perform the change
of variables l = k + 1, where l ≥ 1 is such that l ≤ ⌊n/2⌋, and record the result in
the following theorem.

Theorem 3. For each n ∈ N0, let an be the number of tilings of a 2n× 4 rectangle
using L-tetrominoes when only rotation of tiles is allowed. Then

an = an−1 + an−2 +

⌊n/2⌋∑
l=1

an−2l, n ≥ 2. (12)

This is another recurrence relation which, together with the initial values a0 =
a1 = 1, uniquely determines an for all n ∈ N0. Although it seems more complicated
than the earlier recurrence (3), it has a clear combinatorial meaning. It corresponds to
the fact that all L-tetromino tilings are constructed from rectangular building blocks,
namely the 2× 4 and 4× 4 blocks from Figure 3, and 4(k + 1)× 4 blocks (with ar-
bitrary k ∈ N0) from Figure 6. Hence, we have a block of width 2, two types of blocks
of width 4, and additional blocks of widths 8, 12, 16, etc.

Note that (12) can be obtained in a purely algebraic way from (1) by repeated ap-
plication of (2). Conversely, we can recover the earlier recurrence (3) from (12) as
follows: Replacing n by n− 2 yields

an−2 = an−3 + an−4 +

⌊n/2⌋−1∑
l=1

an−2(l+1), n ≥ 4, (13)

and subtracting this from (12) leads to

an − an−2 = an−1 + 2an−2 − an−3 − an−4, n ≥ 4,

which is equivalent to (3).

4. TILINGS AS COMPOSITIONS. A consequence of the analysis carried out in
the previous section is that the tiling problem is equivalent to counting all ways of
writing the number 2n (the width of the whole rectangle) as the sum of the numbers
2, 4, 8, 12, 16, . . . (the widths of the building blocks), when we have two kinds of 4’s. In
other words, the number of tilings equals the number of compositions of 2n involving
the terms 2, 4, 8, 12, 16, . . . , where 4 has two possible colors. Dividing all numbers
by 2, we obtain the following result.

Theorem 4. For each n ∈ N0, the number of tilings of a 2n × 4 rectangle using
L-tetrominoes when only rotation of tiles is allowed coincides with the number of com-
positions of n involving 1, 2, 4, 6, 8, . . . , where 2 has two possible colors.

Clearly, the number of such compositions satisfies the recurrence (12), and therefore
also (3). But compositions are an old mathematical topic, so there must be other ways
of counting them. A basic result says that the number of monochromatic compositions
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of a number n involving k summands is
(
n−1
k−1

)
. What about color compositions? Per-

haps the most elegant method of counting them is based on generating functions [14,
Section 3.5]:

Suppose that each summand of value i ∈ N can have ci ∈ N0 possible colors, and
consider the generating functionC(z) =

∑∞
i=1 ciz

i. If tn denotes the number of color
compositions of a number n ∈ N0 (where t0 = 1), then tn =

∑n
k=1 cktn−k for all

n ∈ N. Therefore, the generating function T (z) =
∑∞

n=0 tnz
n satisfies T (z) = 1 +

C(z)T (z), i.e.,

T (z) =
1

1− C(z)
.

The compositions we are interested in correspond to c2 = 2, cn = 1 for all n ∈
{1, 4, 6, . . . }, and cn = 0 for all n ∈ {3, 5, . . . }, which leads to

C(z) = z + 2z2 + z4 + z6 + · · · = z + z2 +
z2

1− z2
.

Consequently,

T (z) =
1

1− z − z2 − z2

1−z2

=
1− z2

z4 + z3 − 3z2 − z + 1
,

which agrees with the previously derived generating function (9). So, this method gives
a quick check of our earlier results, but we did not learn anything new.

Let us try a different way of calculating an, i.e., the number of compositions of n
involving the summands 1, 2, 4, 6, . . . , where 2 has two possible colors. The sum
of all even numbers in such a composition is 2j, where j ∈ {0, ..., ⌊n/2⌋}, and the
remaining summands are n − 2j ones. Denote by cj,k the number of compositions
of 2j involving exactly k even summands, where 2 has two colors. For each such
composition, we can insert the n − 2j ones into k + 1 available positions (some of
them might be chosen repeatedly), which can be done in

(
n−2j+k

k

)
ways. This leads to

the formula

an =

⌊n/2⌋∑
j=0

j∑
k=0

(
n− 2j + k

k

)
cj,k, (14)

where we assume that c0,0 = 1 and cj,0 = 0 for all positive j. How do we calculate the
remaining values of cj,k? Dividing all summands in a composition of 2j by two, we
see that cj,k also equals the number of compositions of j involving exactly k numbers
having values 1, 2, 3, . . . , where 1 has two colors, say red and blue.

Assume there are i red ones; eliminating all of them, we get a monochromatic com-
position of j − i involving k − i positive integers. One can easily reverse this process:
Begin with a monochromatic composition of j − i consisting of k − i summands;
there are

(
j−i−1
k−i−1

)
possibilities. Next, insert i red ones into k − i+ 1 possible places

(some of them might be chosen repeatedly); this can be done in
(
k
i

)
ways. Summing

over all possible i, we get

cj,k =
k∑

i=0

(
j − i− 1

k − i− 1

)(
k

i

)
=

k∑
l=0

(
k

l

)(
j − k + l − 1

l − 1

)
, (15)
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Table 2. The values cj,k , 0 ≤ k ≤ j

j \ k 0 1 2 3 4 5 6
0 1
1 0 2
2 0 1 4
3 0 1 4 8
4 0 1 5 12 16
5 0 1 6 18 32 32
6 0 1 7 25 56 80 64

where the second equality follows from the change of variables l = k − i.
There is yet another way of calculating cj,k: Each k-term composition of j contain-

ing l red or blue ones can be obtained from a (k − l)-term monochromatic compo-
sition of j − l involving only the numbers 2, 3, . . . . It suffices to insert l red or blue
ones into k − l + 1 available positions (possibly with repetition), which can be done
in
(
k
l

)
2l ways. The number of (k − l)-term monochromatic compositions of j − l

involving 2, 3, . . . is the same as the number of (k − l)-term monochromatic compo-
sitions of (j − l)− (k − l) = j − k involving 1, 2, . . . , which is given by

(
j−k−1
k−l−1

)
.

Summing over all possible l, we get

cj,k =
k∑

l=2k−j

2l
(
k

l

)(
j − k − 1

k − l − 1

)
=

j∑
i=k

22k−i

(
k

i− k

)(
j − k − 1

j − i

)
, (16)

where the second equality follows from the change of variables i = 2k − l.
Substituting (15) or (16) into (14), we obtain the following result.

Theorem 5. For each n ∈ N0, let an be the number of tilings of a 2n× 4 rectangle
using L-tetrominoes when only rotation of tiles is allowed. Then

an =

⌊n/2⌋∑
j=0

j∑
k=0

(
n− 2j + k

k

)
k∑

l=0

(
k

l

)(
j − k + l − 1

l − 1

)

=

⌊n/2⌋∑
j=0

j∑
k=0

(
n− 2j + k

k

)
j∑

i=k

22k−i

(
k

i− k

)(
j − k − 1

j − i

)
.

Thus, we have discovered two additional formulas for calculating the number of
compositions or tilings.

The numbers cj,k we have introduced along the way are of independent inter-
est. Table 2 shows their values for small i and j. They coincide with the numbers
T (j + 1, k + 1) listed in the OEIS item A121462 (which contains the formula (15)
with j, k replaced by j + 1, k+ 1). According to the OEIS, the numbers T (j, k) count
nondecreasing Dyck paths of semilength j, having pyramid weight k. The meaning of
these terms is as follows: A Dyck path of semilength n is a lattice path from (0, 0) to
(2n, 0) consisting of n northeast steps (1, 1) and n southeast steps (1,−1) that never
goes below the horizontal axis. Such a path is called nondecreasing if the altitudes of
its valleys never decrease. A pyramid of weight k within a Dyck path is a sequence of
k northeast steps followed by k southeast steps; it is maximal if it is not contained in
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a larger pyramid. Finally, the pyramid weight of the whole path is the sum of weights
of its maximal pyramids. For more information on non-decreasing Dyck paths, see
[15, 16, 17], and the references therein.

Since cj,k = T (j + 1, k + 1), it follows that the number of nondecreasing Dyck
paths of semilength j + 1, having pyramid weight k + 1, equals the number of com-
positions of j involving exactly k numbers having values 1, 2, 3, . . . , where 1 has two
colors. We have also proved that the number of such Dyck paths can be calculated
using the formula (16).

5. MORE ON TWO-COLOR COMPOSITIONS. Let us mention two simple prob-
lems involving two-color compositions, which are closely related to the previous expo-
sition. Both of them are probably known, although we were unable to find a reference
for the first one.

The numbers cj,k from the previous section count the compositions of a number j
involving exactly k summands having values 1, 2, 3, . . . , where 1 has two colors. What
happens if we relax the condition on the number of terms?

Problem 6. What is the number of all compositions of a number j ∈ N0 involving
summands of values 1, 2, 3, . . . , where 1 has two colors?

The answer is provided by the row sums of Table 2:

1, 2, 5, 13, 34, 89, 233, . . .

These are the odd-indexed Fibonacci numbers (see A001519 in the OEIS). Here is a
quick proof of this fact: Denote by kj the number of compositions of j where 1 has
two colors. We have the recurrence

kj = 2kj−1 + kj−2 + · · ·+ k0, j ≥ 1

(where we let k0 = 1). Replacing j by j − 1, we get

kj−1 = 2kj−2 + kj−3 + · · ·+ k0, j ≥ 2.

Subtracting this identity from the previous one gives

kj = 3kj−1 − kj−2, j ≥ 2.

One can check that the Fibonacci numbers F2j+1 satisfy the same recurrence (this is
also mentioned in the OEIS), and k0 = 1 = F1, k1 = 2 = F3. Thus, kj = F2j+1 for
all j ∈ N0.

Here is a natural modification of the previous problem.

Problem 7. What is the number of compositions of a number j ∈ N0 involving only
odd summands, where 1 has two colors?

Denoting the solution by lj , we have the recurrence

lj = 2lj−1 + lj−3 + lj−5 + · · · , j ≥ 1.

Replacing j by j − 2 and subtracting the result from the previous identity, we obtain

lj = 2lj−1 + lj−2 − lj−3, j ≥ 3.
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The first few terms of the sequence (lj)∞j=0 are

1, 2, 4, 9, 20, 45, 101, . . .

The sequence coincides with A052534 in the OEIS, which also mentions its meaning
in terms of color compositions.

6. OPEN PROBLEMS. Here are two open problems for the readers.

Problem 8. We know that the sequence (an)
∞
n=0 coincides with the OEIS entry

A131322. According to the OEIS, the terms of this sequence can be also calculated
using the formula

an =

⌊n/2⌋∑
j=0

(
n− j

j

)
Fn−2j+1. (17)

Is there a combinatorial proof of the formula (17) based on tilings or two-color com-
positions? Note that one can verify (17) algebraically: To evaluate the right-hand side,
we rewrite Fn−2j+1 using Binet’s formula, which yields

Fn−2j+1 =
1√
5
(φn−2j+1 − ψn−2j+1),

and then apply the identity

⌊n/2⌋∑
j=0

(
n− j

j

)
βn−2j =

1√
β2 + 4

((
β +

√
β2 + 4

2

)n+1

−
(
β −

√
β2 + 4

2

)n+1
)
,

which holds for every β ∈ R (see formulas (2.7) and (1.3) in [18]). After some ma-
nipulations, one finds that the result coincides with the explicit formula for an given
in (4).

Problem 9. We have shown that the number of nondecreasing Dyck paths of semi-
length j + 1, having pyramid weight k + 1, equals the number of compositions of j
involving exactly k numbers having values 1, 2, 3, . . . , where 1 has two colors. Is there
a bijective proof of this fact?

Throughout the paper, we have provided links to several sequences in the OEIS.
Readers interested in tiling problems involving L-tetrominoes might enjoy exploring
additional sequences listed in Table 3.

Table 3. Additional sequences in the OEIS involving L-tetrominoes.

A084481 fault-free tilings of a 4× 2n rectangle with L-tetrominoes
A174248 tilings of a 4× n rectangle with tetrominoes of any shape
A226322 tilings of a 4× n rectangle using L- and O-tetrominoes
A232497 tilings of a 4× n rectangle using L- and S-tetrominoes
A232757 tilings of a 3× 4n rectangle with 3n tetrominoes of any shape
A233191 tilings of a 4× n rectangle using L- and T-tetrominoes
A233266 tilings of a 4× n rectangle using L-, T-, and S-tetrominoes
A242636 tilings of a 4× n rectangle using L-, S-, and O-tetrominoes
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