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CORE PROBLEMS IN LINEAR ALGEBRAIC SYSTEMS∗

CHRISTOPHER C. PAIGE† AND ZDENĚK STRAKOŠ‡

Abstract. For any linear system Ax ≈ b we define a set of core problems and show that the
orthogonal upper bidiagonalization of [b, A] gives such a core problem. In particular we show that
these core problems have desirable properties such as minimal dimensions. When a total least squares
problem is solved by first finding a core problem, we show the resulting theory is consistent with
earlier generalizations, but much simpler and clearer. The approach is important for other related
solutions and leads, for example, to an elegant solution to the data least squares problem. The ideas
could be useful for solving ill-posed problems.

Key words. scaled total least squares, least squares, data least squares, orthogonal regression,
core problem, orthogonal reduction, minimum 2-norm solutions, bidiagonalization, singular value
decomposition, ill-posed problems

AMS subject classifications. 15A06, 15A18, 15A21, 65F20, 65F25, 65G50

DOI. 10.1137/040616991

1. Introduction. We will use uppercase Roman letters to denote matrices, low-
ercase Roman to denote vectors and indices, and lowercase Greek to denote scalars.
The ith column of the unit matrix I is ei, ‖ · ‖ denotes the 2-norm, ‖ · ‖F denotes the
Frobenius norm, and R(M) denotes the range (column space) of a matrix M .

Consider estimating x̃ from the (possibly compatible) real linear system

Ãx̃ ≈ b̃, Ã a nonzero n by k matrix, b̃ a nonzero n-vector.(1.1)

Suppose (1.1) can be transformed to Ax ≡ (PT ÃQ)(QT x̃) ≈ PT b̃ ≡ b, where

PT
[
b̃ ÃQ

]
=

[
b A

]
=

[
b1 A11 0
0 0 A22

]
; P−1 =PT, Q−1 =QT.(1.2)

We say this is a nontrivial decomposition if A22 has at least one row and one column,
even if A22 = 0. In this nontrivial case the singular value decompositions (SVDs) of
[b, A] and A can each be split into two independent SVDs, with the SVD of A22 being
common to both. More importantly for this exposition, the approximation problem
Ãx̃ ≈ b̃ can then be transformed to two independent approximation problems as
follows:

A11x1 ≈ b1, A22x2 ≈ 0, x̃ ≡ Qx, x ≡
[

x1

x2

]
.(1.3)

It can be seen from (1.2) that the solution to each of the approximation problems
in (1.3) does not affect, and can be found independently of, the other. The problem
A22x2 ≈ 0 says only that x2 lies approximately in the nullspace of A22. Thus unless
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there is some reason not to (see, for example, Remark 1.1), we can take x2 = 0, and
only A11x1 ≈ b1 need be solved. For orthogonally transformed problems we suggest
the following definition.

Definition 1.1. We say A11x1 ≈ b1 is a core problem in Ãx̃ ≈ b̃ if [b1, A11] is
minimally dimensioned (or A22 is maximally dimensioned) subject to (1.2).

The ideas presented here may be applicable to other than orthogonal transfor-
mations of (1.1), but we will concentrate on orthogonal transformations because of
their practicality (their relationship with scaled total least squares (scaled TLS)) and
the elegance of the results (their relationship with the SVD). Even when we restrict
ourselves to orthogonal transformations, the concept of core problems is meaningful
outside optimal approximation methods, but these give the best motivation for in-
troducing core problems. For (1.1), the unifying example of optimal approximation
problems whose optima are invariant under orthogonal transformations is then scaled
TLS: for given γ > 0:

scaled TLS distance ≡ min
g̃,Ẽ,x̃

‖[g̃, Ẽ]‖F subject to (Ã + Ẽ)x̃γ = b̃γ + g̃ .(1.4)

This is a reformulation of the unification in [22]; see [20, 21]. When γ = 1 scaled
TLS becomes total least squares (TLS, see in particular [10], [7, section 6], [11], [9,
pp. 324–326], [25, 23]). TLS is also known in the statistical literature as orthogonal
regression. In the limit scaled TLS corresponds to ordinary least squares (LS) when
γ → 0, and to data least squares (DLS, see [13]) when γ → ∞; see [11, 22, 20, 21].

It is not theoretically necessary, but for the remainder of this paper we will assume

b̃ �⊥ R(Ã) (that is, ÃT b̃ �= 0).(1.5)

This eliminates the annoying trivial case where A11 in (1.2) has no columns.
It is often important, even essential, to find a core problem A11x1 ≈ b1. It was

shown in [20, section 7] that the existence of a nontrivial decomposition of the form
(1.2) can prevent the TLS, scaled TLS, and DLS formulations for solving (1.1) from
having meaningful solutions when applied directly to [b̃, Ã]. Here we give a simple
example to make this obvious.

For our analysis it is sufficient and convenient to consider the TLS problem ((1.4)
with γ = 1) applied to Ãx̃ ≈ b̃ with nontrivial decomposition (1.2). If A11x1 ≈ b1 is a
core problem, then its TLS solution exists and is unique (see Remark 2.1), and its TLS
distance is σmin([b1, A11]), where σmin(·) denotes the minimum singular value; see,
for example, [12, section 12.3]. Using temporary notation, suppose σk ≡ σmin(A22)
and

σk < σmin([b1, A11]), A22vk = ukσk, uT
kA22 = σkv

T
k , ‖uk‖ = ‖vk‖ = 1.

For any real vector z define r1 ≡ b1 −A11z, then for any real scalar θ > 0

[
A11 r1θ

−1vTk
0 A22 − ukσkv

T
k

] [
z
vkθ

]
=

[
b1
0

]
,

so the square of the Frobenius norm of the corresponding correction to A is ‖r1‖2θ−2+
σ2
k → σ2

k as θ → ∞.

Thus by applying (1.4) directly to [b̃, Ã] we can get a nonoptimal “TLS distance”
less than σmin([b1, A11]), the TLS distance for the meaningful core problem A11x1 ≈
b1. The above “solution vector” need have nothing to do with the TLS solution
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vector for A11x1 ≈ b1, but is essentially determined by vk from the noncore part of
the problem A22x2 ≈ 0. This does not reflect any useful information contained in the
data. Moreover, in this case the optimal solution to (1.4) does not even exist. Instead,
in general we recommend finding a core problem via (1.2); then

solve the core problem A11x1 ≈ b1 and set x2 = 0 in (1.3).(1.6)

Section 2 introduces an SVD based decomposition of the form (1.2) with mini-
mally dimensioned [b1, A11]. It also suggests a possible application to ill-posed prob-
lems with uncertain data. Section 3 shows how an orthogonal bidiagonalization will
give an optimally partitioned decomposition of the form (1.2) directly. This bidiago-
nalization will also show whether the original problem (1.1) is compatible or not, and
is an ideal first step in obtaining the TLS, scaled TLS, or DLS solutions to (1.1); see
[20, 21]. For completeness this is briefly reviewed in section 4, with an emphasize on
an elegant solution of the following DLS formulation applied to a core problem:

DLS distance ≡ min
E11,x1

‖E11‖F subject to (A11 + E11)x1 = b1.(1.7)

Section 5 summarizes our ideas and compares them with other approaches. In
all cases the extension to the complex case is straightforward; see, for example, [20].
Throughout the paper we will use the following easily proven result.

Lemma 1.2. For (1.1), and (1.3) satisfying (1.2), A11x1 ≈ b1 is a compatible
(incompatible) system if and only if Ãx̃ ≈ b̃ is a compatible (incompatible) system.

Remark 1.1. In some applications such as solving noisy ill-posed problems, one
may be tempted to use a nonzero x2 in order to enforce some regularization con-
straints on the solution x̃. Such constraints are typically formulated in terms of the
generalized norm ‖Lx̃‖, which for a given matrix L can combine x1 and x2; see [16].
In [6, section 5] the problem involving Ã, L, and b̃ is transformed into a standard
form TLS problem with the matrix Asf and the right-hand side bsf . Then standard
algorithms for finding the regularized TLS solution of the transformed problem are
applied, followed by the transformation of the regularized solution x̃sf back to the
general setting. Within such a framework the core problem theory and computations
can be applied to solving the transformed problem Asfxsf ≈ bsf .

Here we focus on the basic theory of core problems in (1.1). We are aware of the
possible implementation difficulties, and of promising applications to regularization
of ill-posed problems; see Remarks 2.2 and 3.2 below. These issues are, however, not
in the scope of this paper, and we leave them for further investigation. Therefore,
within the scope of our paper, the obvious choice for the solution of A22x2 ≈ 0 is
x2 = 0.

2. Understanding core problems in Ãx̃ ≈ b̃. In Definition 1.1 we said
A11x1 ≈ b1 is a core problem in Ãx̃ ≈ b̃ if an orthogonal decomposition of the form
of (1.2) exists where [b1, A11], and so A11, has minimal dimensions. An understand-
ing of such minimal dimensions can be gained by the following construction, which
shows how to concentrate the relevant information into A11 and b1 while moving the
irrelevant and redundant information into A22. Let Ã have rank r and SVD

Ã = U

[
S 0
0 0

]
V T ,
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where S = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr > 0, the n× n matrix U−1 = UT , and
the k × k matrix V −1 = V T . Then

UT
[
b̃ ÃV

]
=

[
c̃ S 0
d 0 0

]
.(2.1)

Although singular values are unique, in any SVD representation their ordering,
and sometimes some singular vectors, are not. In order to obtain the core problem we
will seek to transform UT [b̃, ÃV ] further, while maintaining the SVD of Ã. Consider
the partitioning U ≡ [U1, U2], V ≡ [V1, V2], where U1 and V1 have r columns. The
vectors c̃ and d might already have some zero elements, and our aim is to introduce
as many more as possible. For d, choose orthogonal P22 so that PT

22d = e1δ, δ ≡ ‖d‖,
and replace U2 by U2P22. In this way, d is transformed into a vector having at most
one nonzero entry. Now consider c̃ ≡ [γ̃1, . . . , γ̃r]

T . Suppose that some of the singular
values of A have multiplicities greater than one, for example σi = σi+1 = · · · = σj ,
j > i. Choose orthogonal P(i,j) so that PT

(i,j)[γ̃i, . . . , γ̃j ]
T = [γi,j , 0, . . . , 0]T . Then

transform U1 and V1 by application of P(i,j) from the right to the block of columns
numbered i, . . . , j. This transformation will leave S unchanged and therefore preserves
the SVD. Do this for each block of multiple singular values, and so obtain P11 where
PT

11c̃ has at most one nonzero element corresponding to each block of equal singular
values of S, and replace U1 by U1P11, V1 by V1P11. Next permute the columns of
U1P11 and V1P11 identically, to move the zero elements of PT

11c̃ to the bottom of this
vector, leaving c at the top with nonzero elements while keeping S diagonal. Finally,
if δ > 0, move its row so δ is immediately below c by a further permutation from the
left to give, with obvious new notation and indexing,

UT
[
b̃ ÃV

]
=

[
b1 A11 0
0 0 A22

]
=

⎡
⎣ c S1 0

δ 0 0
0 0 S2

⎤
⎦ ,(2.2)

where, assuming b̃ �⊥ R(Ã),

c ≡ [γ1, . . . , γp]
T ; γi �= 0, i = 1, . . . , p; U−1 = UT , V −1 = V T ;

S1 ≡ diag(σ1, . . . , σp), σ1 > · · · > σp > 0; the row with

the scalar δ is nonexistent if and only if Ãx̃ ≈ b̃ is compatible.(2.3)

The final partitioning corresponds to that in (1.2). Here S2 has the remaining r − p
singular values of Ã, and the comment in (2.3) follows from Lemma 1.2. We emphasize
that the diagonal elements of S1 are different from each other and that all entries in c
are nonzero. In this way, the redundant information (multiplicities of singular values)
and irrelevant data are removed to S2.

We now show that A11x1 ≈ b1 obtained by the transformation process described
above has the desired minimality property. For the SVD of Ã write U ≡ [u1, . . . , un]. If
ui, ui+1, . . . , uj , i ≤ j, are all the left singular vectors corresponding to a given singular

value σ, we say R([ui, ui+1, . . . , uj ]) is the left singular subspace of Ã corresponding
to σ. But the left and right singular subspaces corresponding to a given (possibly
multiple) nonzero singular value σ of Ã are unique; see, for example, [17, Thm. 3.1.1’,
p. 147]. Thus if b̃ is orthogonal (or not orthogonal) to the left singular subspace of
Ã corresponding to a given singular value σ > 0, this will be obvious in all SVD
representations of Ã. In particular for the SVD of Ã in (2.2)–(2.3), for i = 1, . . . , p
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we see that uiγi = ui(u
T
i b̃) is the projection of b̃ onto the left singular subspace of Ã

corresponding to σi > 0 (since the construction has ensured that the other singular
vectors of any multiple σi are orthogonal to b̃). This construction of the decomposition
(1.2) in the special form (2.2)–(2.3) leads to Lemma 2.1. The subsequent minimality
theorem proves the minimal dimensions of the resulting core problem A11x1 ≈ b1.

Lemma 2.1. [b̃, Ã] has a decomposition of the form in (2.2)–(2.3) if and only if
b̃ has nonzero projections on exactly p left singular subspaces of Ã corresponding to
distinct nonzero singular values. The projections correspond to those in [b1, A11].

Theorem 2.2. Suppose b̃ �⊥ R(Ã) has nonzero projections on exactly p left
singular subspaces of Ã corresponding to distinct nonzero singular values. Then among
all decompositions of the form (1.2), the minimally dimensioned A11 is p×p if Ãx̃ ≈ b̃
is compatible, and (p + 1) × p if Ãx̃ ≈ b̃ is incompatible.

Proof. From Lemmas 1.2 and 2.1, [b̃, Ã] has a decomposition of the form in
(2.2)–(2.3), where A11 is p × p if Ãx̃ ≈ b̃ is compatible and (p + 1) × p if Ãx̃ ≈ b̃ is
incompatible. Suppose that there exists another decomposition of the form

P̄T
[
b̃ ÃQ̄

]
=

[
b̄1 Ā11 0
0 0 Ā22

]
,

where P̄ and Q̄ are orthogonal matrices and Ā11 has q columns. Here we can assume
that Ā11 has full column rank q, and [b̄1, Ā11] has full row rank q̃, otherwise Q̄ and
P̄ could be chosen to give Ā22 more columns or rows. From Lemma 1.2 we see that
q̃ = q if Ãx̃ ≈ b̃ is compatible and q̃ = q + 1 if it is not.

Suppose q < p; then Ā11 must have fewer columns and rows than A11. Obtain an
SVD of Ã by obtaining the individual SVDs of Ā11 (and transforming b̄1 accordingly)
and Ā22, leading to the form of (2.2)–(2.3) with p replaced by q. But this would
mean b̃ has nonzero projections on at most q < p left singular subspaces of Ã (see
Lemma 2.1), which by assumption is false; so q ≥ p, and (2.3) provides a minimally
dimensioned, or core, problem within Ãx̃ ≈ b̃.

Remark 2.1. It follows from Definition 1.1, Lemma 2.1, and Theorem 2.2 that
[b1, A11] in (2.2)–(2.3) represents a core problem. From the form of this it can be
shown that the TLS, scaled TLS, and DLS formulations have unique and meaningful
solutions for any core problem A11x1 ≈ b1; see [20, (1.10) et seq.] and [21, (9) et al.].
This theory, and the method of solution of such problems, is discussed further in
sections 3 (following Theorem 3.2), 4, and 5. In fact (1.10) in [20], and (9) in [21], is
just (5.11) here.

The SVD is costly to compute, and the computation is necessarily iterative; see,
for example, [12, sections 5.4.3–5, pp. 251–254]. In order to find a core problem, we
do not need to follow the costly procedure described above. In section 3 we show how
to find a core problem directly and cheaply. This will also give us the ideal first step
towards computing c, δ, and S1 in (2.2)–(2.3), should we want them.

Remark 2.2. Because of data and rounding errors, few practical problems will
decompose computationally as in (1.2). However, if we have a good idea of the accu-
racy of our data and computer arithmetic, this analysis will allow us to go from (2.1)
to (2.2)–(2.3) within this accuracy (cf. [11, section 5]), and this could be particularly
useful for ill-posed problems. Suppose b̃ is only accurate to within β‖b̃‖, and Ã to
within α‖Ã‖. Then here is the outline of an approach to get from (2.1) to the form
in (2.2)–(2.3):

• Any elements of |c̃| less than say β‖b̃‖ can be set to zero.
• Any diagonal elements of S less than say α‖Ã‖ can be set to zero.
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• Any block of diagonal elements of S which are equal to within say 2α‖Ã‖ can
be set equal to their midvalue.

• The resulting new (2.1) can be transformed as above to (2.2) with (2.3).

3. Computing a core problem within Ãx̃ ≈ b̃. We can compute a decom-
position of the form (1.2) directly by choosing orthogonal matrices P and Q to reduce
[b̃, Ã] to a real upper-bidiagonal matrix; see, for example, [12, section 5.4.3, p. 251]
(and also [20, section 8]). Partitions P = [P1, P2] and Q = [Q1, Q2] are obtained by
stopping at the first zero element, giving (1.2) where A22 has not been bidiagonalized,
while upper-bidiagonal [b1, A11] = PT

1 [b̃, ÃQ1] has nonzero bidiagonal elements and is
either

[b1|A11] =

⎡
⎢⎢⎣

β1 α1

β2 α2

· ·
βp αp

⎤
⎥⎥⎦ , βiαi �= 0, i = 1, . . . , p(3.1)

if βp+1 = 0 or p = n; or

[b1|A11] =

⎡
⎢⎢⎢⎢⎣

β1 α1

β2 α2

· ·
βp αp

βp+1

⎤
⎥⎥⎥⎥⎦ , βiαi �= 0, i = 1, . . . , p; βp+1 �= 0(3.2)

if αp+1 = 0 or p = k. In the first case A11x1 = b1 in (1.3) is a compatible system
since A11 is p× p and nonsingular. In the second case A11x1 ≈ b1 is an incompatible
system since [b1, A11] has rank p + 1. Note that under the assumption b̃ �⊥ R(Ã) we
have α1 �= 0 (see (1.5)).

Remark 3.1. Whether (3.1) or (3.2) results, this bidiagonalization has two im-
portant alternative interpretations, and these help us to understand its effectiveness.
With the above partitioning of P and Q we see that

PT
[
b̃ ÃQ1

]
=

[
b1 A11

0 0

]
,

so that the bidiagonalization gives the QR factorization of [b̃, ÃQ1], ensuring that
[b1, A11] has full row rank. Next we see that

[
PT

1 Ã
]
Q =

[
A11, 0

]
,

so that the bidiagonalization gives the LQ factorization of PT
1 Ã, ensuring that A11

has full column rank.
The proof that (3.1) and (3.2) correspond to core problems will be given in The-

orems 3.2 and 3.3. But first we need a lemma.
Lemma 3.1. Let J = [b1, A11] be bidiagonal as in (3.1) or (3.2). Then all its left

and right singular vectors (for its p or p + 1 nonzero singular values) have nonzero
first and last elements. The nonzero null-vector of (3.1) has no zero elements.

Proof. With u ≡ (μ1, . . . , μp+1)
T , v ≡ (ν1, . . . , νp+1)

T , we see that

uTJ = σvT ⇒ μ1β1 = σν1; μiαi + μi+1βi+1 = σνi+1, i = 1, . . . , p;(3.3)

Jv = uσ ⇒ βiνi + αiνi+1 = μiσ, i = 1, . . . , p; βp+1νp+1 =μp+1σ;(3.4)
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where μp+1 and βp+1 are nonexistent in (3.1). For σ > 0, (3.3) shows that if either
μ1 or ν1 is zero, then so is the other, and then (3.4) and (3.3) show all the remaining
elements are zero. Similar arguments give the rest of the proof.

Theorem 3.2. For [b1, A11], b1 �= 0, α1 �= 0, in (3.1) or (3.2) with SVD
A11 =

∑p
i=1 uiσiv

T
i , the p singular values σi of A11 are distinct and nonzero, and

they strictly separate the p + 1 distinct and nonzero singular values of [b1, A11] in
(3.2) (or the p distinct and nonzero singular values of [b1, A11] together with 0 in
(3.1)). In both cases

rank (A11) = p; bT1 ui �= 0, i = 1, . . . , p.(3.5)

Proof. From their obvious ranks, A11 has exactly p nonzero singular values, and
[b1, A11] has exactly p nonzero singular values in (3.1) and exactly p+ 1 in (3.2). But
T ≡ [b1, A11]

T [b1, A11] is (p+1)× (p+1) symmetric tridiagonal with nonzero next to
diagonal elements, and AT

11A11 remains when the first row and column are deleted.
Thus the eigenvalues of AT

11A11 strictly separate those of T ; see, for example, [26,
Ch. 5, sect. 37, p. 300]. This proves the first part of the theorem. For the second part
of (3.5) bT1 ui = β1e

T
1 ui �= 0 from Lemma 3.1.

The condition (3.5) also directly ensures that the TLS, scaled TLS, and DLS
formulations have unique and meaningful solutions for A11x1 ≈ b1 in the incompatible
case (3.2); see [20, (1.10)], [21, (9)], and (5.11) with the discussion in section 5 ((3.5)
implies (5.11) for [b1, A11]).

In Theorem 3.3 we will show that the orthogonal bidiagonalization leading to
(3.1) or (3.2) gives a core problem A11x1 ≈ b1 in Ãx̃ ≈ b̃. It will help if we first briefly
restate the relevant parts of Theorems 2.2 and 3.2.

Theorem 2.2. Suppose b̃ �⊥ R(Ã) has nonzero projections on exactly p left
singular subspaces of Ã corresponding to distinct nonzero singular values. Then among
all decompositions of the form (1.2), the minimally dimensioned A11 is p×p if Ãx̃ ≈ b̃
is compatible, and (p + 1) × p if Ãx̃ ≈ b̃ is incompatible.

Theorem 3.2. For [b1, A11], b1 �= 0, α1 �= 0, in (3.1) or (3.2) with SVD
A11 =

∑p
i=1 uiσiv

T
i , we have that rank(A11) = p and bT1 ui �= 0 for i = 1, . . . , p. Also

the p singular values of A11 are distinct and nonzero. (The rest is omitted here.)
Theorem 3.3. If b̃ �⊥ R(Ã) and n×(k+1) [b̃, Ã] has an orthogonal decomposition

of the form (1.2) with [b1, A11] as in (3.1) or (3.2), then
(a) A11 has no zero or multiple singular values, and thus any zero singular values or

repeats that Ã has must appear in A22;
(b) [b1, A11] (and thus A11) has minimal dimensions, and A22 maximal dimensions,

over all orthogonal transformations of the form shown in (1.2);
(c) orthogonal Û11 and V̂11 in the transformation ÛT

11[b1, A11V̂11] can be designed to
produce the form of [b1, A11] in (2.2)–(2.3).

Proof. (a) This follows immediately from Theorem 3.2. (b) Theorem 3.2 shows
that b̃ has nonzero projections on exactly p left singular subspaces of Ã corresponding
to distinct nonzero singular values. Thus, following Theorem 2.2, [b1, A11] is minimally
dimensioned, so that A22 is maximally dimensioned. (c) Using the SVDs A11 =
U11S1V

T
11, A22 = U22S2V

T
22, U

T
11U11 = V T

11V11 = Ip, etc.,[
b1 A11 0
0 0 A22

]
=

[
b1 U11S1V

T
11 0

0 0 U22S2V
T
22

]

=

[
U11 r1 0
0 0 U22

] ⎡
⎣ c S1 0

δ 0 0
0 0 S2

⎤
⎦
⎡
⎣ 1 0 0

0 V T
11 0

0 0 V T
22

⎤
⎦ ,
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where c ≡ UT
11b1, w ≡ b1 − U11c, and if w �= 0, δ ≡ ‖w‖, r1 ≡ w/δ. If Ãx̃ = b̃ is

compatible, then U11 is square, w = 0, and in this case δ and its row, and r1 and its
column, are nonexistent. In the incompatible case w �= 0, ‖r1‖ = 1, UT

11r1 = 0, and
denoting Û11 ≡ [U11, r1], V̂11 ≡ V11 gives the structure in (2.2), while Theorem 3.2
shows (2.3) holds for this structure.

Theorems 2.2 and 3.3 are new. The result (b) of Theorem 3.3 was mentioned
in [20, 21], but not proven, because we had not then obtained a sufficiently readable
proof of what seemed a fairly obvious result. Theorem 2.2 allowed this, but we hope
that others can provide an even simpler proof. The essence of Theorem 3.2 was given
in [21, Thm. 1], which is an extended version of [20, Thm. 8.1].

Remark 3.2. In practical computations which involve rounding errors or noise
in the data, one must consider threshold criteria to decide which elements of the
bidiagonal matrix are small in magnitude and should be set to zero. The criteria will
be problem-dependent, but unlike the case in Remark 2.2, their choice is less obvious
and needs further investigation.

It will be interesting to relate the core problem formulation to the work on trun-
cated TLS [4, 5]; see also [15, section 6.6] and [24]. In particular, the core problem
formulation can be considered as a theoretical basis for the Lanczos truncated TLS
proposed in [6, section 4.1] as well as for the partial least squares (PLS) method
of Wold, et al. [27] which is equivalent to the Lanczos bidiagonalization-based trun-
cated least squares; see [3]. Various related regularization aspects are described, for
example, in [2, 18, 14, 8]; see also [28].

4. Solving the LS, scaled TLS, and DLS problems using bidiagonaliza-
tion and the core problem. Consider the upper bidiagonalization

[b, A] = PT [b̃, ÃQ] of the form in (1.2),

with the core problem part [b1, A11] = PT
1 [b̃, ÃQ1] given by (3.1) or (3.2). In (3.1)

A11x1 = b1 is a compatible system, therefore Ãx̃ = b̃ is a compatible system (see
Lemma 1.2). Then the LS residual, the scaled TLS distance (for any positive finite
γ), and the DLS distance are zero, and the solutions are obvious. We will now consider
only the incompatible case (3.2) and take x2 = 0, x̃ = Q1x1.

The LS solution of A11x1 ≈ b1 with [b1, A11] in (3.2) is obtained by orthogonal
reduction of the matrix [A11, b1] to upper triangular form (note the reversal of A11

and b1), followed by solution of a triangular system to give x1.
For any given finite positive scaling γ, the scaled TLS solution (see (1.4)) of

A11x1 ≈ b1 with [b1, A11] in (3.2) is uniquely determined by the unique SVD compo-
nent ūσ̄v̄T of [γb1, A11] corresponding to σ̄ ≡ σmin([γb1, A11]), its minimal singular
value. From Lemma 3.1, ν = eT1 v̄ �= 0, v̄T ≡ [ν, w̄T ] and

x1 = −w̄/ν with the scaled TLS correction − ūσ̄v̄T to [γb1, A11] .

In the original variables the scaled TLS solution of Ãx̃ ≈ b̃ is x̃ = Q1x1. The scaled
TLS correction to [γb̃, Ã] is obtained from the following exercise:

[g̃, Ẽ] = P

[
−ūσ̄v̄T 0

0 0

] [
1 0
0 QT

]
= [P1|P2]

[
−ūσ̄(ν, w̄T ) 0

0 0

]⎡⎢⎣
1 0
0 QT

1

0 QT
2

⎤
⎥⎦

= −(P1ū) σ̄ (ν, w̄TQT
1 ) = (P1ū) σ̄ν [−1, x̃T ] .
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The DLS problem was proposed and used in [13]. Suppose that the core part
[b1, A11] of the transformed [b̃, Ã] has the form in (3.2). We will show how to solve
the DLS problem (1.7) for this core data; see [20, 21]. Write

[b1|A11] ≡
[

β1 α1e
T
1

0 A2

]
≡ PT

1 [b̃|ÃQ1], E11 ≡
[

eT

E2

]
≡ PT

1 ẼQ1, x̃ ≡ Q1x1,

where A2 is square with all its singular values distinct and nonzero. Let σ, u, and v
be the minimum singular value σ ≡ σmin(A2) and its left and right vectors for A2.
For the above reduced data the DLS problem (1.7) becomes

min
e,E2,x1

{‖e‖2 + ‖E2‖2
F} subject to

[
β1 α1e

T
1 + eT

0 A2 + E2

] [
−1
x1

]
= 0.

Since β1 is nonzero, x1 �= 0, and the minimum ‖E2‖F in (A2+E2)x1 = 0 is σ, given by
E2 = −uσvT and x1 = vξ for some ξ �= 0. To make this x1 satisfy the full constraints
we need β1 = α1e

T
1 vξ+eT vξ. But eT1 v �= 0 from Lemma 3.1, so e = 0 gives the overall

minimum with ξ = β1/(α1e
T
1 v), and

xD ≡ x1 = vβ1/(α1e
T
1 v), σD ≡ σ = σmin(A2)

are the DLS solution and distance in (1.7) for the reduced data [b1, A11]. In the
original variables x̃ = Q1x1 = Q1vξ and

Ẽ = P

[
E11 0
0 0

]
QT = P1E11Q

T
1 = P1

[
0

−uσvT

]
QT

1 = P1

[
0

−u (σ/ξ) x̃T

]
.

From these we see that the solutions of the scaled TLS and DLS problems are
reduced to computing the smallest singular value and its right singular vector for the
nonsingular bidiagonal matrices [b1, A11] and A2, respectively, and these are relatively
easy to find; see, for example, [12, section 8.6.2, pp. 452–456].

5. Review and comparisons with earlier work. The main topics we have
dealt with so far are (in order of presentation) as follows:

T1. Core problems A11x1 ≈ b1 in Ãx̃ ≈ b̃; see Definition 1.1 and Theorem 2.2.
T2. Some criteria for solving Ãx̃ ≈ b̃; see (1.4), (1.7).
T3. A special form of the SVD of Ã related to b̃, which gives the core problem;

see (2.2)–(2.3).
T4. The orthogonal upper bidiagonalization of [b̃, Ã] as the way of computing the

core problem efficiently; see (3.1)–(3.2).
T5. Implementing topic T2 for topic T1; see section 4 (also [1, 11, 12, 25, 20, 21]).

Our main purpose has been to introduce T3, show its relationship to T4, and prove
that the core problem in T1 could be found immediately from either T3 or T4. Us-
ing T4 to obtain T1 is a direct computation, and is also an ideal first step in either
computing T3 (it gives an orthogonal transformation of Ã to lower bidiagonal form)
or in solving (1.4) or (1.7). Using T3 is an iterative process (but very fast after the
bidiagonalization in T4) and gives an excellent guide as to what elements can be con-
sidered zero or equal in different cases; see Remark 2.2. An analogous guide which
would apply directly to T4 needs further work; see Remark 3.2.

For applications, our suggested approach to finding a scaled TLS solution to (1.1)
is to determine the core problem (3.1)–(3.2) and continue according to (1.6). Then
(1.4) with finite positive γ for A11x1 ≈ b1 can be solved in the manner reviewed briefly
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in section 4 and described in more detail from here to (5.5) (based on the algorithm
of Golub and Van Loan in [11]; see [12, section 12.3]), while the DLS problem can be
solved as in section 4. These will always give meaningful solutions (see Remark 2.1),
and because of minimal dimensions of [b1, A11], they will also minimize the cost.

On reading this, Sabine van Huffel suggested that we also compare the core prob-
lem approach here to the approaches in [25] for solving the TLS problem (with a single
right-hand side b̃, since the extension of the theory here to multiple right-hand side
problems remains a subject for further investigation). This will require some basic
analysis. We need only consider the incompatible case and b̃ �⊥ R(Ã).

One reason for developing our formulation (1.4) was that its solution is clearly
equivalent to the TLS solution of Ã(x̃γ) ≈ b̃γ. Thus by just considering

TLS distance ≡ min
g,E,x

‖[g,E]‖F subject to (A + E)x = b + g,(5.1)

the results we obtain will also cover the extension of the results in [25] to {(1.4) with
any finite positive γ}. We will also assume that

[b, A] ≡ PT [b̃, ÃQ] has the form in (1.2) with [b1, A11] given by (3.2),(5.2)

and in this case we will show that the minimum 2-norm solution approaches that
were given in [25] theoretically give the same answers to (5.1) as (1.6) does. Since the
optimum in (5.1) is independent of such orthogonal transformations, this will mean
that the answers for any [b̃, Ã] will theoretically be the same here and for the minimum
2-norm solution approaches in (the extended versions of) [25].

The approaches to solving (5.1)–(5.2) make use of the SVD of n× (k + 1) [b, A],
which we write as:

[b, A] = Ũ S̃Ṽ T =

k+1∑
i=1

ũiσ̃iṽ
T
i , σ̃1 ≥ · · · ≥ σ̃k+1 ≥ 0.(5.3)

Here we have assumed n > k, which can be attained by adding zero rows to [b, A]
if necessary. Note that the SVD used in [25] (see, for example, [25, equation (1.22),
p. 22]) does not take account of the possible structure in (1.2), while here we only
use the SVD of [b1, A11]; the SVD of A22 need not be computed. Thus in our case
the SVD of [b, A] in (5.3) is the direct sum of the SVDs of [b1, A11] and A22. We can
still use the ordering of vectors and singular values in (5.3), but for equal singular
values we will always assume the first in order comes from the [b1, A11] block. Clearly
for our version of (5.1)–(5.3), any SVD component ũiσ̃iṽ

T
i coming from the [b1, A11]

block can be nonzero only in its leading principle (p + 1) × (p + 1) block. Similarly
for our version, any SVD component coming from the A22 block can be nonzero only
in the block corresponding to A22.

The SVD used in [25] is not precisely defined, but since we want to compare the
solution

[
x1

0

]
here based on A11x1 ≈ b1 to the solution x in [25] based on Ax ≈ b

in (1.2), it is easiest to assume [25] uses the same SVD as here and comment on the
effects of using a more general SVD.

First we derive our unique solution (1.6) to (1.1) with core problem A11x1 ≈ b1.
As in section 4, let [b1, A11] have unique “minimum” SVD component ūσ̄v̄T , where

σ̄ ≡ σmin([b1, A11]) = σ̃m say, in (5.3).(5.4)
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σ̄ will be unique in the SVD of [b1, A11] (see Theorem 3.2), but we choose σ̃m to be
the first of any equals in the SVD (5.3). From Lemma 3.1, ν ≡ eT1 v̄ �= 0. Define

[g,E] ≡ −ũmσ̃mṽTm = −
[

ūσ̄v̄T 0
0 0

]
, ũm =

[
ū
0

]
, ṽm =

[
v̄
0

]
.

Denote

ṽm ≡
[
ν
w

]
, w ≡

[
w̄
0

]
, v̄ =

[
ν
w̄

]
.

The solution to the TLS problem (5.1) for A11x1 ≈ b1 is then x1 = −w̄/ν, with
correction −ūσ̄v̄T to [b1, A11]. With (1.6) this means our solution to Ax ≈ b is

x = −w/ν,where ṽm ≡
[
ν
w

]
, with correction [g,E] ≡ −ũmσ̃mṽTm to [b, A].(5.5)

We will show that the minimum 2-norm solutions in [25] are identical to this. To help
in this we will use the following lemma.

Lemma 5.1. The singular values of A interlace those of [b, A] ([12, Cor.8.6.3]).
There are exactly three cases, denoted 1, 2(a), and 2(b) below.
Case 1. If the most well-known criterion for a unique solution to (5.1) holds, i.e.

σ̃k+1 ≡ σmin([b, A]) < σmin(A),(5.6)

(see [11, Thm.4.1], [12, Thm.12.3.1], [25, Thm.2.6, p.35]), then in (5.4), σ̄ = σ̃m =
σ̃k+1, which from Lemma 5.1 is the unique minimum singular value of [b, A], and
the solution in [25, Thm. 2.6, p. 35] to (5.1) is unique and given by (5.5), and so is
identical to the solution here.

Case 2. Next suppose for a general SVD in (5.3) that for some j ≤ k

σ̃j > σ̃j+1 = · · · = σ̃k+1, V ′ ≡ [ṽj+1, . . . , ṽk+1], U ′ ≡ [ũj+1, . . . , ũk+1].(5.7)

If j < k, then from Lemma 5.1, (5.6) does not hold. If eT1 V
′ = 0, then it can be seen

from Lemma 3.1 that σ̃j+1 = · · · = σ̃k+1 must correspond wholly to A22, and (5.6)
does not hold. These lead to the special cases in [25].

Case 2(a). If j < k and eT1 V
′ �= 0, the TLS solution is not unique. Golub and

Van Loan [11, pp. 885–886], and later Van Huffel and Vandewalle, effectively design
orthogonal Q′ so that eT1 V

′Q′ = νeT1 and set ũ ≡ U ′Q′e1 and ṽ ≡ V ′Q′e1 = (ν, wT )T .
Then it was proven in [25, Thm. 3.7, p. 58] that [g,E] ≡ −ũσ̃j+1ṽ

T is an optimal
correction to [b, A] in (5.1) with minimum 2-norm solution x = −w/ν and distance
σ̃j+1. For our structured form of SVD in (5.3), we see from Theorem 3.2 that the
p + 1 singular values of [b1, A11] in (3.2) are distinct and nonzero, so at most one
can come from among σ̃j+1 = · · · = σ̃k+1 above, and the other k − j (or k − j + 1)
in this set of equal values must come from A22 in (1.2). Now if ṽj+1, . . . , ṽk+1 all
came from A22, then eT1 V

′ = 0, a contradiction. So exactly one such vector (with our
chosen ordering for (5.3) it is ṽj+1) comes from [b1, A11], and by Lemma 3.1 it has
nonzero first element. What has happened is that the splitting (1.2) caused by our
bidiagonalization ensures that V ′ already satisfies eT1 V

′ = ±νeT1 . Thus m = j + 1 in
(5.4), and our solution (5.5) is again obtained in [25, Thm. 3.7, p. 58].

Case 2(b). The remaining case is where eT1 V
′ = 0 in (5.7) (which may happen

when j = k or j < k). This is called the “nongeneric” case in [25, section 3.4] and
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corresponds to the unpleasant example that we gave near the end of section 1. In linear
regression the columns of such V ′ correspond to nonpredictive multicolinearities; they
are of no value in predicting the response b [25, p. 71]. To handle this, Van Huffel
and Vandewalle [25, Def. 3.2, p. 68] define a new problem, a more constrained version
of (5.1). The strategy is to eliminate those directions in A, corresponding to the
smallest singular value or to the several smallest singular values of [b, A], that are
not at all correlated with the observation vector b. For any general SVD (5.3), let q
be the maximum value of i such that eT1 ṽi �= 0. Note that we might have q < j in
(5.7). The “nongeneric” problem of [25, Def. 3.2, p. 68] is then just (5.1) with the
added restriction that [g,E][ṽq+1, . . . , ṽk+1] = 0, and any solution x for this is called
a “nongeneric TLS solution.” In [25, Thm. 3.12, p. 72] it is shown how to obtain such
a solution, and the comments following that indicate how to compute the minimum
2-norm solution.

For our structured form of SVD in (5.3), define q as above, set Ṽ1 = [ṽ1, . . . , ṽq],
and with conformable partitioning in (5.3) write

Ũ = [Ũ1, Ũ2], S̃ = diag(S̃1, S̃2), Ṽ = [Ṽ1, Ṽ2] so that [g,E] Ṽ2 = 0(5.8)

is the added constraint. Lemma 3.1 with eT1 Ṽ2 = 0 shows that the singular vectors
ṽq+1, . . . , ṽk+1 come from A22; e

T
1 ṽq �= 0 shows that ṽq comes from [b1, A11], which with

the ordering in (5.3) implies m = q in (5.4); and (5.7) shows σ̃q ≡ σmin([b1, A11]) >
σmin(A22), so (5.6) does not hold. Clearly our solution (5.5) satisfies the constraints
in (5.1) and (5.8), but we still need to show it is optimal and minimal in length.

We can eliminate the explicit constraint [g,E] Ṽ2 = 0 by taking

[g,E] ≡ ŨHṼ T
1 ≡ (Ũ1H1 + Ũ2H2)Ṽ

T
1

and now minimize ‖H‖F . By defining yT ≡ (yT1 , y
T
2 ) ≡ (−1, xT )[Ṽ1, Ṽ2] and trans-

forming the constraints in (5.1) to

0 = ŨT {[b, A] + [g,E]}Ṽ Ṽ T

[
−1
x

]
=

[
S̃1 + H1 0

H2 S̃2

][
y1

y2

]
,

we can reformulate the “nongeneric problem” in [25, Def. 3.2, p. 68] to

min
H1,H2,y1,y2,x

(‖H1‖2
F +‖H2‖2

F )(5.9)

subject to

[
S̃1 + H1 0

H2 S̃2

][
y1

y2

]
= 0 ,

[
−1
x

]
= Ṽ1y1+Ṽ2y2 .

Now whatever H1 and y1 are, we can take H2 = 0 and y2 = 0 (since eT1 Ṽ2 = 0, only
y1 contributes to the −1 in (5.9), and thus the last constraint gives no restriction on
y2). Therefore, the problem simplifies to

min
H1,y1,x

‖H1‖2
F subject to (S̃1 + H1)y1 = 0,

[
−1
x

]
= Ṽ1y1.(5.10)

Since S̃1 = diag(σ̃1, . . . , σ̃q) with σ̃1 ≥ · · · ≥ σ̃q = σmin([b1, A11]) > 0 (see Theo-
rem 3.2), a solution is given by H1 = −eqσ̃qe

T
q , y1 = eq/(−ν), giving our solution

(5.5) with m = q. But this is the minimum norm solution, since ṽq is the only right
singular vector with nonzero first element that corresponds to σ̃q, using our version
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of (5.3). Thus our approach (1.6) immediately gives the minimum 2-norm solution
satisfying (5.1) together with the added restriction in (5.8), so again the minimum
2-norm solution in [25] is the same as the solution here. This concludes our discussion
of equivalent solutions.

Now let Umin be the left singular vector subspace of A corresponding to σmin(A).
We argued in [20, section 7] that (5.6) was not ideal and that a satisfactory condition
for ensuring unique solutions to, and for building the theory of, the TLS, DLS, and
scaled TLS formulations for solving (1.1) is the following γ-independent criterion:

the n× k matrix A has rank k and b �⊥ Umin.(5.11)

We showed in [20, Thm. 3.1] that this implies σmin([bγ,A]) < σmin(A) for all γ ≥ 0,
which is important for scaled TLS, and of course implies (5.6).

A crucial property of any core problem A11x1 ≈ b1 is that A11 and b1 always
satisfy (5.11), see (3.5), or (2.2)–(2.3), and so its scaled TLS solution exists, is unique,
and can be computed from the SVD of [b1γ,A11]. This can be computed efficiently
from either of the forms of [b1, A11] in (3.2) or (2.2). The bidiagonalization leads to
[b1, A11] satisfying even more than just (5.11), since it removes all redundancies and
irrelevant parts of the problem corresponding to all singular values, and in theory it
does this implicitly before any singular value computation. Minimizing the dimensions
of [b1, A11] also maximizes the computational efficiency.

The solution of the original problem (compatible or not) obtained via (1.6) is then
the minimum 2-norm solution of (1.1) such that the core problem is solved, and any
corrections correspond to corrections only in [b1, A11] in (1.2).

6. Conclusion. If Ã has full column rank, these results show us that we can only
find a decomposition of the form (1.2) with nontrivial A22 if either b̃ is orthogonal
to a left singular vector subspace of Ã or Ã has at least one repeated singular value
or both. For any [b̃, Ã], the bidiagonalization (3.1) or (3.2) (a direct computation,
that is, noniterative) will provide that decomposition with minimally dimensioned
A11 in (1.2). This bidiagonalization will also show whether the original problem (1.1)
is compatible or not, and is an ideal first step in solving the TLS, scaled TLS, or DLS
formulations for finding the optimal solution to (1.1); see [20, 21]. In some cases (for
example, using LSQR in [19]) it is also an excellent first step for ordinary linear LS
problems. We showed how this bidiagonalization and the core problem formulation
can be used to solve the LS, scaled TLS, and DLS problems.

The TLS solutions obtained via (1.6) were shown to be theoretically identical to
the minimum 2-norm solutions of all formulations of TLS in [25]. The one simple
and efficient approach given here can be applied to all such problems with a single
right-hand side, while different, and more complicated, approaches were needed to
solve different classes of problems in [25].

We feel that in addition to its more general contributions, this study simplifies and
extends the body of work which was essentially started in [10, 7, 11], but which has
been so extensively developed in [25] and elsewhere; see, for example, the collections
containing [22, 21].

These results revise our understanding of both the theory and computations in all
forms of linear LS problems with a single right-hand side. So far we have presented
essentially theoretical and algorithmic ideas, while many implementation details still
need to be worked out; see, for example, Remarks 2.2 and 3.2.
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that we show in all cases the mathematical equivalence of the TLS solutions in [25]
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with the corresponding solutions obtained by the theoretically more direct approach
here. It was difficult to find a rigorous way to do this that was still reasonably
readable, but we agree it was important to complete this link. We feel the end result
of section 5 rounds out the work nicely, even though the proofs could be more elegant.

For improvements to the revised version we thank Per Christian Hansen both for
pointing out a useful reference and offering valuable suggestions which led to Remarks
1.1 and 3.2; Gene Golub for supplying three historical references; and an anonymous
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