19.02.

1 Basic notions

1.1. Describe sets V; and V;(R) if
(a) f=2*—y*€R[z,yl,
(b) f=(2*—y*)(z+y) € Rlz,y,
(c) f=2a"~y’ €Rlz,y]

(a) Since linear polynomials z+y and z —y are irreducible and 2* —y? = (z+y)(z—v),
we have irreducible decomposition of the curve:

Varye = Vouy UVory, Varo 2 (R) = Vo (R) U Vo (R),
where V.., = Spanc((1, —1)) and V,_, = Spanc((1,1)) are complex lines and V,,,(R) =
Spang((1,—1)) and V,_,(R) = Spang((1, 1)) are real lines.
(b) Since

V(@2 =y (z +y) = V(lz = y) @ +y)?) = (& —y)z +y)) = (@* - ),

we have the same irreducible decomposition of V; and V;(R) into two lines as in (a)

Vier—y)aty) = Very U Ve, Vo) (ty) (R) = Vagy (R) U Ve (R),

c) We can easily calculate the decomposition of 2 — 2 into linear factors in C[z, y]:
y Y Y

1 V3. 1 V3.
oyt = (=)@t oy 97 = (@ -y + (G SO+ (G - ),
hence Vys_ys =V, , UV (1o, UV, . (1-Byy is an irreducible decomposition into three

complex lines. If we consider Vys_,3(R) = V;_(R) U V21 4,1,2(R). Now revoking linear
algebra we can show that the real quadratic form g, = 22 + 2y + 3?2 is positively definite,

since its matrix
(1)~
1 ~s 3
3 1 U

is positively definite, hence {(x,y) € R? | g2(z,y) = 0} = {(0,0)}. It means that
Vis_ys(R) =V, (R) = Spang((1,1)) is a real line. O
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1.2. Describe the function field K (V) for a general field K and

(a) f=z+y,
(b) f = ax + by + ¢ where (a,b) # (0,0).



First note that any non-constant linear polynomial is irreducible and that the function
field K (V7) is a filed of fractions of the coordinate ring K[V}]. So it is enough to describe
coordinate rings.

(a) To find the coordinate ring K[V,.,| = K[z,y]/(x +y), we intend to use the First
Isomorphism Theorem. Consider evaluating homomorphism ¢ : K|z, y|] — K|[z| given by
©(p) = p(x, —x), then, obviously z+y € ker(p), hence (z+y) C ker(p). If q(y) € ker(yp),
where we consider ¢ as o polynomial in variable y with coeffitients in the domain K|z],
we can observe that —z is a root of ¢, thus (y + z) | ¢ and so ¢ € (z + y). Since ¢(p) is
surjective and we have shown that ker(p) = (z +y) and the First Isomorphism Theorem
gives us

K[V = Klz,yl/(x +y) = Kz, y]/ ker(p) = Klz].

It means that the function field K(V,4,) is isomorphic to the field of rational functions
in one variable K (z).

(b) W.Lo.g we may suppose that b # 0, otherwise we switch the variables x and y.
We repeat the arguments of (a) for the evaluating homomorphism ¢ : K|z,y] — K|z]

given by the rule ¥(p) = p(x, —¢x — §), which is onto K[z]. Then ker(¢) = (ax + by +c)

and by the First Isomorphism Theorem we get the isomorphism.

K[Vaziby+e] = Kz, y]/(az + by + ¢) = K[z,y]/ ker(v) = Klz].
Thus K (Vagiby+e) = K(x) again. O
1.3. Let p be a prime number, ¢ = p" for n € N and f € F,[z] \ F,.
(a) If f is irreducible, describe a rupture field of f.
(b) If f is irreducible, describe a splitting field of f.
(c) For which k does the field F, contain a root of f7
(d) Construct an algebraic closure of the field F,,.

(a), (b) We know that the factor ring IF,[z]/(f) is a field containing a root of f, i.e. a
rupture field of f. Note that Fy[x]/(f) = Faeer is even a splitting filed of polynomials f

deg f deg f
and 29" — z and that f | 27

(c) Since Fx is a splitting filed of a polynomial 2 — g = Haquk 2 — a and it contains

— 2z in F [z].

all roots of irreducible polynomials of degree dividing k, F » contain a root of f if and
only if degged(f, 27" — ) > 0, which is true if and only if there exists an irreducible
factor of f of degree dividing k.

(d) Recall that [Fu is a subfield of F 1) since Fpo < Fpp iff a | b. Put K = (J, oy Fpr.

Observer that for each a € K there exists m for which « is a root of the polynomial
2P — x, hence K C F,. On the other hand let f € K[z]. Then there exist k such that
f € Fyu[z] and by (c) there is [ < deg f such that Fm < F ) < K contains a root of
f. This proves that K is an algebraic closure of the field F,,. O]
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1.4. Let f € Rlz,y] and F' € R[X,Y, Z] be its homogenization. Describe sets V, V;(R),
and points in infinity of Vp and Vp(R) if



(a) f=a+y*—1,
(b) f=2*+y.
First observe that
Vy={(a:b:c)€P?|c=0}={(a:b:0)€P?|(a,b) € C*\ (0,0)} = P*\ A%

(a) Clearly, V¢(R) is a unit circle. Now, we can easily determine the homogenization
F = X? +Y? — 72 of f. The points in infinity Vz NV of Vi are those satisfying
X?4Y? =272 =0. Since X2+Y? = (X +1Y)(X —14Y), we get that VeNVz = {(1,4i,0)}
and Vp(R)NV; =10

(b) This time V;(R) forms a parabola satisfying the equation y = —a?. Since the
homogenization of f is the polynomial F' = X? 4+ Y Z and the points in infinity Vx> NV
of Vi satisfy the equality X2 +YZ = X? = 0, we can easily compute that VNV, =
Ve(R)NVz ={(0,1,0)}. O

1.5. Let g = (523’%11)2 € R(x). Calculate in the function field R(x) over R the values of

valuations:
(a) vet1(B),
(b) ve-1(B),
(c) va(B),

(d) Vg2 _g+1 (5) :

Recall that v,(a) = max(k | p* | a) and v,(%) = vy(a) — v,(b) for a,b € Rlz] \ {(0)}.
a) Voy1(B) = ver1 (22 — 1) —vp (2> = 1)2=1-2=—1.

b) v 1(B) = veq(2? = 1) —v, (2> —1)*=0—-2= -2,

) v:(B8) = vp(2? — 1) — v, (22 —1)2=0—-0=0.

d) vp2_01(B) = Va2_pr(@® = 1) —vp2_p (2> —1)2=1-0=1. O

1.6. Let vy : K(x) — Z U {oo} be defined by the rules

0(0) = 00, vc(3) = deg(b) - deg(a)
for all a,b € K[z]\{(0)}. Prove that v is a normalized discrete valuation on the function

field K (x) over a field K.

First observe that the definition of v, is correct. If a,b,c,d € K|x] \ {(0)} satisfies

7 = 5 then
vso () = deg(b) — deg(a) = deg(d) — deg(c) = vse( ).

since ad = bc and so deg(a) + deg(d) = deg(b) + deg(c).
Let a,b,c,d € K[z]\ {(0)}. Then

vae(55) = voo(5) = deg(bd) —deg(ac) = deg(b)+deg(d)—deg(a)—deg(c) = voo(})+00(5)
and d+b
voo(% + 5) = vm(%) = deg(b) + deg(d) — deg(ad + bc).
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As deg(ad + be) < max(deg(ad), deg(bc)) = max(deg(a) + deg(d), deg(b) 4+ deg(c)) we get
that

voo(% + 2) = deg(b) + deg(d) — deg(ad + bc) >
deg(b) + deg(d) — min(deg(a) + deg(d), deg(b) + deg(c)) =
— min(deg(b) — deg(a), deg(d) — deg(c)) = min(vm(%), Uoo(g)).
Finally note that v,(1) = 1 and that v, (a) = oo if and only if a = 0, which finishes the
proof that all axioms (DV1)—(DV4) are satisfied. O
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2 Weierstrass equations
2.1. Find a short WEP which is R-equivalent to the WEP
w=1y>+y2r+2)— (2 —42® + 1) € Rz, ).

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the

term 2zy. Let A = ( 1o

1 1) € Uy(R), which represents replacement of y by y — x and
compute

P(w) =y —2)? +(y—2)2x +2) — (2% —42® + 1) = y* + 2y — (2® — 32° + 2z + 1).
Now we use b = (1, —1) to exclude monomials y and z*:
iAW) = (=1’ +20y -1 = ((z+ 1)’ =3@+ 1)’ +2c+ )+ 1) =¢* - (" —x+2).

O]

2.2. Show that the real polynomial w = y? — (2® — z + 2) is

(a) R-equivalent to y* — (2* — £ + 35),

(b) C-equivalent to y* — (z* — z — 2).
4 0
0 8
64(2® — & + 53), hence y? — (2* — x4+ 2) and y? — (2® — ;50 + 55) are R-equivalent by
the Fact from the lecture where we take ¢ =2 and d = (.

-1 0) and calculate
0 =2

(a) It is enough to take the matrix A; = ( and compute 0% () = 64y* —

(b) Now, we chose the complex matrix Ay =

0, (W) = —y* = (=2’ + 2+ 2).
Then the same argument as in (a) proves that C-equivalence of w and y*— (2> —x—2). O
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2.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a)

(b) (y+1)* = (¢ + 1) € Fs[z,y],

(c) y* — (2* — 2 — 2z +1) € R[z,y),

(d) v* +y(2x +2) — (2% — 42> + 1) € Rz, y] (from 2.1).

(a) y* — (23 + 1) € R[z,y] is a smooth short WEP by Proposition 2.2 since the
polynomial 2% + 1 is separable. The same result follows from the Corollary 2.3 as

4-03427-12=1+#0.

(b) w= (y+1)*— (2* + 1) € F3[z, y] is a singular WEP, since w is F3-equivalent to
y? — (23 + 1) and the polynomial z° + 1 = (z + 1)? has the root 2 of multiplicity 3. It is
easy to see that the only singularity is (2, 2),

(c) y> — (2 — 2> — z + 1) € R[z,y] is also a singular WEP, since the root 1 of
23 — 2% — x + 1 has the multiplicity 2. Then the singularity is (1,0).

(d) Using the equivalent short form y* — (z® — 2 + 2) computed in 2.1 we can easily
see that the polynomial f = 23 — x + 2 is separable. Indeed, the roots of f’ = 3z — 1 are
i\% and f(:l:\/%,:) # 0, so there is no multiple root of f. This means that 3> — (23 —z +2)
is smooth by Proposition 2.2, hence y* + y(2z + 2) — (23 — 42 + 1) is smooth by Fact
from the lecture. [

2.4. Let f = y—2a® € C[z,y|. Find all singularities of V; and of the projective extension
V.

Since ?)_5 = 1, the tangent ¢,(f) # 0 for each o € V}, hence V; is a smooth affine
curve.
Clearly, F =Y Z* — X3 Then Vp NV = {(0:1:0)} since

Fla:8:0)=02ad’=02a=0&(a:5:0)=(0:1:0).

We calculate (‘9F oF oF
—3X*, 2 =7Z*, 2 =2YZ,
8X 3 oY oz

and so t(.1.0)(#) = 0. Thus F is singular at (0 : 1 : 0) and Vp is a singular projective
curve. 0



