
19.02.

1 Basic notions

1.1. Describe sets Vf and Vf (R) if

(a) f = x2 − y2 ∈ R[x, y],

(b) f = (x2 − y2)(x+ y) ∈ R[x, y],

(c) f = x3 − y3 ∈ R[x, y]

(a) Since linear polynomials x+y and x−y are irreducible and x2−y2 = (x+y)(x−y),
we have irreducible decomposition of the curve:

Vx2−y2 = Vx+y ∪ Vx−y, Vx2−y2(R) = Vx+y(R) ∪ Vx−y(R),

where Vx+y = SpanC((1,−1)) and Vx−y = SpanC((1, 1)) are complex lines and Vx+y(R) =
SpanR((1,−1)) and Vx−y(R) = SpanR((1, 1)) are real lines.
(b) Since√

((x2 − y2)(x+ y)) =
√

((x− y)(x+ y)2) = ((x− y)(x+ y)) = (x2 − y2),

we have the same irreducible decomposition of Vf and Vf (R) into two lines as in (a)

V(x2−y2)(x+y) = Vx+y ∪ Vx−y, V(x2−y2)(x+y)(R) = Vx+y(R) ∪ Vx−y(R),

(c) We can easily calculate the decomposition of x3 − y3 into linear factors in C[x, y]:

x3 − y3 = (x− y)(x2 + xy + y2) = (x− y)(x+ (
1

2
+

√
3

2
i)y)(x+ (

1

2
−

√
3

2
i)y),

hence Vx3−y3 = Vx−y∪Vx+( 1
2
+

√
3

2
i)y

∪V
x+( 1

2
−

√
3
2
i)y
is an irreducible decomposition into three

complex lines. If we consider Vx3−y3(R) = Vx−y(R) ∪ Vx2+xy+y2(R). Now revoking linear
algebra we can show that the real quadratic form g2 = x2 + xy+ y2 is positively definite,
since its matrix (

1 1
2

1
2

1

)
∼s

(
1 0
0 3

4

)
is positively definite, hence {(x, y) ∈ R2 | g2(x, y) = 0} = {(0, 0)}. It means that
Vx3−y3(R) = Vx−y(R) = SpanR((1, 1)) is a real line.

26.02.

1.2. Describe the function field K(Vf ) for a general field K and

(a) f = x+ y,

(b) f = ax+ by + c where (a, b) ̸= (0, 0).
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First note that any non-constant linear polynomial is irreducible and that the function
field K(Vf ) is a filed of fractions of the coordinate ring K[Vf ]. So it is enough to describe
coordinate rings.
(a) To find the coordinate ring K[Vx+y] ∼= K[x, y]/(x+ y), we intend to use the First

Isomorphism Theorem. Consider evaluating homomorphism φ : K[x, y] → K[x] given by
φ(p) = p(x,−x), then, obviously x+y ∈ ker(φ), hence (x+y) ⊆ ker(φ). If q(y) ∈ ker(φ),
where we consider q as o polynomial in variable y with coeffitients in the domain K[x],
we can observe that −x is a root of q, thus (y + x) | q and so q ∈ (x + y). Since φ(p) is
surjective and we have shown that ker(φ) = (x+ y) and the First Isomorphism Theorem
gives us

K[Vx+y] ∼= K[x, y]/(x+ y) = K[x, y]/ ker(φ) ∼= K[x].

It means that the function field K(Vx+y) is isomorphic to the field of rational functions
in one variable K(x).
(b) W.l.o.g we may suppose that b ̸= 0, otherwise we switch the variables x and y.

We repeat the arguments of (a) for the evaluating homomorphism ψ : K[x, y] → K[x]
given by the rule ψ(p) = p(x,−a

b
x− c

b
), which is onto K[x]. Then ker(ψ) = (ax+ by+ c)

and by the First Isomorphism Theorem we get the isomorphism.

K[Vax+by+c] ∼= K[x, y]/(ax+ by + c) = K[x, y]/ ker(ψ) ∼= K[x].

Thus K(Vax+by+c) ∼= K(x) again.

1.3. Let p be a prime number, q = pn for n ∈ N and f ∈ Fq[x] \ Fq.

(a) If f is irreducible, describe a rupture field of f .

(b) If f is irreducible, describe a splitting field of f .

(c) For which k does the field Fqk contain a root of f?

(d) Construct an algebraic closure of the field Fp.

(a), (b) We know that the factor ring Fq[x]/(f) is a field containing a root of f , i.e. a
rupture field of f . Note that Fq[x]/(f) ∼= Fqdeg f is even a splitting filed of polynomials f
and xq

deg f − x and that f | xqdeg f − x in Fq[x].
(c) Since Fqk is a splitting filed of a polynomial xq

k −x =
∏

a∈F
qk
x−a and it contains

all roots of irreducible polynomials of degree dividing k, Fqk contain a root of f if and
only if deg gcd(f, xq

k − x) > 0, which is true if and only if there exists an irreducible
factor of f of degree dividing k.
(d) Recall that Fpk! is a subfield of Fp(k+1)! since Fpa ≤ Fpb iff a | b. Put K =

⋃
k∈N Fpk! .

Observer that for each α ∈ K there exists m for which α is a root of the polynomial
xp

m − x, hence K ⊆ Fp. On the other hand let f ∈ K[x]. Then there exist k such that
f ∈ Fpk! [x] and by (c) there is l ≤ deg f such that Fpk!l ≤ Fp(kl)! ≤ K contains a root of
f . This proves that K is an algebraic closure of the field Fp.

05.03.

1.4. Let f ∈ R[x, y] and F ∈ R[X, Y, Z] be its homogenization. Describe sets VZ , Vf (R),
and points in infinity of VF and VF (R) if
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(a) f = x2 + y2 − 1,

(b) f = x2 + y.

First observe that

VZ = {(a : b : c) ∈ P2 | c = 0} = {(a : b : 0) ∈ P2 | (a, b) ∈ C2 \ (0, 0)} = P2 \ A2.

(a) Clearly, Vf (R) is a unit circle. Now, we can easily determine the homogenization
F = X2 + Y 2 − Z2 of f . The points in infinity VF ∩ VZ of VF are those satisfying
X2+Y 2 = Z2 = 0. Since X2+Y 2 = (X+iY )(X−iY ), we get that VF ∩VZ = {(1,±i, 0)}
and VF (R) ∩ VZ = ∅
(b) This time Vf (R) forms a parabola satisfying the equation y = −x2. Since the

homogenization of f is the polynomial F = X2 + Y Z and the points in infinity VF ∩ VZ
of VF satisfy the equality X2 + Y Z = X2 = 0, we can easily compute that VF ∩ VZ =
VF (R) ∩ VZ = {(0, 1, 0)}.

1.5. Let β = x3+1
(x2−1)2

∈ R(x). Calculate in the function field R(x) over R the values of
valuations:

(a) vx+1(β),

(b) vx−1(β),

(c) vx(β),

(d) vx2−x+1(β).

Recall that vp(a) = max(k | pk | a) and vp(ab ) = vp(a)− vp(b) for a, b ∈ R[x] \ {(0)}.
(a) vx+1(β) = vx+1(x

2 − 1)− vx+1(x
2 − 1)2 = 1− 2 = −1.

(b) vx−1(β) = vx−1(x
2 − 1)− vx−1(x

2 − 1)2 = 0− 2 = −2.
(c) vx(β) = vx(x

2 − 1)− vx(x
2 − 1)2 = 0− 0 = 0.

(d) vx2−x+1(β) = vx2−x+1(x
2 − 1)− vx2−x+1(x

2 − 1)2 = 1− 0 = 1.

1.6. Let v∞ : K(x) → Z ∪ {∞} be defined by the rules

v∞(0) = ∞, v∞(
a

b
) = deg(b)− deg(a)

for all a, b ∈ K[x]\{(0)}. Prove that v∞ is a normalized discrete valuation on the function
field K(x) over a field K.

First observe that the definition of v∞ is correct. If a, b, c, d ∈ K[x] \ {(0)} satisfies
a
b
= c

d
then

v∞(
a

b
) = deg(b)− deg(a) = deg(d)− deg(c) = v∞(

c

d
).

since ad = bc and so deg(a) + deg(d) = deg(b) + deg(c).
Let a, b, c, d ∈ K[x] \ {(0)}. Then

v∞(
a

b

c

d
) = v∞(

ac

bd
) = deg(bd)−deg(ac) = deg(b)+deg(d)−deg(a)−deg(c) = v∞(

a

b
)+v∞(

c

d
)

and

v∞(
a

b
+
c

d
) = v∞(

ad+ bc

bd
) = deg(b) + deg(d)− deg(ad+ bc).
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As deg(ad+ bc) ≤ max(deg(ad), deg(bc)) = max(deg(a) + deg(d), deg(b) + deg(c)) we get
that

v∞(
a

b
+
c

d
) = deg(b) + deg(d)− deg(ad+ bc) ≥

deg(b) + deg(d)−min(deg(a) + deg(d), deg(b) + deg(c)) =

= min(deg(b)− deg(a), deg(d)− deg(c)) = min(v∞(
a

b
), v∞(

c

d
)).

Finally note that v∞( 1
x
) = 1 and that v∞(a) = ∞ if and only if a = 0, which finishes the

proof that all axioms (DV1)–(DV4) are satisfied.

12.03.

2 Weierstrass equations

2.1. Find a short WEP which is R-equivalent to the WEP

w = y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y].

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the

term 2xy. Let A =

(
1 0
−1 1

)
∈ U2(R), which represents replacement of y by y − x and

compute

ϑ∗
A(w) = (y − x)2 + (y − x)(2x+ 2)− (x3 − 4x2 + 1) = y2 + 2y − (x3 − 3x2 + 2x+ 1).

Now we use b = (1,−1) to exclude monomials y and x2:

τ ∗b ϑ
∗
A(w) = (y− 1)2 +2(y− 1)− ((x+1)3 − 3(x+1)2 +2(x+1)+ 1) = y2 − (x3 − x+2).

2.2. Show that the real polynomial w̃ = y2 − (x3 − x+ 2) is

(a) R-equivalent to y2 − (x3 − 1
16
x+ 1

32
),

(b) C-equivalent to y2 − (x3 − x− 2).

(a) It is enough to take the matrix A1 =

(
4 0
0 8

)
and compute ϑ∗

A1
(w̃) = 64y2 −

64(x3 − 1
16
x+ 1

32
), hence y2 − (x3 − x+ 2) and y2 − (x3 − 1

16
x+ 1

32
) are R-equivalent by

the Fact from the lecture where we take c = 2 and d = 0.

(b) Now, we chose the complex matrix A2 =

(
−1 0
0 i

)
and calculate

ϑ∗
A2
(w̃) = −y2 − (−x3 + x+ 2).

Then the same argument as in (a) proves that C-equivalence of w̃ and y2−(x3−x−2).

19.03.
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2.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a) y2 − (x3 + 1) ∈ R[x, y],

(b) (y + 1)2 − (x3 + 1) ∈ F3[x, y],

(c) y2 − (x3 − x2 − x+ 1) ∈ R[x, y],

(d) y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y] (from 2.1).

(a) y2 − (x3 + 1) ∈ R[x, y] is a smooth short WEP by Proposition 2.2 since the
polynomial x3 + 1 is separable. The same result follows from the Corollary 2.3 as

4 · 03 + 27 · 12 = 1 ̸= 0.

(b) w = (y + 1)2 − (x3 + 1) ∈ F3[x, y] is a singular WEP, since w is F3-equivalent to
y2 − (x3 + 1) and the polynomial x3 + 1 = (x+ 1)3 has the root 2 of multiplicity 3. It is
easy to see that the only singularity is (2, 2),
(c) y2 − (x3 − x2 − x + 1) ∈ R[x, y] is also a singular WEP, since the root 1 of

x3 − x2 − x+ 1 has the multiplicity 2. Then the singularity is (1, 0).
(d) Using the equivalent short form y2 − (x3 − x + 2) computed in 2.1 we can easily

see that the polynomial f = x3 − x+ 2 is separable. Indeed, the roots of f ′ = 3x− 1 are
± 1√

3
and f(± 1√

3
) ̸= 0, so there is no multiple root of f . This means that y2− (x3−x+2)

is smooth by Proposition 2.2, hence y2 + y(2x + 2) − (x3 − 4x2 + 1) is smooth by Fact
from the lecture.

2.4. Let f = y− x3 ∈ C[x, y]. Find all singularities of Vf and of the projective extension
VF .

Since ∂f
∂y

= 1, the tangent tα(f) ̸= 0 for each α ∈ Vf , hence Vf is a smooth affine
curve.
Clearly, F = Y Z2 −X3. Then VF ∩ VF = {(0 : 1 : 0)} since

F (α : β : 0) = 0 ⇔ α3 = 0 ⇔ α = 0 ⇔ (α : β : 0) = (0 : 1 : 0).

We calculate
∂F

∂X
= −3X2,

∂F

∂Y
= Z2,

∂F

∂Z
= 2Y Z,

and so t(0:1:0)(F ) = 0. Thus F is singular at (0 : 1 : 0) and VF is a singular projective
curve.
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