1 Basic notions

1.1. Describe sets V_f and $V_f(\mathbb{R})$ if

(a)
$$f = x^2 - y^2 \in \mathbb{R}[x, y],$$

(b)
$$f = (x^2 - y^2)(x + y) \in \mathbb{R}[x, y],$$

(c)
$$f = x^3 - y^3 \in \mathbb{R}[x, y]$$

(a) Since linear polynomials x+y and x-y are irreducible and $x^2-y^2 = (x+y)(x-y)$, we have irreducible decomposition of the curve:

$$V_{x^2-y^2} = V_{x+y} \cup V_{x-y}, \quad V_{x^2-y^2}(\mathbb{R}) = V_{x+y}(\mathbb{R}) \cup V_{x-y}(\mathbb{R}),$$

where $V_{x+y} = \operatorname{Span}_{\mathbb{C}}((1,-1))$ and $V_{x-y} = \operatorname{Span}_{\mathbb{C}}((1,1))$ are complex lines and $V_{x+y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,-1))$ and $V_{x-y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,1))$ are real lines.

(b) Since

$$\sqrt{((x^2 - y^2)(x + y))} = \sqrt{((x - y)(x + y)^2)} = ((x - y)(x + y)) = (x^2 - y^2),$$

we have the same irreducible decomposition of V_f and $V_f(\mathbb{R})$ into two lines as in (a)

$$V_{(x^2-y^2)(x+y)} = V_{x+y} \cup V_{x-y}, \quad V_{(x^2-y^2)(x+y)}(\mathbb{R}) = V_{x+y}(\mathbb{R}) \cup V_{x-y}(\mathbb{R}),$$

(c) We can easily calculate the decomposition of $x^3 - y^3$ into linear factors in $\mathbb{C}[x, y]$:

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) = (x - y)(x + (\frac{1}{2} + \frac{\sqrt{3}}{2}i)y)(x + (\frac{1}{2} - \frac{\sqrt{3}}{2}i)y),$$

hence $V_{x^3-y^3} = V_{x-y} \cup V_{x+(\frac{1}{2}+\frac{\sqrt{3}}{2}i)y} \cup V_{x+(\frac{1}{2}-\frac{\sqrt{3}}{2}i)y}$ is an irreducible decomposition into three complex lines. If we consider $V_{x^3-y^3}(\mathbb{R}) = V_{x-y}(\mathbb{R}) \cup V_{x^2+xy+y^2}(\mathbb{R})$. Now revoking linear algebra we can show that the real quadratic form $g_2 = x^2 + xy + y^2$ is positively definite, since its matrix

$$\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \sim_s \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{4} \end{pmatrix}$$

is positively definite, hence $\{(x,y) \in \mathbb{R}^2 \mid g_2(x,y) = 0\} = \{(0,0)\}$. It means that $V_{x^3-y^3}(\mathbb{R}) = V_{x-y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,1))$ is a real line. \Box

26.02.

1.2. Describe the function field $K(V_f)$ for a general field K and

- (a) f = x + y,
- (b) f = ax + by + c where $(a, b) \neq (0, 0)$.

First note that any non-constant linear polynomial is irreducible and that the function field $K(V_f)$ is a filed of fractions of the coordinate ring $K[V_f]$. So it is enough to describe coordinate rings.

(a) To find the coordinate ring $K[V_{x+y}] \cong K[x,y]/(x+y)$, we intend to use the First Isomorphism Theorem. Consider evaluating homomorphism $\varphi : K[x,y] \to K[x]$ given by $\varphi(p) = p(x, -x)$, then, obviously $x + y \in \ker(\varphi)$, hence $(x+y) \subseteq \ker(\varphi)$. If $q(y) \in \ker(\varphi)$, where we consider q as o polynomial in variable y with coefficients in the domain K[x], we can observe that -x is a root of q, thus $(y + x) \mid q$ and so $q \in (x + y)$. Since $\varphi(p)$ is surjective and we have shown that $\ker(\varphi) = (x + y)$ and the First Isomorphism Theorem gives us

$$K[V_{x+y}] \cong K[x,y]/(x+y) = K[x,y]/\ker(\varphi) \cong K[x].$$

It means that the function field $K(V_{x+y})$ is isomorphic to the field of rational functions in one variable K(x).

(b) W.l.o.g we may suppose that $b \neq 0$, otherwise we switch the variables x and y. We repeat the arguments of (a) for the evaluating homomorphism $\psi : K[x, y] \to K[x]$ given by the rule $\psi(p) = p(x, -\frac{a}{b}x - \frac{c}{b})$, which is onto K[x]. Then $\ker(\psi) = (ax + by + c)$ and by the First Isomorphism Theorem we get the isomorphism.

$$K[V_{ax+by+c}] \cong K[x,y]/(ax+by+c) = K[x,y]/\ker(\psi) \cong K[x].$$

Thus $K(V_{ax+by+c}) \cong K(x)$ again.

1.3. Let p be a prime number, $q = p^n$ for $n \in \mathbb{N}$ and $f \in \mathbb{F}_q[x] \setminus \mathbb{F}_q$.

- (a) If f is irreducible, describe a rupture field of f.
- (b) If f is irreducible, describe a splitting field of f.
- (c) For which k does the field \mathbb{F}_{q^k} contain a root of f?
- (d) Construct an algebraic closure of the field \mathbb{F}_p .

(a), (b) We know that the factor ring $\mathbb{F}_q[x]/(f)$ is a field containing a root of f, i.e. a rupture field of f. Note that $\mathbb{F}_q[x]/(f) \cong \mathbb{F}_{q^{\deg f}}$ is even a splitting filed of polynomials f and $x^{q^{\deg f}} - x$ and that $f \mid x^{q^{\deg f}} - x$ in $\mathbb{F}_q[x]$.

(c) Since \mathbb{F}_{q^k} is a splitting filed of a polynomial $x^{q^k} - x = \prod_{a \in \mathbb{F}_{q^k}} x - a$ and it contains all roots of irreducible polynomials of degree dividing k, \mathbb{F}_{q^k} contain a root of f if and only if deg gcd $(f, x^{q^k} - x) > 0$, which is true if and only if there exists an irreducible factor of f of degree dividing k.

(d) Recall that $\mathbb{F}_{p^{k!}}$ is a subfield of $\mathbb{F}_{p^{(k+1)!}}$ since $\mathbb{F}_{p^a} \leq \mathbb{F}_{p^b}$ iff $a \mid b$. Put $K = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^{k!}}$. Observer that for each $\alpha \in K$ there exists m for which α is a root of the polynomial $x^{p^m} - x$, hence $K \subseteq \overline{\mathbb{F}_p}$. On the other hand let $f \in K[x]$. Then there exist k such that $f \in \mathbb{F}_{p^{k!}}[x]$ and by (c) there is $l \leq \deg f$ such that $\mathbb{F}_{p^{k!l}} \leq \mathbb{F}_{p^{(kl)!}} \leq K$ contains a root of f. This proves that K is an algebraic closure of the field \mathbb{F}_p .

05.03.

1.4. Let $f \in \mathbb{R}[x, y]$ and $F \in \mathbb{R}[X, Y, Z]$ be its homogenization. Describe sets V_Z , $V_f(\mathbb{R})$, and points in infinity of V_F and $V_F(\mathbb{R})$ if

(a) $f = x^2 + y^2 - 1$,

(b) $f = x^2 + y$.

First observe that

$$V_Z = \{(a:b:c) \in \mathbb{P}^2 \mid c = 0\} = \{(a:b:0) \in \mathbb{P}^2 \mid (a,b) \in \mathbb{C}^2 \setminus (0,0)\} = \mathbb{P}^2 \setminus \mathbb{A}^2.$$

(a) Clearly, $V_f(\mathbb{R})$ is a unit circle. Now, we can easily determine the homogenization $F = X^2 + Y^2 - Z^2$ of f. The points in infinity $V_F \cap V_Z$ of V_F are those satisfying $X^2 + Y^2 = Z^2 = 0$. Since $X^2 + Y^2 = (X + iY)(X - iY)$, we get that $V_F \cap V_Z = \{(1, \pm i, 0)\}$ and $V_F(\mathbb{R}) \cap V_Z = \emptyset$

(b) This time $V_f(\mathbb{R})$ forms a parabola satisfying the equation $y = -x^2$. Since the homogenization of f is the polynomial $F = X^2 + YZ$ and the points in infinity $V_F \cap V_Z$ of V_F satisfy the equality $X^2 + YZ = X^2 = 0$, we can easily compute that $V_F \cap V_Z = V_F(\mathbb{R}) \cap V_Z = \{(0,1,0)\}$.

1.5. Let $\beta = \frac{x^3+1}{(x^2-1)^2} \in \mathbb{R}(x)$. Calculate in the function field $\mathbb{R}(x)$ over \mathbb{R} the values of valuations:

- (a) $v_{x+1}(\beta)$,
- (b) $v_{x-1}(\beta)$,
- (c) $v_x(\beta)$,
- (d) $v_{x^2-x+1}(\beta)$.

Recall that
$$v_p(a) = \max(k \mid p^k \mid a)$$
 and $v_p(\frac{a}{b}) = v_p(a) - v_p(b)$ for $a, b \in \mathbb{R}[x] \setminus \{(0)\}$.
(a) $v_{x+1}(\beta) = v_{x+1}(x^2 - 1) - v_{x+1}(x^2 - 1)^2 = 1 - 2 = -1$.
(b) $v_{x-1}(\beta) = v_{x-1}(x^2 - 1) - v_{x-1}(x^2 - 1)^2 = 0 - 2 = -2$.
(c) $v_x(\beta) = v_x(x^2 - 1) - v_x(x^2 - 1)^2 = 0 - 0 = 0$.
(d) $v_{x^2-x+1}(\beta) = v_{x^2-x+1}(x^2 - 1) - v_{x^2-x+1}(x^2 - 1)^2 = 1 - 0 = 1$.

1.6. Let $v_{\infty}: K(x) \to \mathbb{Z} \cup \{\infty\}$ be defined by the rules

$$v_{\infty}(0) = \infty, \quad v_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a)$$

for all $a, b \in K[x] \setminus \{(0)\}$. Prove that v_{∞} is a normalized discrete valuation on the function field K(x) over a field K.

First observe that the definition of v_{∞} is correct. If $a, b, c, d \in K[x] \setminus \{(0)\}$ satisfies $\frac{a}{b} = \frac{c}{d}$ then

$$v_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a) = \deg(d) - \deg(c) = v_{\infty}(\frac{c}{d}).$$

since ad = bc and so $\deg(a) + \deg(d) = \deg(b) + \deg(c)$.

Let $a, b, c, d \in K[x] \setminus \{(0)\}$. Then

$$v_{\infty}(\frac{a}{b}\frac{c}{d}) = v_{\infty}(\frac{ac}{bd}) = \deg(bd) - \deg(ac) = \deg(b) + \deg(d) - \deg(a) - \deg(c) = v_{\infty}(\frac{a}{b}) + v_{\infty}(\frac{c}{d})$$

and

$$v_{\infty}\left(\frac{a}{b} + \frac{c}{d}\right) = v_{\infty}\left(\frac{ad + bc}{bd}\right) = \deg(b) + \deg(d) - \deg(ad + bc)$$

As $\deg(ad + bc) \leq \max(\deg(ad), \deg(bc)) = \max(\deg(a) + \deg(d), \deg(b) + \deg(c))$ we get that

$$v_{\infty}\left(\frac{a}{b} + \frac{c}{d}\right) = \deg(b) + \deg(d) - \deg(ad + bc) \ge$$
$$\deg(b) + \deg(d) - \min(\deg(a) + \deg(d), \deg(b) + \deg(c)) =$$
$$= \min(\deg(b) - \deg(a), \deg(d) - \deg(c)) = \min(v_{\infty}\left(\frac{a}{b}\right), v_{\infty}\left(\frac{c}{d}\right))$$

Finally note that $v_{\infty}(\frac{1}{r}) = 1$ and that $v_{\infty}(a) = \infty$ if and only if a = 0, which finishes the proof that all axioms (DV1)–(DV4) are satisfied.

12.03.

$\mathbf{2}$ Weierstrass equations

2.1. Find a short WEP which is \mathbb{R} -equivalent to the WEP

$$w = y^{2} + y(2x + 2) - (x^{3} - 4x^{2} + 1) \in \mathbb{R}[x, y].$$

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the term 2xy. Let $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \in U_2(\mathbb{R})$, which represents replacement of y by y - x and compute

$$\vartheta_A^*(w) = (y-x)^2 + (y-x)(2x+2) - (x^3 - 4x^2 + 1) = y^2 + 2y - (x^3 - 3x^2 + 2x + 1).$$

Now we use b = (1, -1) to exclude monomials y and x^2 :

$$\tau_b^* \vartheta_A^*(w) = (y-1)^2 + 2(y-1) - ((x+1)^3 - 3(x+1)^2 + 2(x+1) + 1) = y^2 - (x^3 - x + 2).$$

2.2. Show that the real polynomial $\tilde{w} = y^2 - (x^3 - x + 2)$ is

- (a) \mathbb{R} -equivalent to $y^2 (x^3 \frac{1}{16}x + \frac{1}{32})$,
- (b) \mathbb{C} -equivalent to $y^2 (x^3 x 2)$.

(a) It is enough to take the matrix $A_1 = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}$ and compute $\vartheta_{A_1}^*(\tilde{w}) = 64y^2 - 64y^2$ $64(x^3 - \frac{1}{16}x + \frac{1}{32})$, hence $y^2 - (x^3 - x + 2)$ and $y^2 - (x^3 - \frac{1}{16}x + \frac{1}{32})$ are \mathbb{R} -equivalent by the Fact from the lecture where we take c = 2 and d = 0. (b) Now, we chose the complex matrix $A_2 = \begin{pmatrix} -1 & 0 \\ 0 & i \end{pmatrix}$ and calculate

$$\vartheta_{A_2}^*(\tilde{w}) = -y^2 - (-x^3 + x + 2).$$

Then the same argument as in (a) proves that \mathbb{C} -equivalence of \tilde{w} and $y^2 - (x^3 - x - 2)$. \Box

19.03.

2.3. Decide which of the following WEPs are smooth and find all singularities of singular ones:

(a)
$$y^2 - (x^3 + 1) \in \mathbb{R}[x, y],$$

(b) $(y+1)^2 - (x^3 + 1) \in \mathbb{F}_3[x, y],$
(c) $y^2 - (x^3 - x^2 - x + 1) \in \mathbb{R}[x, y],$
(d) $y^2 + y(2x+2) - (x^3 - 4x^2 + 1) \in \mathbb{R}[x, y]$ (from 2.1).

(a) $y^2 - (x^3 + 1) \in \mathbb{R}[x, y]$ is a smooth short WEP by Proposition 2.2 since the polynomial $x^3 + 1$ is separable. The same result follows from the Corollary 2.3 as

$$4 \cdot 0^3 + 27 \cdot 1^2 = 1 \neq 0.$$

(b) $w = (y+1)^2 - (x^3+1) \in \mathbb{F}_3[x,y]$ is a singular WEP, since w is \mathbb{F}_3 -equivalent to $y^2 - (x^3+1)$ and the polynomial $x^3 + 1 = (x+1)^3$ has the root 2 of multiplicity 3. It is easy to see that the only singularity is (2,2),

(c) $y^2 - (x^3 - x^2 - x + 1) \in \mathbb{R}[x, y]$ is also a singular WEP, since the root 1 of $x^3 - x^2 - x + 1$ has the multiplicity 2. Then the singularity is (1, 0).

(d) Using the equivalent short form $y^2 - (x^3 - x + 2)$ computed in 2.1 we can easily see that the polynomial $f = x^3 - x + 2$ is separable. Indeed, the roots of f' = 3x - 1 are $\pm \frac{1}{\sqrt{3}}$ and $f(\pm \frac{1}{\sqrt{3}}) \neq 0$, so there is no multiple root of f. This means that $y^2 - (x^3 - x + 2)$ is smooth by Proposition 2.2, hence $y^2 + y(2x + 2) - (x^3 - 4x^2 + 1)$ is smooth by Fact from the lecture.

2.4. Let $f = y - x^3 \in \mathbb{C}[x, y]$. Find all singularities of V_f and of the projective extension V_F .

Since $\frac{\partial f}{\partial y} = 1$, the tangent $t_{\alpha}(f) \neq 0$ for each $\alpha \in V_f$, hence V_f is a smooth affine curve.

Clearly, $F = YZ^2 - X^3$. Then $V_F \cap V_F = \{(0:1:0)\}$ since

$$F(\alpha:\beta:0) = 0 \Leftrightarrow \alpha^3 = 0 \Leftrightarrow \alpha = 0 \Leftrightarrow (\alpha:\beta:0) = (0:1:0).$$

We calculate

$$\frac{\partial F}{\partial X} = -3X^2, \quad \frac{\partial F}{\partial Y} = Z^2, \quad \frac{\partial F}{\partial Z} = 2YZ,$$

and so $t_{(0:1:0)}(F) = 0$. Thus F is singular at (0:1:0) and V_F is a singular projective curve.